EP2356318B1 - Machine rotative à losange déformable comportant un mecanisme de transmission perfectionné - Google Patents

Machine rotative à losange déformable comportant un mecanisme de transmission perfectionné Download PDF

Info

Publication number
EP2356318B1
EP2356318B1 EP09760928.3A EP09760928A EP2356318B1 EP 2356318 B1 EP2356318 B1 EP 2356318B1 EP 09760928 A EP09760928 A EP 09760928A EP 2356318 B1 EP2356318 B1 EP 2356318B1
Authority
EP
European Patent Office
Prior art keywords
rolling body
machine
transmission mechanism
piston
machine according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09760928.3A
Other languages
German (de)
English (en)
Other versions
EP2356318A1 (fr
Inventor
Vincent Genissieux
Jean-Pierre Ambert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ambert Jean-Pierre
GENISSIEUX, VINCENT
Original Assignee
Ambert Jean-Pierre
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ambert Jean-Pierre filed Critical Ambert Jean-Pierre
Publication of EP2356318A1 publication Critical patent/EP2356318A1/fr
Application granted granted Critical
Publication of EP2356318B1 publication Critical patent/EP2356318B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/32Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F01C1/02 and relative reciprocation between the co-operating members
    • F01C1/324Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F01C1/02 and relative reciprocation between the co-operating members with vanes hinged to the inner member and reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/32Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F01C1/02 and relative reciprocation between the co-operating members
    • F01C1/332Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F01C1/02 and relative reciprocation between the co-operating members with vanes hinged to the outer member and reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/40Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and having a hinged member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C17/00Arrangements for drive of co-operating members, e.g. for rotary piston and casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0827Vane tracking; control therefor by mechanical means
    • F01C21/0836Vane tracking; control therefor by mechanical means comprising guiding means, e.g. cams, rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C2/00Rotary-piston engines
    • F03C2/30Rotary-piston engines having the characteristics covered by two or more of groups F03C2/02, F03C2/08, F03C2/22, F03C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/02Methods of operating

Definitions

  • the present invention relates to a rotary deformable diamond machine (MRLD) and more particularly relates to a transmission mechanism for such a machine.
  • MRLD rotary deformable diamond machine
  • a rotary machine with deformable rhombus generally comprises a stationary assembly or stator and a moving assembly or rotor having a diamond shape articulated at its vertices and rotating around its center, able to deform in particular during its rotation.
  • Each side of the diamond determines, with the internal profile having a generally oval shape of the stator, a chamber of variable volume during the movement of the rotor.
  • the sides of the articulated diamond are materialized by plates called pistons having an outer surface of generally curvilinear shape. These pistons are sometimes provided, in their area of contact with the internal profile of the stator, sealing segments.
  • Such a machine can be used as a combustion engine, turbine, compressor, pump, metering device, grinder, mixer, loaded fluids or not. It has the advantage of having a fixed center of gravity, thus being able to avoid vibrations, to be able to reach compressions equivalent to those of piston engines, to have a higher flow rate than piston engines, to have a higher pressure ratio than that of turbines and to be simpler than most generally known machines performing the same functions.
  • MRLD Deformable diamond rotating machines
  • stator generally consisting of a cylindrical non-circular enclosure (it includes a cylinder whose direction is not a circle) external to the diamond-shaped rotor.
  • the rotor comprises a plurality (usually four) of rotary elements articulated to each other at their adjacent edges in a pivot connection axis parallel to the longitudinal axis passing through the center of the enclosure, each of the rotating elements defining with the inner wall of the chamber a chamber or cavity of variable volume.
  • the rotational torque of the rotor must be recoverable by a transmission shaft so that it can be used by a related device, for example via a gearbox, by the wheels of an automobile .
  • a related device for example via a gearbox
  • the movement When working as a compressor or rotary pump, the movement must be able to be printed on the rotor from a central transmission shaft.
  • the document FR 2 493 397 discloses a rotary engine that can operate as an internal combustion engine or pump or compressor comprising four articulated pistons forming a deformable rhombus which are articulated in their middle on two cranks with two opposite arms.
  • One of the cranks drives a transmission shaft centered in the stator, the other crank being rotatably mounted around the same shaft, due to the fact that the angle between the two cranks varies during the deformation of the rhombus.
  • This solution using the transmission of the movement only by a median arm does not ensure a uniform velocity movement of the diagonals of the diamond, which can induce parasitic torque due to the dynamics of the machine resulting in a non-uniform rotation of the central tree.
  • the document FR 2 374 512 (A. Jordan ) discloses an internal combustion engine with rotary pistons, including four articulated pistons, which can oscillate in rotation, rigidly applied at their ends by hinge rollers and seal rollers, against the inner surface of a chamber interior and having a mechanism for transmitting the forces of the pistons to a central shaft.
  • the transmission mechanism comprises a pair of arms integral with the central shaft and a pair of arms rotatably mounted about the shaft, each pair of arms being hinged in the middle of a piston, as well as four other arms. separate from the central shaft, connecting the central shaft to the hinge rollers and being of radially variable length.
  • the transmission mechanism of this document ensures, of course, a uniform rotation of the central shaft and, at the same time, a support of the pistons during the engine cycle, but at the risk of generating friction losses at the slides, while being cumbersome and of complex construction.
  • the document WO2004 / 070169 proposes a torque transmission mechanism solution between the pistons of a deformable diamond rotating machine and a central shaft thereof, wherein the transmission mechanism has a smaller bulk.
  • the transmission mechanism comprises two power rings arranged axially one in line with the other in the center of the rotor of the machine, each ring receiving torque from two bearing rollers connected to two opposed pistons. The movement of each power ring is transmitted to a central shaft by means of a tangential differential formed by four curved washers mounted on a central shaft and whose protuberances are inserted into slots of the power rings.
  • the mechanism can not transmit a uniform rotation to the shaft which therefore receives only the torque from the two opposed pistons.
  • a single pinion is integral with the piston and the other three are free to rotate
  • the torque often important in this type of machine is transmitted only by a single pinion, which could strongly damage its teeth. If two contiguous piston gears are attached to the pistons, then the transmission can not work.
  • Another solution describes a Maltese cross type mechanism mounted fixed on the central shaft, and having slits in which rollers belonging to the arms connecting each rotary joint to the shaft slide. This mechanism ensures, of course, a more uniform rotation of the central shaft, but at the cost of significant friction in the sliding links of the slots of the device, which leads to losses in the transmission of torque to the shaft.
  • the object of the invention is to overcome the aforementioned drawbacks and to propose a deformable diamond rotating machine comprising a transmission mechanism capable of transmitting the torque between the diamond and the central or peripheral transmission shaft to the diamond so as to ensure a uniform rotation speed of the drive shaft.
  • Another object of the invention is to propose a rotary deformable diamond machine comprising a mechanism for transmitting motion between the diamond and the shaft. central or peripheral transmission capable of ensuring a good performance of the transmission, while providing reliable operation and having an improved life.
  • Another object of the invention is to propose a deformable diamond rotating machine with reversible operation comprising a transmission mechanism capable of transmitting the torque between the diamond and the central or peripheral diamond transmission shaft, for a speed of uniform rotation of this tree.
  • Another object of the invention is to provide a rotary deformable diamond machine having a mechanism for transmitting the movement between the rhombus and the central or peripheral transmission shaft of simplified and compact structure, while being able to be achieved economically.
  • the machine thus comprises four articulated pistons forming a deformable rhombus, the deformation of the rhombus being able to take place when it rotates inside a fixed enclosure surrounding the rhombus or, when it turns around a fixed central crown arranged at the inside of the rhombus, or when the enclosure or the ring rotates relative to the fixed diamond in rotation.
  • central axis of the machine is understood the longitudinal axis of rotation of the machine which is parallel to the director of the enclosure, the enclosure being generally symmetrical with respect to this longitudinal axis.
  • the machine comprises a transmission mechanism between the diamond, in particular its pistons, and the rotation shaft of the machine. More particularly, said mechanism comprises, for at least one piston, preferably for each piston, a first rolling body mounted in the center of the piston which is in direct contact with or connected by a transmission member to a second body. running on the rotating shaft of the machine.
  • rolling body there is a generally cylindrical piece, which may be a cylinder or a cylinder portion.
  • the transmission mechanism can operate with a single first rolling body mounted on a single piston, or with only two or three first rolling bodies mounted on respectively two or three pistons. This constructive simplification is of economic interest because it makes it possible to reduce the cost of producing the transmission mechanism. It is preferred, however, to mount a rolling body on each piston to provide a well-balanced transmission mechanism assembly with good rotor guidance for improved machine life.
  • the first rolling body and the second rolling body are connected either directly in contact, it is understood that the movement is transmitted directly from one rolling body to the other, for example using a obstacle or friction drive, either by an intermediate part, in particular by using a transmission member.
  • transmission member there is a device or part for transmitting the torque and the rotational movement of the first rolling body located at a distance from the second rolling body.
  • Such a transmission member between two rolling bodies may include an intermediate rolling body or an assembly comprising intermediate rolling bodies.
  • this transmission member may be a chain, a belt, etc.
  • Such a rolling body arrangement is particularly advantageous because during the deformation of the diamond, the median length of this diamond does not change, so we can greatly simplify the design and structure of the transmission mechanism.
  • the gear ratio between the first and the second rolling body is positive and is equal to two.
  • the arrangement of the elements of the transmission on a median must take into account that the angle between the medians is variable with the deformation of the diamond. Therefore, the mechanism of the invention involves the use of a reducer on each median segment connecting the center of a piston in the center of the rhombus.
  • This reducer uses a geometric property of the deformable rhombus implemented by the invention, which is the fact that, during the deformation of the diamond, the angle of rotation of a median due to this deformation of the rhombus is half of the angle between the side of the diamond and the median.
  • the geometric principle on which the operation of the transmission mechanism of the invention is based is better described in the following, in the detailed part of the description.
  • the transmission mechanism of the invention thus makes it possible to transmit both the rotational torque of the pistons around the center of the machine and the tilting torque of the pistons around their center to the rotation shaft in engine or turbine mode and conversely when the machine is running in compressor or pump mode.
  • a MRLD according to the invention can be used for pumping, turbining, compressing, relaxing, grinding, dosing, mixing filled or unloaded fluids, using means connecting it to a fluid circuit external to the machine, or else being used as a motor internal combustion engine of a mixture of fuel and oxidant.
  • the transmission mechanism of the invention thus makes it possible to correctly transmit the torque between each piston of the rhombus and the rotation shaft of the machine, while ensuring a uniform rotational speed of this shaft, and this in the context of a Simplified construction and energy efficient.
  • said first rolling body and said second rolling body are provided with driving protuberances on at least a part of their periphery.
  • Such a transmission member having driving protrusions forms a drive by contact and transmits power by obstacles. This ensures a synchronous motion transmission, so no slip, silent and with a good energy efficiency between each piston and the machine rotation shaft.
  • the pressure inside the chambers of the machine per chamber is understood the volume between the enclosure surrounding the diamond and the extrados face of a piston, or any other cavity with variable volume arranged in the machine ) is not homogeneous, or when the pistons undergo reaction forces in contact with the guide surface of the enclosure, or when they undergo different dynamic effects due to the kinematics of the machine, the forces acting on a piston can create a tilting torque of the piston around its center. This tilting torque of the pistons is transmitted to the rotation shaft via the driving protuberances.
  • said transmission mechanism comprises gears with parallel axes and right teeth.
  • the transmission mechanism of the invention therefore uses a mechanical system consisting of gear wheels for transmitting the rotational movement. Gears with parallel axes and straight toothing are preferred because they offer a solution allowing high torque transmission without introducing axial forces and this in an economical manner.
  • the first rolling body is a half-pinion integral with a piston which meshes with a toothed wheel forming the second rolling body integral with the central rotation shaft of the machine by means of an intermediate rolling body forming a satellite gear.
  • This solution allows an efficient transmission of the rotational movement between the pistons of the diamond and a rotation shaft, ensuring a uniform speed of rotation of the shaft located in the center of the machine, for a good energy efficiency, while being able to be performed for a low cost.
  • said first rolling body is a conical gear connected to said second rolling body which is a conical gear by a shaft provided with bevel gears at the ends.
  • the transmission member between the first and the second rolling body is a shaft provided with bevel gears at each of its ends.
  • the gear made between this shaft and the first rolling body is comparable to a gearbox with a bevel gear. It is the same for the gear made between this shaft and the second rolling body.
  • the intermediate transmission member is an axle shaft arranged in a radial direction (in the case of single conical teeth), perpendicular to the longitudinal directions of the axes of the pinion (integral with the piston) and the conical toothed wheel (integral with the rotation shaft).
  • This embodiment also makes it possible to release the dimensional constraints of the diamond because the distance between the two bevel gears of the intermediate shaft is no longer related to the dimensions of the toothing and can therefore easily vary. This solution makes it possible to produce very large machines with a transmission that remains rigid, light and compact.
  • said first rolling body is a toothed circular sector attached to a piston which meshes with a toothed ring gear with internal teeth secured to the rotation shaft.
  • This solution allows a direct gear drive between the diamond pistons and a peripheral ring gear with a positive gear ratio, without the need to add intermediate planet gears.
  • a ring gear drive with internal teeth has a larger diameter, with more teeth in contact and can therefore transmit a larger torque.
  • the ring gear has a cylindrical peripheral contour and the toothed sectors are arranged one in the extension of the other so that they form a deformable inner ring of width (in the radial direction) greater than that a chamber of the machine, in order to close these rooms with variable volume.
  • the cylindrical peripheral contour of the ring gear promotes the transmission of the rotational movement and the integration of the machine.
  • the machine comprises a cavity internal to the diamond for moving a fluid or receiving an element outside the machine.
  • the central space of the rhombus (space defined by the internal faces of the pistons, called the intrados faces) forms, during the deformation of the diamond, a cavity Internal variable volume.
  • This internal cavity disengaged from the transmission mechanism can then be used to perform a function complementary to the machine, such as that of pumping a fluid, or it can be used to receive other elements of the installation operating with the machine of the invention to obtain even more compactness of the assembly.
  • the transmission mechanism can divide the space of the central cavity or other cavities, provided that the transmission members used oppose a sufficient brake to the passage of the fluid.
  • the transmission gear is very close to the conditions of realization of the gear pumps.
  • the friction roller transmissions are close to the lobe pumps without external synchronization. The separations thus created serve to form a number of variable volume internal cavities for pumping, compressing, rotating, or moving fluid, but also for amplifying volume variations or for limiting dead volumes.
  • said first rolling body and said second rolling body are connected by a chain or a toothed belt.
  • This solution provides a distance drive between the rolling bodies, without using intermediate rolling bodies, which has the main advantage of obtaining a transmission mechanism according to the invention that can be dimensioned so that it is independent of the distance between the first and the second rolling body. This can make it easier to adapt to an imposed dimension of the machine.
  • said first rolling body is connected to said second rolling body by a smooth belt.
  • This embodiment of the transmission mechanism allows easy installation and assembly inside the machine, while providing the possibility of a fine adjustment of the angular positions of the components.
  • the first two opposite rolling bodies are connected to the second rolling body by a common chain or a common belt; or all the first rolling bodies are connected to the second rolling body by a common belt or a common chain.
  • said first rolling body and said second rolling body are friction rollers each having a hard core covered with a flexible envelope.
  • Such a friction roll transmission mechanism which may each comprise a hard core covered with an adherent flexible envelope is desirable for applications requiring transmission of low torques, but with higher requirements of uniformity of transmission and absence of noise. of operation thereof.
  • said first rolling body is connected by at least one intermediate rolling body to said second rolling body.
  • two opposed pistons are connected together by at least one median arm, each end of said median arm being pivotally mounted in the center of each piston.
  • the transmission mechanism has a reversible operation.
  • the piston and said first rolling body form a single piece. This solution is preferred because it provides more ease of mounting the transmission mechanism within the machine, and also when the pistons are subjected to heavy stresses.
  • the transmission mechanism makes it possible to separate an internal cavity of the machine into one or more cavities of variable volume.
  • these elements of the transmission mechanism can divide the internal cavity of greater volume in one or more cavities of smaller volume, the volume being variable with the deformation of the diamond.
  • the invention relates to a rotary machine with deformable diamond (MRLD) which can for example function as a motor or as a compressor.
  • the machine has, as best seen in the figure 3d a stator 2 having a generally tubular shape of approximately oval section, whose profile is in accordance with the geometric rules imposed by the deformation of the diamond during its rotation and whose inner surface defines a chamber 1 for receiving a rotor 3 which is a deformable rhombus 4.
  • the deformable rhombus 4 is a set of four pistons 6 interconnected by pivot links, materialized by pivoting joints 7, and forming a chain closed on itself.
  • the rotor 3 which is the rotating part of the machine is generally the diamond 4, but it is possible, in a variant, to drive the chamber 1 in rotation which then rotates relative to the rhombus 4 fixed in rotation, but whose sides are deformed. (We understand by side the segment that connects, in a plane perpendicular to the axis of rotation of the machine, the axes of two adjacent pivot links).
  • the deformation of the rhombus 4 can also take place by guiding around a central ring, fixed or mobile in rotation, arranged inside the diamond and whose profile is in accordance with the geometric rules imposed by the deformation of the diamond.
  • a piston 6 is a part having a shape of cylinder portion of director parallel to the axis of rotation of the machine.
  • the surfaces located at the two ends of this piece each provide a part of a rotational axis pivot connection parallel to the axis of rotation of the machine.
  • the segment that connects two midpoints of opposite sides of the rhombus, including two opposed pistons, forms a median of the rhombus.
  • the segment that connects two opposing vertices 5 forms a diagonal of the rhombus.
  • the center of the pistons is the middle of one side of the rhombus, it is the junction point with the medians of the rhombus.
  • the intersection of the diagonals or medians of the diamond defines the center of the machine through which the central axis of the machine passes.
  • rotation shaft 15 of the machine it includes a part or a set of mechanical parts to recover or impose the rotational movement of the rotor or the stator via a mechanical transmission system 14 adapted.
  • the machine also comprises two lateral closing flanges (not shown in the figures), arranged perpendicularly to the rotation shaft of the machine and bearing against the front and rear end faces of the stator 2 and the rotor 3.
  • the extrados face 9 of the piston 6 comprises the external surface of the piston 6, located outside the rhombus 4, and by the intrados face 11 of the piston 6, the internal surface of the piston 6, located at inside the diamond 4 ( fig.3d ).
  • the extrados face 9 of a piston 6 defines with the enclosure 1 and the side closure flanges an external cavity 8.
  • Two fluid inlet ports 12 and two fluid outlet ports 13 are, in the examples shown in FIGS. figures (3c, 3d , 11c , 12a, 12b and 12c ), radial channels made through the chamber 1 and allowing a fluid exchange between the outer cavities 8 and a fluid circuit outside the machine.
  • a fluid circuit is connected to the machine, the entrance to the external chambers 8 being illustrated, for example, by an orifice 12 in communication with the input or upstream circuit of the machine, and the fluid outlet being illustrated, for example, by an orifice 13 which is, him, in communication with an output circuit or downstream of the machine.
  • the intrados faces 11 of the pistons 6 ( fig.3d ) define, with their connecting joints 7 and with the lateral closure flanges, an internal cavity 10 of variable volume.
  • the machine comprises a mechanism 14 for transmitting the movement between the pistons 6 and a rotation shaft 15 coaxial with the central axis of the machine, since said transmission mechanism 14 comprises, for each piston 6, a first rolling body 16 fixedly mounted on the piston 6, the axis 17 of said first rolling body passing in the center of the piston 6, the first rolling body 16 being connected to the second rolling body 19 directly or by means of an intermediate transmission member 18 ( fig.2 ) for transmitting the rotational movement from said first rolling body 16 to the second rolling body 19 ( fig.3a ) whose center 20 ( fig.2 ) passes through the central axis of the machine and is integral with said rotation shaft 15, and wherein the gear ratio between the first 16 and the second rolling body 19 is equal to 2 and is positive.
  • said transmission mechanism 14 comprises, for each piston 6, a first rolling body 16 fixedly mounted on the piston 6, the axis 17 of said first rolling body passing in the center of the piston 6, the first rolling body 16 being connected to the second rolling body 19 directly or by means of an intermediate transmission member 18 (
  • the figure 1 illustrates the geometric principle underlying the design of the transmission mechanism of the invention.
  • the deformable rhombus 4 is schematically represented in two operating positions of the machine, during the rotation of the rhombus around its center O, a side PR of the rhombus in the first position taking the position P'R 'in the second position . It demonstrates that when the median OM rotates from an angle ⁇ to reach the position OM ', the angle OMR between the diamond side and the median varies from an angle 2 ⁇ to reach the position OM'R'.
  • the geometry of the rhombus therefore imposes that the speed of rotation of one side of the rhombus (represented here by the segment PR) with respect to its median (represented by the segment OM) which connects it to the center of the machine (O), on the rotation speed of this median (OM) is two and is positive.
  • the rolling bodies 16, 19, which may alternatively be gears composed of externally toothed gears, reverse the direction of rotation.
  • an intermediate body 21 forming a satellite gear is used which essentially serves to maintain a positive speed ratio.
  • the rolling bodies 16,21 arranged according to the median OM in the first position of the rhombus 4, take the references 16 ', 21' being arranged according to the median OM 'in the second position of said rhombus.
  • the ratio of pitch diameter between the piston pinion and the pinion of the rotation shaft is 2 to comply with the geometric rule related to the geometry of the deformable rhombus.
  • the first rolling body 16 is a half-pinion integral with an axis 17 which is fixedly mounted in the center of a piston 6, its teeth being oriented towards the center of the diamond 4.
  • the half-pinion constituting the first rolling body 16 and the piston 6 are made in one piece, advantageously made by a wire EDM process in a block of isotropic material for small series or by sintering for large series.
  • the half-pinion of the first rolling body preferably comprises between 20 and 40 teeth uniformly distributed over its entire periphery, ie between 10 and 10 teeth. and 20 for the half-pinion as shown in the figures. Only certain teeth are useful, depending on the degree of deformation of the diamond.
  • the second rolling body 19 is a toothed wheel rotatably secured to the rotation shaft 15 passing in the center of the rhombus 4, for example by fixing it to the latter by means of a key 22.
  • the second rolling body 19 is a wheel toothed having a number of teeth equal to twice the number of teeth of the first rolling body 16 or half-pinion, and preferably comprised between 40 and 80 uniformly distributed around the periphery, but where only certain teeth are useful, depending on the degree deformation of the diamond.
  • Intermediate rolling bodies 21 are planet gears having the same module as the half-gears and the gear wheel and which serve to reverse the direction of rotation between the half-gears and the toothed wheel. Their diameter, respectively their number of teeth are chosen according to the size of the machine, in particular according to the dimensions of the diamond 4.
  • a median arm 23,24 is a generally oblong piece, having a prominent central portion extending, on either side, by two elongated ends, upper 27 and lower 28.
  • the protuberance has a central orifice 26 through which passes with or without play the central shaft 15.
  • Each end 27,28 is pivotally mounted about an upper pivot axis 29, respectively lower 30, passing through the center of each piston 6.
  • a flared release 25 is arranged in the intrados face of the piston 6 and around each axis 29,30 to allow the deflection in pivoting of each median arm 23,24.
  • Each median arm 23,24 carries a support pin 31 on which is mounted the intermediate rolling body 21 forming a satellite pinion.
  • Each satellite pinion is mounted on the median arm that connects two opposed pistons.
  • the half-gears, the planet gears and the toothed wheel are chosen from the right-hand spur gears for their good performance, for the low cost of this type of standard components, and because of the absence of axial forces and particularly when the noise pollution constraints are low.
  • the helical teeth are preferred which ensure a progressive contact, therefore a more regular and less noisy operation. It is possible to compensate the axial forces generated by the helical gears by setting up two helical gears superimposed with opposite helix angle.
  • the gears of the invention are dimensioned so as to take into account the specific constraints which they undergo, in particular due to the fact that all the teeth do not work, that the working teeth are stressed mainly in bending in the two orthoradial directions, and in a different way, and that the contact pressures are not during the cycle.
  • it is preferable, when designing the mechanism and the dimensioning of the gears to take into consideration the most demanding operating cases (irregularities, shocks, vibrations, oscillations), and to refer to the service life (number cycles) of each tooth.
  • the toothed wheel, the four half-pinions and the planet gears may have teeth only on a part of their periphery at their respective meshing, which offers more freedom in the choice of the pitch of their teeth.
  • the first rolling body 16 is a conical half-pinion 53 integral with a piston 6 and the second rolling body 19 is a conical gear 54 integral with the central rotation shaft of the machine.
  • the teeth are not shown for a better readability of the figures, however, the representation of the contact cones facilitates the understanding of the mechanism.
  • the median arms have been removed from the Figures 4b to better see the internal elements.
  • the intermediate transmission member 18 between the first rolling body 16 and the second rolling body 19 is an intermediate shaft 55 provided with bevel gears at each of its ends, in particular an upper conical pinion 56 and a lower conical pinion 57.
  • upper end 56 and lower 57 pinions are integral in rotation with the intermediate shaft 55, their axis coinciding with the axis of the intermediate shaft 55.
  • the axis of the intermediate shaft 55 is located in a radial direction, according to the median which connects a piston 6 to the rotation shaft 15.
  • the gear made between the intermediate shaft 55 and the first rolling body 16 or half pinion 53 is comparable to a gearbox with a bevel gear. It is the same for the gear made between the intermediate shaft 55 and the second rolling body 19 or conical wheel 54.
  • the gear ratio introduced by this gear depends on the sizes selected for making the gearboxes with angle returns and he is, according to the invention, 2: 1.
  • the conical half-pinion 53 and the upper conical pinion 56 meshes without reduction, they therefore have the same number of teeth and a straight single toothing inclined at 45 °.
  • the lower bevel gear 57 and the bevel gear 54 mesh with a ratio reduction 2, the conical gear 54 therefore has a more open cone (about 127 ° vs. 53 °) with twice as many teeth as the lower bevel gear 57
  • the gear ratio remains positive if the teeth cones of the first rolling body 16 or bevel half-gear 53 and the second rolling body 19 or conical gear 54 point in opposite directions.
  • This embodiment variant has the advantage of being free of space constraints inside the diamond 4, because the distance between the two bevel gears 56, 57 of the intermediate shaft 55 is not related to the toothing and can therefore vary easily. More particularly in the case of machines of very large dimensions, this embodiment has the advantage of a simple transmission (without tension rollers), rigid but light thanks to hollow intermediate trees of large outside diameter, and finally, much less cumbersome than a machine whose transmission mechanism would include large gear wheels.
  • the transmission mechanism 14 illustrated in the accompanying figures is a reversibly operating mechanism which ensures reversible operation of the machine of the invention.
  • the ratio of reduction of 2 between the first rolling body 16 and the second rolling body 19 allows the use of reversible mechanisms. Indeed, for all the embodiments and variants presented in this document, it is possible to size the rolling bodies 16 and 19, as well as the intermediate transmission members 18, with gear ratios, tooth angles, materials and games that make their operation reversible. Thus the entire transmission 14 is perfectly reversible.
  • the median arms 23,24 serve essentially to support the intermediate rolling bodies 21, or the tensioners 51, or the reference rollers not shown in the figures.
  • the arms The medians 23, 24 are also intended to protect the gears of the transmission mechanism 14 against the radial forces that engage the pistons 6. Indeed, by choosing an optimum game at their pivoting joints about the axes 29, 30, less than that of the pivoting joints 7, the middle arms 23,24 cash radial forces and allow the gears to function properly.
  • the contact pressures generated between these cylinders are greater than those generated by the median arms 23,24 (cylinder in bore).
  • the Figures 5a and 5b illustrate a machine made according to a third variant, wherein the first rolling body 16 is a toothed wheel integral with the piston 6, the second rolling body 19 is a toothed wheel integral with the rotation shaft 15 and where the transmission member intermediate 18 is a chain 32 connecting the two rolling bodies 16,19.
  • the gear wheels have, in generally known manner, toothing suitable for driving by a chain.
  • the transmission mechanism 14 of the machine thus uses four chains 32 connecting the four gears of the pistons 6 to a central gear integral with the rotation shaft 15.
  • the machine uses two median arms 23,24 articulated pivotally mounted about end axes 29,30 each passing in the center of a piston 6, the central orifice 26 of each median arm 23,24 being traversed with clearance by the rotation shaft 15.
  • the mechanism transmission 14 uses, in a known manner in chain transmissions, a system for tensioning the chain (not shown in the figures) which advantageously bears on the median arms 23,24.
  • the operating clearance of said system being predefined according to the technical specifications of the application (transmitted torque, speed, link size, etc.).
  • FIGS 6a and 6b illustrate a transmission mechanism 14 produced according to a fourth variant of the first embodiment which differs from the third variant mentioned above ( Figures 5a and 5b ) in that two first rolling bodies 16 opposite (where a rolling body 16 is secured at its center of the center of a piston and the other of the center of the opposite piston) are connected together and are connected to the second rolling body 19
  • This solution has the advantage of being of a simplified design, while allowing to transmit a greater torque between the pistons 6 and the rotation shaft 15 because the width of the chain can be doubled.
  • the Figure 6c illustrates another alternative embodiment of the transmission mechanism 14 of the invention wherein all the first rolling bodies 16 are connected to the second rolling body 19 by a common belt 33 '.
  • Tensioners 51 are provided for bringing the common belt 33 'into contact with the periphery of the second rolling body 19, in particular two tensioners 51 delimit the contact portion of the belt 33' with the body 19.
  • the axes of the eight tensioners 51 that comprises the machine are supported, for example, by median arms 23 and 24. This solution has the advantage of allowing the transmission of an even greater torque than in the realization of Figures 6a and 6b .
  • the Figures 7a and 7b illustrate a transmission mechanism 14 produced according to a fifth variant of the first embodiment which differs from the third variant mentioned above ( Fig. 5a and 5b ) in that the intermediate transmission member 18 is here a toothed belt 34.
  • the first rolling body 16 is a toothed wheel integral with the piston 6
  • the second rolling body 19 is a toothed wheel integral with the rotation shaft 15, the movement between the two wheels being transmitted by a toothed belt 34.
  • a toothed belt is made of a flexible material, for example fiber reinforced elastomer. The advantage of such a solution is that it is less noisy in operation than a chain, that the toothed belt is lighter than a chain, while having a more regular operation.
  • a toothed belt is a synchronous belt, it ensures a transmission without slip or phase shift between the inlet and the outlet.
  • the Figures 8a and 8b illustrate a sixth alternative embodiment of the transmission mechanism 14 of the invention wherein the first rolling body 16 and the second rolling body 19 are pulleys connected by a smooth belt 35.
  • a tensioning roller (not shown in the drawings) can be provided on the middle arms 23,24 to adjust the tension of the belt when it is flat traction drive belt type.
  • the advantage of such a solution is that the smooth belt 35 is easier to implement and that it can adjust more finely the angular positions between the first rolling body 16 and the second rolling body 19 during assembly because there are no notches to respect and therefore no shifting mechanism to implement. Furthermore, any slippage may occur during operation and result in desynchronization between the first rolling body 16 and the second rolling body 19.
  • this drawback can be overcome by using a diamond guide device 4 formed by the articulated pistons, so that the sliding of the smooth belt 35 automatically resynchronizes the angles between the first rolling body 16 and the second rolling body 19.
  • the Figures 9a to 9c illustrate a transmission mechanism 14 made according to a seventh variant of the first embodiment.
  • the first rolling body 16 and the second rolling body 19 are friction rollers, an intermediate rolling body 21 is also provided between the two rolling bodies 16 and 19.
  • the structure of the mechanism 14 according to this variant is quite similar to that described with reference to the Figures 3a to 3d reference numbers having the same role have been partially taken over Figures 9a to 9c .
  • the friction rollers have a metal core and are coated on the surface of a high-friction elastomer casing.
  • the diameter of the central roller 37 mounted fixed in rotation on the rotation shaft 15 is equal to twice the diameter of a half-roller 36 integral with a piston 6.
  • a intermediate roller 38 is sized according to the size of the diamond 4.
  • the transmission mechanism 14 produced according to this variant allows a drive by adhesion, which is subject to possible slippage, while being more rigid than a drive by smooth belt 35.
  • FIGS 10a to 10c illustrate an eighth embodiment of a transmission mechanism 14 where the first rolling bodies 16 and the second rolling body 19 are friction rollers similar to those of Figures 9a to 9c , but where the transmission mechanism 14 uses a plurality of intermediate bearing bodies 21. More particularly, a half-roller 36 is mounted integral in motion with a piston 6 and a central roller 37 is mounted integral with the rotation shaft 15. using a key 22. Three intermediate rollers 38 are held by each elongate portion of a median arm 23, respectively 24. A median arm thus supports six intermediate rollers 38. The median arms have the same role as in the previous variants, they are therefore pivotably mounted in joints 29,30 in the center of the opposed pistons 6, the rotation shaft 15 passing with or without play in the center of each median arm.
  • the ends 27,28 of the median arms 23,24 are pivotally arranged in the center of a piston 6, a median arm 23 connecting the midpoint of a piston 6 with the tangent to the rotation shaft 15, making the we obtain a spiral arrangement of the ends of the median arms from their center.
  • This allows each end to support a plurality of intermediate rollers 38, tangentially offset by their support pins 31 ', 31 "and 31"'.
  • the advantage of such a solution is that the multiplication of the rollers makes it possible to reduce their diameter and therefore the inertia of the transmission and its harmful consequences.
  • an odd number of intermediate rollers must be used in order to maintain a positive transmission ratio.
  • the pebbles are not aligned on the median in this realization, which allows to adapt rollers of standard dimensions to a machine with dimensions imposed.
  • the Figures 11a to 11d illustrate a transmission mechanism 14 according to a second embodiment of the invention.
  • the transmission mechanism 14 comprises a first rolling body 16 which is a toothed sector comprising an axis 17 which is mounted fixed in rotation in the center of a piston 6, toothed sector which is brought to mesh with a ring gear 40 having an internal toothing which forms the second rolling body 19.
  • the ring gear 40 has an axis of rotation which is coaxial with the central axis 43 of the machine which passes through the intersection of the median arms 23,24, the ring gear 40 forming the drive shaft 15 of the transmission.
  • the median arms 23,24 are pivotally mounted at their ends on the pins 17 which pass through the pistons 6 and serve to support the radial forces acting on the pistons, the games in the pivoting joints of the median arms 23,24 being smaller than that of the spacing between a toothed sector 39 and the ring 40.
  • the ring gear 40 has a cylindrical peripheral contour 41 and the toothed sectors 39 are arranged one in the extension of the other so that they form a deformable inner ring 42 of width (in the radial direction) greater than that of an outer chamber 8 of the machine.
  • the deformable inner ring 42 is formed by articulating the toothed sectors 39 between them, each tooth sector 39 having at its ends a protrusion 44 and a recessed area 45, where each protuberance 44 is installed in a recessed area 45 adjacent toothed sector.
  • This solution has the advantage of being exempt from any pinion 48 or intermediate rolling body, which limits the play in the transmission, to avoid shock, nuisance and damage to parts leading to premature wear .
  • the dimensions of the rolling bodies are greater, for more robustness of the transmission.
  • the internal toothing makes it possible to increase the number of teeth in contact (driving ratio), for a better transmission of the effort. It should also be noted that the choice of gear sizes is freer because it is almost independent of the dimensional parameters of the diamond.
  • the center of the diamond is free and empty of any mechanical element. Indeed, when the median arms 23,24 are not necessary to the machine, especially in the case a construction where the rotor parts are rigid with small clearances in the pivoting joints 7, this free space then forms a central cavity 52 with variable volume that can pump, compress, turbinate, move fluid. This cavity can also simply provide space for the passage of components or accessories from the environment of the machine. Indeed, access to the interior of the diamond 4 of such machines is here improved, which facilitates maintenance or repair operations.
  • the inner cavity 52 could be further divided into a plurality of variable volume chambers, for example using sealed internal walls.
  • the components of the transmission mechanism 14 may divide the space of the internal cavity 10, in particular insofar as the intermediate transmission members 18 used in the transmission mechanism 14 oppose a sufficient brake to the passage of the fluid of an internal cavity 10 to the other. This can be explained with reference to the figure 2 wherein the inner cavity 10 can be divided by the components of the transmission mechanism 14 of each median arm into four variable volume cavities 10a, 10b, 10c and 10d.
  • the axial clearances between the rolling bodies 16 and 19, the intermediate transmission members 18 and the side walls or the median arms 23, 24 must be minimal in order to ensure a tightness of the fluid present in each cavities 10a to 10d.
  • the fluid can arrive in one of the cavities 10a to 10d from a fluid circuit external to the machine via intake and discharge ports made in the lateral flanges of closure of the machine.
  • the use of the median arms 23,24, shoulders on the gables, non-overlap area of the flexible envelopes of the friction rollers are to be avoided.
  • the gear transmission ( figure 2 ) is very close to the conditions of realization (tolerances, clearances, materials, manufacture) gear pumps well known to those skilled in the art, because the cavities are delimited by the contact areas in the gear teeth, the walls circular tangent to the tops of the teeth and the flat surfaces of the gears which are fitted against the side walls of closure of the machine.
  • the structure of a transmission mechanism with friction rollers ( Figures 9a and 10a ) is close to that of a lobe pump using lobe wheels without external synchronization, because the contact between the lobe wheels is with a slight elastic deformation of the elastomeric casing which covers the lobe wheels in order to improve the sealing and the transmission of the torque.
  • the separations thus created by the transmission mechanism of the invention serve to form more cavities for pumping, compressing, turbining, or moving one or more fluids, but also to amplify volume variations, or to limit dead volumes. Closed spaces forming cavities with variable volume can also be obtained using other surfaces, such as space included ( Figures 11a and 11b , as described in the following) between the toothed sectors 39, the ring gear 40, the stator 2 and an attached side wall.
  • the machine having a transmission mechanism according to the Figures 11a to 11d is made from a ring gear 40 with internal teeth of module 3 with 80 teeth, and having four toothed sectors 39 of module 2 which would have 40 teeth if they were whole.
  • the dimensions of the machine are about 50 mm for the height of the pistons 6, a total height of the closed machine of about 100 mm and about 20 mm of tooth width.
  • the distance between the tops of the two opposed pistons 6 is 100 mm and the diameter of the machine is about 200 mm.
  • the contact of internal teeth on external teeth offers a ratio of driving (one understands the number of teeth in contact) much more important, which improves considerably the service life of the machine as well as the transmittable torque.
  • the space released by the suppression of the planet gears 48 makes it possible to increase the pitch diameters and therefore the efficiencies of the meshing systems.
  • the suppression of the planet gears 48 makes it possible to gain a conversion of movement.
  • the estimated efficiency for the transmission mechanism in this case is of the order of 98%.
  • FIGS. 12a to 12c illustrate an example of application of a MRLD comprising a transmission mechanism according to the invention, the machine being a fast-acting domestic air compressor 50.
  • the pistons 6 comprise half-gears 47 which are the blocks made by electroerosion and plugged into a lightening groove 46 made along the intrados face 11 of each piston 6.
  • the half-gears 47 meshing with a gear wheel 49 fixed on the rotation shaft 15 by means of planet gears 48.
  • the planet gears 48 are pressed together on a standard pin on the middle arms 23,24.
  • the planet gears 48 are guided up and down by the median arms 23,24.
  • the rotation shaft 15 is a piece of simple revolution connected to the toothed wheel 49 thanks in particular to a key 22.
  • the rotation shaft 15 has along its length grooves or circular grooves for receiving elastic fixing rings (of the circlip type, not visible in the figures) blocking in axial translation the toothed wheel 49 and blocking the axial translation of the shaft relative to the middle arms 23,24 and thus relative to the stator 2. In operation, the rotation motor torque of the rotation shaft 15 is transmitted to the pistons 6.
  • the dimensional and operating parameters of the various components of the machine have been designed to be able to transmit the desired torque, while presenting a silent operation, avoiding generating vibrations and being able to be realized at a reduced cost.
  • the compressor 50 reaches the discharge pressure of 3 bar absolute, for admission to atmospheric pressure with a flow rate of 1500 normal L / min at 3000 rpm, for a torque of 20 Nm
  • the reduction is done on the same floor to simplify the design of the machine and reduce the cost, respecting the gear ratio between the half-pinions 47 secured to the piston 6 and the toothed wheel 49 integral with the shaft.
  • Straight spur gears are preferably used for their good performance, standardization, absence of axial forces and it is preferred to choose identical module toothings for all the pistons in order to simplify the design.
  • the same pitch diameter of the planet gears 48 is advantageously chosen as the pitch diameter of the piston half-gears 47 in order to reduce the wear of the gears.
  • the diameters of the gears and their modules have been chosen by sizing them as much as possible to optimize the efficiency, the wear and the torque transferable.
  • the planet gears 48 are mounted between the half-pinion 47 of the piston 6 and the toothed wheel 49 of the rotation shaft 15 so as not to hinder the crushing of the diamond 4 and keep a maximum of displacement.
  • the spacing in the gears (between each pair of gears) is between the nominal dimension and the dimension to which is added a clearance of 0.05 mm. These dimensions are maintained in operation because the radial forces are resumed with the median arms 23,24, to prevent stray forces from damaging the gears.
  • Such a gear transmission mechanism is adapted to accurately, uniformly and efficiently transmit a relatively weak torque.
  • the gears were designed according to the dimensional parameters of the machine, especially for a piston height which is 50 mm, the total height of the closed machine being about 100 mm, the side the diamond is 100 mm and the diameter of the machine is about 200 mm.
  • a module equal to 1 is chosen, which ensures a reasonable number of teeth (for example greater than 17), which favors the efficiency of the transmission (which is about 0.96), as well as the mechanical strength of the transmission.
  • the tooth width that optimizes the available space in the machine is maximum 17 mm, and it is desirable to choose this maximum.
  • the materials that can be used to make the gears are for example a hardened steel type 12NC15 or 11SMnPb30 steel, commonly used to make gables.
  • stronger materials are preferred, especially a type of steel 42CD4 or 37D8. It is inadvisable to open a pinion to make it a toothed sector, as this would cause the deformation of the pinion.
  • the calculations have estimated a transmission lifetime of about 5000h and a transmission efficiency of the order of 0.96 with few heating of the components during operation.
  • the transmission mechanism according to the invention can also operate with a single first rolling body mounted on a single piston, or with only two or three first rolling bodies mounted. on respectively two or three pistons.
  • This simplified version can be applied to the variants illustrated in Figures 3a to 3d , 4a to 4b , 5a to 5b , 7a to 7b , 8a to 8b , 9a to 9c , 10a to 10c and 11a to 11d . While presenting disadvantages in terms of balancing the masses within the transmission mechanism or in terms of guiding the rotor, such a constructive simplification nevertheless has an economic interest, by making it possible to reduce the cost of producing the transmission mechanism.

Description

    Domaine de l'invention
  • La présente invention concerne une machine rotative à losange déformable (MRLD) et elle concerne plus particulièrement un mécanisme de transmission pour une telle machine.
  • Une machine rotative à losange déformable comporte généralement un ensemble fixe ou stator et un ensemble mobile ou rotor ayant une forme de losange articulé à ses sommets et tournant autour de son centre, apte à se déformer notamment lors de sa rotation. Chaque côté du losange détermine, avec le profil interne ayant une forme générale ovale du stator, une chambre de volume variable lors du mouvement du rotor. Les côtés du losange articulé sont matérialisés par des plaques appelées pistons ayant une surface extérieure de forme généralement curviligne. Ces pistons sont parfois munis, dans leur zone de contact avec le profil interne du stator, de segments d'étanchéité.
  • Une telle machine peut être utilisée en tant que moteur à combustion, turbine, compresseur, pompe, doseur, broyeur, mélangeur, de fluides chargés ou non. Elle présente l'avantage d'avoir un centre de gravité fixe, pouvant ainsi éviter les vibrations, de pouvoir atteindre des compressions équivalentes à celles des moteurs à pistons, d'avoir un débit plus important que les moteurs à pistons, d'avoir un rapport de pression supérieur à celui des turbines et d'être plus simple que la plupart des machines généralement connues remplissant les mêmes fonctions.
  • Etat de la technique
  • Les machines rotatives à losange déformable (MRLD) possèdent un stator généralement constitué d'une enceinte cylindrique non circulaire (on comprend un cylindre dont la courbe directrice n'est pas un cercle) extérieure au rotor en forme de losange. Le rotor comporte une pluralité (le plus souvent quatre) d'éléments rotatifs articulés entre eux au niveau de leurs bords adjacents selon une liaison pivot d'axe parallèle à l'axe longitudinal passant au centre de l'enceinte, chacun des éléments rotatifs délimitant avec la paroi intérieure de l'enceinte une chambre ou cavité à volume variable. Ces machines ont été décrites depuis longtemps, mais elles ne sont guère utilisées. A l'instar du moteur Wankel, bien connu de l'homme du métier, ces machines avaient été imaginées d'abord comme moteur à combustion. Le brevet FR 1 404 453 (J. Lemaitre ), le brevet US 3,196,854 (A. Novak ), le brevet FR 2 145 133 (J. Martin Artajo ) la demande de brevet WO 01/88341 (P. Szorenyi ), le brevet CA 997998 (E. Steinbrink ) et la demande de brevet FR 2 493 397 (J.P. Ambert ) décrivent l'idée et la conception théorique d'un tel moteur. La demande de brevet WO 2004/070169 (G. Saint-Hilaire ) décrit un moteur à combustion interne rotatif à losange déformable en détaillant sa structure, mais sans expliquer comment est assurée son étanchéité dans les conditions de fonctionnement d'un moteur à explosion, sans non plus détailler les matériaux aptes à tenir les pressions et températures dans une telle machine, ni donner de solutions concernant la dilatation des matériaux, ou la compensation des jeux fonctionnels. D'autres moteurs à explosion de type MRLD sont décrits par exemple dans les documents EP 1 295 012 B1 (Nivesh SA ), et US 3,387,596 (L. Niemand ).
  • Lorsque la MRLD travaille comme moteur rotatif, le couple de rotation du rotor doit pouvoir être récupéré par un arbre de transmission pour qu'elle puisse être utilisée par un dispositif connexe, par exemple via une boîte de vitesses, par les roues d'une automobile. Lorsqu'elle travaille comme compresseur ou pompe rotative, le mouvement doit pouvoir être imprimé au rotor depuis un arbre central de transmission. Plusieurs documents décrivent des solutions pour de tels mécanismes de transmission.
  • Le document FR 2 493 397 (J.P. Ambert ) décrit un moteur rotatif pouvant fonctionner en moteur thermique à combustion interne ou en pompe ou compresseur comportant quatre pistons articulés formant un losange déformable qui sont articulés en leur milieu sur deux manivelles à deux bras opposés. L'une des manivelles entraîne un arbre de transmission centré dans le stator, l'autre manivelle étant montée libre en rotation autour du même arbre, dû au fait que l'angle entre les deux manivelles varie lors de la déformation du losange. Cette solution faisant appel à la transmission du mouvement uniquement par un bras médian n'assure pas un mouvement à vitesse uniforme des diagonales du losange, ce qui peut induire des couples parasites dus à la dynamique de la machine ayant pour conséquence une rotation non uniforme de l'arbre central.
  • Le document US 3 369 529 (A. Jordan ) décrit un moteur à combustion interne à pistons rotatifs articulés pour former un losange déformable à l'intérieur d'une enceinte de section transversale ovoïdale et un mécanisme de transmission du mouvement des pistons à un arbre central, le mécanisme de transmission comportant quatre bras distincts solidaires de l'arbre, en étant chacun agencé entre l'arbre et un rouleau d'articulation et étant de longueur variable radialement. Assurant certes, une rotation plus uniforme de l'arbre central, cette solution présente comme inconvénient le fait de ne pas fournir d'appui aux pistons pour supporter les forces importantes de traction ou de compression ; pistons qui, de ce fait sont projetés contre la surface interne du stator. Une telle solution peut conduire à une usure prématurée des composants de la machine, avec apparition des jeux pouvant altérer à terme le bon fonctionnement de la machine.
  • Le document FR 2 374 512 (A. Jordan ) décrit un moteur à combustion interne à pistons rotatifs, comportant notamment quatre pistons articulés, pouvant osciller en rotation, s'appliquant rigidement à leur extrémité par des rouleaux d'articulation et des rouleaux porte-joint, contre la surface interne d'une chambre intérieure et comportant un mécanisme de transmission des forces des pistons à un arbre central. Le mécanisme de transmission comprend une paire de bras solidaire de l'arbre central et une paire de bras montée de manière à pouvoir tourner autour de l'arbre, chaque paire de bras étant articulée au milieu d'un piston, ainsi que quatre autres bras distincts solidaires de l'arbre central, reliant l'arbre central aux rouleaux d'articulation et étant de longueur variable radialement. Le mécanisme de transmission de ce document assure, certes, une rotation uniforme de l'arbre central et, en même temps, un soutien des pistons lors du cycle moteur, mais au risque de générer des pertes par frottement au niveau des glissières, tout en étant encombrant et de construction complexe.
  • Par ailleurs, le document WO2004/070169 (G. Saint-Hilaire ) propose une solution de mécanisme de transmission du couple entre les pistons d'une machine rotative à losange déformable et un arbre central de celle-ci, où le mécanisme de transmission présente un plus faible encombrement. Le mécanisme de transmission comprend deux anneaux de puissance agencés axialement l'un dans le prolongement de l'autre au centre du rotor de la machine, chaque anneau recevant le couple en provenance de deux rouleaux à coussinet reliés à deux pistons opposés. Le mouvement de chaque anneau de puissance est transmis à un arbre central moyennant un différentiel tangentiel formé de quatre rondelles incurvées montées sur un arbre central et dont les protubérances s'insèrent dans des fentes des anneaux de puissance. Etant, certes, de construction plus compacte que le mécanisme du document précédent, force est de constater que la solution décrite dans ce document ne peut transmettre que des faibles couples, tout en nécessitant une bonne maîtrise des jeux fonctionnels entre les multiples pièces en mouvement relatif et que, de par l'utilisation de protubérances de transfert, la durée de vie d'un tel mécanisme complexe est très limitée.
  • Le document US2003/062020 (P.D. Okulov ) décrit une machine rotative à losange déformable comportant quatre pistons reliés entre eux par un parallélogramme articulé qui sont amenés à osciller en rotation lors de leur mouvement à l'intérieur d'une enceinte de forme ovoïdale. Ce document illustre par ailleurs plusieurs solutions de mécanismes de transmission du mouvement entre les pistons et un arbre central de transmission. Parmi ces solutions, on en remarque une comportant une roue dentée solidaire d'un arbre central qui est amenée à s'engrener avec des pignons montés au centre de chaque piston. Toutefois, de par la variation de vitesse entre les différents pignons, ces derniers ne peuvent pas être tous solidaires en rotation des pistons. Ainsi au cas où deux pignons sont solidaires en rotation de pistons opposés et les deux autres sont libres en rotation, le mécanisme ne peut pas transmettre une rotation uniforme à l'arbre qui reçoit donc uniquement le couple en provenance des deux pistons opposés. Au cas où un seul pignon est solidaire du piston et les trois autres sont libres en rotation, le couple souvent important dans ce type de machine, n'est transmis que par un seul pignon, ce qui pourrait endommager fortement sa denture. Si deux pignons de pistons contigus sont solidaires des pistons, alors la transmission ne peut pas fonctionner. Une autre solution décrit un mécanisme du type à croix de Malte monté fixe sur l'arbre central, et comportant des fentes dans lesquelles coulissent des galets appartenant à des bras reliant chaque articulation rotative à l'arbre. Ce mécanisme assure, certes, une rotation plus uniforme de l'arbre central, mais au prix de frottements importants dans les liaisons glissière des fentes du dispositif, ce qui conduit à des pertes dans la transmission du couple à l'arbre.
  • Objet de l'invention
  • Le but de l'invention est de remédier aux inconvénients précités et de proposer une machine rotative à losange déformable comportant un mécanisme de transmission apte à transmettre le couple de rotation entre le losange et l'arbre de transmission central ou périphérique au losange de manière à assurer une vitesse de rotation uniforme de l'arbre de transmission.
  • Un autre but de l'invention est de proposer une machine rotative à losange déformable comportant un mécanisme de transmission du mouvement entre le losange et l'arbre de transmission central ou périphérique apte à assurer un bon rendement de la transmission, tout en offrant un fonctionnement fiable et présentant une durée de vie améliorée.
  • Un autre but de l'invention est de proposer une machine rotative à losange déformable a fonctionnement réversible comportant un mécanisme de transmission apte à transmettre le couple de rotation entre le losange et l'arbre de transmission central ou périphérique au losange, pour une vitesse de rotation uniforme de cet arbre.
  • Un autre but de l'invention est de proposer une machine rotative à losange déformable comportant un mécanisme de transmission du mouvement entre le losange et l'arbre de transmission central ou périphérique de structure simplifiée et compact, tout en pouvant être réalisé de manière économique.
  • Ces buts sont atteints avec une machine rotative à losange déformable comportant :
    1. a) un rotor qui est un losange déformable qui se trouve directement ou indirectement (par l'intermédiaire d'un joint ou de la surface externe d'une articulation pivotante) en contact, avec ou sans jeu, avec la surface interne d'une enceinte formant un stator et/ou avec la surface externe d'une couronne centrale, ledit losange déformable comprenant quatre pistons reliés, l'un à la suite de l'autre, par une articulation pivotante d'axe parallèle à l'axe longitudinal de l'enceinte et formant ainsi une chaîne fermée ; ainsi que
    2. b) un mécanisme de transmission du mouvement entre les pistons et un arbre de rotation coaxial à l'axe central de la machine,
    ladite machine étant caractérisée en ce que ledit mécanisme de transmission comprend :
    • un premier corps de roulement monté fixe sur au moins un piston, de préférence sur chaque piston, l'axe dudit premier corps de roulement passant au centre du piston
    • un deuxième corps de roulement dont le centre passe par l'axe central de la machine et est solidaire dudit arbre de rotation
    • le premier corps de roulement étant relié au deuxième corps de roulement directement ou par un organe de transmission
    • et que le rapport de démultiplication entre le premier et le deuxième corps de roulement est égal à 2 et est positif.
  • La machine comporte donc quatre pistons articulés formant un losange déformable, la déformation du losange pouvant avoir lieu lorsqu'il tourne à l'intérieur d'une enceinte fixe entourant le losange ou, lorsqu'il tourne autour d'une couronne centrale fixe agencée à l'intérieur du losange, ou lorsque l'enceinte ou la couronne tourne par rapport au losange fixe en rotation. Par axe central de la machine, on comprend l'axe longitudinal de rotation de la machine qui est parallèle à la directrice de l'enceinte, l'enceinte étant généralement symétrique par rapport à cet axe longitudinal.
  • Selon l'invention, la machine comporte un mécanisme de transmission entre le losange, notamment ses pistons, et l'arbre de rotation de la machine. Plus particulièrement, ledit mécanisme comprend, pour au moins un piston, de préférence pour chaque piston, un premier corps de roulement monté au centre du piston qui est en contact direct avec, ou qui est relié par un organe de transmission à, un deuxième corps de roulement solidaire de l'arbre de rotation de la machine. Par corps de roulement, on comprend une pièce de forme générale cylindrique, qui peut être un cylindre ou une portion de cylindre. Dans une version simplifiée de l'invention, le mécanisme de transmission peut fonctionner avec un seul premier corps de roulement monté sur un seul piston, ou avec seulement deux ou trois premiers corps de roulement montés sur respectivement deux ou trois pistons. Cette simplification constructive présente un intérêt économique, car elle permet de réduire le coût de réalisation du mécanisme de transmission. On préfère toutefois monter un corps de roulement sur chaque piston afin d'obtenir un ensemble de mécanisme de transmission bien équilibré, avec un bon guidage du rotor pour une durée de vie améliorée de la machine.
  • Selon l'invention également, le premier corps de roulement et le deuxième corps de roulement sont reliés soit en venant directement en contact, on comprend que le mouvement est transmis directement d'un corps de roulement à l'autre, par exemple en utilisant un entraînement à obstacles ou à friction, soit par une pièce intermédiaire, notamment en utilisant un organe de transmission. Par organe de transmission, on comprend un dispositif ou pièce permettant de transmettre le couple et le mouvement de rotation du premier corps de roulement situé à distance du deuxième corps de roulement. Un tel organe de transmission entre deux corps de roulement peut inclure un corps de roulement intermédiaire ou un ensemble comportant des corps de roulement intermédiaires. A titre d'exemple, cet organe de transmission peut être une chaîne, une courroie, etc. Un tel agencement de corps de roulement est particulièrement avantageux car lors de la déformation du losange, la longueur des médianes de ce losange ne change pas, on peut donc beaucoup simplifier la conception et la structure du mécanisme de transmission.
  • Selon l'invention également, le rapport de démultiplication entre le premier et le deuxième corps de roulement est positif et est égal à deux. En effet, l'agencement des éléments de la transmission sur une médiane doit tenir compte du fait que l'angle entre les médianes est variable avec la déformation du losange. De ce fait, le mécanisme de l'invention fait appel à l'utilisation d'un réducteur sur chaque segment médian reliant le centre d'un piston au centre du losange. Ce réducteur utilise une propriété géométrique du losange déformable mise en oeuvre par l'invention, qui est le fait que, lors de la déformation du losange, l'angle de rotation d'une médiane dû à cette déformation du losange est la moitié de l'angle compris entre le côté du losange et la médiane. Le principe géométrique sur lequel est basé le fonctionnement du mécanisme de transmission de l'invention est mieux décrit en ce qui suit, dans la partie détaillée de la description.
  • Le mécanisme de transmission de l'invention permet donc de transmettre à la fois le couple de rotation des pistons autour du centré de la machine et le couple de basculement des pistons autour de leur centre à l'arbre de rotation en mode moteur ou turbine et inversement lorsque la machine fonctionne en mode compresseur ou pompe. Une MRLD selon l'invention peut servir à pomper, turbiner, comprimer, détendre, broyer, doser, mélanger des fluides chargés ou non, en utilisant des moyens la reliant à un circuit de fluide externe à la machine, ou encore être utilisée en moteur thermique à combustion interne d'un mélange de carburant et comburant.
  • Le mécanisme de transmission de l'invention permet donc de transmettre correctement le couple entre chaque piston du losange et l'arbre de rotation de la machine, tout en assurant une vitesse uniforme de rotation de cet arbre, et ceci dans le cadre d'une construction simplifiée et énergétiquement efficace.
  • De préférence, ledit premier corps de roulement et ledit deuxième corps de roulement sont munis de protubérances d'entraînement sur au moins une partie de leur périphérie.
  • Un tel organe de transmission disposant de protubérances d'entraînement forme un entraînement par contact et transmet la puissance par obstacles. Ceci assure une transmission de mouvement synchrone, donc sans glissement, silencieuse et avec un bon rendement énergétique entre chaque piston et l'arbre de rotation de la machine. Ainsi, lorsque la pression à l'intérieur des chambres de la machine (par chambre on comprend le volume compris entre l'enceinte qui entoure le losange et la face extrados d'un piston, ou toute autre cavité à volume variable aménagée dans la machine) n'est pas homogène, ou lorsque les pistons subissent des forces de réaction au contact de la surface de guidage de l'enceinte, ou lorsqu'ils subissent différents effets dynamiques dus à la cinématique de la machine, les forces agissant sur un piston peuvent créer un couple de basculement du piston autour de son centre. Ce couple de basculement des pistons est transmis à l'arbre de rotation via les protubérances d'entraînement.
  • Avantageusement, ledit mécanisme de transmission comprend des engrenages à axes parallèles et denture droite.
  • Le mécanisme de transmission de l'invention utilise donc un système mécanique composé de roues dentées servant à la transmission du mouvement de rotation. On préfère les engrenages à axes parallèles et denture droite car ils offrent une solution permettant une transmission de couple de valeur importante, sans introduire d'efforts axiaux et ceci de manière économique.
  • Toutefois, pour des réalisations de machines silencieuses on utilisera de préférence pour le mécanisme de transmission de l'invention des engrenages à axes parallèles et dentures hélicoïdales. Dans ce cas, il est possible de compenser les efforts axiaux en superposant des engrenages dont les angles de denture sont inversés.
  • Dans une variante préférée de réalisation de l'invention, le premier corps de roulement est un demi-pignon solidaire d'un piston qui s'engrène avec une roue dentée formant le deuxième corps de roulement solidaire de l'arbre de rotation central de la machine moyennant un corps de roulement intermédiaire formant un pignon satellite.
  • Cette solution permet une transmission efficace du mouvement de rotation entre les pistons du losange et un arbre de rotation, assurant une vitesse de rotation uniforme de l'arbre situé au centre de la machine, pour un bon rendement énergétique, tout en pouvant être réalisée pour un faible coût.
  • Dans une autre variante de l'invention, ledit premier corps de roulement est un pignon conique relié audit deuxième corps de roulement qui est une roue dentée conique par un arbre muni de pignons coniques aux extrémités.
  • L'organe de transmission entre le premier et le deuxième corps de roulement est un arbre muni de pignons coniques à chacune de ses extrémités. L'engrenage réalisé entre cet arbre et le premier corps de roulement est assimilable à un réducteur à renvoi d'angle. Il en est de même pour l'engrenage réalisé entre cet arbre et le deuxième corps de roulement. L'organe de transmission intermédiaire est un arbre d'axe agencé selon une direction radiale (dans le cas de dentures coniques simples), perpendiculaire aux directions longitudinales des axes du pignon (solidaire du piston) et de la roue dentée conique (solidaire de l'arbre de rotation). Cette réalisation permet de plus de se libérer des contraintes dimensionnelles du losange, car la distance entre les deux pignons coniques de l'arbre intermédiaire n'est plus liée aux dimensions de la denture et peut donc varier aisément. Cette solution permet de réaliser des machines de très grandes dimensions avec une transmission qui reste rigide, légère et compacte.
  • Dans une autre variante avantageuse de réalisation de l'invention, ledit premier corps de roulement est un secteur circulaire denté fixé sur un piston qui s'engrène avec une couronne dentée périphérique à denture intérieure solidaire de l'arbre de rotation.
  • Cette solution permet un entraînement par engrenage direct entre les pistons du losange et une couronne périphérique offrant un rapport de démultiplication positif, sans nécessité d'adjoindre des pignons satellites intermédiaires. De surcroît, un entraînement par couronne dentée à denture intérieure a un diamètre plus important, avec plus de dents en contact et peut donc transmettre un couple plus important.
  • De préférence, la couronne dentée présente un contour périphérique cylindrique et les secteurs dentés sont agencés l'un dans le prolongement de l'autre de manière à ce qu'ils forment une couronne interne déformable de largeur (dans le sens radial) supérieure à celle d'une chambre de la machine, afin de fermer ces chambres à volume variable. Le contour périphérique cylindrique de la couronne dentée favorise la transmission du mouvement de rotation et l'intégration de la machine.
  • En rendant les secteurs dentés solidaires des pistons dont la face latérale est placée vers l'intérieur de la machine, celle-ci permet de fermer la chambre externe de la machine et ceci sur le pourtour de l'enceinte.
  • Avantageusement, la machine comprend une cavité interne au losange destinée au déplacement d'un fluide ou à recevoir un élément extérieur à la machine.
  • Ainsi, en agençant les éléments constitutifs du mécanisme de transmission sur les côtés latéraux externes des pistons, l'espace central du losange (espace défini par les faces internes des pistons, dites faces intrados) forme, lors de la déformation du losange, une cavité interne à volume variable. Cette cavité interne dégagée du mécanisme de transmission, peut alors être utilisée pour réaliser une fonction complémentaire de la machine, telle que celle de pompage d'un fluide, voire elle peut être utilisée pour recevoir d'autres éléments de l'installation fonctionnant avec la machine de l'invention pour obtenir encore plus de compacité de l'ensemble.
  • Avantageusement, le mécanisme de transmission peut diviser l'espace de la cavité centrale ou d'autres cavités, à condition que les organes de transmission utilisés opposent un frein suffisant au passage du fluide. En effet, la transmission à engrenages, est très proche des conditions de réalisation des pompes à engrenages. De même, les transmissions à galets de friction sont proches des pompes à lobes sans synchronisation externe.
    Les séparations ainsi créées servent à former plusieurs de cavités internes à volume variable destinées à pomper, comprimer, turbiner, ou déplacer du fluide, mais aussi à amplifier ou non des variations de volume, ou à limiter des volumes morts.
  • Dans une réalisation avantageuse du mécanisme de transmission de l'invention, ledit premier corps de roulement et ledit deuxième corps de roulement sont reliés par une chaîne ou par une courroie crantée.
  • Cette solution offre un entraînement à distance entre les corps de roulement, sans faire appel à des corps de roulement intermédiaires, ce qui présente principalement l'avantage d'obtenir un mécanisme de transmission selon l'invention qui puisse être dimensionné de manière à ce qu'il soit indépendant de la distance d'entraxe entre le premier et le deuxième corps de roulement. Ceci peut permettre de s'adapter plus aisément à une dimension imposée de la machine.
  • Dans une autre réalisation avantageuse du mécanisme de transmission de l'invention, ledit premier corps de roulement est relié audit deuxième corps de roulement par une courroie lisse. Cette variante de réalisation de mécanisme de transmission permet une installation et un montage facilités à l'intérieur de la machine, tout en offrant la possibilité d'un réglage fin des positions angulaires des composants.
  • De préférence, les deux premiers corps de roulement opposés sont reliés au deuxième corps de roulement par une chaîne commune ou par une courroie commune ; ou tous les premiers corps de roulement sont reliés au deuxième corps de roulement par une courroie commune ou par une chaîne commune.
  • On peut ainsi obtenir une construction simplifiée de mécanisme de transmission, tout en étant apte à transmettre plus de couple entre les pistons et l'arbre de rotation de la machine.
  • Avantageusement, ledit premier corps de roulement et ledit deuxième corps de roulement sont des galets de friction pouvant comporter chacun un noyau dur recouvert d'une enveloppe souple.
  • Un tel mécanisme de transmission à galets de friction pouvant comporter chacun un noyau dur recouvert d'une enveloppe souple adhérente est souhaitable pour des applications nécessitant une transmission de couples faibles, mais à plus fortes exigences d'uniformité de transmission et d'absence de bruit de fonctionnement de celle-ci.
  • De préférence, ledit premier corps de roulement est relié par au moins un corps de roulement intermédiaire audit deuxième corps de roulement.
  • Ceci permet de réaliser une transmission par contact de roulement rigide, le corps de roulement intermédiaire permettant de conserver ou d'obtenir un rapport de vitesses positif.
  • Avantageusement, deux pistons opposés sont reliés ensemble par au moins un bras médian, chacune des extrémités dudit bras médian étant montée pivotante au centre de chaque piston. En imposant une valeur du jeu dans les articulations pivotantes des bras médians inférieure à celle du jeu dans les articulations des pistons, ces bras médians permettent alors de supporter les efforts radiaux agissant sur les pistons et d'assurer le bon fonctionnement des mécanismes de transmission.
  • Avantageusement, le mécanisme de transmission a un fonctionnement réversible.
  • On aurait pu, certes, utiliser un mécanisme de transmission du mouvement entre les piston et un arbre de rotation dans un seul sens, par exemple en utilisant un ensemble du type roue dentée et vis sans fin. On préfère toutefois utiliser un mécanisme où la transmission du mouvement peut se faire des pistons vers l'arbre de rotation et vice-versa, car ceci permet un fonctionnement réversible de la machine. Par ailleurs, le rapport de réduction faible entre le premier corps de roulement et le deuxième corps de roulement facilite l'emploi de mécanismes réversibles.
  • De préférence, le piston et ledit premier corps de roulement forment une pièce monobloc. Cette solution est préférée car elle assure plus de facilité de montage du mécanisme de transmission au sein de la machine, et également lorsque les pistons sont soumis à de fortes sollicitations.
  • Avantageusement, le mécanisme de transmission permet de séparer une cavité interne de la machine en une ou plusieurs une cavités à volume variable.
  • Ainsi, en agençant le mécanisme de transmission dans une cavité interne de la machine, et lorsque la transmission entre le piston et l'arbre de rotation central se fait moyennant des engrenages ou des galets de friction, ces éléments du mécanisme de transmission permettent de diviser la cavité interne de plus grand volume en une ou plusieurs cavités de plus petit volume, le volume étant variable avec la déformation du losange. Ceci permet, en effectuant des aménagements assurant l'étanchéité à l'intérieur d'une ou de ces chambres et en la ou les branchant à un ou plusieurs circuits de fluide, d'attribuer une fonction supplémentaire, par exemple de pompe, à cette ou ces cavité(s) à volume variable ainsi obtenues.
  • Description des figures
    • La figure 1 illustre une vue schématique illustrant le principe sur lequel est basée l'invention.
    • La figure 2 illustre une vue en coupe transversale de la partie interne de la machine comportant un mécanisme de transmission réalisé selon l'invention.
    • Les figures 3 à 9 illustrent différentes variantes d'un mécanisme de transmission selon un premier mode de réalisation de l'invention, où :
      • la figure 3a est une vue en coupe transversale illustrée en perspective de la partie interne d'une machine comportant un mécanisme de transmission selon une première variante de réalisation; la figure 3b est une vue en perspective de la machine de la figure 3a; la figure 3c est une vue en perspective d'une machine de la figure 3a complétée par un stator; la figure 3d est une vue en perspective d'une machine de la figure 3b complétée par un stator;
      • la figure 4a est une vue en coupe selon un plan contenant l'axe de rotation et une médiane de la machine illustrée en perspective de la partie interne d'une machine comportant un mécanisme de transmission selon une deuxième variante de réalisation et la figure 4b est une vue de dessus de la machine de la figure 4a sans les bras médians ;
      • la figure 5a est une vue en coupe transversale illustrée en perspective de la partie interne d'une machine comportant un mécanisme de transmission selon une troisième variante de l'invention et la figure 5b est une vue en perspective de la machine de la figure 5a ;
      • la figure 6a est une vue en coupe transversale illustrée en perspective de la partie interne d'une machine comportant un mécanisme de transmission selon une quatrième variante de l'invention et la figure 6b est une vue en perspective de la machine de la figure 6a ; la figure 6c est une vue en coupe transversale illustrée en perspective de la partie interne d'une machine comportant un mécanisme de transmission selon une autre variante de réalisation dérivée de celle de la figure 6a ;
      • la figure 7a est une vue en coupe transversale illustrée en perspective de la partie interne d'une machine comportant un mécanisme de transmission selon une cinquième variante de l'invention et la figure 7b est une vue en perspective de la machine de la figure 7a ;
      • la figure 8a est une vue en coupe transversale illustrée en perspective de la partie interne d'une machine comportant un mécanisme de transmission selon une sixième variante de l'invention et la figure 8b est une vue en coupe transversale illustrée en perspective de la machine de la figure 8a, selon un plan de coupe représentant l'ensemble du mécanisme de transmission ;
      • la figure 9a est une vue en coupe transversale plane et la figure 9b est une vue en coupe transversale illustrée en perspective de la partie interne d'une machine comportant un mécanisme de transmission selon une septième variante de l'invention, la figure 9c étant une vue en perspective de la machine de la figure 9b;
      • la figure 10a est une vue en coupe transversale plane et la figure 10b est une vue en coupe transversale illustrée en perspective de la partie interne d'une machine comportant un mécanisme de transmission selon une huitième variante de l'invention, la figure 10c étant une vue en perspective de la machine de la figure 10b.
    • Les figures 11a à 11d illustrent un mécanisme de transmission selon un deuxième mode de réalisation de l'invention, les figures 11 a et 11 b étant des vues frontales en deux positions différentes du losange de la machine comportant le mécanisme de transmission ; la figure 11c est une vue en perspective de la machine de la figure 11b et la figure 11d est une vue en coupe longitudinale de la machine de la figure 11 c.
    • Les figures 12a et 12b illustrent des vues en coupe transversale illustrées en perspective et la figure 12c une vue en perspective d'un exemple d'application d'une machine comportant un mécanisme de transmission selon le premier mode de réalisation de l'invention.
  • Liste des repères :
    1 Enceinte
    2 Stator
    3 Rotor
    4 Losange déformable
    5 Sommet du losange
    6 Piston
    7 Articulation pivotante (pivot)
    8 Cavité externe
    9 Face extrados
    10 Cavité interne
    10a, 10b, 10c, 10d Cavités à volume variable
    11 Face intrados
    12 Orifice d'entrée fluide
    13 Orifice de sortie fluide
    14 Mécanisme de transmission
    15 Arbre de rotation
    16, 16' Premier corps de roulement
    17 Axe premier corps de roulement
    18 Organe de transmission intermédiaire
    19 Deuxième corps de roulement
    20 Centre du deuxième corps de roulement
    21, 21' Corps de roulement intermédiaire
    22 Clavette
    23 Bras médian
    24 Bras médian
    25 Dégagement
    26 Orifice central
    27 Extrémité supérieure
    28 Extrémité inférieure
    29 Axe supérieur
    30 Axe inférieur
    31,31',31",31"' Axe support
    32 Chaîne
    33, 33' Chaîne commune, Courroie commune
    34 Courroie crantée
    35 Courroie lisse
    36 Demi-galet
    37 Galet central
    38 Galet intermédiaire
    39 Secteur circulaire denté
    40 Couronne dentée
    41 Contour périphérique
    42 Couronne interne déformable
    43 Axe central
    44 Protubérance
    45 Zone en creux
    46 Rainure d'allégement
    47 Demi-piqnon
    48 Pignon satellite
    49 Roue dentée
    50 Compresseur
    51 Tendeur
    52 Cavité centrale
    53 Demi-pignon conique
    54 Roue dentée conique
    55 Arbre intermédiaire
    56 Pignon conique supérieur
    57 Pignon conique inférieur
  • Description détaillée de l'invention
  • L'invention concerne une machine rotative à losange déformable (MRLD) pouvant par exemple fonctionner comme moteur ou comme compresseur. La machine comporte, tel que mieux visible à la figure 3d, un stator 2 ayant une forme générale tubulaire de section environ ovale, dont le profil est en accord avec les règles géométriques imposées par la déformation du losange au cours de sa rotation et dont la surface interne définit une enceinte 1 de réception d'un rotor 3 qui est un losange déformable 4. Le losange déformable 4 est un ensemble de quatre pistons 6 reliés entre eux par des liaisons pivot, matérialisées par des articulations pivotantes 7, et qui forment une chaîne refermée sur elle-même. Le rotor 3 qui est la partie tournante de la machine est généralement le losange 4, mais on peut, dans une variante, entraîner l'enceinte 1 en rotation qui tourne alors par rapport au losange 4 fixe en rotation, mais dont les côtés se déforment (on comprend par côté le segment qui relie, dans un plan perpendiculaire à l'axe de rotation de la machine, les axes de deux liaisons pivot adjacentes). Les projections des axes de liaisons pivots des pistons dans un plan perpendiculaire à l'axe de rotation de la machine représentent les sommets 5 (fig.2) du losange 4. Dans une variante non représentée sur les figures, la déformation du losange 4 peut également avoir lieu par guidage autour d'une couronne centrale, fixe ou mobile en rotation, agencée à l'intérieur du losange et dont le profil est en accord avec les règles géométriques imposées par la déformation du losange.
  • Un piston 6 est une pièce ayant une forme de portion de cylindre de directrice parallèle à l'axe de rotation de la machine. Les surfaces situées aux deux extrémités de cette pièce assurent chacune une partie d'une liaison pivot d'axe de rotation parallèle à l'axe de rotation de la machine. Le segment qui relie deux points médians des côtés opposés du losange, notamment de deux pistons opposés, forme une médiane du losange. Le segment qui relie deux sommets 5 opposés forme une diagonale du losange. Le centre des pistons est le milieu d'un côté du losange, c'est le point de jonction avec les médianes du losange. L'intersection des diagonales ou des médianes du losange définit le centre de la machine par lequel passe l'axe central de la machine. Par arbre de rotation 15 de la machine, on comprend une pièce ou un ensemble de pièces mécaniques permettant de récupérer ou d'imposer le mouvement de rotation du rotor ou du stator via un système de transmission mécanique 14 adapté.
  • La machine comporte également deux flasques latéraux de fermeture (non représentés sur les figures), disposés perpendiculairement à l'arbre de rotation de la machine et qui prennent appui contre les faces frontales avant et arrière du stator 2 et du rotor 3.
  • Dans ce qui suit, on comprend par la face extrados 9 du piston 6 la surface externe du piston 6, située à l'extérieur du losange 4, et par la face intrados 11 du piston 6, la surface interne du piston 6, située à l'intérieur du losange 4 (fig.3d). La face extrados 9 d'un piston 6 définit avec l'enceinte 1 et les flasques latéraux de fermeture une cavité externe 8. Deux orifices d'entrée de fluide 12 et deux orifices de sortie fluide 13 sont, dans les exemples représentés aux figures (3c, 3d, 11c, 12a, 12b et 12c), des canaux radiaux pratiqués à travers l'enceinte 1 et permettant un échange de fluide entre les cavités externes 8 et un circuit de fluide extérieur à la machine.
  • Un circuit de fluide est raccordé à la machine, l'entrée dans les chambres externes 8 étant illustrée, à titre d'exemple, par un orifice 12 en communication avec le circuit d'entrée ou amont de la machine, et la sortie de fluide étant illustrée, à titre d'exemple, par un orifice 13 qui est, lui, en communication avec un circuit de sortie ou aval de la machine.
  • Les faces intrados 11 des pistons 6 (fig.3d) définissent, avec leurs articulations de liaison 7 et avec les flasques latéraux de fermeture, une cavité interne 10 à volume variable.
  • Selon l'invention, la machine comporte un mécanisme de transmission 14 du mouvement entre les pistons 6 et un arbre de rotation 15 coaxial à l'axe central de la machine, du fait que ledit mécanisme de transmission 14 comprend, pour chaque piston 6, un premier corps de roulement 16 monté fixe sur le piston 6, l'axe 17 du dudit premier corps de roulement passant au centre du piston 6, le premier corps de roulement 16 étant relié au deuxième corps de roulement 19 directement ou au moyen d'un organe de transmission intermédiaire 18 (fig.2) afin de transmettre le mouvement de rotation en provenance dudit premier corps de roulement 16 au deuxième corps de roulement 19 (fig.3a) dont le centre 20 (fig.2) passe par l'axe central de la machine et est solidaire dudit arbre de rotation 15, et où le rapport de démultiplication entre le premier 16 et le deuxième corps de roulement 19 est égal à 2 et est positif.
  • La figure 1 illustre le principe géométrique qui est à la base de la conception du mécanisme de transmission de l'invention. Le losange déformable 4 est représenté de manière schématique dans deux positions de fonctionnement de la machine, lors de la rotation du losange autour de son centre O, un côté PR du losange dans la première position prenant la position P'R' dans la deuxième position. Elle démontre que lorsque la médiane OM tourne d'un angle α pour atteindre la position OM', l'angle OMR entre le côté du losange et la médiane varie d'un angle 2α pour atteindre la position OM'R'.
  • La figure 1 montre que :
    1. (1) MOM ^ = α = γ β
      Figure imgb0001
    2. (2) OMR ^ = π 2 * π / 2 β
      Figure imgb0002
      car OMR est un triangle isocèle.
    3. (3) OM R ^ = π 2 * π / 2 γ
      Figure imgb0003
      car OM'R' est un triangle isocèle. On tire des relations (2) et (3) que :
    4. (4) OM R ^ OMR ^ = 2 * π / 2 β 2 * π / 2 γ = 2 * γ β
      Figure imgb0004
      On obtient des relations (4) et (1) que :
    5. (5) OM R ^ OMR ^ = 2 * γ β = 2 * α = 2 * MOM ^
      Figure imgb0005
  • Ainsi, les relations géométriques ci-dessus qui découlent en association avec la figure 1 démontrent que, lorsque la médiane (représentée par le segment OM) tourne, par rapport aux diagonales, d'un angle α, l'angle entre le côté du losange (représenté par le segment PR) et la médiane varie de 2α.
  • La géométrie du losange impose donc que la vitesse de rotation d'un côté du losange (représenté ici par le segment PR) par rapport à sa médiane (représentée par le segment OM) qui le relie au centre de la machine (O), sur la vitesse de rotation de cette médiane (OM), est de deux et est positif.
  • Les corps de roulement 16,19, qui peuvent être dans une variante, des engrenages composés de pignons à denture extérieure, inversent le sens de rotation. Dans ce cas, on utilise un corps intermédiaire 21 formant un pignon satellite qui sert essentiellement à conserver un rapport de vitesse positif. Les corps de roulement 16,21 agencés selon la médiane OM dans la première position du losange 4, prennent les références 16',21' en étant agencés selon la médiane OM' dans la deuxième position dudit losange.
  • Le rapport de diamètre primitif entre le pignon du piston et le pignon de l'arbre de rotation est de 2 pour respecter la règle géométrique liée à la géométrie du losange déformable.
  • Un exemple de mise en pratique du principe susmentionné est mieux visible à la figure 2 où les premiers 16 et les deuxièmes corps de roulement 19, ainsi que les corps de roulement intermédiaires 21 sont munis de dents sur leur périphérie, ce qui fait que l'organe de transmission intermédiaire 18 est un dispositif à engrenages.
  • Dans une première variante d'un premier mode de réalisation, tel que visible aux figures 3a à 3d, le premier corps de roulement 16 est un demi-pignon solidaire d'un axe 17 qui est monté fixe au centre d'un piston 6, sa denture étant orientée vers le centre du losange 4. Dans une variante préférée de réalisation (fig.2), le demi-pignon constituant le premier corps de roulement 16 et le piston 6 sont réalisés en une pièce monobloc, avantageusement réalisée par un procédé de découpe par électroérosion à fil dans un bloc de matière isotrope pour les petites séries ou par frittage pour les grandes séries. Lorsque le premier corps de roulement 16 est un bloc rapporté sur le piston 6, il est possible alors de mettre en place un mécanisme de décalage angulaire entre le bloc rapporté et le piston, afin de compenser le jeu pouvant exister dans les engrenages de la transmission 14. A l'inverse, lorsque le premier corps de roulement 16 et le piston 6 sont monoblocs, il faut que le deuxième corps de roulement 19 ou les organes de transmission intermédiaire 18 soient capables de compenser le jeu angulaire existant dans un assemblage à engrenages. Dans ce dernier cas, il est possible d'utiliser des pignons à rattrapage de jeu. A titre d'exemple, le demi-pignon du premier corps de roulement comporte préférentiellement entre 20 et 40 dents uniformément réparties sur sa périphérie complète, soit entre 10 et 20 pour le demi-pignon tel que représenté sur les figures. Seules certaines dents sont utiles, selon le degré de déformation du losange.
  • Le deuxième corps de roulement 19 est une roue dentée rendue solidaire en rotation de l'arbre de rotation 15 passant au centre du losange 4, par exemple en la fixant à ce dernier moyennant une clavette 22. Le deuxième corps de roulement 19 est une roue dentée comportant un nombre de dents égal à deux fois le nombre des dents du premier corps de roulement 16 ou demi-pignon, et compris de préférence entre 40 et 80 uniformément réparties sur la périphérie, mais où seulement certaines dents sont utiles, selon le degré de déformation du losange.
  • Les corps de roulement intermédiaires 21 sont des pignons satellites ayant un même module que les demi-pignons et la roue dentée et qui servent à inverser le sens de rotation entre les demi-pignons et la roue dentée. Leur diamètre, respectivement leur nombre de dents sont choisis en fonction de l'encombrement de la machine, notamment selon les dimensions du losange 4.
  • Tel que mieux visible aux figures 3b et 3d, deux pistons opposés 6 sont reliés ensemble par un bras médian 23 et les deux autres pistons 6 opposés du losange 4 sont reliés ensemble par un autre bras médian 24, où chacune des extrémités des bras médians 23,24 est montée pivotante au centre de chaque piston 6. Les bras médians 23,24 sont disposés par paires, l'un derrière l'autre à chaque extrémité frontale du losange 4. Plus particulièrement, en référence à la figure 3b, un bras médian 23,24 est une pièce de forme générale oblongue, comportant une partie centrale proéminente se prolongeant, de part et d'autre, par deux extrémités allongées, supérieure 27 et inférieure 28. La protubérance présente un orifice central 26 à travers lequel passe avec ou sans jeu l'arbre central 15. Chaque extrémité 27,28 est montée pivotante autour d'un axe supérieur de pivotement 29, respectivement inférieur 30, passant par le centre de chaque piston 6. Un dégagement 25 évasé est aménagé dans la face intrados du piston 6 et autour de chaque axe 29,30 pour permettre le débattement en pivotement de chaque bras médian 23,24. Chaque bras médian 23,24 porte un axe de support 31 sur lequel est monté le corps de roulement intermédiaire 21 formant un pignon satellite. Chaque pignon satellite est monté sur le bras médian qui relie deux pistons opposés. Ainsi, un satellite ne tourne sur son axe que lorsque le piston tourne autour de son centre (milieu d'un côté du losange). Lorsque le losange 4 tourne dans l'enceinte 1, même sans déformation du losange 4, les satellites transmettent cette rotation à l'arbre de rotation 15 et, réciproquement, la rotation de l'arbre de rotation 15 entraîne en mouvement le losange 4.
  • Les demi-pignons, les pignons satellites et la roue dentée sont choisis parmi les engrenages droits à denture droite pour leur bon rendement, pour le faible coût de ce type de composants standards, et du fait de l'absence d'efforts axiaux et en particulier lorsque les contraintes de nuisances sonores sont faibles. Dans une réalisation avantageuse, on préfère les dentures hélicoïdales qui assurent un contact progressif, donc un fonctionnement plus régulier et moins bruyant. Il est possible de compenser les efforts axiaux engendrés par les pignons hélicoïdaux en mettant en place deux pignons hélicoïdaux superposés d'angle d'hélice contraire.
  • On préfère également mettre en contact des pignons d'un même module, et choisir un diamètre primitif des pignons satellites qui soit proche du diamètre primitif des pignons de piston afin d'optimiser leur résistance à l'usure. Par ailleurs, afin d'optimiser le rendement de la transmission, d'augmenter la valeur du couple transmissible et de diminuer l'usure des engrenages, on choisit des diamètres primitifs maximums. Ceux-ci étant limités par l'encombrement du losange 4. Il est possible, dans une variante de réalisation (non illustrée sur les figures), d'utiliser des pignons satellites composés chacun de deux pignons superposés. Dans une autre variante de réalisation (non illustrée sur les figures), il est possible de décaler l'axe de rotation des pignons satellites par rapport aux médianes du losange. Les engrenages de l'invention sont dimensionnés de manière à tenir compte des contraintes spécifiques qu'ils subissent, en particulier du aux faits que toutes les dents ne travaillent pas, que les dents qui travaillent sont sollicitées principalement en flexion dans les deux directions orthoradiales, et de manière différente, et que les pressions de contact ne sont pas régulières au cours du cycle. Ainsi, il est préférable, lors de la conception du mécanisme et du dimensionnement des pignons, de prendre en considération les cas de fonctionnement les plus exigeants (irrégularités, chocs, vibrations, oscillations), et de se rapporter à la durée de vie (nombre de cycles subis) de chaque dent.
  • Dans une variante (non illustrée sur les figures), pour prendre des modules de denture différents et se libérer de contraintes géométriques, il est aussi possible de réaliser un corps intermédiaire 21 composé de deux dentures superposées dont la première denture engrène sur le premier corps de roulement 16 et dont la deuxième denture engrène sur le deuxième corps de roulement 19.
  • Dans une variante (non illustrée sur les figures) la roue dentée, les quatre demi-pignons et les pignons satellites peuvent ne comporter des dents que sur une partie de leur périphérie au niveau de leur engrènement respectif, ce qui offre plus de liberté dans le choix du pas de leur denture.
  • Dans une deuxième variante de réalisation présentée sur les figures 4a et 4b, le premier corps de roulement 16 est un demi-pignon conique 53 solidaire d'un piston 6 et le deuxième corps de roulement 19 est une roue dentée conique 54 solidaire de l'arbre de rotation central de la machine. Les dentures ne sont pas représentées pour une meilleure lisibilité des figures, toutefois, la représentation des cônes de contact facilite la compréhension du mécanisme. Les bras médians ont étés supprimés de la figures 4b pour mieux voir les éléments internes. L'organe de transmission intermédiaire 18 entre le premier corps de roulement 16 et le deuxième corps de roulement 19 est un arbre intermédiaire 55 muni de pignons coniques à chacune de ses extrémités, notamment un pignon conique supérieur 56 et un pignon conique inférieur 57. Les pignons d'extrémité supérieur 56 et inférieur 57 sont solidaires en rotation de l'arbre intermédiaire 55, leur axe étant confondus à l'axe de l'arbre intermédiaire 55. Lorsque les engrenages coniques de cette réalisation utilisent des dentures coniques simples, l'axe de l'arbre intermédiaire 55 est situé dans une direction radiale, selon la médiane qui relie un piston 6 à l'arbre de rotation 15. L'engrenage réalisé entre l'arbre intermédiaire 55 et le premier corps de roulement 16 ou demi-pignon 53 est assimilable à un réducteur à renvoi d'angle. Il en est de même pour l'engrenage réalisé entre l'arbre intermédiaire 55 et le deuxième corps de roulement 19 ou roue conique 54. Le rapport de vitesse introduit par cet engrenage dépend des tailles sélectionnées pour réaliser les réducteurs à renvois d'angles et il est, conformément à l'invention, de 2:1. Le demi-pignon conique 53 et le pignon conique supérieur 56 s'engrènent sans réduction, ils ont donc le même nombre de dents et une denture droite simple inclinée à 45°. Le pignon conique inférieur 57 et la roue dentée conique 54 engrènent avec une réduction de rapport 2, la roue dentée conique 54 a donc un cône plus ouvert (environ 127° contre 53°) avec deux fois plus de dents que le pignons conique inférieur 57. Le rapport de vitesse reste positif si les cônes des dentures du premier corps de roulement 16 ou demi-pignon conique 53 et du deuxième corps de roulement 19 ou roue dentée conique 54 pointent des directions opposées.
  • Cette variante de réalisation présente l'avantage de se libérer des contraintes d'encombrement à l'intérieur du losange 4, car la distance entre les deux pignons coniques 56,57 de l'arbre intermédiaire 55 n'est pas liée à la denture et peut donc varier aisément. Plus particulièrement dans le cas des machines de très grandes dimensions, cette variante de réalisation présente l'avantage d'une transmission simple (sans galets tendeurs), rigide mais légère grâce à des arbres intermédiaires creux de gros diamètre extérieur, et enfin, beaucoup moins encombrante qu'une machine dont le mécanisme de transmission comporterait de grosses roues dentées.
  • Dans une variante de réalisation non illustrée sur les figures, il est possible de décaler ou d'incliner l'axe de rotation de l'arbre intermédiaire 55, en prenant des dentures coniques complexes.
  • Le mécanisme de transmission 14 illustré dans les figures annexées est un mécanisme à fonctionnement réversible qui assure un fonctionnement réversible de la machine de l'invention. Le rapport de réduction de 2 entre les premiers corps de roulement 16 et le deuxième corps de roulement 19 permet l'emploi de mécanismes réversibles. En effet, pour tous les modes de réalisation et variantes présentés dans ce document, il est possible de dimensionner les corps de roulement 16 et 19, ainsi que les organes de transmission intermédiaire 18, avec des rapports de denture, des angles de denture, des matériaux et des jeux qui rendent leur fonctionnement réversible. Ainsi l'ensemble de la transmission 14 est parfaitement réversible.
  • Les bras médians 23,24 servent essentiellement de support aux corps de roulement intermédiaires 21, ou aux tendeurs 51, ou aux galets de renvois non représentés sur les figures. Lors de l'utilisation de corps de roulement intermédiaires 21, les bras médians 23,24 ont aussi pour rôle de protéger les engrenages du mécanisme de transmission 14 contre les efforts radiaux qui sollicitent les pistons 6. En effet, en choisissant un jeu optimum au niveau de leurs articulations pivotantes autour des axes 29,30, inférieur à celui des articulations pivotantes 7, les bras médians 23,24 encaissent les efforts radiaux et permettent aux engrenages de fonctionner correctement. Dans une variante non illustrée, on peut adjoindre aux roues dentées et aux secteurs dentés des cylindres de révolution afin que ces cylindres s'appuient l'un contre l'autre pour éviter que les dentures subissent des efforts radiaux. Toutefois, les pressions de contact générées entre ces cylindres (cylindre contre cylindre) sont plus importantes que celles engendrées par les bras médians 23,24 (cylindre dans alésage).
  • Les figures 5a et 5b illustrent une machine réalisée selon une troisième variante, où le premier corps de roulement 16 est une roue dentée solidaire du piston 6, le deuxième corps de roulement 19 est une roue dentée solidaire de l'arbre de rotation 15 et où l'organe de transmission intermédiaire 18 est une chaîne 32 reliant les deux corps de roulement 16,19. Les roues dentées ont, de manière généralement connue, une denture adaptée à l'entraînement par une chaîne. Le mécanisme de transmission 14 de la machine utilise donc quatre chaînes 32 reliant les quatre roues dentées des pistons 6 à une roue dentée centrale solidaire de l'arbre de rotation 15. Comme dans les variantes précédentes, la machine utilise deux bras médians 23,24 montés articulés en pivotement autour d'axes d'extrémité 29,30 passant chacun au centre d'un piston 6, l'orifice central 26 de chaque bras médian 23,24 étant traversé avec jeu par l'arbre de rotation 15. Le mécanisme de transmission 14 utilise, de manière connue dans les transmissions à chaînes, un système de mise sous tension de la chaîne (non représenté sur les figures) qui prend avantageusement appui sur les bras médians 23,24. Le jeu de fonctionnement dudit système étant prédéfini en fonction des spécifications techniques de l'application (couple transmis, vitesse, taille des maillons etc.).
  • Les avantages d'un tel mécanisme de transmission 14 par chaîne 32 résident principalement dans le fait que l'on peut s'affranchir de l'utilisation des corps de roulements intermédiaires 21,21', ce qui présente principalement l'avantage d'obtenir un mécanisme de transmission selon l'invention indépendant de la distance d'entraxe entre le premier et le deuxième corps de roulement. Ceci peut permettre de s'adapter plus aisément à une dimension imposée de la machine. Pour des petites distances d'entraxe, il est possible alors d'augmenter le diamètre des premiers et deuxième corps de roulement ainsi que le pas des dents (dans la limite des possibilités d'intégration du premier corps de roulement sur un piston de petite taille). Pour les grandes distances d'entraxe, on limitera au contraire ces diamètres des premiers et deuxième corps de roulement par rapport à une variante qui exploiterait des corps de roulement intermédiaires. Ceci permet notamment de réaliser une machine de dimensions importantes, tournant à plus grande vitesse, tout en limitant les effets dynamiques et mécaniques dus à l'inertie et aux moments d'inertie des corps de roulement intermédiaires 21 tournant à haute vitesse et de manière irrégulière de par une combinaison de mouvements de rotation.
  • Les figures 6a et 6b illustrent un mécanisme de transmission 14 réalisé selon une quatrième variante du premier mode qui diffère de la troisième variante susmentionnée (figures 5a et 5b) en ce que deux premiers corps de roulement 16 opposés (où un corps de roulement 16 est solidaire en son centre du centre d'un piston et l'autre du centre du piston opposé) sont reliés ensemble et sont reliés au deuxième corps de roulement 19 par une chaîne commune 33. Cette solution présente l'avantage d'être d'une conception simplifiée, tout en permettant de transmettre un couple plus important entre les pistons 6 et l'arbre de rotation 15 car la largeur de la chaîne peut être doublée.
  • La figure 6c illustre une autre variante de réalisation du mécanisme de transmission 14 de l'invention où tous les premiers corps de roulement 16 sont reliés au deuxième corps de roulement 19 par une courroie commune 33'. Des tendeurs 51 sont prévus pour mettre en contact la courroie commune 33' avec la périphérie du deuxième corps de roulement 19, notamment deux tendeurs 51 délimitent la partie de contact de la courroie 33' avec le corps 19. Les axes des huit tendeurs 51 que comporte la machine sont supportés, par exemple, par des bras médians 23 et 24. Cette solution a l'avantage de permettre la transmission d'un couple encore plus important que dans la réalisation des figures 6a et 6b.
  • Les figures 7a et 7b illustrent un mécanisme de transmission 14 réalisé selon une cinquième variante du premier mode qui diffère de la troisième variante susmentionnée (fig. 5a et 5b) en ce que l'organe de transmission intermédiaire 18 est ici une courroie crantée 34. Ainsi, le premier corps de roulement 16 est une roue dentée solidaire du piston 6, le deuxième corps de roulement 19 est une roue dentée solidaire de l'arbre de rotation 15, le mouvement entre les deux roues étant transmis par une courroie crantée 34. Une telle courroie crantée est réalisée en un matériau souple, par exemple en élastomère renforcé de fibres. L'avantage d'une telle solution est qu'elle est moins bruyante en fonctionnement qu'une chaîne, que la courroie crantée est plus légère qu'une chaîne, tout en présentant un fonctionnement plus régulier. Ainsi, elle s'applique plus particulièrement à des machines rapides et silencieuses, mais fonctionnant à des pressions plus faibles, par exemple inférieures à 30 bar où la souplesse introduite en fonctionnement par la courroie crantée n'est pas gênante. Une courroie crantée est une courroie synchrone, elle assure une transmission sans glissement ou sans déphasage entre l'entrée et la sortie.
  • Les figures 8a et 8b illustrent une sixième variante de réalisation du mécanisme de transmission 14 de l'invention où le premier corps de roulement 16 et le deuxième corps de roulement 19 sont des poulies reliées par une courroie lisse 35. Un galet tendeur (non représenté sur les dessins) peut être prévu sur les bras médians 23,24 pour régler la tension de la courroie lorsque celle-ci est du type courroie plate à entraînement par adhérence. L'avantage d'une telle solution est que la courroie lisse 35 est plus simple à mettre en place et que l'on peut régler plus finement les positions angulaires entre le premier corps de roulement 16 et le deuxième corps de roulement 19 lors du montage, car il n'y a pas de crans à respecter et donc pas de mécanisme de décalage à mettre en oeuvre. Par ailleurs, un éventuel glissement peut intervenir en fonctionnement et avoir pour conséquence une désynchronisation entre le premier corps de roulement 16 et le deuxième corps de roulement 19. Toutefois, on peut pallier à cet inconvénient en utilisant un dispositif de guidage du losange 4 formé par les pistons articulés, ce qui fait que le glissement de la courroie lisse 35 permet de resynchroniser automatiquement les angles entre le premier corps de roulement 16 et le deuxième corps de roulement 19 .
  • Dans une autre variante, on pourrait utiliser une courroie trapézoïdale à entraînement par coincement, donc à plus faible glissement.
  • Les figures 9a à 9c illustrent un mécanisme de transmission 14 réalisé selon une septième variante du premier mode de réalisation. Selon cette variante, le premier corps de roulement 16 et le deuxième corps de roulement 19 sont des galets de friction, un corps de roulement intermédiaire 21 est également prévu entre les deux corps de roulement 16 et 19. Mise à part la transmission par friction et non pas par engrenages, la structure du mécanisme 14 selon cette variante est assez proche de celle décrite en référence aux figures 3a à 3d, les numéros de référence ayant un même rôle ont été partiellement repris sur les figures 9a à 9c. Les galets de friction ont une âme métallique et sont recouverts en surface d'une enveloppe en élastomère à haut coefficient de frottement. Pour respecter le rapport de démultiplication positif et égal à deux, le diamètre du galet central 37 monté fixe en rotation sur l'arbre de rotation 15 est égal au double du diamètre d'un demi-galet 36 solidaire d'un piston 6. Un galet intermédiaire 38 est dimensionné en fonction de l'encombrement du losange 4. Le mécanisme de transmission 14 réalisé selon cette variante permet un entraînement par adhérence, qui est donc sujet à d'éventuels glissements, tout en étant plus rigide qu'un entraînement par courroie lisse 35.
    Dans une variante (non représentée aux figures), on peut utiliser des galets profilés ou comportant des protubérances sphériques, cylindriques, etc., ce qui permet un entraînement sans glissement entre les pistons et l'arbre de rotation.
  • Les figures 10a à 10c illustrent une huitième variante de réalisation d'un mécanisme de transmission 14 où les premiers corps de roulement 16 et le deuxième corps de roulement 19 sont des galets de friction similaires à ceux des figures 9a à 9c, mais où le mécanisme de transmission 14 utilise plusieurs corps de roulements intermédiaires 21. Plus particulièrement, un demi-galet 36 est monté solidaire en mouvement d'un piston 6 et un galet central 37 est monté solidaire de l'arbre de rotation 15 en utilisant une clavette 22. Trois galets intermédiaires 38 sont tenus par chaque partie allongée d'un bras médian 23, respectivement 24. Un bras médian supporte donc six galets intermédiaires 38. Les bras médians ont un même rôle que dans les variantes précédentes, ils sont donc montés à pivotement dans des articulations 29,30 au centre des pistons opposés 6, l'arbre de rotation 15 passant avec ou sans jeu au centre de chaque bras médian. Les extrémités 27,28 des bras médians 23,24 sont agencées pivotantes au centre d'un piston 6, un bras médian 23 reliant le point médian d'un piston 6 avec la tangente à l'arbre de rotation 15, faisant que l'on obtient un arrangement en spirale des extrémités des bras médians à partir de leur centre. Ceci permet à chaque extrémité de supporter plusieurs galets intermédiaires 38, de manière décalée tangentiellement, par leurs axes de support 31',31" et 31 "'. L'avantage d'une telle solution est que la multiplication des galets permet de diminuer leur diamètre et donc l'inertie de la transmission et ses conséquences néfastes. Il faut toutefois utiliser un nombre impair de galets intermédiaire afin de conserver un rapport de transmission positif. Les galets ne sont pas alignés sur la médiane dans cette réalisation, ce qui permet d'adapter des galets de dimensions standards à une machine aux dimensions imposées.
  • Les figures 11a à 11d illustrent un mécanisme de transmission 14 selon un deuxième mode de réalisation de l'invention. Le mécanisme de transmission 14 comporte un premier corps de roulement 16 qui est un secteur denté comportant un axe 17 qui est monté fixe en rotation au centre d'un piston 6, secteur denté qui est amener à s'engrener avec une couronne dentée 40 ayant une denture intérieure qui forme le deuxième corps de roulement 19. La couronne dentée 40 présente un axe de rotation qui est coaxial à l'axe central 43 de la machine qui passe par l'intersection des bras médians 23,24, la couronne dentée 40 formant l'arbre d'entraînement 15 de la transmission. Les bras médians 23,24 sont montés pivotants à leurs extrémités sur les axes 17 qui traversent les pistons 6 et ont pour fonction de supporter les efforts radiaux agissant sur les pistons, les jeux dans les articulations pivotantes des bras médians 23,24 étant inférieurs à celui de l'entraxe entre un secteur denté 39 et la couronne 40. La couronne dentée 40 présente un contour périphérique 41 cylindrique et les secteurs dentés 39 sont agencés l'un dans le prolongement de l'autre de manière à ce qu'ils forment une couronne interne déformable 42 de largeur (dans le sens radial) supérieure à celle d'une chambre externe 8 de la machine. La couronne interne déformable 42 est formée en articulant les secteurs dentés 39 entre eux, chaque secteur denté 39 présentant, à ses extrémités, une protubérance 44 et une zone en creux 45, où chaque protubérance 44 vient s'installer dans une zone en creux 45 du secteur denté adjacent.
  • Cette solution présente l'avantage de pouvoir s'exonérer de tout pignon satellite 48 ou corps de roulement intermédiaire, ce qui permet de limiter le jeu dans la transmission, pour éviter les chocs, les nuisances et les dégradations des pièces menant à leur usure prématurée. De surcroît, les dimensions des corps de roulement sont plus importantes, pour plus de robustesse de la transmission. Par ailleurs, la denture intérieure permet d'augmenter le nombre de dents en contact (rapport de conduite), pour une meilleure transmission de l'effort. Il faut également noter que le choix des tailles d'engrenages est plus libre, car quasi indépendant des paramètres dimensionnels du losange.
  • Le centre du losange est libre et vide de tout élément mécanique. En effet, lorsque les bras médians 23,24 ne sont pas nécessaires à la machine, notamment dans le cas d'une construction où les pièces du rotor sont rigides avec de faibles jeux dans les articulations pivotantes 7, cet espace libre forme alors une cavité centrale 52 à volume variable qui permet de pomper, comprimer, turbiner, déplacer du fluide. Cette cavité peut aussi simplement ménager de l'espace pour le passage de composants ou d'accessoires de l'environnement de la machine. En effet, l'accès à l'intérieur du losange 4 de telles machines est ici amélioré, ce qui facilite les opérations de maintenance ou de réparation. Dans une variante non représentée sur les figures, la cavité interne 52 pourrait encore être divisée en plusieurs chambres à volume variable, par exemple en utilisant des parois internes étanches.
  • Dans une variante de réalisation (non illustrée sur les figures), mais utilisant un mécanisme de transmission à engrenages du type représentés aux figures 2 à 4 et des galets de friction du type représentés aux figures 9 et 10 les composants du mécanisme de transmission 14 peuvent diviser l'espace de la cavité interne 10, notamment dans la mesure où les organes de transmission intermédiaire 18 utilisés dans le mécanisme de transmission 14 opposent un frein suffisant au passage du fluide d'une cavité interne 10 à l'autre. Ceci peut être expliqué en référence à la figure 2 où la cavité interne 10 peut être divisée par les composants du mécanisme de transmission 14 de chaque bras médian en quatre cavités à volume variable 10a, 10b, 10c et 10d. Dans une telle variante de réalisation, les jeux axiaux entre les corps de roulement 16 et 19, les organes de transmission intermédiaire 18 et les parois latérales ou les bras médians 23,24 devront êtres minimes afin d'assurer une étanchéité du fluide présent dans chacune des cavités 10a à 10d. Le fluide peut arriver dans l'une des cavités 10a à 10d en provenance d'un circuit de fluide externe à la machine via des orifices d'admission et de refoulement pratiqués dans les flasques latéraux de fermeture de la machine. De préférence, afin de rendre les cavités 10a à 10d encore plus étanches, l'utilisation des bras médians 23,24, d'épaulements sur les pignons, de zone de non-recouvrement des enveloppes souples des galets de friction sont à éviter. En effet, si l'on supprime les bras médians facultatifs 23 et 24, la transmission à engrenages (figure 2), est très proche des conditions de réalisation (tolérances, jeux, matériaux, fabrication) des pompes à engrenages bien connues de l'homme du métier, car les cavités sont délimitées par les zones de contact dans les dentures d'engrenage, les parois circulaires tangentes aux sommets des dentures et les surfaces planes des pignons qui sont ajustés contre les parois latérales de fermeture de la machine. De même, la structure d'un mécanisme de transmission à galets de friction (figures 9a et 10a) est proche de celle d'une pompe à lobes utilisant des roues à lobes sans synchronisation externe, car le contact entre les roues à lobes se fait avec une légère déformation élastique de l'enveloppe en élastomère qui recouvre les roues à lobes afin d'améliorer l'étanchéité et la transmission du couple. Les séparations ainsi créées par le mécanisme de transmission de l'invention servent à former plus de cavités destinées à pomper, comprimer, turbiner, ou déplacer un ou plusieurs fluides, mais aussi à amplifier des variations de volume, ou à limiter des volumes morts.
    Les espaces fermés formant des cavités à volume variable peuvent aussi être obtenus en utilisant d'autres surfaces, comme par exemple l'espace compris (figures 11a et 11b, tel que décrits dans ce qui suit) entre les secteurs dentés 39, la couronne dentée 40, le stator 2 et une paroi latérale rapportée.
  • Un exemple de dimensionnement avantageux d'un tel mécanisme de transmission 14 selon ce deuxième mode de réalisation est décrit dans ce qui suit. La machine comportant un mécanisme de transmission selon les figures 11a à 11d est réalisée à partir d'une couronne dentée 40 à denture intérieure de module 3 avec 80 dents, et comportant quatre secteurs dentés 39 de module 2 qui comporteraient 40 dents s'ils étaient entiers. Les dimensions de la machine sont d'environ 50 mm pour la hauteur des pistons 6, soit une hauteur totale de la machine fermée d'environ 100 mm et environ 20 mm de largeur de denture. L'entraxe entre les sommets des deux pistons 6 opposés est de 100 mm et le diamètre de la machine est d'environ 200 mm.
    Le contact de dentures intérieures sur des dentures extérieures offre un rapport de conduite (on comprend le nombre de dents en contact) bien plus important, ce qui améliore considérablement la durée de vie de la machine ainsi que le couple transmissible.
    La place dégagée par la suppression des pignons satellites 48 permet d'augmenter les diamètres primitifs et donc les rendements des systèmes d'engrènement. De plus, pour les mêmes raisons de gain de place, il est possible d'adopter des modules plus importants avec des pieds de dents plus robustes ce qui augmente nettement le couple transmissible.
    Il est possible de transmettre un couple de 100 N.m avec des alliages du type de l'acier 11SMnPb30 employé pour les pignons standards.
    La suppression des pignons satellites 48 permet de gagner une conversion de mouvement. Le rendement estimé pour le mécanisme de transmission dans ce cas est de l'ordre de 98%.
  • Les figures 12a à 12c illustrent un exemple d'application d'une MRLD comportant un mécanisme de transmission selon l'invention, la machine étant un compresseur d'air domestique 50 à fonctionnement rapide.
  • Les pistons 6 comprennent des demi-pignons 47 qui sont les blocs réalisés par électroérosion et enfichés dans une rainure d'allègement 46 pratiquée le long de la face intrados 11 de chaque piston 6. Les demi-pignons 47 s'engrènent avec une roue dentée 49 fixée sur l'arbre de rotation 15 moyennant des pignons satellites 48. Les pignons satellites 48 sont emmanchés serrés sur une goupille standard sur les bras médians 23,24. Les pignons satellites 48 sont guidés en haut et en bas, par les bras médians 23,24. L'arbre de rotation 15 est une pièce de révolution simple liée à la roue dentée 49 grâce notamment à une clavette 22. L'arbre de rotation 15 présente sur sa longueur des gorges ou rainures circulaires destinées à recevoir des anneaux élastiques de fixation (du type circlips, non visibles sur les figures) bloquant en translation axiale la roue dentée 49 et bloquant la translation axiale de l'arbre par rapport aux bras médians 23,24 et donc par rapport au stator 2. En fonctionnement, le couple moteur de rotation de l'arbre de rotation 15 est transmis aux pistons 6.
  • Les paramètres dimensionnels et de fonctionnement des différents composants de la machine ont été conçus de manière à pouvoir transmettre le couple souhaité, tout en présentant un fonctionnement silencieux, en évitant de générer des vibrations et pouvant être réalisée pour un coût réduit. Ainsi, en fonctionnement, le compresseur 50 atteint la pression de refoulement de 3 bar absolus, pour une admission à la pression atmosphérique avec un débit de 1500 normaux L/min à 3000 tr/min, pour un couple de 20 N.m.
    Ainsi, la démultiplication se fait sur un même étage pour simplifier la conception de la machine et en réduire le coût, en respectant le rapport de démultiplication entre le demi-pignons 47 solidaires du piston 6 et la roue dentée 49 solidaire de l'arbre de rotation 15, rapport qui doit être positif et de rapport 2:1.
    On utilise de préférence des engrenages droits à denture droite pour leur bon rendement, leur standardisation, l'absence d'efforts axiaux et l'on préfère choisir des dentures de modules identiques pour tous les pistons afin de simplifier la conception. Par ailleurs, on choisit avantageusement un même diamètre primitif des pignons satellites 48 que le diamètre primitif des demi-pignons 47 de piston 6 afin de réduire l'usure des engrenages. Les diamètres des engrenages et leur modules ont été choisis en les dimensionnant au maximum pour optimiser le rendement, l'usure et le couple transmissible. Les pignons satellites 48 sont montés entre le demi-pignon 47 de piston 6 et la roue dentée 49 de l'arbre de rotation 15 pour ne pas gêner l'écrasement du losange 4 et garder un maximum de cylindrée.
    L'entraxe dans les engrenages (entre chaque couple de pignons) est compris entre la cote nominale et la cote à laquelle on rajoute un jeu de 0,05 mm. Ces cotes sont maintenues en fonctionnement, car les efforts radiaux sont repris avec des bras médians 23,24, pour éviter que des efforts parasites ne viennent endommager les engrenages.
    Un tel mécanisme de transmission à engrenages est adapté pour transmettre de manière précise, uniforme et efficace un couple assez faible.
    Compte tenu des considérations ci-dessus, les engrenages ont été conçus en fonction des paramètres dimensionnels de la machine, notamment pour une hauteur des pistons qui est de 50 mm, la hauteur totale de la machine fermée étant d'environ 100 mm, le côté du losange est de 100 mm et le diamètre de la machine est d'environ 200 mm.
    On choisit par exemple un module égal à 1, ce qui assure un nombre de dents raisonnable (par exemple supérieur à 17) ce qui favorise le rendement de la transmission (qui est d'environ 0,96), ainsi que la résistance mécanique de la transmission. La largeur de denture qui optimise au mieux l'espace disponible dans la machine est de maximum 17 mm, et il est souhaitable de choisir ce maximum.
    Les matériaux qui peuvent être utilisés pour réaliser les engrenages sont par exemple un acier trempé du type 12NC15 ou encore l'acier 11SMnPb30, couramment employés pour réaliser des pignons.
    En ce qui concerne les demi-pignons 47 solidaires des pistons 6, on préfère toutefois des matériaux plus résistants, notamment un acier de type 42CD4 ou 37D8. Il est déconseillé d'ouvrir un pignon pour en faire un secteur denté, car ceci entraînerait la déformation dudit pignon. Pour des raisons de résistance aux sollicitations des demi-pignons 47, on préfère les réaliser par un procédé de découpe par électroérosion dans des blocs de matière isotrope.
    Par ailleurs, les faibles surfaces d'appui au niveau de leurs dents, pourraient à terme entraîner un matage des demi-pignons attachés aux pistons et, par conséquent, introduire des jeux qui nuisent à la transmission. Pour éviter ce problème, on peut envisager d'agencer des surfaces d'appui planes de chaque côté du secteur denté.
    Le profil des dents est symétrique de telle sorte que cette pièce puisse être montée indistinctement dans les deux sens.
  • Avec ces considérations et selon un dimensionnement donné à titre d'exemple ci-dessus, les calculs ont estimé une durée de vie de la transmission d'environ 5000h et un rendement de la transmission de l'ordre de 0,96 avec peu d'échauffement des composants lors du fonctionnement.
  • Dans une adaptation simplifiée de l'invention, non représentée sur les figures, le mécanisme de transmission selon l'invention peut également fonctionner avec un seul premier corps de roulement monté sur un seul piston, ou avec seulement deux ou trois premiers corps de roulement montés sur respectivement deux ou trois pistons. Cette version simplifiée peut s'appliquer aux variantes illustrées aux figures 3a à 3d, 4a à 4b, 5a à 5b, 7a à 7b, 8a à 8b, 9a à 9c, 10a à 10c et 11a à 11d. Présentant, certes, des inconvénients en terme d'équilibrage des masses au sein du mécanisme de transmission ou en terme de guidage du rotor, une telle simplification constructive présente toutefois un intérêt économique, en permettant de réduire le coût de réalisation du mécanisme de transmission.
  • D'autres variantes et modes de réalisation de l'invention peuvent être envisagés sans sortir du cadre de l'invention telle que délimitée dans les revendications.

Claims (18)

  1. Machine rotative à losange déformable comportant
    a) un rotor (3) qui est un losange déformable (4) en contact, avec ou sans jeu, avec la surface interne d'une enceinte (1) formant un stator (2) et/ou avec la surface externe d'une couronne centrale, ledit losange déformable (4) comprenant quatre pistons (6) reliés, l'un à la suite de l'autre, par une articulation pivotante (7) d'axe parallèle à l'axe longitudinal de l'enceinte (1) et formant ainsi une chaîne fermée ; ainsi que
    b) un mécanisme de transmission (14) du mouvement entre les pistons (6) et un arbre de rotation (15) coaxial à l'axe central de la machine,
    ladite machine étant caractérisée en ce que ledit mécanisme de transmission (14) comprend :
    - un premier corps de roulement (16) monté fixe sur au moins un piston (6), de préférence sur chaque piston (6), l'axe (17) du dudit premier corps de roulement (16) passant au centre du piston (6) et relié à
    - un deuxième corps de roulement (19) dont le centre passe par l'axe central de la machine et est solidaire dudit arbre de rotation (15),
    - le premier corps de roulement (16) étant relié au deuxième corps de roulement (19) directement ou par un organe de transmission intermédiaire (18)
    - et que le rapport de démultiplication entre le premier (16) et le deuxième corps de roulement (19) est égal à 2 et est positif.
  2. Machine selon la revendication 1, caractérisée en ce que ledit premier corps de roulement (16) et ledit deuxième corps de roulement (19) sont munis de protubérances d'entraînement sur au moins une partie de leur périphérie pour réaliser un entraînement par obstacle.
  3. Machine selon l'une des revendications 1 ou 2, caractérisée en ce que ledit mécanisme de transmission (14) comprend des engrenages à axes parallèles et denture droite.
  4. Machine selon l'une des revendications 1 ou 2, caractérisée en ce que ledit mécanisme de transmission (14) comprend des engrenages à axes parallèles et denture hélicoïdale.
  5. Machine selon l'une des revendications précédentes, caractérisée en ce que le premier corps de roulement (16) est un demi-pignon solidaire d'un piston (6) qui s'engrène avec une roue dentée formant le deuxième corps de roulement (19) solidaire de l'arbre de rotation (15) central de la machine moyennant un corps de roulement intermédiaire (21) formant un pignon satellite.
  6. Machine selon l'une des revendications 1 ou 2, caractérisée en ce que ledit premier corps de roulement (16) est un demi-pignon conique (53) relié audit deuxième corps de roulement (19) qui est une roue dentée conique (54) par un arbre intermédiaire (55) muni de pignons coniques (56,57) aux extrémités.
  7. Machine selon l'une des revendications 1 à 4, caractérisée en ce que ledit premier corps de roulement (16) est un secteur circulaire denté (39) relié à un piston (6) qui s'engrène directement avec une couronne dentée (40) périphérique à denture intérieure solidaire de l'arbre de rotation (15) de la machine.
  8. Machine selon la revendication 7, caractérisée en ce que la couronne dentée (40) présente un contour périphérique (41) circulaire et que les secteurs dentés (39) sont agencés l'un dans le prolongement de l'autre de manière à ce qu'ils forment une couronne interne (42) déformable de largeur (dans le sens radial) supérieure à celle d'une chambre externe (8) de la machine.
  9. Machine selon l'une des revendications 7 ou 8, caractérisé en ce qu'elle comprend une cavité interne (10) au losange comportant au moins une cavité à volume variable destinée à pomper, à turbiner du fluide ou à recevoir un élément extérieur à la machine.
  10. Machine selon l'une des revendications 1 ou 2, caractérisée en ce que ledit premier corps de roulement (16) et ledit deuxième corps de roulement (19) sont reliés par une chaîne (32,33,33') ou par une courroie crantée (34,33,33').
  11. Machine selon la revendication 1, caractérisée en ce que ledit premier corps de roulement (16) est relié audit deuxième corps de roulement (19) par une courroie lisse (35).
  12. Machine selon l'une des revendications 10 ou 11, caractérisée en ce que deux premiers corps de roulement (16) opposés sont reliés au deuxième corps de roulement (19) par une chaîne commune (33) ou par une courroie commune ou en ce que tous les premiers corps de roulement (16) sont reliés au deuxième corps de roulement (19) par une courroie commune (33') ou par une chaîne commune.
  13. Machine selon la revendication 1, caractérisée en ce que ledit premier corps de roulement (16) et ledit deuxième corps de roulement (19) sont des galets de friction (36,37) pouvant comporter chacun un noyau dur recouvert d'une enveloppe souple.
  14. Machine selon l'une des revendications 1 à 4 ou 13, caractérisée en ce que ledit premier corps de roulement (16) est relié par au moins un corps de roulement intermédiaire (21) audit deuxième corps de roulement (19).
  15. Machine selon l'une des revendications précédentes, caractérisée en ce que deux pistons (6) opposés sont reliés ensemble par au moins un bras médian (23,24), chacune des extrémités (27,28) dudit bras médian étant montée pivotante au centre de chaque piston (6).
  16. Machine selon l'une des revendications précédentes, caractérisée en ce que le mécanisme de transmission (14) a un fonctionnement réversible.
  17. Machine selon l'une des revendications précédentes, caractérisée en ce que le piston (6) et ledit premier corps de roulement (16) forment une pièce monobloc.
  18. Machine selon l'une des revendications 1 à 5 et 13 à 17, caractérisée en ce que le mécanisme de transmission (14) permet de séparer la cavité interne (10) de la machine en une ou plusieurs cavités à volume variable (10a, 10b, 10c, 10d).
EP09760928.3A 2008-11-12 2009-11-09 Machine rotative à losange déformable comportant un mecanisme de transmission perfectionné Not-in-force EP2356318B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0806304A FR2938291B1 (fr) 2008-11-12 2008-11-12 Machine rotative a losange deformable comportant un mecanisme de transmission perfectionne.
PCT/FR2009/001294 WO2010055223A1 (fr) 2008-11-12 2009-11-10 Machine rotative a losange deformable comportant un mecanisme de transmission perfectionne

Publications (2)

Publication Number Publication Date
EP2356318A1 EP2356318A1 (fr) 2011-08-17
EP2356318B1 true EP2356318B1 (fr) 2017-03-01

Family

ID=40834569

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09760928.3A Not-in-force EP2356318B1 (fr) 2008-11-12 2009-11-09 Machine rotative à losange déformable comportant un mecanisme de transmission perfectionné

Country Status (4)

Country Link
US (1) US8951028B2 (fr)
EP (1) EP2356318B1 (fr)
FR (1) FR2938291B1 (fr)
WO (1) WO2010055223A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2936272B1 (fr) * 2008-09-22 2012-07-13 Vincent Genissieux Machine rotative a losange deformable multifonctions
WO2013053062A1 (fr) 2011-10-14 2013-04-18 Gullivert Technologies Inc. Courroie et support pour mécanisme de rotor dans un appareil rotatif et appareil rotatif le comprenant

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US716970A (en) * 1902-05-26 1902-12-30 Edward H Werner Rotary engine.
ES256112A1 (es) * 1960-02-27 1960-06-01 Martin Artajo Jose Ignacio Sistema mecanico de rotor deformable con embolos rotativos y camara rigida
US3196854A (en) 1963-04-08 1965-07-27 Novak Andrew Rotary engine
US3295505A (en) * 1963-05-31 1967-01-03 Jordan Alfred Rotary piston apparatus
FR1404453A (fr) 1964-02-24 1965-07-02 Mécanisme comportant un rotor articulé
DE1526408A1 (de) 1965-06-09 1970-07-30 Politechnika Warszawska Verbrennungsmotor mit umlaufenden,eine geschlossene Kette bildenden,Kolben
DE1551115A1 (de) 1966-09-29 1970-06-11 Alfred Jordan Rotationskolben-Verbrennungsmotor insbesondere luftgekuehlter Rotationskolbenmotor fuer das Gas-Luftgemisch oder luftgekuehlter Rotationskolben-Dieselmotor
GB1289479A (fr) * 1968-12-18 1972-09-20
ES393065A1 (es) 1971-07-08 1973-08-16 Martin Artajo Maquina de embolo rotativo y culatas oscilantes.
US3918415A (en) * 1972-09-19 1975-11-11 Ishida Industry Company Limite Rotary internal combustion engine
CA997998A (en) 1974-08-02 1976-10-05 Ernest A. Steinbrink Rhombo-rotary engine
FR2374512A1 (fr) 1976-12-15 1978-07-13 Jordan Alfred Moteur a combustion interne a pistons rotatifs, en particulier pour melange carburant-air ou injection de gasoil
DE2656751A1 (de) * 1976-12-15 1978-06-22 Alfred Jordan Rotationskolben-brennkraftmaschine insbesondere fuer brennstoff-luftgemisch oder dieseloel-einspritzung
FR2493397A1 (fr) 1980-11-03 1982-05-07 Ambert Jean Pierre Moteur rotatif
WO2001088341A1 (fr) 2000-05-12 2001-11-22 Peter Szorenyi Moteur a combustion interne possedant un rotor articule
AU726791B1 (en) * 2000-05-12 2000-11-23 Peter A. Szorenyi Hinged rotor internal combustion engine
CA2310488A1 (fr) 2000-05-23 2001-11-23 Normand Beaudoin Polyturbine energetique et antirefoulement
CA2341798A1 (fr) * 2001-03-22 2002-09-22 Normand Beaudoin Nouvelles poly inductions de poly turbines energetiques
US7178502B2 (en) * 2001-06-05 2007-02-20 Paul D. Okulov Balanced rotary internal combustion engine or cycling volume machine
US20030062020A1 (en) 2001-06-05 2003-04-03 Okulov Paul D. Balanced rotary internal combustion engine or cycling volume machine
US6899075B2 (en) * 2002-03-22 2005-05-31 Roxan Saint-Hilaire Quasiturbine (Qurbine) rotor with central annular support and ventilation
EP1592866A1 (fr) * 2003-02-10 2005-11-09 Gilles Saint-Hilaire Moteur rotatif
ES2285930B1 (es) * 2006-02-17 2008-10-16 Eduardo Garcia Sanchez Sistema de guiado para embolos oscilantes de compresores o motores rotativos.
WO2013053062A1 (fr) * 2011-10-14 2013-04-18 Gullivert Technologies Inc. Courroie et support pour mécanisme de rotor dans un appareil rotatif et appareil rotatif le comprenant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR2938291A1 (fr) 2010-05-14
WO2010055223A1 (fr) 2010-05-20
US20110280757A1 (en) 2011-11-17
US8951028B2 (en) 2015-02-10
EP2356318A1 (fr) 2011-08-17
FR2938291B1 (fr) 2010-11-12

Similar Documents

Publication Publication Date Title
FR2823538A1 (fr) Compresseurs a volutes
EP3682141A1 (fr) Pivot pour palier lisse et train d'engrenages à contraintes thermiques réduites
WO2015118271A1 (fr) Turbomachine équipée d'un groupe de lubrification
EP3682142A1 (fr) Pivot et train d'engrenages
FR3011290A3 (fr) Pompe a engrenages a deplacement positif
EP3922831A1 (fr) Reducteur mecanique de turbomachine d'aeronef
EP2356318B1 (fr) Machine rotative à losange déformable comportant un mecanisme de transmission perfectionné
CA2464335C (fr) Machine volumetrique rotative
WO2010070211A1 (fr) Dispositif de mise sous pression d'un fluide destine a etre directement sur une prise de mouvement
FR2549908A1 (fr) Machine du type en spirale
EP3698044B1 (fr) Pompe a barillet rotatif avec moyens de guidage et de centrage du barillet distincts
EP0277861A1 (fr) Perfectionnements aux moteurs hydrauliques hélicoidaux
EP3045656B1 (fr) Machine rotative a losange deformable multifonctions
FR2559846A1 (fr) Machine hydraulique de type rotatif
FR3005106A1 (fr) Machine volumique rotative a trois pistons
FR2981993A1 (fr) Pompe a engrenages a cylindree variable pour turbomachine d'aeronef
EP3228866B1 (fr) Pompe à fuel à engrenages
FR3133418A1 (fr) Reducteur mecanique de turbomachine d’aeronef
EP1216358B1 (fr) Compresseur ou pompe a vide a spirales
FR2657131A1 (fr) Machine de transmission hautes performances a engrenages.
WO2023144484A1 (fr) Porte-satellites pour un reducteur de vitesse de turbomachine d'aeronef
FR2642486A1 (fr) Coupleur rotatif hydrostatique
EP3938657A1 (fr) Pompe sèche pour gaz et jeu de plusieurs pompes sèches pour gaz
WO2021228355A1 (fr) Pompe à vide sèche
WO2019076671A1 (fr) Pompe a barillet rotatif avec double plateaux

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110609

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GENISSIEUX, VINCENT

Owner name: AMBERT, JEAN-PIERRE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: AMBERT, JEAN-PIERRE

Inventor name: GENISSIEUX, VINCENT

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602009044489

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F01C0001324000

Ipc: F01C0017000000

RIC1 Information provided on ipc code assigned before grant

Ipc: F01C 1/324 20060101ALI20160811BHEP

Ipc: F01C 17/00 20060101AFI20160811BHEP

Ipc: F01C 1/332 20060101ALI20160811BHEP

Ipc: F03C 2/30 20060101ALI20160811BHEP

Ipc: F01C 21/08 20060101ALI20160811BHEP

Ipc: F01C 1/40 20060101ALI20160811BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160919

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 871594

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009044489

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170301

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 871594

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170601

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170701

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170703

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009044489

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

26N No opposition filed

Effective date: 20171204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009044489

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171109

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171109

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191122

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130