EP0066492B1 - Procédé de fabrication d'un tube de coulée - Google Patents

Procédé de fabrication d'un tube de coulée Download PDF

Info

Publication number
EP0066492B1
EP0066492B1 EP82400890A EP82400890A EP0066492B1 EP 0066492 B1 EP0066492 B1 EP 0066492B1 EP 82400890 A EP82400890 A EP 82400890A EP 82400890 A EP82400890 A EP 82400890A EP 0066492 B1 EP0066492 B1 EP 0066492B1
Authority
EP
European Patent Office
Prior art keywords
tube
binder
solution
vessel
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82400890A
Other languages
German (de)
English (en)
Other versions
EP0066492A1 (fr
Inventor
Jean-Charles Daussan
Gérard Daussan
André Daussan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daussan SAS
Original Assignee
Daussan SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9258932&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0066492(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Daussan SAS filed Critical Daussan SAS
Priority to AT82400890T priority Critical patent/ATE14850T1/de
Publication of EP0066492A1 publication Critical patent/EP0066492A1/fr
Application granted granted Critical
Publication of EP0066492B1 publication Critical patent/EP0066492B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/52Manufacturing or repairing thereof
    • B22D41/54Manufacturing or repairing thereof characterised by the materials used therefor

Definitions

  • the present invention relates to a method for manufacturing a pouring tube intended to be placed under the pouring orifice of a metallurgical vessel, (such as a ladle) and to be immersed in the bath of molten metal which is poured into a second metallurgical container (such as a flow distributor placed under the aforementioned ladle).
  • a metallurgical vessel such as a ladle
  • a second metallurgical container such as a flow distributor placed under the aforementioned ladle
  • a pouring tube made of thermally insulating material and of low density constituted by a mixture of refractory particles such as silica, alumina or magnesia and mineral fibers such as glass wool or rock wool or organic fibers, coated in an organic binder (for example phenolic resin) or inorganic (refractory cement or silicate).
  • refractory particles such as silica, alumina or magnesia and mineral fibers such as glass wool or rock wool or organic fibers
  • an organic binder for example phenolic resin
  • the latter is formed around a perforated sleeve, from a pasty and aqueous mixture comprising the aforementioned constituents and the excess water contained in this mixture is sucked out from inside the perforated sleeve. cited above.
  • the tube reinforced externally by a metal frame is then carried in an oven to evaporate the residual water and harden the binder.
  • the tube When in use, the tube is engaged in a substantially leaktight manner around the pouring nozzle of the upper container (ladle).
  • Such a tube has excellent thermal insulation power and therefore prevents the cooling of the liquid metal which is poured from the ladle into the tundish.
  • such tubes resist the temperature of the liquid metal (steel or liquid iron) which is poured inside this tube.
  • This resistance is explained by the sintering of the inorganic particles which this tube contains and which makes it possible to ensure the cohesion of the latter after decomposition or disintegration of the binder. Without this sintering, the tube would fall to dust after decomposition of the organic binder or disintegration of the inorganic binder.
  • the lower part of the pouring tube which plunges into the molten metal bath contained in the lower container tends to wear out quickly by melting and / or chemical attack by the products which cover the surface of the molten metal. cited above.
  • the object of the present invention is to remedy this drawback by creating a pouring tube which is simple to manufacture and has excellent mechanical and thermal resistance, although being free of refractory rings at its ends.
  • the process targeted by the invention for manufacturing a pouring tube comprises the steps consisting in forming the tube around a perforated sleeve from a pasty and aqueous mixture of refractory particles, fibers and an organic binder and / or inorganic, to suction the excess water from the mixture inside the perforated sleeve, then to carry the tube in an oven to evaporate the residual water and harden the mixture.
  • this process is characterized in that after or during the water suction step, the end of the tube intended to be placed near the pouring orifice of the first is made to penetrate metallurgical container and / or in the end of the tube intended to immerse in the molten metal poured into the second container, an aqueous solution of a binder having, after hardening, refractory properties superior to those of the basic organic and / or inorganic binder which is contained in the entire tube.
  • a proportion of water equal to about 30 to 40% by weight of the mixture is extracted from the pasty and aqueous mixture. Therefore, matter has the property of being able to re-absorb water. This is what allows the aqueous binder solution to penetrate inside the material at the ends of the tube.
  • the water from this binder as well as the residual water contained in the whole of the tube is evaporated and this hardened binder as well as the basic organic and / or inorganic binder which is contained in the whole. of the tube.
  • the binder introduced into the ends of the tube has, after hardening, refractory properties greater than that of the base binder, the thermal and mechanical resistance of the end of the tube adjacent to the pouring orifice which is not subjected to is improved. sintering indicated above, as well as that of the end of the tube which plunges into the liquid metal which is poured the lower container.
  • the aqueous binder solution having refractory properties is made to penetrate into the upper end of the tube, so that this binder permeates an area of this end over a height at least equal to the following height which the tube is intended to be engaged around the pouring nozzle of the first container.
  • This area is therefore made refractory, which allows it to be very resistant despite the absence of sintering in this area.
  • the aqueous binder solution having refractory properties is made to penetrate into the lower end of the tube so that this binder permeates an area of this end over a height at least equal to the following depth which the tube is intended to be immersed in the liquid metal contained in the second container.
  • this part of the tube is not likely to be damaged in contact with the liquid metal and aggressive products which cover the surface of the latter.
  • a binder having the desired refractory properties it is possible to use a phosphatic compound, boric acid, ethyl silicate and alkali silicates.
  • This binder can be penetrated into either end of the tube, by gravity, by dipping or by pressure injection.
  • the installation for manufacturing a pouring tube comprises a frustoconical sleeve 1 perforated laterally and mounted in rotation about a horizontal axis XX 'and comprised between two rollers 2, 3 also frustoconical mounted in rotation around two axes YY 'and Z-Z'- parallel to the axis X-X'.
  • a frustoconical cost tube 4 is formed, from a pasty and aqueous mixture of refractory particles (silica, alumina, magnesia, etc.) and mineral or organic fibers, coated in an organic or inorganic binder.
  • This mixture is added before use of about 40 to 50% of water to obtain an easily formable slurry or paste between the rollers 2, 3 and the perforated sleeve 1.
  • the rollers 2, 3 and the perforated sleeve 1 During the rotation of the latter, one sucks inside from the perforated sleeve 1 through the central pipe 5, the excess water contained in the pasty material of the tube 45. About 30 to 40% of water is thus extracted from this material.
  • the frustoconical tube 4 After this operation, the frustoconical tube 4, partially dry, is externally surrounded by a rigid frame constituted for example by a sheet metal sleeve 6, as indicated in FIG. 2.
  • a rigid frame constituted for example by a sheet metal sleeve 6, as indicated in FIG. 2.
  • the angle of the frustoconical surface of the metal sleeve 6 is 0.1 to 10 ° greater than the angle of the frustoconical surface of the tube 4. This considerably facilitates the engagement of the tube 4 in the sleeve 6, while eliminating any risk of cracks.
  • the end 4a of the tube 4 which is intended is made to penetrate.
  • an aqueous solution 7 of a binder having, after hardening, refractory properties superior to those of the basic organic or inorganic binder which is contained in the assembly of the tube 4.
  • the refractory binder solution 7 is made to penetrate by gravity into the upper end 4a of the tube 4 arranged vertically, by means of a container 8 in the form of a crown, open towards the top in which the pierced bottom 8a is applied to the upper edge of the end of the tube 4.
  • the refractory binder 7 in aqueous solution can be a phosphoric compound, boric acid, ethyl silicate, a silica sol or alkaline silicates.
  • the tube 4 is made from acidic refractory particles, such as silica
  • a solution containing 20 to 50% is preferably used (preferably this 40%) by weight of pure aluminum monophosphate, therefore acid.
  • an aqueous solution preferably comprising 20 to 50% by weight of aluminum monophosphate, neutralized by an alkaline oxide, is used.
  • the aqueous solution of refractory binder 7 penetrates by gravity into the end 4a of the tube 4. This penetration is possible because the material of the tube 4 has lost 30 to 40% of its weight of water during the aspiration step, so that this material is thus able to re-absorb an almost equivalent amount of water.
  • the speed of penetration of the refractory binder solution 7 into the end of the tube depends on its viscosity which is itself a function of the concentration of the solution.
  • the solution 7 contains more than approximately 50% of aluminum monophosphate, this solution is too viscous, so that it penetrates too slowly and to an insufficient depth from the end 4a of the tube.
  • the refractory particles of the tube located in the area where they are exposed directly to the heat given off by the jet of metal passing through the tube, sintering, which makes it possible to maintain the mechanical cohesion of the tube beyond the decomposition or disintegration temperature of the base binder.
  • this sintering does not take place in the hatched zone of FIG. 4 which is protected from heat by the pouring nozzle 9.
  • the cohesion of this zone is ensured thanks to the binder which is introduced therein by means of solution 7.
  • This binder by hardening gives this zone refractory properties clearly superior to those of the material located under the latter.
  • this zone exhibits remarkable thermal and mechanical behavior.
  • the seal between the nozzle 9 and the end 4a of the tube 4 remains excellent, even after numerous successive clearances and engagements of the tube with respect to the nozzle 9. The life of the tube 4 is therefore considerably prolonged. .
  • the refractory binder solution 7 can also be introduced by gravity into the end 4a of a tube 4, arranged horizontally, as shown in FIG. 3.
  • the container 10 in the shape of a crown has a perforated side wall 1 Oa which is applied against the edge of the end 4a of the tube.
  • This container 10 is supplied with solution 7 by a vertical funnel 11.
  • this solution 7 is penetrated by dipping the end 4b of the tube 4 in a container containing this solution 7.
  • FIGS. 2 and 3 can, of course, also be applied for the impregnation of the lower end 4b of the tube 4.
  • the tramping method illustrated in FIG. 5 may also be suitable. for impregnating the upper end 4a.
  • the refractory binder solution 7 it is necessary for the refractory binder solution 7 to penetrate into the end 4b of the tube, over a height h i (see hatched part of FIG. 6), at least equal to the depth at which this end 4b of the tube is intended to immerse in the liquid metal which is contained in the lower container.
  • the refractory binder solution 7 can also be made to penetrate into the end 4a of the tube 4, by means of a frustoconical container 12 fitted into the tube 4 and comprising a perforated side wall 13 which allows the solution 7 to pass through. .
  • the solution 7 can also be injected under pressure into the end 4a or 4b of the tube 4.
  • the outer sheet 14of the latter comprises in the vicinity of the upper end 4a an annular bead 15 making it possible to form around the thermally insulating wall of the tube an annular space communicating with a lateral tube 16, through which the solution of refractory binder 7 can be injected under pressure, during the aspiration step.
  • Pressure injection makes it possible to use binder solutions which are more viscous than the previous ones, and therefore more concentrated, which makes it possible to improve the refractory power of the ends 4a and 4b of the tube 4.
  • the aforementioned bead and a portion of the injection tube may serve as a neutral gas injector when using the tube in a steelworks.
  • the refractory binder is distributed throughout the tube. In this case, it is possible to add the refractory binder at the start directly into the initial mixture. This solution is perfectly suited for use as a refractory binder, ethyl silicate, silica soils and boric acid.
  • ethyl silicate can be added to the initial mixture in alcoholic solution containing 28 to 40% by weight of Si0 2 .
  • the silica soils can be used in aqueous dispersion at 30 to 40% by weight of Si0 2 .
  • the binder is added to the mixture to obtain a final concentration of Si0 2 in the tube of between 0.1 to 10%.
  • the preferred concentration of the latter in the tube is preferably between 0.1 and 13% by weight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Products (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Rear-View Mirror Devices That Are Mounted On The Exterior Of The Vehicle (AREA)
  • Glass Compositions (AREA)
  • Forging (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Powder Metallurgy (AREA)

Description

  • La présente invention concerne un procédé pour la fabrication d'un tube de coulée destiné à être placé sous l'orifice de coulée d'un récipient métallurgique, (tel qu'une poche de coulée) et à plonger dans le bain de métal en fusion qui est coulé dans un second récipient métallurgique (tel qu'un répartiteur de coulée placé sous la poche de coulée précitée).
  • Dans son brevet français n° 2 333 599, la Demanderesse a décrit un tube de coulée en matière thermiquement isolante et de faible densité constituée par un mélange de particules réfractaires telles que silice, alumine ou magnésie et de fibres minérales telles que laine de verre ou laine de roche ou de fibres organiques, enrobées dans un liant organique (par exemple résine phénolique) ou inorganique (ciment réfractaire ou silicate).
  • Pour fabriquer un tel tube, on forme ce dernier autour d'un manchon perforé, à partir d'un mélange pâteux et aqueux comprenant les constituants précités et on aspire l'excès d'eau contenue dans ce mélange par l'intérieur du manchon perforé précité. Le tube renforcé extérieurement par une armature métallique est ensuite porté dans une étuve pour évaporer l'eau résiduelle et durcir le liant.
  • Lors de son utilisation, le tube est engagé de façon sensiblement étanche autour de la busette de coulée du récipient supérieur (poche de coulée).
  • Un tel tube présente un excellent pouvoir d'isolation thermique et évite de ce fait, le refroidissement du métal liquide qui est coulé de la poche de coulée dans le répartiteur de coulée.
  • De plus, de tels tubes résistent à la température du métal liquide (acier ou fonte liquide) qui est coulé à l'intérieur de ce tube. Cette résistance s'explique par le frittage des particules inorganiques que renferme ce tube et qui permetd'assurer la cohésion de celui-ci après décomposition ou désagrégation du liant. Sans ce frittage, le tube tomberait en poussière après décomposition du liant organique ou désagrégation du liant inorganique.
  • La Demanderesse a constaté toutefois que ce frittage n'avait pas lieu à l'extrémité du tube qui est adjacente à l'orifice de coulée de récipient métallurgique supérieur. En effet, à cette extrémité, la face interne du tube est protégée par la busette de coulée qui empêche ainsi que cette extrémité du tube soit portée à une température suffisante pour permettre le frittage. En conséquence, cette extrémité du tube s'effritte rapidement sous l'effet des chocs mécaniques et de l'abrasion qu'elle subit lors des engagements et dégagements successifs du tube par rapport à la busette de coulée.
  • De même, la partie inférieure du tube de coulée qui plonge dans le bain de métal en fusion contenu dans le récipient inférieur, a tendance à s'user rapidement par fusion et/ou attaque chimique par les produits qui recouvrent la surface du métal en fusion précité.
  • Pour remédier à cet inconvénient, la Demanderesse a proposé de protéger les extrémités supérieure et inférieure des tubes de coulée par des anneaux en matière réfractaire. Ces derniers permettent ainsi de prolonger considérablement la durée de vie des tubes de coulée.
  • Cependant, la fixation de ces anneaux aux tubes présente quelque difficulté. De plus, ces anneaux alourdissent les tubes, ce qui rend leur manipulation moins aisée.
  • Le but de la présente invention est de remédier à cet inconvénient en créant un tube de coulée qui soit de fabrication simple et présente une excellente tenue mécanique et thermique, bien qu'étant dépourvu d'anneaux réfractaires à ses extrémités.
  • Le procédé visé par l'invention pour fabriquer un tube de coulée, comprend les étapes consistant à former le tube autour d'un manchon perforé à partir d'un mélange pâteux et aqueux de particules réfractaires, de fibres et d'un liant organique et/ou inorganique, à aspirer l'excès d'eau du mélange à l'intérieur du manchon perforé, puis à porter le tube dans une étuve pour évaporer l'eau résiduelle et durcir le mélange.
  • Suivant l'invention, ce procédé est caractérisé en ce qu'après ou pendant l'étape d'aspiration de l'eau, on fait pénétrer dans l'extrémité du tube destinée à être disposée à proximité de l'orifice de coulée du premier récipient métallurgique et/ou dans l'extrémité du tube destinée à plonger dans le métal en fusion coulé dans le second récipient, une solution aqueuse d'un liant présentant après durcissement des propriétés réfractaires supérieures à celles du liant organique et/ou inorganique de base qui est contenu dans l'ensemble du tube.
  • Lors de l'étape d'aspiration, on extrait du mélange pâteux et aqueux, une proportion d'eau égale à environ 30 à 40% en poids du mélange. De ce fait, la matière présente la propriété de pouvoir ré-absorber de l'eau. C'est ce qui permet à la solution aqueuse de liant de pénétrer à l'intérieur de la matière au niveau des extrémités du tube.
  • Après passage à l'étuve, l'eau de ce liant ainsi que l'eau résiduelle contenue dans l'ensemble du tube est évaporée et ce liant durci ainsi que le liant organique et/ou inorganique de base qui est contenu dans l'ensemble du tube.
  • Du fait que le liant introduit dans les extrémités du tube présente après durcissement des propriétés réfractaires supérieures à celui du liant de base, on améliore la résistance thermique et mécanique de l'extrémité du tube adjacente à l'orifice de coulée qui ne subit pas le frittage signalé plus haut, ainsi que celle de l'extrémité du tube qui plonge dans le métal liquide qui est coulé le récipient inférieur.
  • On prolonge de ce fait la durée de vie des tubes d'une manière comparable au cas où ces tubes portent des anneaux réfractaires à leurs extrémités, en évitant toutefois les inconvénients résultant de l'utilisation de tels anneaux.
  • Selon une version avantageuse de l'invention, on fait pénétrer la solution aqueuse de liant présentant des propriétés réfractaires dans l'extrémité supérieure du tube, de façon que ce liant imprègne une zone de cette extrémité sur une hauteur au moins égale à la hauteur suivant laquelle le tube est destiné à être engagé autour de la busette de coulée du premier récipient.
  • Cette zone est par conséquent rendue réfractaire, ce qui lui permet d'être très résistante malgré l'absence de frittage dans cette zone.
  • Selon une autre version avantageuse de l'invention, on fait pénétrer la solution aqueuse de liant présentant des propriétés réfractaires dans l'extrémité inférieure du tube de façon que ce liant imprègne une zone de cette extrémité sur une hauteur au moins égale à la profondeur suivant laquelle le tube est destiné à être immergé dans le métal liquide contenu dans le second récipient.
  • Ainsi, cette partie du tube ne risque pas d'être détériorée au contact du métal liquide et des produits agressifs qui recouvrent la surface de ce dernier. En tant que liant présentant les propriétés réfractaires recherchées, on peut utiliser un composé phosphatique, l'acide borique, le silicate d'éthyle et les silicates alcalins.
  • Les meilleurs résultats sont toutefois obtenus en utilisant du monophosphate d'aluminium.
  • On peut faire pénétrer ce liant dans l'une ou l'autre des extrémités du tube, par gravité, par trempage ou par injection sous pression.
  • D'autres particularités et avantages de l'invention apparaîtront encore dans la description ci-après. Aux dessins annexés, donnés à titre d'exemple non limitatifs:
    • . la figure 1 est une vue schématique en élévation et en coupe longitudinale partielle d'une installation de fabrication d'un tube de coulée;
    • . la figure 2 est une vue en coupe longitudinale d'un tube de coulée vertical muni d'un récipient permettant la pénétration par gravité d'un liant réfractaire dans l'extrémité supérieure du tube;
    • . la figure 3 est une vue en coupe longitudinale d'un tube horizontal muni d'un récipient permettant la pénétration par gravité d'un liant réfractaire à l'une des extrémités du tube;
    • . la figure 4 est une vue en coupe partielle à échelle agrandie d'un tube obtenu conformément à l'invention, engagé autour d'une busette de coulée, d'une matière étanche ou non;
    • . la figure 5 est une vue en coupe partielle d'un tube dont l'extrémité inférieure trempe dans une solution de liant réfractaire;
    • . la figure 6 est une vue en coupe partielle et à plus grande échelle, de l'extrémité inférieure d'un tube de coulée, conforme à l'invention;
    • . la figure 7 est une vue en coupe longitudinale partielle de l'extrémité supérieure d'un tube de coulée, illustrant un autre mode d'introduction d'un liant réfractaire dans cette extrémité du tube;
    • . la figure 8 est une vue en coupe longitudinale partielle de l'extrémité supérieure d'un tube de coulée, illustrant des moyens pour injecter sous pression un liant réfractaire dans cette extrémité du tube.
  • Dans la réalisation de la figure 1, l'installation pour la fabrication d'un tube de coulée comprend un manchon tronconique 1 perforé latéralement et monté en rotation autour d'un axe horizontal X-X' et compris entre deux rouleaux 2, 3 également tronconiques montés en rotation autour de deux axes Y-Y' et Z-Z'- parallèles à l'axe X-X'.
  • Dans l'espace compris entre le manchon perforé 1 et les rouleaux 2, 3, on forme un tube de coûtée tronconique 4, à partir d'un mélange pâteux et aqueux de particules réfractaires (silice, alumine, magnésie, etc.) et de fibres minérales ou organiques, enrobées dans un liant organique ou inorganique.
  • La composition de ce mélange à l'état sec est par exemple la suivante:
    • particules inorganiques réfractaires
    • (silice et/ou alumine et/ou magnésie
    • et/ou dolomie): 70 à 90% en poids;
    • composés organiques en grains ou en
    • fibres synthétiques et/ou naturels
    • (par exemple fibres de cellulose): 0 à 20% en poids;
    • fibres minérales (par exemple fibres
    • de verre, de roche, de scories
    • ou d'amiante): 0 à 20% en poids;
    • liant organique: par exemple de la
    • colle ou une résine phénol
    • formaldéhyde: 2 à 10% en poids;
    • fondants (par exemple oxyde
    • de métaux alcalins ou
    • alcalino-terreux): 0 à 10% en poids.
  • Ce mélange est additionné avant emploi d'environ 40 à 50% d'eau pour obtenir une boue ou pâte facilement formable entre les rouleaux 2, 3 et le manchon perforé 1. Lors de la rotation de ces derniers, on aspire à l'intérieur du manchon perforé 1 par le tuyau central 5, l'excès d'eau contenue dans la matière pâteuse du tube 45. On extrait ainsi environ 30 à 40% d'eau de cette matière.
  • Après cette opération, on entoure extérieurement le tube tronconique 4, partiellement sec, par une armature rigide constituée par exemple par un manchon en tôle métallique 6, comme indiqué sur la figure 2. De préférence, l'angle de la surface tronconique du manchon métallique 6 est supérieur de 0,1 à 10° de l'angle de la surface tronconique du tube 4. On facilite ainsi considérablement l'engagement du tube 4 dans le manchon 6, tout en supprimant tout risque de fissures.
  • Conformément à l'invention, après ou pendant l'étape d'aspiration précitée et avant de porter le tube 4 protégé extérieurement par la tôle métallique 6, à l'étuve, on fait pénétrer dans l'extrémité 4a du tube 4 qui est destinée a être placée sous l'orifice de coulée d'un récipient métallurgique, une solution aqueuse 7 d'un liant présentant après durcissement des propriétés réfractaires supérieures à celles du liant organique ou inorganique de base qui est contenu dans l'ensemble du tube 4.
  • Dans l'exemple de la réalisation selon la figure 2, on fait pénétrer la solution de liant réfractaire 7 par gravité dans l'extrémité supérieure 4a du tube 4 disposé verticalement, au moyen d'un récipient 8 en forme de couronne, ouvert vers le haut en dont le fond percé 8a est appliqué sur la tranche supérieure de l'extrémité du tube 4.
  • Le liant réfractaire 7 en solution aqueuse peut être un composé phosphorique, de l'acide borique, du silicate d'éthyle, un sol de silice ou des silicates alcalins.
  • Les meilleurs résultats ont été obtenus, en utilisant du monophosphate d'aluminium.
  • Lorsque le tube 4 est fabriqué à partir de particules réfractaires acides, telles la silice, on utilise de préférence une solution contenant 20 à 50% (de préférence 40%) en poids de monophosphate d'aluminium pur, donc acide.
  • Lorsque le tube est fabriqué à partir de particules réfractaires basiques, telles que la magnésie, on utilise de préférence une solution aqueuse comprenant 20 à 50% en poids de monophosphate d'aluminium, neutralisé par un oxyde alcalin.
  • Dans le cas de la réalisation selon la figure 2, la solution aqueuse de liant réfractaire 7 pénètre par gravité dans l'extrémité 4a du tube 4. Cette pénétration est possible du fait que la matière du tube 4 a perdu 30 à 40% de son poids d'eau lors de l'étape d'aspiration, de sorte que cette matière est ainsi apte à ré-absorber une quantité presque équivalente d'eau.
  • La vitesse de pénétration de la solution de liant réfractaire 7 dans l'extrémité du tube dépend de sa viscosité qui est elle-même fonction de la concentration de la solution.
  • Dans le cas d'une solution contenant moins de 20% environ de monophosphate d'aluminium, la pénétration de la solution est rapide. Toutefois, lorsque l'extrémité 4a du tube est saturée en eau (après avoir absorbé 30 à 40% d'eau) la concentration en monophosphate est insuffisante à l'égard des propriétés réfractaires recherchées.
  • Par ailleurs, lorsque la solution 7 renferme plus de 50% environ de monophosphate d'aluminium, cette solution est trop visqueuse, de sorte qu'elle pénètre trop lentement et sur une profondeur insuffisante de l'extrémité 4a du tube.
  • Les meilleurs résultats sont obtenus en utilisant une solution à 40% en poids de monophosphate d'aluminium pur ou neutralisé. Dans ces conditions, la solution 7 pénètre dans l'extrémité 4a du tube sur une profondeur p (voir figure 4) au moins égale à la hauteur h suivant laquelle l'extrémité 4a du tube 4 est destinée à être engagée sur la busette de coulée 9 du premier récipient.
  • On obtient ainsi dans la zone hachurée, représentée sur la figure 4 de l'extrémité 4a du tube 4, une concentration moyenne de monophosphate d'aluminium comprise entre 5 et 10% en poids environ. Après étuvage du tube 4, l'eau contenue dans ce dernier est éliminée par évaporation et le liant de base contenu dans l'ensemble du tube ainsi que le liant introduit par la solution 7 durcissent.
  • Lors de l'utilisation du tube 4 fabriqué conformément à l'invention, les particules réfractaires du tube situées dans la zone où elles sont exposées directement à la chaleur degagée par le jet du métal passant dans le tube, frittent, ce qui permet de maintenir la cohésion mécanique du tube au-delà de la température décomposition ou de désagrégation du liant de base.
  • Par contre, ce frittage n'a pas lieu dans la zone hachurée de la figure 4 qui est protégée de la chaleur par la busette de coulée 9. Cependant, la cohésion de cette zone est assurée grâce au liant qui y est introduit au moyen de la solution 7. Ce liant en durcissant confère à cette zone des propriétés réfractaires nettement supérieures à celles de la matière située sous cette dernière. Ainsi, cette zone présente une tenue thermique et mécanique remarquable. De ce fait l'étanchéité entre la busette 9 et l'extrémité 4a du tube 4, reste excellente, même après de nombreux dégagements et engagements successifs du tube par rapport à la busette 9. La durée de vie du tube 4 est donc nettement prolongée.
  • La solution de liant réfractaire 7 peut également être introduite par gravité dans l'extrémité 4a d'un tube 4, disposé horizontalement, comme montré sur la figure 3. Sur cette figure, le récipient 10 en forme de couronne comporte une paroi latérale perforée 1 Oa qui est appliquée contre la tranche de l'extrémité 4a du tube. Ce récipient 10 est alimenté en solution 7 par un entonnoir vertical 11.
  • Il est également intéressant de pouvoir améliorer la tenue thermique et mécanique de l'extrémité inférieure 4b du tube de coulée 4, qui est destinée à plonger dans le métal liquide qui est coulé dans le récipient inférieur. Ce résultat peur être obtenu comme précédemment, en faisant pénétrer dans cette extrémité 4b du tube 4 une solution de liant réfractaire 7, après l'étape d'aspiration du procédé de fabrication de ce tube.
  • Dans l'exemple de la figure 5, la pénétration de cette solution 7 est réalisée par trempage de l'extrémité 4b du tube 4 dans un récipient renfermant cette solution 7.
  • Les méthodes de pénétration par gravité illustrées par les figures 2 et 3 peuvent, bien entendu, également être appliquées pour l'imprégnation de lextré- mité inférieure 4b du tube 4. Bien entendu, la méthode de trampage illustrée par la figure 5 peut aussi convenir pour l'imprégnation de l'extrémité supérieure 4a.
  • Quelle que soit la méthode employée, il est nécessaire que la solution de liant réfractaire 7 pénètre dans l'extrémité 4b du tube, sur une hauteur hi (voir partie hachurée de la figure 6), au moins égale à la profondeur suivant laquelle cette extrémité 4b du tube est destinée à plonger dans le métal liquide qui est contenu dans le récipient inférieur.
  • Cette imprégnation de liant réfractaire confère à cette extrémité 4b du tube 4, des propriétés mécaniques et thermiques suffisantes pour lui permettre de résister au contact du métal liquide et des produits agressifs qui recouvrent la surface de ce métal.
  • Bien entendu, l'invention n'est pas limitée aux exemples que l'on vient de décrire, et on peut apporter à ceux-ci de nombreuses modifications.
  • Ainsi, on peut encore faire pénétrer la solution de liant réfractaire 7 dans l'extrémité 4a du tube 4, au moyen d'un récipient tronconique 12 emboîté dans la tube 4 et comportant une paroi latérale ajourée 13 qui permet le passage de la solution 7.
  • Par ailleurs, la solution 7 peut encore être injectée sous pression dans l'extrémité 4a ou 4b du tube 4. Ainsi, dans le cas du tube de la figure 8, la tôle extérieure 14de ce dernier comporte au voisinage de l'extrémité supérieure 4a un bourrelet annulaire 15 permettant de réaliser autour de la paroi thermiquement isolante du tube un espace annulaire communiquant avec une tubulure latérale 16, par laquelle on peut injecter sous pression la solution de liant réfractaire 7, pendant l'étape d'aspiration. L'injection sous pression permet d'utiliser des solutions de liant plus visqueuses que les précédentes, donc plus concentrées, ce qui permet d'améliorer le pouvoir réfractaire des extrémités 4a et 4b du tube 4. Par la suite, le bourrelet précité et une portion du tube d'injection pourront servir d'injecteur de gaz neutre lors de l'emploi du tube en aciérie.
  • Dans une variante de réalisation du tube conforme à l'invention, le liant réfractaire est réparti dans l'ensemble du tube. Dans ce cas, il est possible d'ajouter le liant réfractaire au départ directement dans le mélange initial. Cette solution est parfaitement adaptée à l'emploi en tant que liant réfractaire, du silicate d'éthyle, de sols de silice et d'acide borique.
  • Ainsi le silicate d'éthyle peut être ajouté au mélange initial en solution alcoolique à 28 à 40% en poids de Si02.
  • Les sols de silice peuvent être utilisés en dispersion aqueuse à 30 à 40% en poids de Si02.
  • Dans ces deux cas, le liant est ajouté au mélange pour obtenir une concentration finale de Si02 dans le tube comprise entre 0,1 à 10%.
  • L'expérience montre que lors du chauffage du tube la silice migre vers la surface, ce qui est avantageux pour l'obtention des propriétés réfractaires.
  • Dans le cas de l'utilisation de l'acide borique en tant que liant, la concentration préférée de ce dernier dans le tube est de préférence comprise entre 0,1 et 13% en poids.

Claims (8)

1. Procédé pour fabriquer un tube de coulée (4) destiné à être placé sous l'orifice de coulée d'un récipient métallurgique et à plonger dans le bain de métal en fusion qui est coulé dans un second récipient placé sous le premier récipient, ce procédé comprenant les étapes consistant à former le tube (4) autour d'un manchon perforé (1) à partir d'un mélange pâteux et aqueux de particules réfractaires, de fibres et d'un liant organique et/ou inorganique, à aspirer l'excès d'eau du mélange à l'intérieur du manchon perforé (1), puis à porter le tube (4) dans une étuve pour évaporer l'eau résiduelle et laisser durcir le mélange, caractérisé en ce qu'après ou pendant l'étape d'aspiration de l'eau, on fait pénétrer dans l'extrémité (4a) du tube (4) destinée à être disposée à proximité de l'orifice de coulée du premier récipient métallurgique, et/ou dans l'extrémité (4b) du tube destinée à plonger dans le métal en fusion coulé dans le second récipient, une solution aqueuse (7) d'un liant présentant après durcissement des propriétés réfractaires supérieures à celles du liant organique et/ou inorganique de base qui est contenu dans l'ensemble du tube (4).
2. Procédé conforme à la revendication 1, le tube de coulée étant destiné à être engagé autour de la busette de coulée (9) qui prolonge l'orifice de coulée du premier récipient, caractérisé en ce qu'on fait pénétrer la solution aqueuse de liant (7) présentant des propriétés réfractaires dans l'extrémité (4a) du tube (4) de façon que ce liant imprègne une zone de cette dernière sur une hauteur (p) au moins égale à la hauteur (h) suivant laquelle le tube (4) est destiné à être engagé autour de la busette de coulée (9) du premier récipient.
3. Procédé conforme à la revendication 1, caractérisé en ce qu'on fait pénétrer ladite solution aqueuse de liant (7) présentant des propriétés réfractaires dans l'extrémité inférieure (4b) du tube (4) de façon que ce liant imprègne une zone de cette dernière sur une hauteur (h,) au moins égale à la profondeur suivant laquelle le tube (4) est destiné à être immergé dans le métal contenu dans le second récipient.
4. Procédé conforme à l'une quelconque des revendications 1 ou 3, caractérisé en ce que le liant est introduit à l'intérieur du tube (4) sous la forme d'une solution aqueuse comprenant entre 20 et 50% en poids environ de composé phosphatique.
5. Procédé conforme à l'une quelconque des revendications 1 à 4, caractérisé en ce qu'on fait pénétrer la solution aqueuse de liant (7) à l'intérieur de l'une et/ou de l'autre extrémité (4a, 4b) du tube (4) par gravité, au moyen d'un récipient (8, 10) appliqué sur l'extrémité du tube (4) et contenant ladite solution (7).
6. Procédé conforme à l'une quelconque des revendications 1 à 4, caractérisé en ce qu'on fait pénétrer la solution aqueuse de liant (7) à l'intérieur de l'une et/ou de l'autre extrémité (4a, 4b) du tube (4) par trempage dans un récipient contenant ladite solution (7).
7. Procédé conforme à l'une quelconque des revendications 1 à 4, caractérisé en ce qu'on fait pénétrer la solution aqueuse de liant (7) à l'intérieur de l'une et/ou de l'autre extrémité (4a, 4b) du tube (4) par injections sous pression et/ou dépression de ladite solution (7) au moyen d'une tubulure (16) raccordée de façon étanche à la paroi du tube (4) après ou pendant l'étape d'aspiration.
8. Procédé conforme à l'une quelconque des revendications 1 à 7, dans lequel on réalise un tube tronconique et on engage ce dernier dans un manchon métallique tronconique, caractérisé en ce que l'angle de la surface tronconique du manchon métallique est supérieur de 0,1 1 10° de l'angle de la surface tronconique du tube.
EP82400890A 1981-05-27 1982-05-14 Procédé de fabrication d'un tube de coulée Expired EP0066492B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82400890T ATE14850T1 (de) 1981-05-27 1982-05-14 Verfahren zum herstellen eines giessrohres.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8110519A FR2506641A1 (fr) 1981-05-27 1981-05-27 Tube de coulee et son procede de fabrication
FR8110519 1981-05-27

Publications (2)

Publication Number Publication Date
EP0066492A1 EP0066492A1 (fr) 1982-12-08
EP0066492B1 true EP0066492B1 (fr) 1985-08-14

Family

ID=9258932

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82400890A Expired EP0066492B1 (fr) 1981-05-27 1982-05-14 Procédé de fabrication d'un tube de coulée

Country Status (8)

Country Link
US (1) US4432396A (fr)
EP (1) EP0066492B1 (fr)
AT (1) ATE14850T1 (fr)
AU (1) AU545269B2 (fr)
CA (1) CA1198874A (fr)
DE (2) DE3265392D1 (fr)
ES (1) ES272875Y (fr)
FR (1) FR2506641A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2516415A1 (fr) * 1981-11-13 1983-05-20 Daussan & Co Dispositif pour eliminer les inclusions contenues dans les metaux liquides
DE3230107A1 (de) * 1982-08-13 1984-03-01 Raimund Dipl.-Ing. 6238 Hofheim Brückner Verwendung von keramischem fasermaterial bei feuerfesten verschleissteilen von schiebeverschluessen fuer fluessige metallschmelze enthaltende gefaesse sowie schiebeverschluss mit feuerfesten verschleissteilen aus keramischem fasermaterial
CH650176A5 (fr) * 1982-08-23 1985-07-15 Daussan & Co Dispositif pour la coulee du metal fondu.
DE3300166C2 (de) * 1983-01-05 1986-07-17 ARBED Saarstahl GmbH, 6620 Völklingen Mehrteiliger Tauchausguß für Stranggießanlagen
FR2583411B1 (fr) * 1985-06-18 1989-12-29 Refracol Dupont Cie Composition refractaire, procede de mise en oeuvre de la composition refractaire et installation de mise en oeuvre dudit procede.
US4642864A (en) * 1985-12-20 1987-02-17 Solar Turbines Incorporated Recuperator tube assembly
US5097871A (en) * 1989-02-10 1992-03-24 Kurimoto, Ltd. Pipe for pipe jacking
GB9002821D0 (en) * 1990-02-08 1990-04-04 Foseco Int Insulation sheaths
US5944060A (en) * 1995-12-26 1999-08-31 Boeing North American, Inc. Composite duct system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2892227A (en) * 1956-01-11 1959-06-30 Derald H Ruttenberg Metal casting process and elements and compositions employed in same
GB1155427A (en) * 1965-11-02 1969-06-18 Babcock & Wilcox Co Refractory Pouring Tubes
US3793042A (en) * 1970-12-24 1974-02-19 Combustion Eng Insulating monolithic refractory
US4165026A (en) * 1971-12-07 1979-08-21 Foseco Trading A.G. Tundish with expendable lining and easily removable nozzle
JPS5549033B2 (fr) * 1974-05-15 1980-12-09
DE2451935C3 (de) * 1974-10-31 1981-03-12 Didier Taylor Refractories Corp., Cincinnati, Ohio Als plastische Masse, Stampfmasse oder zur Herstellung von keramischen Körpern geeignete Masse und ihre Verwendung.
FR2333599A1 (fr) * 1975-12-02 1977-07-01 Daussan Henri Dispositif a element tubulaire pour la coulee des metaux fondus
SU607638A1 (ru) * 1976-12-27 1978-05-25 Липецкий политехнический институт Смесь дл изготовлени литейных керамических форм
LU78970A1 (fr) * 1977-02-02 1978-06-26 Rech Metallurg Voor Research M Procede pour ameliorer la qualite des busettes de coulee continue des metaux et busette obtenue au moyen de ce procede
JPS53143614A (en) * 1977-05-20 1978-12-14 Aikoh Co Continuously molded tundish lining structures for heat insulation
US4298554A (en) * 1977-11-14 1981-11-03 Lebanon Steel Foundry Coherent rigid solid material

Also Published As

Publication number Publication date
CA1198874A (fr) 1986-01-07
ES272875Y (es) 1984-10-01
DE66492T1 (de) 1983-04-28
AU545269B2 (en) 1985-07-04
EP0066492A1 (fr) 1982-12-08
ATE14850T1 (de) 1985-08-15
US4432396A (en) 1984-02-21
AU8383282A (en) 1982-12-02
DE3265392D1 (en) 1985-09-19
FR2506641A1 (fr) 1982-12-03
ES272875U (es) 1984-03-01
FR2506641B1 (fr) 1984-02-03

Similar Documents

Publication Publication Date Title
EP0066492B1 (fr) Procédé de fabrication d'un tube de coulée
EP0214882B2 (fr) Revêtement pour protéger l'intérieur d'un récipient métallurgique et procédé pour réaliser ce revêtement
EP0086923B1 (fr) Forme, procédé et composition pour le moulage par soufflage du revêtement réfractaire consommable d'un récipient destiné à contenir du métal en fusion
FR2746332A1 (fr) Procede de fabrication de manchons exothermiques et de coulee de pieces metalliques, et manchons et pieces metalliques ainsi obtenus
FR2681064A1 (fr) Procede d'impregnation de pieces poreuses de carbone pour les proteger contre l'oxydation.
EP0065514B1 (fr) Tube de coulee thermiquement isolant pour recipient metallurgique
FR2647105A1 (fr) Revetement impermeable pour materiau refractaire, piece revetue de ce materiau et procede de revetement
EP0125173B1 (fr) Procédé de production de particules solides métalliques à partir d'un bain métallique
FR2572724A1 (fr) Piece d'usure refractaire pour couler des masses fondues liquides
EP0269688B1 (fr) Procede pour revetir un recipient metallurgique et revetement obtenu
EP0270418B1 (fr) Bouchon de retenue des scories et procédé pour sa mise en oeuvre et sa fabrication
FR2657604A1 (fr) Element faconne en ceramique refractaire et procede pour sa fabrication.
EP2013381B1 (fr) Cuve d'électrolyse d'obtention d'aluminium
EP0460086A1 (fr) Procede de revetement d'un repartiteur de coulee continue par un materiau refractaire
WO1990011853A1 (fr) Procede pour revetir un recipient metallurgique par un revetement epurant et composition s'y rapportant, et revetement de protection ainsi obtenu
FR2537024A1 (fr) Plaques thermo-isolantes refractaires et procede pour la coulee continue d'acier
EP0232648A1 (fr) Lance d'injection pour récipient métallurgique et son procédé de fabrication
BE851027A (fr)
CA2081445A1 (fr) Procede de revetement d'un repartiteur de coulee continue par un materiau refractaire, repartiteur et materiau refractaire resultant de la mise en oeuvre de ce procede
CA1292869C (fr) Procede pour revetir un recipient metallurgique et revetement obtenu
FR2936174A1 (fr) Tampon de quenouille
US7101413B1 (en) Method of applying flux to molten metal
JP2013199689A (ja) 金属−セラミックス複合材料の製造方法
EP0972750B1 (fr) Elaboration de matrices minérales par fusion par induction en creuset froid
CA2210761C (fr) Composition pour un revetement de produits carbones et ce revetement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19820519

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT

ITCL It: translation for ep claims filed

Representative=s name: BARZANO' E ZANARDO ROMA S.P.A.

TCAT At: translation of patent claims filed
DET De: translation of patent claims
ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

RBV Designated contracting states (corrected)

Designated state(s): AT BE DE GB IT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE DE GB IT

REF Corresponds to:

Ref document number: 14850

Country of ref document: AT

Date of ref document: 19850815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3265392

Country of ref document: DE

Date of ref document: 19850919

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: DIDIER-WERKE AG

Effective date: 19860509

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19871016

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940504

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940511

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940516

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940704

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950514

Ref country code: AT

Effective date: 19950514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19950531

BERE Be: lapsed

Owner name: DAUSSAN ET CIE

Effective date: 19950531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960402