EP1559913A1 - Pompe à cavités progressives - Google Patents

Pompe à cavités progressives Download PDF

Info

Publication number
EP1559913A1
EP1559913A1 EP05290100A EP05290100A EP1559913A1 EP 1559913 A1 EP1559913 A1 EP 1559913A1 EP 05290100 A EP05290100 A EP 05290100A EP 05290100 A EP05290100 A EP 05290100A EP 1559913 A1 EP1559913 A1 EP 1559913A1
Authority
EP
European Patent Office
Prior art keywords
pump
rotor
cavities
stator
hydraulic control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05290100A
Other languages
German (de)
English (en)
Other versions
EP1559913B1 (fr
Inventor
Christian Bratu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1559913A1 publication Critical patent/EP1559913A1/fr
Application granted granted Critical
Publication of EP1559913B1 publication Critical patent/EP1559913B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/107Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
    • F04C2/1071Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type
    • F04C2/1073Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type where one member is stationary while the other member rotates and orbits
    • F04C2/1075Construction of the stationary member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/001Pumps for particular liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/007Venting; Gas and vapour separation during pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/086Carter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/107Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
    • F04C2/1071Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type
    • F04C2/1073Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type where one member is stationary while the other member rotates and orbits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/24Fluid mixed, e.g. two-phase fluid

Definitions

  • the present invention relates to improvements brought to volumetric pumps of the type to progressive cavities, also say Sparrow pump, and more specifically it relates to a volumetric pump of type with progressive cavities, perfected, allowing pump single-phase mixtures or effluents or polyphasic, having any viscosity, in particular mixtures or multiphase effluents compressible and viscous to very viscous fluids.
  • the pump according to the present invention allows a fortiori to pump a single phase or a liquid phase charged with particles solids, with varying viscosities.
  • the progressive cavity pump - designated also hereinafter by the abbreviation PCP - was invented by René Moineau in 1930 and the operation in liquid industrial pumps currently used corresponds basic principles.
  • Figure 1 of the attached drawing gives, in (A), a schematic representation partially in longitudinal section axis of a conventional PCP pump, also with (B) a representation of the distribution of pressures on along the pump in the case of pumping a liquid (curve L) and in the case of pumping a mixture polyphasic liquid-gas (curve P).
  • the architecture of the PCP 1 pump is made up a helical metal rotor 2 rotating inside a compressible stator 3, generally of elastomer, of helical inner shape.
  • the contact between the rotor 2 and the stator 3 is by compression, more or less strong, of the stator 3.
  • the rotor 2 has a diameter D (FIG. 2 (B)) greater than the stator channel 3 ( Figure 2 (C)), which generates a compression contact of the stator 3 by the rotor 2 (contact clamping), ensuring a certain seal (Figure 2 (A)).
  • the geometry of the rotor 2 and the stator 3 of the PCP pump 1 leads to a set of isolated cavities 4, defined between the rotor 2 and the stator 3, also called cells , of constant volume, that the rotor 2 moves from the suction or inlet 5 (low suction pressure p A ) to the discharge or outlet 6 (high discharge pressure p R ).
  • the PCP pump is a positive displacement pump.
  • the cavity 4 moves from the low pressure of the suction 5 towards the high delivery pressure 6 and the presence of the gas in the pumped effluent leads to a process of compression of the gas with development of temperature, because the cavity is of constant volume.
  • the thermodynamic law of gas shows that if the volume in which the gas is compressed remains constant, the temperature rises considerably.
  • the leakage rate through the annular contact rotor 2 / stator 3 fulfills two functions: it partially compensates the volume of compressed gas and it realizes the differential pressure between the cavities 4.
  • the annular leakage rate between the rotor 2 and the stator 3 of the pump PCP 1 is adapted to the operation in liquid (incompressible fluid), for the purpose of lubrication with low flow rates; it is not sufficient to compensate for gas compression. Since the leakage rate is low, the last cavities 4 are only partially compensated and the compression occurs on the last stages of the pump, as can be seen in FIG. 1 (B), where p A designates, as already indicated. , the suction pressure and p R designating the discharge pressure. This compression is accompanied by a high temperature. The concentration of the pressures at the outlet of the pump and the strong increase in temperature leads to the risk of mechanical damage: stator degradation, mechanical expansion and vibrations.
  • the PCP pump achieves a pressure of 4 MPa (40 bar) on the four top floors, with a strong pressure gradient that develops high temperatures; on thirteen floors he there are only four that compress the mixture.
  • US 5,722,820 proposes a variable rotor / stator contact decreasing backflow to suction.
  • the leakage flow between the rotor and the stator carry the flow necessary for the compensation in pressure and volume of cavities lying downstream of the pump. It is a global leakage rate; he first compensate the last cavity, to move to the next and so on.
  • the pump In viscous fluid, the pump can not avoid the appearance of cavitation.
  • this solution can not have limited use and uses a complex architecture without ensuring good reliability.
  • the present invention aims to propose an improved pump so as to spread the aforementioned drawbacks of the previous state of the technical.
  • a pump with progressive cavities having a helical rotor rotating inside a helical stator, said stator and said rotor being arranged so that the cavities formed between said rotor and said stator move from the suction towards the repression, is characterized, being arranged according to the invention, by the fact that means of hydraulic regulation are provided to ensure a internal recirculation of the fluid pumped between at least two said cavities under conditions capable of providing the least one function among the pressure distribution searched along the pump, the stabilization of temperatures, control of leak rates, and the compensation of compressed gas volumes.
  • Internal recirculation means the recirculation between two cavities of a mixing volume pumped as opposed to an external recirculation cavities that is done by the annular contact between the rotor and the stator and that generates a leakage flow.
  • the pressure distribution is obtained by a rebalancing of local pressures due to the flow of recirculation of hydraulic regulators.
  • the leakage rates between the stator and the rotor are a function of the pressure gradient.
  • the control of pressures leads to control of leak rates.
  • the role of the hydraulic control means is therefore to control the behavior of the pump, according to production characteristics.
  • Pressure control and compensation volume of compressed gas stabilizes temperatures, multiphase pumping (liquid, gas, solid particles).
  • the internal regulation of the pressure by the hydraulic control system of the present invention leads to the stabilization of the thermal regime and hydraulic along the pump, and can improve thus the mechanical behavior and the reliability overall.
  • the mastery of the contact between rotor and stator means that one can have a superficial contact without a strong compression between stator and rotor, while keeping low leakage rate. This is a way of new operation compared to the PCP pump Traditional.
  • the hydraulic control means are advantageously arranged to ensure recirculation internal fluid pumped between at least two cavities adjacent.
  • these means can advantageously be arranged to ensure internal recirculation pumped fluid between at least two cavities located in the region of the pump close to the discharge.
  • These means can also be arranged to ensure internal recirculation of the fluid pumped between all cavities of the pump.
  • the hydraulic control means can be received at least in part by the rotor and / or at least partly by the stator.
  • the density of the regulators hydraulics ensures the continuity of the process of regulation along the pump; this density is performance of the pump (flow, distribution pressures).
  • the dimensioning of regulators hydraulic is the recirculation flow needed for the cavity for volume compensation compressed and rebalancing pressures.
  • the hydraulic control means ensuring internal recirculation of the pumped fluid between two cavities, have at least one channel practiced in the rotor connecting these two cavities, the regulation hydraulically being carried out mechanically using a regulator arranged inside said channel and / or by loss of charge.
  • the hydraulic control means ensuring internal recirculation of the pumped fluid between two cavities, have at least one peripheral channel hosted by the rotor and arranged to provide the link between these two cavities with regulation by loss of charge.
  • the hydraulic control means ensuring internal recirculation of the pumped fluid between two cavities, have at least one hydraulic channel interior welcomed by the stator and arranged to ensure the connection between these two cavities with regulation by loss of charge.
  • the three particular embodiments can be used simultaneously on the same pump.
  • the contact between the rotor and the stator can be loosened compared to a pump at progressive cavities not including the means of hydraulic control as defined above. In these conditions, we can increase the rotation speed and the pumped flow without damaging the stator.
  • the present invention also relates to the application of the pump as defined above to the pumping compressible multiphase mixtures and pumping viscous fluids.
  • FIGS 3 and 4 illustrate the operation of the hydraulic control device (RH) of the invention installed inside the pump.
  • the total flow rate Q accesses the cavity 1 and the volume of gas is compressed at the pressure p 1 . Because of the pressure difference (p m - p 1 ), the flow rate q m of the hydraulic control system compensates the compressed volume in the cavity 1 and rebalances the pressures p m and p 1 .
  • the process is repeated for each cavity, towards the discharge.
  • control system hydraulic system of the invention is the opposite of the systems currently used by the industry: this is a controlled internal regulation, in contrast with the external regulation without control of current systems.
  • the mastery of the performances is done by the architecture of the hydraulic control system: dimensions, transfer function, layouts the pump.
  • control systems are installed inside the pump by adapting the rotor and / or the stator, without changing completely the initial architecture of the whole of the PCP pump and its manufacture. Maintaining the configuration the original PCP pump means that no modifications not the overall architecture (the rotor and the stator), the transport of the mixture by the displacement of the cavities, the motorization.
  • Figures 5 to 12 show achievements particular of the pump according to the invention.
  • control system hydraulic RH 7 is constituted by a hydraulic channel 8 which is practiced inside the rotor 2 between two cavities 4 and in which is installed a device for regulation 9 of the recirculation flow.
  • FIG. 6 A practical embodiment of the device 9 is shown schematically in Figure 6, where one can see that this device is based on a valve gradually opening to a differential pressure given, which leads to the regulation of the flow of recirculation q ( Figure 4 (A)).
  • the regulation system RH 7 consists of a hydraulic channel 8 practiced inside the rotor 2 between two cavities 4.
  • the system of RH 7 hydraulic control consists of two channels 10, one being practiced between the cavities 1 and m, and the other inside the cavity 1.
  • These two tandem channels, arranged in an offset fashion, represent the simplest structure. The fact that we realize several channels decreases their diameter and the offset ensures better circulation, especially when the opening of the channel in contact with the stator.
  • FIGS. 9A-9C show a variant in which a flow control device 9, such as the one shown in Figure 6, is installed in each channels 10 of the tandem, and FIGS. 9A-9C a variant according to which, in each channel 10 of the tandem, the hydraulic regulation is carried out by the pressure drop, as shown in Figs. 7A, 7B.
  • the system of hydraulic control RH 7 is realized by a channel peripheral hydraulic rotor 2, between two cavities 4.
  • a channel peripheral hydraulic rotor 2 between two cavities 4.
  • FIGS. 11A-11C show a variant having a single-channel hydraulic circuit 11, and FIGS. 11A-11C a variant comprising two circuits 12 in tandem shifted.
  • the regulation system hydraulic RH 7 has a hydraulic channel 13 internal device to the stator 3, practiced between two cavities 4.
  • This test concerns a PCP pump prototype traditional carrying a multiphase mixture (water and air).
  • PCP pump with thirteen stages (cavities) transports a polyphasic mixture whose flow rates are 50% water and 50% air, with a suction pressure of 0.1 MPa (1 bar) and a pressure in the conduit of pressure of 4 MPa (40 bar), which is equivalent to gas compression of 40/1. Due to the high rate of compression and the fact that the leakage flow (between rotor and stator) is unable to compensate for the volume of compressed gas, the discharge pressure is carried out on the last four floors (cavities), which amounts to a high pressure gain of 1 MPa (10 bar) / stage. All the work of the pump is carried out by the last four floors, the remaining nine floors of the pump does not not contributing to the compression of the mixture. This strong localized compression on the last floors is accompanied by a strong rise in temperature: inlet temperature is doubled.
  • the high temperature and the concentration of pressure at the outlet of the pump are damaging to the mechanical strength of the assembly, in particular the elastomer of the stator and the rotor.
  • the pump according to the present invention has a quite different behavior; thanks to regulators Hydraulic RH installed in the rotor, the distribution pressures are standardized and the temperature stabilized. On the last four floors, the density of hydraulic regulators RH is two regulators hydraulics per floor and therefore the gain of pressure is very low (about 0.1 MPa / stage). On the nine remaining floors of the pump, the regulators hydraulics RH are distributed as a regulator RH per floor. In these circumstances, the distribution of pressure is standardized, which amounts to a gain of pressure of about 0.3 MPa (3 bar) / stage.
  • the density variation of the regulators hydraulics RH contributes to hydro-thermo-mechanical rebalancing the pump; all floors contribute to the compression of the mixture.
  • the same PCP pump carries water with a low pressure at the inlet (0.1 MPa (1 bar)) and a pressure of about 0.5 MPa in the discharge pipe. Because of the dynamic behavior of the contact between rotor and the stator, the pump develops very high pressures weak on floors 7-11 with risk of cavitation.
  • the pump according to the present invention controls the distribution of pressures and therefore the pressures are positive and uniformly distributed, without risk of cavitation.
  • pressures vary evenly up to the suction pressure 0.1 Mpa (1 bar), without ever reaching locally low cavitation pressures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

Cette pompe à cavités progressives comportant un rotor hélicoïdal (2) tournant à l'intérieur d'un stator hélicoïdal (3), ledit stator (3) et ledit rotor (2) étant disposés de telle sorte que les cavités (4) formées entre ledit rotor (2) et ledit stator (3) se déplacent de l'aspiration (5) vers le refoulement (6), est caractérisée par le fait que des moyens de régulation hydraulique (RH) sont prévus pour assurer une recirculation interne du fluide pompé entre au moins deux desdites cavités (4) dans des conditions capables d'assurer au moins une fonction parmi la distribution des pressions recherchée le long de la pompe, la stabilisation des températures, le contrôle des débits de fuite, et la compensation des volumes de gaz comprimé. <IMAGE>

Description

La présente invention porte sur des perfectionnements apportés aux pompes volumétriques du type à cavités progressives, dites aussi pompe Moineau, et plus spécifiquement elle porte sur une pompe volumétrique de type à cavités progressives, perfectionnée, permettant de pomper des mélanges ou effluents monophasiques ou polyphasiques, ayant n'importe quelle viscosité, en particulier des mélanges ou effluents polyphasiques compressibles et des fluides visqueux à très visqueux.
Par « mélange ou effluent polyphasique compressible », on entend un effluent composé d'un mélange de :
  • (a) une phase gazeuse formée d'au moins un gaz libre ; et
  • (b) une phase liquide formée d'au moins un liquide et/ou
  • (c) une phase solide formée par des particules d'au moins un solide en suspension dans (a) et, si la phase (b) est présente, dans (a) et/ou (b).
  • Toutefois, comme indiqué ci-dessus, la pompe selon la présente invention permet a fortiori de pomper une seule phase ou une phase liquide chargée en particules solides, avec des viscosités variables.
    La pompe à cavités progressives - désignée également ci-après par l'abréviation PCP - a été inventée par René Moineau en 1930 et le fonctionnement en liquide des pompes industrielles utilisées actuellement correspond aux principes de base.
    La figure 1 du dessin annexé donne, en (A), une représentation schématique partiellement en coupe longitudinale axiale d'une pompe PCP classique, avec également en (B) une représentation de la distribution des pressions le long de la pompe dans le cas du pompage d'un liquide (courbe L) et dans le cas du pompage d'un mélange polyphasique liquide-gaz (courbe P).
    L'architecture de la pompe PCP 1 est constituée d'un rotor métallique hélicoïdal 2 tournant à l'intérieur d'un stator compressible 3, généralement en élastomère, de forme intérieure hélicoïdale. Le contact entre le rotor 2 et le stator 3 se fait par la compression, plus ou moins forte, du stator 3. Pour ce faire, le rotor 2 a un diamètre D (figure 2(B)) supérieur au canal du stator 3 (figure 2(C)), ce qui engendre un contact par compression du stator 3 par le rotor 2 (serrage de contact), en assurant une certaine étanchéité (figure 2(A)).
    Comme visible aux figures 1(A) et 2(A), la géométrie du rotor 2 et du stator 3 de la pompe PCP 1 conduit à un ensemble de cavités isolées 4, définies entre le rotor 2 et le stator 3, également appelées alvéoles, de volume constant, que le rotor 2 déplace de l'aspiration ou entrée 5 (basse pression d'aspiration pA) vers le refoulement ou sortie 6 (haute pression de refoulement pR). En ce sens, la pompe PCP est une pompe volumétrique.
    Dans ce qui suit, on utilise parfois le terme « étage » à la place du terme « cavité » ; on entend par « étage » le volume entre le stator et le rotor correspondant à une cavité à un moment donné. Ces deux termes sont parfois utilisés indifféremment.
    La figure 2 du dessin annexé représente une pompe PCP connue 1 montrée en (A) à l'état assemblé et présentant un rotor 2 à simple hélice montré seul en (B) et un stator 3 à double hélice montré seul en (C). L'axe du stator est désigné par as et l'axe du rotor par ar. Dans ces conditions :
    • le pas (PS) du stator 3 est le double du pas (Pr) du rotor 2 ; et
    • la longueur L d'une cavité 4 est égale au pas (Ps) du stator 3, et par conséquent, elle est le double du pas (Pr) du rotor 2.
    La distribution des pressions (figure 1(B)) au long de la pompe 1 du refoulement 6 vers l'aspiration 5, et la lubrification du contact rotor 2/stator 3 sont dues à l'écoulement des fuites entre le rotor 2 et le stator 3. Une cavité 4 à haute pression débite vers la cavité 4 adjacente à une pression inférieure en raison des fuites car le contact rotor 2/stator 3 n'est pas entièrement étanche, et les pertes de charge génèrent la pression différentielle entre les cavités 4. Par conséquent, le débit de fuite dépend du serrage de contact entre le rotor 2 et le stator 3, des conditions dynamiques de leur contact (vitesse de rotation, vibrations), de la viscosité du fluide et de la différence des pressions locales. En pratique, il est difficile de maítriser l'écoulement de fuite et la distribution des pressions qu'il engendre.
    En d'autres termes, le fonctionnement hydraulique de la pompe PCP est soumis à une régulation externe aux cavités, due aux fuites entre le rotor 2 et le stator 3, cette régulation n'étant pas maítrisée.
    Dans le cas où la pompe PCP 1 est utilisée pour le pompage d'un mélange polyphasique comportant une phase gazeuse, la cavité 4 se déplace de la basse pression de l'aspiration 5 vers la haute pression de refoulement 6 et la présence du gaz dans l'effluent pompé conduit à un processus de compression du gaz avec développement de température, car la cavité est de volume constant. La loi thermodynamique du gaz montre que, si le volume dans lequel on comprime le gaz reste constant, la température monte considérablement. Ainsi, le débit de fuite par le contact annulaire rotor 2/stator 3 remplit deux fonctions : il compense partiellement le volume de gaz comprimé et il réalise la pression différentielle entre les cavités 4. Cependant, le débit de fuite annulaire entre le rotor 2 et le stator 3 de la pompe PCP 1 est adapté au fonctionnement en liquide (fluide incompressible), dans un but de lubrification avec des faibles débits ; il n'est pas suffisant pour faire la compensation de la compression du gaz. Comme le débit de fuite est faible, on ne compense que partiellement les dernières cavités 4 et la compression se produit sur les derniers étages de la pompe, comme on peut le voir sur la figure 1(B), pA désignant, comme déjà indiqué, la pression à l'aspiration et pR désignant la pression au refoulement. Cette compression s'accompagne d'une forte température. La concentration des pressions à la sortie de la pompe et la forte augmentation de la température conduit au risque de dommages mécaniques : dégradation du stator, dilatation mécanique et vibrations.
    Par conséquent, le concept de fuite par le contact rotor/stator, propre à la pompe PCP, est inadapté au pompage d'un mélange polyphasique compressible.
    Pratiquement, en présence du gaz, la pompe PCP réalise une pression de 4 MPa (40 bars) sur les quatre derniers étages, avec un fort gradient de pression qui développe des températures élevées ; sur treize étages, il n'y en a que quatre qui compriment le mélange.
    En général, la distribution irrégulière des pressions au long de la pompe PCP conduit au développement des températures excessives mettant en cause la fiabilité de la pompe : dégradation de l'élastomère du stator, instabilité dynamique du rotor, déformations et efforts thermiques de la structure. Dans ces conditions, il faut limiter la pression de refoulement et réduire la vitesse de rotation de la pompe, ce qui conduit à une dégradation des débits pompés.
    L'expérience montre aussi que le contact rotor/stator quasi-étanche peut conduire au développement de la cavitation quand la pompe PCP transporte du liquide visqueux, notamment pour les grands débits de pompage ou quand la pression à l'entrée est faible. L'apparition de la cavitation est fort dommageable à la résistance du stator en élastomère et du rotor, donc à la fiabilité du système.
    Plusieurs solutions techniques d'uniformisation des pressions au long d'une pompe PCP ont été proposées :
    • Il a ainsi été proposé de réaliser un couple rotor/stator dont le volume des cavités diminue de l'aspiration vers le refoulement. C'est ainsi que le document US 2 765 114 propose un système rotor/stator tronconique, avec les diamètres décroissants.Dans le même sens, on peut imaginer un rotor à pas variable dont le volume des cavités est décroissant vers le refoulement.Ces solutions ne sont efficaces que pour un taux de gaz fixe et elles pénalisent le fonctionnement en liquide. Par ailleurs, cette solution ne peut pas éviter l'apparition de la cavitation.Aussi, la modification de l'architecture de la pompe conduit à un processus de fabrication complexe sans en assurer une bonne fiabilité.
    • Il a aussi été proposé de réaliser un contact entre rotor et stator qui est variable au long de la pompe.
    En effet, si l'on réalise un contact entre rotor et stator tel que l'écoulement de fuite annulaire (entre le rotor et le stator) soit plus fort vers le refoulement et plus faible du côté de l'aspiration, la compensation du volume de gaz comprimé se fait dans des conditions plus favorables et la distribution des pressions s'améliore.
    C'est ainsi que le document US 5 722 820 propose un contact rotor/stator variable décroissant du refoulement vers l'aspiration.
    Pour réaliser ce système, plusieurs moyens sont proposés : une variation faiblement tronconique du rotor, ou un stator tronconique, ou une combinaison des deux.
    Dans ces conditions, l'écoulement de fuite entre le rotor et le stator transporte le débit nécessaire à la compensation en pression et volume des cavités se trouvant à l'aval de la pompe. C'est un débit de fuite global ; il compense d'abord la dernière cavité, pour passer à la suivante et ainsi de suite.
    Pour alimenter plusieurs cavités, dont le taux de compression est grand, il faut un grand débit de fuite, ce qui demande un très faible contact entre le rotor et le stator. Cependant, le fonctionnement mécanique et hydraulique de la pompe PCP requiert un contact entre rotor et stator pour assurer la stabilité dynamique et le rendement hydraulique.
    Cette solution ne peut donc être qu'un compromis entre le fonctionnement en liquide, comme PCP, et le transport du gaz ; c'est pour cette raison que l'utilisation pratique est limitée aux faibles débits de gaz.
    Par ailleurs, le serrage du contact entre le rotor et le stator n'est valable que pour un taux de gaz fixe et pénalise le rendement en liquide.
    En fluide visqueux, la pompe ne peut pas éviter l'apparition de la cavitation.
    Aussi, cette solution modifie l'architecture de la pompe et complique le processus de fabrication.
    Par conséquent, cette solution ne peut avoir qu'une utilisation limitée et elle fait appel à une architecture complexe sans assurer une bonne fiabilité.
    La présente invention a pour objectif de proposer une pompe perfectionnée de manière à écarter les inconvénients précités de l'état antérieur de la technique.
    A ces fins, une pompe à cavités progressives comportant un rotor hélicoïdal tournant à l'intérieur d'un stator hélicoïdal, ledit stator et ledit rotor étant disposés de telle sorte que les cavités formées entre ledit rotor et ledit stator se déplacent de l'aspiration vers le refoulement, est caractérisée, étant agencée conformément à l'invention, par le fait que des moyens de régulation hydraulique sont prévus pour assurer une recirculation interne du fluide pompé entre au moins deux desdites cavités dans des conditions capables d'assurer au moins une fonction parmi la distribution des pressions recherchée le long de la pompe, la stabilisation des températures, le contrôle des débits de fuite, et la compensation des volumes de gaz comprimé.
    Par recirculation interne, on entend la recirculation entre deux cavités d'un volume de mélange pompé par opposition à une recirculation externe aux cavités qui se fait par le contact annulaire entre le rotor et le stator et qui génère un débit de fuite.
    La distribution des pressions s'obtient par un rééquilibrage des pressions locales dû au débit de recirculation des régulateurs hydrauliques.
    Les débits de fuite entre le stator et le rotor sont fonction du gradient de pression. La maítrise des pressions conduit au contrôle des débits de fuite.
    La compensation des volumes comprimés est assurée par le débit de recirculation des régulateurs hydrauliques.
    Le rôle des moyens de régulation hydraulique est donc de contrôler le comportement de la pompe, en fonction des caractéristiques de production.
    Le contrôle des pressions et la compensation du volume de gaz comprimé stabilisent les températures, en pompage polyphasique (liquide, gaz, particules solides).
    Par le contrôle des pressions, on évite l'apparition de la cavitation, source de dommages mécaniques (élastomère du stator, métal du rotor) ; et l'équilibrage des pressions et le contrôle du débit de fuite conduisent à la maítrise du contact entre le stator et rotor.
    En effet, la régulation interne de la pression par le système de régulation hydraulique de la présente invention conduit à la stabilisation du régime thermique et hydraulique au long de la pompe, et permet d'améliorer ainsi le comportement mécanique et la fiabilité d'ensemble.
    Dans ces conditions, le contrôle du comportement hydro-thermo-mécanique assure une meilleure performance hydraulique (débit pompé, pression de refoulement) et économique (maintenance, durée de vie).
    La maítrise du contact entre rotor et stator signifie qu'on peut avoir un contact superficiel sans une forte compression entre stator et rotor, tout en gardant un faible débit de fuite. Il s'agit d'un mode de fonctionnement nouveau par rapport à la pompe PCP traditionnelle.
    Dans ces conditions :
    • la fiabilité du système est améliorée ;
    • on peut utiliser des matériaux plus rigides (plus résistants) pour le stator afin d'augmenter la vitesse de rotation et le débit de la pompe.
    Ainsi le principe de fonctionnement de la pompe selon la présente invention est nouveau et très différent par rapport aux systèmes existants :
    • la pompe PCP avec un contact rotor/stator tronconique utilisée actuellement est un système global de régulation externe, dont le débit de fuite limité ne compense que les cavités situées près du refoulement de la pompe ;
    • la pompe selon la présente invention comporte des moyens de régulation hydraulique interne assurant un écoulement local de recirculation, entre deux cavités, pour compenser la pression différentielle locale, le débit de fuite et la compression du gaz contenu dans la cavité ;
    • le débit de recirculation est auto-régulé par le taux de gaz et la pression différentielle.
    Les moyens de régulation hydraulique sont avantageusement agencés pour assurer une recirculation interne du fluide pompé entre au moins deux cavités adjacentes. En particulier, ces moyens peuvent avantageusement être agencés pour assurer une recirculation interne du fluide pompé entre au moins deux cavités situées dans la région de la pompe voisine du refoulement. Ces moyens peuvent également être agencés pour assurer une recirculation interne du fluide pompé entre toutes les cavités de la pompe.
    Les moyens de régulation hydraulique peuvent être accueillis au moins en partie par le rotor et/ou au moins en partie par le stator.
    A cet effet, on installe avantageusement à l'intérieur de la pompe un ensemble de régulateurs hydrauliques dont le dimensionnement et la densité au long de la pompe assurent d'une façon uniforme la régulation hydraulique consistant en le contrôle des pressions, des débits de fuite et des températures, et la compensation de volumes comprimés. La rotation du rotor déplace les cavités au long de la pompe avec une vitesse dépendant de la vitesse de rotation et du pas du rotor ; chaque fois qu'une cavité passe devant un régulateur hydraulique, le débit de recirculation compense le volume comprimé, rééquilibre les pressions et stabilise les températures.
    Par conséquent, la densité des régulateurs hydrauliques assure la continuité du processus de régulation au long de la pompe ; cette densité est fonction des performances de la pompe (débit, distribution des pressions).
    En même temps, le dimensionnement des régulateurs hydrauliques correspond au débit de recirculation nécessaire à la cavité pour la compensation du volume comprimé et le rééquilibrage des pressions.
    Dans ces conditions, le fonctionnement des régulateurs hydrauliques est auto-régulé ; le débit de recirculation dépend de la pression et réciproquement.
    Conformément à un premier mode de réalisation particulier, les moyens de régulation hydraulique, assurant la recirculation interne du fluide pompé entre deux cavités, comportent au moins un canal pratiqué dans le rotor reliant ces deux cavités, la régulation hydraulique étant effectuée mécaniquement à l'aide d'un régulateur disposé à l'intérieur dudit canal et/ou par perte de charge.
    Conformément à un second mode de réalisation particulier, les moyens de régulation hydraulique, assurant la recirculation interne du fluide pompé entre deux cavités, comportent au moins un canal périphérique accueilli par le rotor et agencé pour assurer la liaison entre ces deux cavités avec régulation par perte de charge.
    Conformément à un troisième mode de réalisation particulier, les moyens de régulation hydraulique, assurant la recirculation interne du fluide pompé entre deux cavités, comportent au moins un canal hydraulique intérieur accueilli par le stator et agencé pour assurer la liaison entre ces deux cavités avec régulation par perte de charge.
    Les trois modes de réalisation particuliers peuvent être utilisés simultanément sur la même pompe.
    Conformément à une caractéristique intéressante de la présente invention, le contact entre le rotor et le stator peut être desserré par rapport à une pompe à cavités progressives ne comportant pas les moyens de régulation hydraulique tels que définis ci-dessus. Dans ces conditions, on peut augmenter la vitesse de rotation et le débit pompé sans endommager le stator.
    La présente invention porte également sur l'application de la pompe telle que définie ci-dessus au pompage de mélanges polyphasiques compressibles et au pompage de fluides visqueux.
    Les applications industrielles de la pompe selon la présente invention couvrent un domaine plus large que celui des pompes PCP existantes.
    En dehors des applications du transport des mélanges polyphasiques précités qui sont du domaine de la chimie et du pétrole, on peut citer le pompage à grands débits (domaine du pétrole par exemple...) et le pompage avec une faible pression à l'entrée (puits pétroliers horizontaux).
    Pour mieux illustrer l'objet de la présente invention, on va en décrire ci-après plusieurs modes de réalisation particuliers donnés uniquement à titre d'exemples non limitatifs, avec référence aux dessins annexés sur lesquels :
    • la figure 1 représente une pompe PCP traditionnelle, comme cela a été décrit ci-dessus, avec une représentation des distributions des pressions en pompage du liquide et du mélange polyphasique liquide-gaz ;
    • la figure 2 représente la composition d'une pompe PCP avec un rotor à simple hélice et un stator à double hélice ;
    • la figure 3 est une vue analogue à la figure 1, donnant en (A) une représentation d'une pompe à cavités progressives selon la présente invention, avec représentation schématique des régulateurs hydrauliques (RH), et donnant en (B) une représentation de la distribution des pressions en pompage polyphasique uniforme le long de la pompe ;
    • la figure 4 est, à plus grande échelle, une vue analogue à la figure 3, donnant en (A) une représentation d'une section de la pompe de l'invention, permettant de décrire le mécanisme de recirculation locale pour la compensation des volumes comprimés et le rééquilibrage des pressions locales, dans trois cavités successives de la pompe respectivement 1, m et n, et donnant en (B) une représentation de la distribution des pressions le long de la pompe ;
    • la figure 5A est, encore à plus grande échelle, une vue analogue à la figure 4, d'une section de pompe de l'invention, montrant le régulateur hydraulique (RH) comportant un canal pratiqué dans le rotor pour assurer la recirculation du fluide pompé entre deux cavités adjacentes 1, m, avec régulation mécanique ;
    • la figure 5B est une coupe selon la ligne A-A de la figure 5A ;
    • la figure 6 montre, encore à plus grande échelle, le régulateur mécanique de la figure 5 ;
    • la figure 7A est une vue analogue à la figure 5, mais avec régulation hydraulique par perte de charge ;
    • la figure 7B est une coupe selon la ligne A-A de la figure 7A ;
    • la figure 8A est une vue d'une section de pompe de l'invention, montrant le régulateur hydraulique (RH) comportant deux canaux parallèles pratiqués dans le rotor pour assurer la recirculation du fluide pompé entre deux cavités adjacentes, 1, m, avec régulation mécanique ;
    • les figures 8B et 8C sont des vues en coupe respectivement selon les lignes A-A et B-B de la figure 8A ;
    • la figure 9A est une vue analogue à la figure 8, mais avec régulation par perte de charge ;
    • les figures 9B et 9C sont des vues en coupe respectivement selon les lignes A-A et B-B de la figure 9A ;
    • la figure 10A est la vue d'une section de pompe de l'invention, montrant le régulateur hydraulique (RH) comportant un canal hydraulique périphérique au rotor pour assurer la recirculation du fluide pompé entre deux cavités adjacentes, 1, m ;
    • la figure 10B est une vue en coupe selon la ligne A-A de la figure 10A ;
    • la figure 11A est une vue d'une section de pompe de l'invention, montrant le régulateur hydraulique (RH) comportant deux canaux périphériques au rotor, décalés de 180° et d'un 1/2 de pas du rotor, pour assurer la recirculation du fluide pompé entre deux cavités adjacentes, 1, m ;
    • les figures 11B et 11C sont des vues en coupe respectivement selon les lignes A-A et B-B de la figure 11A ;
    • la figure 12A est la vue d'une section de pompe de l'invention montrant le régulateur hydraulique (RH) comportant un canal hydraulique périphérique à l'intérieur du stator, permettant d'assurer la recirculation du fluide pompé entre les deux cavités adjacentes, 1, m ; et
    • la figure 12B est une vue en coupe selon la ligne A-A de la figure 12A.
    Les figures 3 et 4 illustrent le fonctionnement du dispositif de régulation hydraulique (RH) de l'invention installés à l'intérieur de la pompe.
    On note :
    Q = QL + QG :
    le débit total du mélange de liquide (L) et de gaz (G) ;
    Q :
    débit de recirculation entre les cavités ; par exemple, qm est le débit du dispositif de régulation hydraulique de la cavité m vers la cavité 1 ;
    P :
    pression locale, dans les cavités (1, m, n) ;
    ζ :
    coefficient de perte de charge du dispositif de régulation hydraulique ;
    S :
    section d'écoulement du dispositif de régulation hydraulique ;
    γ :
    coefficient de transformation adiabatique.
    Le débit total Q accède dans la cavité 1 et le volume de gaz est comprimé à la pression p1. A cause de la différence des pressions (pm - p1), le débit qm du système de régulation hydraulique compense le volume comprimé dans la cavité 1 et rééquilibre les pressions pm et p1.
    Le débit total (Q + qm), comprimé à la pression p1, passe dans la cavité m ;
    • le débit de recirculation qm revient dans le circuit de régulation hydraulique vers la cavité 1 ;
    • le débit Q avance dans la cavité m, poussé par le rotor ;
    • à cause de la pression pm, supérieure à la pression précédente p1, le volume de gaz est comprimé ;
    • la différence de pression (pn - pm) génère un débit qn dans le système de régulation hydraulique, de la cavité n vers la cavité m, pour compenser le volume comprimé dans la cavité m et rééquilibrer les pressions pn et pm ;
    • le débit total (Q + qn) avance dans la cavité n ; le débit de recirculation qn revient dans la régulation hydraulique (RH) vers la cavité m ;
    • le débit Q de la pompe est comprimé, le système de régulation hydraulique débite pour compenser la compression et rééquilibrer les pressions.
    Le processus se répète pour chaque cavité, vers le refoulement.
    Par conséquent, la recirculation locale par le système de régulation hydraulique (RH) assure une régulation interne, entre les cavités :
    • rééquilibre localement les pressions entre deux cavités, ce qui conduit à la régularisation de la distribution des pressions au long de la pompe ;
    • compense les volumes comprimés, ce qui évite la remontée de la température ;
    • le débit pompé Q se conserve ; la recirculation selon l'invention se fait sans perte de débit ;
    • par le rééquilibrage des pressions on maítrise les débits de fuite et le contact entre rotor et stator.
    Le fonctionnement local du système de régulation hydraulique de l'invention est à l'opposé des systèmes utilisés actuellement par l'industrie : c'est une régulation interne maítrisée, par contraste avec la régulation externe non maítrisée des systèmes actuels.
    La maítrise des performances se fait par l'architecture du système de régulation hydraulique : dimensions, fonction de transfert, dispositions au long de la pompe.
    Compte tenu du fonctionnement local, le dimensionnement du système de régulation hydraulique se fait suivant les méthodes de la mécanique des fluides compressibles et de la thermodynamique.
    Ainsi les dimensions et le débit de recirculation sont fonction du débit de gaz et de liquide, de la pression différentielle, et des caractéristiques hydrauliques du RH (pertes de charge, fonction de transfert) : qn = f{QG,QL, (pm/pn)1/γ, pn, pm, S,ζ}
    Du point de vue thermodynamique, les pressions locales et le débit de recirculation (q) sont reliés par la relation [2] : [pn/pm]1/γ = 1 + qn/QG
    Par conséquent, l'évolution de la pression locale [2] dépend du débit de recirculation et réciproquement [1], le débit de recirculation dépend des pressions locales.
    A l'équilibre, la distribution de la pression locale résulte des pertes de charge du système de régulation hydraulique, qui détermine les dimensions du système de régulation hydraulique [1].
    Du point de vue pratique, on se donne le gradient de pression au long de la pompe à atteindre en conditions polyphasiques, ensuite on détermine le débit de recirculation [2] et les dimensions du système de régulation hydraulique [1] qui correspond à la distribution des pressions demandée.
    En pompage liquide, le système de régulation hydraulique régule par l'intérieur la distribution des pressions et le débit de fuite, ce qui correspond à la maítrise du fonctionnement hydraulique de la pompe, visant à :
    • éviter l'apparition de la cavitation, avec les dommages qu'elle engendre sur le stator et le rotor ;
    • contrôler le contact entre rotor et stator : débit de fuite, lubrification du contact rotor/stator ;
    • obtenir une meilleure fiabilité et augmentation du rendement hydraulique : débit, pression de refoulement, durée de vie, maintenance.
    C'est à l'opposé de la pompe PCP actuelle : le fonctionnement hydraulique par la régulation externe des pressions et fuites n'est pas maítrisé.
    Dans ces conditions, les systèmes de régulation hydraulique sont installés à l'intérieur de la pompe par l'adaptation du rotor et/ou du stator, sans changer complètement l'architecture initiale d'ensemble de la pompe PCP et sa fabrication. Le maintien de la configuration initiale de la pompe PCP signifie qu'on ne modifie pas l'architecture globale (le rotor et le stator), le transport du mélange par le déplacement des cavités, la motorisation.
    Les résultats obtenus sur une pompe de l'invention en conditions de production diphasique (gaz et liquide) démontrent l'efficacité du système ; le contrôle de la distribution des pressions au long de la pompe (distribution uniformisée) et du régime thermique (stabilisé). En liquide, le contrôle du fonctionnement hydraulique sans cavitation est confirmé.
    Les figures 5 à 12 montrent des réalisations particulières de la pompe selon l'invention.
    Aux figures 5A et 5B, le système de régulation hydraulique RH 7 est constitué par un canal hydraulique 8 qui est pratiqué à l'intérieur du rotor 2 entre deux cavités 4 et dans lequel est installé un dispositif de régulation 9 du débit de recirculation.
    Un mode de réalisation pratique du dispositif 9 est représenté schématiquement sur la figure 6, où l'on peut voir que ce dispositif est basé sur une soupape s'ouvrant graduellement à une pression différentielle donnée, ce qui conduit à la régulation du débit de recirculation q (figure 4(A)).
    Aux figures 7A et 7B, le système de régulation hydraulique RH 7 est constitué d'un canal hydraulique 8 pratiqué à l'intérieur du rotor 2 entre deux cavités 4.
    Les pertes de charges à l'entrée, le long et à la sortie du canal 8 régulent le débit et la pression différentielle.
    Aux figures 8A-8C et 9A-9C, le système de régulation hydraulique RH 7 est constitué de deux canaux hydrauliques 10, l'un étant pratiqué entre les cavités 1 et m, et l'autre à l'intérieur de la cavité 1. Ces deux canaux en tandem, disposés de façon décalée, représentent la structure la plus simple. Le fait qu'on réalise plusieurs canaux diminue leur diamètre et le décalage assure une meilleure circulation, notamment au passage de l'ouverture du canal au contact avec le stator.
    Les figures 8A-8C présentent une variante dans laquelle un dispositif de régulation du débit 9, tel que celui représenté sur la figure 6, est installé dans chacun des canaux 10 du tandem, et les figures 9A-9C une variante suivant laquelle, dans chaque canal 10 du tandem, la régulation hydraulique s'effectue par la perte de charge, comme illustré aux figures 7A, 7B.
    Aux figures 10A, 10B et 11A-11C, le système de régulation hydraulique RH 7 est réalisé par un canal hydraulique périphérique au rotor 2, entre deux cavités 4. Ainsi, il assure la recirculation entre les deux cavités 4 et la pression différentielle est donnée par la perte de charge de l'écoulement. Ses dimensions correspondent au débit de recirculation nécessaire.
    Les figures 10A, 10B présentent une variante comportant un circuit à un seul canal hydraulique périphérique 11, et les figures 11A-11C une variante comportant deux circuits 12 en tandem décalé.
    Aux figures 12A, 12B, le système de régulation hydraulique RH 7 comporte un canal hydraulique 13 périphérique intérieur au stator 3, pratiqué entre deux cavités 4.
    Comme dans le cas précédent, il assure la recirculation entre deux cavités, la pression différentielle est donnée par la perte de charge, et ses dimensions correspondent au débit de recirculation.
    Les exemples suivants illustrent des résultats obtenus avec la pompe selon l'invention sans toutefois limiter la portée de cette dernière.
    Exemple 1
    Cet essai porte sur un prototype de pompe PCP traditionnelle transportant un mélange polyphasique (eau et air).
    Une pompe PCP comportant treize étages (cavités) transporte un mélange polyphasique dont les débits sont de 50% eau et 50% air, avec une pression d'aspiration de 0,1 MPa (1 bar) et une pression dans le conduit de refoulement de 4 MPa (40 bars), ce qui revient à un taux de compression du gaz de 40 /1. En raison du fort taux de compression et du fait que le débit de fuite (entre le rotor et stator) est incapable de compenser le volume de gaz comprimé, la pression de refoulement est réalisée sur les quatre derniers étages (cavités), ce qui revient à un fort gain de pression de 1 MPa (10 bars)/étage. Tout le travail de la pompe est réalisé par les quatre derniers étages, les neuf étages restants de la pompe ne contribuant pas à la compression du mélange. Cette forte compression localisée sur les derniers étages est accompagnée d'une forte remontée de la température : la température d'entrée est multipliée par deux.
    La forte température et la concentration des pressions à la sortie de la pompe sont dommageables pour la tenue mécanique de l'ensemble, notamment l'élastomère du stator et le rotor.
    Exemple 2
    Cet essai porte sur un prototype de pompe PCP perfectionnée avec les Régulateurs Hydrauliques (RH), transportant un mélange polyphasique (eau et air).
    La pompe selon la présente invention a un comportement tout à fait différent ; grâce aux régulateurs hydrauliques RH installés dans le rotor, la distribution des pressions est uniformisée et la température, stabilisée. Sur les quatre derniers étages, la densité des régulateurs hydrauliques RH est de deux régulateurs hydrauliques par étage et par conséquent le gain de pression est très faible (environ 0,1 MPa/étage). Sur les neuf étages restants de la pompe, les régulateurs hydrauliques RH sont distribués à raison d'un régulateur RH par étage. Dans ces conditions, la distribution des pressions est uniformisée, ce qui revient à un gain de pression d'environ 0,3 MPa (3 bars)/étage.
    Par conséquent, l'uniformisation de la distribution des pressions au long de la pompe conduit à un faible gain de pression de chaque étage et à la stabilisation des températures au long de la pompe.
    La variation de densité des régulateurs hydrauliques RH contribue au rééquilibrage hydro-thermo-mécanique de la pompe ; tous les étages contribuent à la compression du mélange.
    Exemple 3
    Cet essai porte sur un prototype de pompe PCP traditionnelle transportant un liquide (eau).
    La même pompe PCP transporte de l'eau avec une faible pression à l'entrée (0,1 MPa (1 bar)) et une pression d'environ 0,5 MPa dans le conduit de refoulement. A cause du comportement dynamique du contact entre le rotor et le stator, la pompe développe des pressions très faibles sur les étages 7-11 avec risque de cavitation.
    Par conséquent, l'apparition de la cavitation conduit aux dommages des matériaux, notamment l'élastomère du stator et le métal du rotor.
    Exemple 4
    Cet essai porte sur un prototype de pompe PCP perfectionnée avec les Régulateurs Hydrauliques (RH) transportant un liquide (eau).
    Grâce aux régulateurs hydrauliques RH, la pompe selon la présente invention contrôle la distribution des pressions et, par conséquent, les pressions sont positives et uniformément distribuées, sans risque de cavitation. Du refoulement à 0,5 MPa (5 bars), les pressions varient uniformément jusqu'à la pression d'aspiration 0,1 Mpa (1 bar), sans jamais atteindre localement des faibles pressions de cavitation.

    Claims (11)

    1. Pompe à cavités progressives comportant un rotor hélicoïdal (2) tournant à l'intérieur d'un stator hélicoïdal (3), ledit stator (3) et ledit rotor (2) étant disposés de telle sorte que les cavités (4) formées entre ledit rotor (2) et ledit stator (3) se déplacent de l'aspiration (5) vers le refoulement (6), caractérisée par le fait que des moyens de régulation hydraulique (RH) sont prévus pour assurer une recirculation interne du fluide pompé entre au moins deux desdites cavités (4) dans des conditions capables d'assurer au moins une fonction parmi la distribution des pressions recherchée le long de la pompe, la stabilisation des températures, le contrôle des débits de fuite, et la compensation des volumes de gaz comprimé.
    2. Pompe selon la revendication 1, caractérisée par le fait que les moyens de régulation hydraulique (RH) sont agencés pour assurer une recirculation interne du fluide pompé entre au moins deux cavités (4) adjacentes.
    3. Pompe selon la revendication 1 ou 2, caractérisée par le fait que les moyens de régulation hydraulique (RH) sont agencés pour assurer une recirculation interne du fluide pompé entre au moins deux cavités (4) situées dans la région de la pompe (1) voisine du refoulement (6).
    4. Pompe selon la revendication 1 ou 2, caractérisée par le fait que les moyens de régulation hydraulique (RH) sont agencés pour assurer une recirculation interne du fluide pompé entre toutes les cavités (4) de la pompe(1).
    5. Pompe selon l'une quelconque des revendications 1 à 4, caractérisée par le fait que les moyens de régulation hydraulique (RH) sont au moins en partie accueillis par le rotor (2).
    6. Pompe selon la revendication 5, caractérisée par le fait que les moyens de régulation hydraulique (RH), assurant la recirculation interne du fluide pompé entre deux cavités (4), comportent au moins un canal (8) pratiqué dans le rotor (2) reliant ces deux cavités (4), la régulation hydraulique étant effectuée mécaniquement à l'aide d'un régulateur (9) disposé à l'intérieur dudit canal (8) et/ou par perte de charge.
    7. Pompe selon la revendication 5, caractérisée par le fait que les moyens de régulation hydraulique (RH), assurant la recirculation interne du fluide pompé entre deux cavités (4), comportent au moins un canal périphérique (11) accueilli par le rotor (2) et agencé pour assurer la liaison entre ces deux cavités (4) avec régulation par perte de charge.
    8. Pompe selon l'une quelconque des revendications 1 à 7, caractérisée par le fait que les moyens de régulation hydraulique (RH) sont au moins en partie accueillis par le stator (3).
    9. Pompe selon la revendication 8, caractérisée par le fait que les moyens de régulation hydraulique (RH), assurant la recirculation interne du fluide pompé entre deux cavités (4), comportent au moins un canal hydraulique intérieur (13) accueilli par le stator (3) et agencé pour assurer la liaison entre ces deux cavités (4) avec régulation par perte de charge.
    10. Pompe selon l'une quelconque des revendications 1 à 9, caractérisée par le fait que le contact entre le rotor (2) et le stator (3) est desserré par rapport à une pompe à cavités progressives ne comportant pas les moyens de régulation hydraulique tels que définis à l'une des revendications 1 à 8.
    11. Application de la pompe telle que définie à l'une quelconque des revendications 1 à 10, au pompage de mélanges polyphasiques compressibles et au pompage de fluides visqueux.
    EP05290100.6A 2004-01-30 2005-01-17 Pompe à cavités progressives Active EP1559913B1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR0400927 2004-01-30
    FR0400927A FR2865781B1 (fr) 2004-01-30 2004-01-30 Pompe a cavites progressives

    Publications (2)

    Publication Number Publication Date
    EP1559913A1 true EP1559913A1 (fr) 2005-08-03
    EP1559913B1 EP1559913B1 (fr) 2013-11-06

    Family

    ID=34639817

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP05290100.6A Active EP1559913B1 (fr) 2004-01-30 2005-01-17 Pompe à cavités progressives

    Country Status (6)

    Country Link
    US (1) US7413416B2 (fr)
    EP (1) EP1559913B1 (fr)
    CN (1) CN1654823B (fr)
    BR (1) BRPI0500316B1 (fr)
    CA (1) CA2494444C (fr)
    FR (1) FR2865781B1 (fr)

    Cited By (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2009035337A1 (fr) * 2007-09-11 2009-03-19 Agr Subsea As Pompe à cavité progressive conçue pour pomper des fluides compressibles
    US8388327B2 (en) 2007-09-20 2013-03-05 Agr Subsea As Progressing cavity pump with several pump sections
    US8496456B2 (en) 2008-08-21 2013-07-30 Agr Subsea As Progressive cavity pump including inner and outer rotors and a wheel gear maintaining an interrelated speed ratio
    CN101960145B (zh) * 2007-12-31 2013-09-11 普拉德研究及开发股份有限公司 高温螺杆马达或泵部件以及制造方法
    US8613608B2 (en) 2008-08-21 2013-12-24 Agr Subsea As Progressive cavity pump having an inner rotor, an outer rotor, and transition end piece
    DE102014012887A1 (de) 2013-08-30 2015-03-05 Pcm Schraubenförmiger Rotor, Exzenterschneckenpumpe und Pumpenvorrichtung

    Families Citing this family (18)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US7668415B2 (en) 2004-09-27 2010-02-23 Qualcomm Mems Technologies, Inc. Method and device for providing electronic circuitry on a backplate
    US7793683B2 (en) 2006-10-11 2010-09-14 Weatherford/Lamb, Inc. Active intake pressure control of downhole pump assemblies
    JP2008175199A (ja) * 2006-12-20 2008-07-31 Heishin Engineering & Equipment Co Ltd 一軸偏心ねじポンプ
    US7797142B2 (en) * 2006-12-21 2010-09-14 Caterpillar Inc Simulating cavitation damage
    US9051780B2 (en) * 2007-01-09 2015-06-09 Schlumberger Technology Corporation Progressive cavity hydraulic machine
    US8523545B2 (en) * 2009-12-21 2013-09-03 Baker Hughes Incorporated Stator to housing lock in a progressing cavity pump
    US8083508B2 (en) * 2010-01-15 2011-12-27 Blue Helix, Llc Progressive cavity compressor having check valves on the discharge endplate
    US8974205B2 (en) * 2011-05-06 2015-03-10 NETZSCH-Mohopumpen GmbH Progressing cavity gas pump and progressing cavity gas pumping method
    US9404493B2 (en) 2012-06-04 2016-08-02 Indian Institute Of Technology Madras Progressive cavity pump including a bearing between the rotor and stator
    CN104797780B (zh) 2012-11-20 2018-04-03 哈利伯顿能源服务公司 声信号增强设备、系统和方法
    AU2012394944B2 (en) 2012-11-20 2016-05-12 Halliburton Energy Services, Inc. Dynamic agitation control apparatus, systems, and methods
    CN103883522B (zh) * 2014-03-17 2016-03-02 北京工业大学 一种锥螺杆-衬套副的曲面成形方法
    JP5802914B1 (ja) * 2014-11-14 2015-11-04 兵神装備株式会社 流動体搬送装置
    CN106996764B (zh) * 2016-01-25 2019-05-14 中联重科股份有限公司 螺杆泵的定子与转子尺寸的确定方法、装置和系统
    CN109737070B (zh) * 2019-02-21 2021-02-19 安徽佳先功能助剂股份有限公司 一种硬脂酰苯甲酰甲烷生产用的多腔体输送泵
    WO2020257033A1 (fr) * 2019-06-17 2020-12-24 Nov Process & Flow Technologies Us, Inc. Pompe à cavité progressive ou rotor de moteur
    US11268385B2 (en) 2019-10-07 2022-03-08 Nov Canada Ulc Hybrid core progressive cavity pump
    US11813580B2 (en) 2020-09-02 2023-11-14 Nov Canada Ulc Static mixer suitable for additive manufacturing

    Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR695539A (fr) * 1930-05-13 1930-12-17 Pompe
    FR1361840A (fr) * 1963-07-10 1964-05-22 Pompe à vis sans fin excentrée
    JPH03149377A (ja) * 1989-11-02 1991-06-25 Kyocera Corp 一軸偏心ねじポンプ

    Family Cites Families (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2765114A (en) * 1953-06-15 1956-10-02 Robbins & Myers Cone type compressor
    US4424013A (en) * 1981-01-19 1984-01-03 Bauman Richard H Energized-fluid machine
    RU1772423C (ru) * 1990-11-29 1992-10-30 Институт проблем надежности и долговечности машин АН БССР Одновинтовой насос
    FR2743113B1 (fr) * 1995-12-28 1998-01-23 Inst Francais Du Petrole Dispositif de pompage ou de compression d'un fluide polyphasique a aubage en tandem
    US5722820A (en) * 1996-05-28 1998-03-03 Robbins & Myers, Inc. Progressing cavity pump having less compressive fit near the discharge
    FR2775028B1 (fr) * 1998-02-18 2000-04-21 Christian Bratu Cellule de pompage d'un effluent polyphasique et pompe comportant au moins une de ces cellules
    US6241494B1 (en) * 1998-09-18 2001-06-05 Schlumberger Technology Company Non-elastomeric stator and downhole drilling motors incorporating same
    US6457958B1 (en) * 2001-03-27 2002-10-01 Weatherford/Lamb, Inc. Self compensating adjustable fit progressing cavity pump for oil-well applications with varying temperatures

    Patent Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR695539A (fr) * 1930-05-13 1930-12-17 Pompe
    FR1361840A (fr) * 1963-07-10 1964-05-22 Pompe à vis sans fin excentrée
    JPH03149377A (ja) * 1989-11-02 1991-06-25 Kyocera Corp 一軸偏心ねじポンプ

    Non-Patent Citations (2)

    * Cited by examiner, † Cited by third party
    Title
    DATABASE WPI Section PQ Week 199345, Derwent World Patents Index; Class Q56, AN 1993-358797, XP002295333 *
    PATENT ABSTRACTS OF JAPAN vol. 015, no. 374 (M - 1160) 20 September 1991 (1991-09-20) *

    Cited By (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2009035337A1 (fr) * 2007-09-11 2009-03-19 Agr Subsea As Pompe à cavité progressive conçue pour pomper des fluides compressibles
    US8556603B2 (en) 2007-09-11 2013-10-15 Agr Subsea As Progressing cavity pump adapted for pumping of compressible fluids
    US8388327B2 (en) 2007-09-20 2013-03-05 Agr Subsea As Progressing cavity pump with several pump sections
    CN101960145B (zh) * 2007-12-31 2013-09-11 普拉德研究及开发股份有限公司 高温螺杆马达或泵部件以及制造方法
    US8496456B2 (en) 2008-08-21 2013-07-30 Agr Subsea As Progressive cavity pump including inner and outer rotors and a wheel gear maintaining an interrelated speed ratio
    US8613608B2 (en) 2008-08-21 2013-12-24 Agr Subsea As Progressive cavity pump having an inner rotor, an outer rotor, and transition end piece
    DE102014012887A1 (de) 2013-08-30 2015-03-05 Pcm Schraubenförmiger Rotor, Exzenterschneckenpumpe und Pumpenvorrichtung
    FR3010153A1 (fr) * 2013-08-30 2015-03-06 Pcm Rotor helicoidal, pompe a cavites progressives et dispositif de pompage
    US9631619B2 (en) 2013-08-30 2017-04-25 Pcm Technologies Helical rotor of a progressing cavity pump

    Also Published As

    Publication number Publication date
    FR2865781B1 (fr) 2006-06-09
    CN1654823B (zh) 2011-08-17
    CA2494444C (fr) 2012-02-21
    US7413416B2 (en) 2008-08-19
    EP1559913B1 (fr) 2013-11-06
    FR2865781A1 (fr) 2005-08-05
    BRPI0500316B1 (pt) 2018-03-06
    CN1654823A (zh) 2005-08-17
    US20050169779A1 (en) 2005-08-04
    BRPI0500316A (pt) 2005-09-20
    CA2494444A1 (fr) 2005-07-30

    Similar Documents

    Publication Publication Date Title
    CA2494444C (fr) Pompe a cavites progressives
    FR2794498A1 (fr) Pompe a cavites progressantes a stator composite et son procede de fabrication
    CA2204664C (fr) Systeme de pompage polyphasique et centrifuge
    FR2908844A1 (fr) Pompe a palettes a deplacement variable
    EP2946137A1 (fr) Dispositif pour le stockage et la restitution de fluides sous une pression élevée quasi constante
    FR3031786A1 (fr) Integration d&#39;une pompe en fut de pignon
    EP3132123B1 (fr) Pompe à engrenages à carburant, prévue notamment comme pompe à haute pression
    CA2874377C (fr) Pompe a cavites progressives
    FR2771024A1 (fr) Dispositif et procede de compression diphasique d&#39;un gaz soluble dans un solvant
    EP3698044B1 (fr) Pompe a barillet rotatif avec moyens de guidage et de centrage du barillet distincts
    EP1267077B1 (fr) Pompe volumétrique à double engrenage
    EP2334906B1 (fr) Machine rotative a losange deformable multifonctions
    CA2239073A1 (fr) Systeme de pompage volumetrique alternatif hydraulique
    CA2585300C (fr) Pompe mixte
    EP0069604A1 (fr) Perfectionnements aux pompes ou moteurs hydrauliques à engrenages hélicoidaux (turbines à vis)
    FR3064314B1 (fr) Pompe a double plateau et double barillet
    FR2697870A1 (fr) Pompe axiale à faible débit.
    WO2019076671A1 (fr) Pompe a barillet rotatif avec double plateaux
    FR2906849A3 (fr) Pompe a palette
    CA2903129A1 (fr) Piston pompe-moteur

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL BA HR LV MK YU

    111L Licence recorded

    Free format text: 0100 PCM POMPES

    Effective date: 20051028

    17P Request for examination filed

    Effective date: 20051114

    AKX Designation fees paid

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

    17Q First examination report despatched

    Effective date: 20070924

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R079

    Ref document number: 602005041738

    Country of ref document: DE

    Free format text: PREVIOUS MAIN CLASS: F04C0013000000

    Ipc: F04C0002107000

    RIC1 Information provided on ipc code assigned before grant

    Ipc: F04C 2/08 20060101ALI20130114BHEP

    Ipc: F04C 2/107 20060101AFI20130114BHEP

    Ipc: F04C 13/00 20060101ALI20130114BHEP

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    INTG Intention to grant announced

    Effective date: 20130412

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    111L Licence recorded

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR

    Free format text: EXCLUSIVE LICENSE

    Name of requester: PCM POMPES, FR

    Effective date: 20051028

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PK

    Free format text: COMPLETEMENT D'ENREGISTREMENT DE LICENCE: LICENCE EXCLUSIVE

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: REF

    Ref document number: 639685

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20131215

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R096

    Ref document number: 602005041738

    Country of ref document: DE

    Effective date: 20140102

    REG Reference to a national code

    Ref country code: RO

    Ref legal event code: EPE

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: VDEP

    Effective date: 20131106

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MK05

    Ref document number: 639685

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20131106

    REG Reference to a national code

    Ref country code: LT

    Ref legal event code: MG4D

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20131106

    Ref country code: IS

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20140306

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20131106

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20131106

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20131106

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20131106

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20131106

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20140306

    BERE Be: lapsed

    Owner name: BRATU, CHRISTIAN

    Effective date: 20140131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: EE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20131106

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R097

    Ref document number: 602005041738

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20131106

    Ref country code: SK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20131106

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20140117

    Ref country code: CZ

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20131106

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20131106

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20131106

    26N No opposition filed

    Effective date: 20140807

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140131

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140131

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MM4A

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R097

    Ref document number: 602005041738

    Country of ref document: DE

    Effective date: 20140807

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140131

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140117

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20131106

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 12

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BG

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20131106

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20140207

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20131106

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: HU

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

    Effective date: 20050117

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    Owner name: PCM TECHNOLOGIES, FR

    Effective date: 20161014

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20170116

    Year of fee payment: 13

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: RO

    Payment date: 20181227

    Year of fee payment: 15

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20180117

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: TR

    Payment date: 20190108

    Year of fee payment: 15

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 602005041738

    Country of ref document: DE

    Owner name: PCM TECHNOLOGIES, FR

    Free format text: FORMER OWNER: BRATU, CHRISTIAN, SAINT-NOM-LA-BRETECHE, FR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: RO

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20200117

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20200117

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20231116

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20240115

    Year of fee payment: 20

    Ref country code: GB

    Payment date: 20240119

    Year of fee payment: 20