EP0065973B1 - Mehrelement-richtantennen-system - Google Patents

Mehrelement-richtantennen-system Download PDF

Info

Publication number
EP0065973B1
EP0065973B1 EP82900016A EP82900016A EP0065973B1 EP 0065973 B1 EP0065973 B1 EP 0065973B1 EP 82900016 A EP82900016 A EP 82900016A EP 82900016 A EP82900016 A EP 82900016A EP 0065973 B1 EP0065973 B1 EP 0065973B1
Authority
EP
European Patent Office
Prior art keywords
dipole
elements
antenna
frequency
dipoles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82900016A
Other languages
English (en)
French (fr)
Other versions
EP0065973A1 (de
Inventor
Walfried Sommer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0065973A1 publication Critical patent/EP0065973A1/de
Application granted granted Critical
Publication of EP0065973B1 publication Critical patent/EP0065973B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/48Combinations of two or more dipole type antennas
    • H01Q5/49Combinations of two or more dipole type antennas with parasitic elements used for purposes other than for dual-band or multi-band, e.g. imbricated Yagi antennas

Definitions

  • a typical compromise antenna of this type is e.g. B. the so-called trap or blocking antenna, in which the individual elements are divided by blocking circuits so that only certain antenna parts can be effective electrically depending on the frequency range used.
  • the main disadvantage here is the shortening of the element due to the insertion of coils, which inevitably leads to a reduced profit.
  • a certain loss of radiated energy has to be accepted, which is converted into unwanted heat by the blocking circuits.
  • blocking circles are generally sensitive to the weather and lose quality over time due to weather influences, which further increases losses.
  • the mechanical structure is also complicated with all the advantages compared to blocking-circuit antennas and they require tuning work which has hitherto made the series production of such antennas difficult. (Auerbach, loc. Cit. P. 167).
  • the object of the invention is to realize an antenna system in which, as far as possible, the entire antenna system can be used for reception and radiation and, in contrast to previously known antennas, all additional tuning aids, such as separate resonant circuits, can be dispensed with.
  • the advantage of such a system lies in addition to its unprecedentedly simple mechanical structure, which is realized exclusively by means of metallic conductive parts, such as aluminum pipes and insulating brackets, in excellent electrical properties, e.g. B. a complete insensitivity to weather influences.
  • the object is achieved in that no more additional inductive and capacitive components are used to tune the different frequency ranges, but rather the "blind components" required for tuning by deliberately lengthening and shortening elements in considerable deviation from the typical resonance length of the elements and producing them Dummy components within the system are compensated for by coupling the elements together by approximation.
  • An antenna with closely spaced elements is also known from GB-A-937 686.
  • this antenna is broadband and should cover the entire FM radio range with a bandwidth of 8 MHz.
  • GB-A-937 686 it is not possible to manufacture an antenna which works according to the invention on narrowband bands which are approximately 1: 2 apart.
  • the basic unit of such an antenna system is an antenna for z.
  • This basic unit mainly serves to tune the overall system to the desired frequency ranges and consists of a% / 2 radiator for the lowest frequency, which is approximately matched to the resonance length. At a relatively short distance from this, a greatly extended a X / 2 radiator for the next lowest frequency is attached. A further shortened?. / 2 radiator of the highest frequency is now attached at a further short distance from this element.
  • the two radiators are fed in together for the lower frequency ranges, the middle radiator being able to be bent in the middle towards the common connection point of the feed line.
  • the central radiator Due to the deliberate extension of the central radiator, it has a relatively high inductive reactive component, which in itself brings it outside the desired resonance range. Likewise, the shortening of the radiator for the highest frequency per se causes a severe detuning due to the additional capacitive shortening component. Due to the closely approximated arrangement of the three emitters in a range of less than 0.01 - 0.02 ⁇ in relation to the lowest frequency, all three emitters can now be coupled with one another in such a way that the reactive components and the entire system of all three emitters are fully compensated vibrates at the desired resonance frequencies. It is particularly astonishing that not only the two longest elements fed in carry considerable high-frequency voltages and currents during operation, but also that the only parasitically excited third element is live and live, although it should not be due to its mechanical dimensions.
  • the radiating area of the system is considerably increased for all three frequency ranges, as a result of which an unexpected increase in antenna gain is already achieved.
  • the spatially close arrangement of the radiating elements additionally results in a forward-backward ratio of approximately 2-5 dB for the radiated or radiated RF energy for the two higher bands, which has a favorable influence on the directional effect of the antenna.
  • the antenna gain produced by a Yagi antenna is not yet to be expected from this spatially closely spaced basic unit, but the two higher frequency ranges are already emitted by about 1-2 dB above a reference dipole. The longest element acts like a dipole.
  • the basic unit described according to the invention now makes it possible to arrange one or more elements of the lowest frequency on a longer "boom" at a greater distance (cf. Auerbach loc. Cit. P. 164). Surprisingly, adjustment circles can also be completely dispensed with here. These elements are also fed via the crossed phase line.
  • the additional elements placed in front of or behind the 3-element arrangement described increase the antenna gain and the forward-backward ratio dramatically on all three frequency ranges.
  • An antenna gain of 5 - 8 dB over a reference dipole and a forward-backward ratio of 20 - 30 dB can be easily achieved.
  • a further significant increase in the forward-backward ratio can be achieved if the three-way combination of the fed-in elements described above is arranged again at certain intervals on the boom.
  • the adaptation of the entire antenna system to a given supply cable e.g. 50 ohm coaxial cable which should be connected via an iron-free balun (balun) is carried out by means of an additional line, the electrical length of which is adapted to the entire antenna system.
  • the additional line is preferably connected in the manner of an open Lech line to the part of the crossed phase line facing away from the antenna base and brought to a length by means of an impedance measuring device which brings the overall system to the desired connection value at the base of the antenna.
  • Figure 1 shows a typical antenna for the frequency ranges 28-30 MHz, 21-21.5 MHz and 14-14.4 MHz (10, 15 and 20 m amateur band)
  • the basic unit labeled G is fed in at point 4 via an iron-free balun via coaxial cable.
  • the elements 2 and 3 are connected.
  • Element 3 has a mechanical length of 9.9 m, which corresponds approximately to the electrical length of a dipole rated for 14 MHz.
  • Element 1 is arranged at a distance of 20 cm + 5 cm.
  • Element 2 has a length of 2 x 3.6 m (measured from entry point 4) and is considerably longer than a dipole for the resonance frequency 21 MHz.
  • Element 1 is again considerably shorter than a dipole for 28 - 30 MHz (4.6 m).
  • the elements 6 and 8 with a length of 10.6 m and 11.6 m are arranged at a distance of 2 m each. Both elements correspond approximately to the electrical length of a Uda-Yagi system for 14 MHz.
  • the antenna gain in all three frequency ranges is at least equal to the gain of an antenna system that is only calculated for one frequency band. It is assumed that both antenna systems have the same boom length.
  • the gain of monoband antennas with three elements and a boom length (distance between the two outermost elements) of 0.2 to 0'3 ⁇ is given as 7 dB (S. Auerbach, page 152).
  • the suppression of the backward unwanted signal is between 15 and 25 dB.
  • the bandwidth is around 1 MHz within the set bands, so that no additional matching devices have to be used.
  • the standing wave ratios reach values of 2 or better.
  • the triple combination of intentionally inductive or capacitive loaded dipole elements has the ability to avoid the unwanted splitting of the radiation diagrams of whole-wave dipoles or dipoles that are longer than 0.5 ⁇ .
  • FIG. 1 An extension of the system by a further basic unit (G) and an additional reflector (6 ') is shown schematically in FIG.
  • This arrangement increases the gain of the system by about 20% or 1 dB, but at the same time the forward-back ratio is greatly improved, namely by about 10-15 dB. This is of great importance with regard to the "overcrowded amateur bands" because it enables largely trouble-free operation.
  • system according to DE-A-3 010 688 can be adapted to any other frequencies by adapting the additional line 10 accordingly and, if necessary, adding further elements which have been brought into resonance.
  • phase line When using several reflector elements connected via a crossed phase line, it is necessary for adaptation reasons not to connect the phase line directly to the entry point to which the feed line coming from the transmitter or receiver is connected, but via a "detour line".
  • This is formed by a line running parallel to the element tube and the element tube itself.
  • the inductance formed in this way has the effect that when operating at the lowest frequency there is only a slight influence on the overall system, while when operating at the medium and higher frequency there is a desired inductive one Influences. This makes it possible to compensate for undesired capacitive components of the phase line caused by the tubes of the phase line. This also makes it possible to better adapt the antenna system to the power cable and to increase the usable bandwidth.
  • the detour lines (they are also used on the reflectors) enable an increase in the front-to-back ratio because the exact phase relationship of the elements to one another can be set without changing the distance between them.
  • the length of the detour line is measured, it is typically between 0.3 and 1 m long if frequencies from 14 - 21 - 28 MHz are used. This corresponds to a length of 0.015 to 0.05 k in relation to the lowest frequency.
  • the detour line is made of pipe, the diameter of which is 10 - 15 mm. It is therefore much thinner than the element pipes, which typically have 30 - 50 mm 0.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Description

  • Es gibt eine Reihe von Anordnungen, die es gestatten, elektromagnetische Wellen in eine bevorzugte Richtung abzustrahlen oder aus einer bevorzugten Richtung zu empfangen. Solange solche Systeme nur für eine bestimmte Frequenz oder einen relativ engen Frequenzbereich ausgelegt werden sollen, sind sie einfach zu realisieren, z. B. nach dem Prinzip von Uda-Yagi mit auf die gewünschten Frequenzen ausgelegten Reflektor- und Direktorelementen. Schwieriger und technisch kompliziert werden solche Anordnungen aber dann, wenn sie auf mehreren Frequenzen mit Gewinn und einem guten Vorwärts-Rückwärts-Värhältnis arbeiten sollen.
  • Es ist bekannt, daß gerade die Amateurfunkbereiche über praktisch den größten Teil des Kurzwellen- und Ultrakurzwellenbereiches verteilt sind. Da die bekannten breitbandigen Log-Periodic-Antennen einen sehr großen mechanischen Aufwand bedingen und vom Antennengewinn her gesehen keine ideale Lösung darstellen, hat es daher nicht an Versuchen gefehlt, das Prinzip des Uda-Yagi-Antennensystems so zu gestalten, daß diese auf mehreren, meist 3 Kurzwellenbereichen eine optimale Richtwirkung ergibt.
  • Bislang war dieses Ergebnis jedoch nur zu erzielen, wenn für die gewünschten Frequenzbereiche sowohl im Hinblick auf die mechanische Ausführung, als auch auf die elektrische Wirkung Kompromisse eingegangen wurden. Eine typische Kompromißantenne dieser Art ist z. B. die sogenannte Trap- oder Sperrkreisantenne, bei der die einzelnen Elemente durch Sperrkreise so aufgeteilt werden, daß elektrisch je nach dem benutzten Frequenzbereich nur bestimmte Antennenteile wirksam werden können. Nachteilig ist hierbei vor allem die durch die Einfügung von Spulen bedingte Elementverkürzung, die zwangsläufig zu einem Mindergewinn führt. Dabei muß zusätzlich ein gewisser Verlust an abgestrahlter Energie in Kauf genommen werden, der durch die Sperrkreise in unerwünschte Wärme umgewandelt wird. Darüberhinaus sind Sperrkreise allgemein wetterempfindlich und verlieren durch Witterungseinflüsse im Laufe der Zeit an Qualität, wodurch sich die Verluste weiter erhöhen.
  • Eine erhebliche Verbesserung wurde dadurch erzielt, daß man auf Sperrkreise verzichtete und die Antenne durch Parallel- und Serienkreise auf drei unabhängige Frequenzen einstellte (Auerbach, Amateurfunk-Antennen, Franzis-Verlag München 1971, S. 162 - 167). Um die Abstimmkreise in das Antennensystem einzufügen, mußten als Induktivitäten sogenannte Haarnadelschleifen und als Kapazitäten Kondensatoren in Form von KoaxialKabeln bestimmter Länge in das Antennensystem eingebaut werden. Die Nachteile dieser Entwicklung sind ebenfalls konstruktiver Art. Ähnlich wie Trap-Antennen sind die Abstimmkreise Witterungseinflüssen unterworfen und können nur mit einer limitierten HF-Leistung betrieben werden, da sie bei Erwärmung zerstört werden können.
  • Auch der mechanische Aufbau ist bei allen Vorteilen gegenüber Sperrkreisantennen kompliziert und sie bedürfen einer Abstimmarbeit, die die Serienfertigung solcher Antennen bisher erschwerte. (Auerbach, loc. cit. S. 167).
  • Aufgabe der Erfindung ist es, ein Antennensystem zu verwirklichen, bei dem möglichst das gesamte Antennensystem zum Empfang und zur Abstrahlung nutzbar gemacht werden kann und bei dem im Gegensatz zu bisher bekannten Antennen auf sämtliche zusätzliche Abstimmhilfen, wie separate Schwingkreise, verzichtet werden kann. Der Vorteil eines solchen Systems liegt neben seinem beispiellos einfachen mechanischen Aufbau, der ausschließlich mittels metallisch leitender Teile, wie Aluminiumrohren und isolierenden Halterungen verwirklich wird, in ausgezeichneten elektrischen Eigenschaften, z. B. einer völligen Unempfindlichkeit gegenüber Witterungseinflüssen.
  • Die Aufgabe wird dadurch gelöst, daß man zur Abstimmung der verschiedenen Frequenzbereiche nicht mehr zusätzliche induktive und kapazitive Bauteile verwendet, sondern die zur Abstimmung notwendigen "Blindkomponenten" durch eine absichtliche Verlängerung und Verkürzung von Elementen in erheblicher Abweichung von der typischen Resonanzlänge der Elemente erzeugt und diese Blindkomponenten innerhalb des Systems dadurch kompensiert, daß man die Elemente durch Annäherung miteinander verkoppelt.
  • Es wurde überraschend gefunden, daß man durch eine einfache Annäherung der strahlenden Elemente eine bisher noch nicht ganz geklärte Verkopplung erreicht, die die Einfügung separater Abstimmkreise erübrigt und gleichzeitig das gesamte System zum Schwingen bringt, wodurch die "strahlende Fläche" in erwünschter Weise erheblich vergrößert wird.
  • Aus der US-A-3 503 074 ist zwar ein auf der Basis von Log-Periodic-Antennen arbeitendes Antennensystem bekannt geworden, das ebenfalls stark angenährte Antennenelemente aufweist. Dieses System kann - wie alle Log-Periodic-Antennen nur zu einem kleinen Teil ausgenutzt werden, da immer nur die wenigen Antennenteile aktiv sind, die von ihren physikalischen Abmessungen und elektrischen Eigenschaften her mit der Arbeitsfrequenz in Resonanz sind, während alle übrigen Elemente tot sind. Im Gegensatz dazu sind bei dem Antennensystem der Erfindung alle Elemente so in Aktion, daß auf jedem der vorgesehenen Bandbereiche fast die gesamte Antennenfläche wirksam wird. Das System der US-A-3 503 074 ist aufgrund der gegenphasigen Einspeisung und der dadurch bedingten völlig anderen Kopplungsverhältnisse mit der erfindungsgemäßen Richtantenne, die von einer gleichphasigen Einspeisung Gebrauch macht nicht zu vergleichen. Eine Antenne mit nahe beieinander liegenden Elementen ist auch aus GB-A-937 686 bekannt. Diese Antenne ist aber breitbandig und soll den gesamten UKW-Rundfunkbereich mit einer Bandbreite von 8 MHZ überstreichen. Eine Antenne, welche erfindungsgemäß auf etwa im Verhältnis 1 : 2 auseinanderliegenden Frequenzbereichen schmalbandig arbeitet läßt sich nach der GB-A-937 686 nicht herstellen.
  • Die Grundeinheit eines solchen Antennensystems besteht bei einer Antenne für z. B. drei Frequenzbereiche aus einer Kombination von drei Elementen. Diese Grundeinheit dient hauptsächlich der Abstimmung des Gesamtsystems auf die gewünschten Frequenzbereiche und besteht aus einem in etwa auf die Resonanzlänge abgestimmten %/2-Strahler für die niedrigste Frequenz. In relativ geringem Abstand hierzu wird ein stark verlängerter a X/2-Strahler für die nächstniedrige Frequenz angebracht. In weiterem ebenfalls geringem Abstand zu diesem Element wird nun ein stark verkürzter ?,/2-Strahler der höchsten Frequenz angebracht. Praktischerweise werden die beiden Strahler für die niedrigeren Frequenzbereiche gemeinsam eingespeist, wobei der mittlere Strahler mittig durchaus zum gemeinsamen Anschlußpunkt der Einspeiseleitung hin geknickt sein kann. Durch die bewußte Verlängerung des mittleren Strahlers besitzt dieser einen relativ hohen induktiven Blindanteil, der ihn an sich außerhalb des gewünschten Resonanzbereichs bringt. Ebenso bewirkt die Verkürzung des Strahlers für die höchste Frequenz an sich eine starke Verstimmung durch den zusätzlichen kapazitiven Verkürzungsanteil. Durch die stark angenäherte Anordnung der drei Strahler in einem Bereich von weniger als 0,01 - 0,02λ in Bezug auf die niedrigste Frequenz können nun alle drei Strahler so miteinander verkoppelt werden, daß sich die Blindanteile vollständig kompensieren und das gesamte System aller drei Strahler auf den gewünschten Resonanzfrequenzen schwingt. Dabei ist besonders erstaunlich, daß nicht nur die eingespeisten beiden längsten Elemente im Betrieb erhebliche hochfrequente Spannungen und Ströme führen, sondern daß auch das nur parasitär erregte dritte Element strom- und spannungsführend ist, obwohl es dies aufgrund seiner mechanischen Abmessungen gar nicht sein dürfte.
  • Durch die erfindungsgemäße Annäherung der Elemente wird also die strahlende Fläche des Systems für alle drei Frequenzbereiche erheblich vergrößert, wodurch bereits ein unerwarteter Anstieg des Antennengewinns erzielt wird. Die räumlich nahe Anordnung der strahlenden Elemente bewirkt zusätzlich ein Vorwärts-Rückwärts-Verhältnis von etwa 2 - 5 dB für die ein- oder abgestrahlte HF-Energie für die beiden höheren Bänder, womit die Richtwirkung der Antenne günstig beeinflußt wird. Selbstverständlich ist von dieser räumlich eng aufeinander angeordneten Grundeinheit noch nicht der von einer Yagi-Antenne erbrachte Antennengewinn zu erwarten, jedoch werden die beiden höheren Frequenzbereiche bereits um etwa 1 - 2 dB über einem Referenzdipol abgestrahlt. Das längste Element wirkt in etwa wie ein Dipol.
  • Die beschriebene erfindungswesentliche Grundeinheit gestattet es nun, ein oder mehrere Elemente der niedrigsten Frequenz auf einem längeren "Boom" in größerem Abstand anzuordnen (vgl. Auerbach loc. cit. S. 164) wobei überraschend auch hier auf Anpaßkreise vollständig verzichtet werden kann. Über die gekreuzte Phasenleitung werden diese Elemente mitgespeist.
  • Durch die zusätzlichen, vor oder hinter der beschriebenen 3-Elementanordnung angebrachten Elemente steigt der Antennengewinn und das Vorwärts-Rückwärts-Verhältnis auf allen drei Frequenzbereichen dramatisch an. Ein Antennengewinn von 5 - 8 dB über einem Referenzdipol und ein Vorwärts-Rückwärts-Verhältnis von 20 - 30 dB ist ohne weiteres zu erzielen.
  • Eine weitere erhebliche Steigerung des Vorwärts-Rückwärts-Verältnisses ist erreichbar, wenn die oben beschriebene Dreierkombination der eingespeisten Elemente in bestimmten Abständen nochmals auf dem Boom angeordnet wird.
  • Die Anpaßung des gesamten Antennensystems an ein gegebenes Speisekabel (z. B. 50 Ohm Koaxialkabel) welches über einen eisenfreien Balun (Symmetrierglied) angeschlossen werden sollte, erfolgt mittels einer Zusatzleitung, deren elektrische Länge dem gesamten Antennensystem angepaßt wird. Die Zusatzleitung wird vorzugsweise nach Art einer offenen Lecherleitung an dem vom Antennenfußpunkt abgewandten Teil der gekreuzten Phasenleitung angeschlossen und mittels Impedanzmeßgerät auf eine Länge gebracht, welche das Gesamtsystem am Fußpunkt der Antenne auf den gewünschten Anschlußwert bringt.
  • Der Gegenstand der Anmeldung ist in den Patentansprüchen umschrieben.
  • Die Wirkungsweise der Erfindung sei nun zur weiteren Erläuterung anhand Figur 1 näher beschrieben.
  • Figur 1 stellt eine typische Antenne für die Frequenzbe reiche 28 - 30 MHz, 21 - 21,5 MHz und 14 - 14,4 MHz (10, 15 und 20 m Amateurband) dar
  • Die mit G bezeichnete Grundeinheit wird im Punkt 4 über ein eisenfreies Symmetrierglied per Koaxialkabel eingespeist. Mit dem Punkt 4 sind die Elemente 2 und 3 verbunden. Element 3 hat eine mechanische Länge von 9,9 m, die etwa der elektrischen Länge eines für 14 MHz bemessenen Dipols entspricht. Im Abstand von 40 = 5 cm ist Element 2 angeordnet und über gebogene. abgeknickte Schenkel von 40 cm mit dem Einspeisepunkt 4 verbunden. Im Abstand von 20 cm + 5 cm ist Element 1 angeordnet. Element 2 hat eine Länge von 2 x 3,6 m (gemessen vom Einspeisepunkt 4) und ist erheblich länger als ein Dipol für die Resonanzfrequenz 21 MHz. Element 1 ist wiederum erheblich kürzer als ein Dipol für 28 - 30 MHz (4,6 m).
  • In jeweils 2 m Abstand sind die Elemente 6 und 8 mit einer Länge von 10,6 m und 11,6 m angeordnet. Beide Elemente entsprechen in etwa der elektrischen Länge eines Uda-Yagi-Systems für 14 MHz.
  • Der Antennengewinn ist auf allen drei Frequenzbereichen zumindest gleich dem Gewinn eines Antennensystems das nur für ein Frequenzband berechnet ist. Dabei wird vorausgesetzt, daß beide Antennensysteme gleiche Boomlänge haben. In der Fachliteratur wird der Gewinn von Monobandantennen mit drei Elementen und einer Boomlänge (Abstand der beiden äußersten Elemente) von 0,2 bis 0'3λ mit 7 dB angegeben (S. Auerbach, Seite 152).
  • Die Unterdrückung des rückwärtigen unerwünschten Signals liegt zwischen 15 und 25 dB. Die Bandbreite ist innerhalb der eingestellten Bänder etwa 1 MHz, sodaß keine zusätzlichen Anpaßgeräte verwendet werden müssen. Die Stehwellenverhältnisse erreichen dabei Werte um 2 oder besser.
  • Neben den beschriebenen Eigenschaften verfügt die 3-fach-Kombination gewollt induktiv bzw. kapazitiv belasteter Dipolelemente über die Fähigkeit, die unerwünschte Aufspaltung der, Strahlungsdiagramme von Ganzwellendipolen oder Dipolen die länger als 0,5 λ sind, zu vermeiden. Dabei wird der für die tiefste Frequenz z. B. 14 MHz ausgelegte Dipol beim Betrieb mit der höchsten Frequenz collinear erregt und erzeugt damit nur eine Strahlungskeule (Auerbach S. 133 und 131).
  • In Figur 2 ist eine Erweiterung des Systems um eine weitere Grundeinheit (G) und einem zusätzlichen Reflektor (6') schematisch dargestellt. Diese Anordnung erhöht den Gewinn des Systems um etwa 20 % oder 1 dB, gleichzeitig wird jedoch das Vor-Rück-Verhältnis sehr stark verbessert und zwar um etwa 10 - 15 dB. Dies ist im Hinblick auf die "überfüllten Amateurbänder" von großer Wichtigkeit, denn damit wird ein weitgehend störungsfreier Betrieb ermöglicht.
  • Selbstverständlich ist es möglich, durch zusätzliche parasitäre Elemente oder weitere Strahlerelemente den Gewinn des Systems weiter zu erhöhen, soweit dies mechanisch sinnvoll ist.
  • Darüberhinaus läßt sich das System gemäß DE-A-3 010 688 an beliebige andere Frequenzen anpassen, indem die Zusatzleitung 10 entsprechend angepaßt und gegebenenfalls weitere in Resonanz gebrachte Elementeangebracht werden.
  • Bei Verwendung von mehreren über eine gekreuzte Phasenleitung angeschlossenen Reflektor-Elementen ist es aus Anpaßungsgründen notwendig, die Phasenleitung nicht direkt am Einspeisepunkt, an dem die vom Sender oder Empfänger kommende Speiseleitung angeschlossen ist, anzuschließen, sondern über eine "Umwegleitung". Diese wird gebildet durch eine parallel zum Elementrohr verlaufende Leitung und dem Elementrohr selbst. Die so gebildete Induktivität bewirkt, daß beim Betrieb auf der niedrigsten Frequenz ein nur geringfügiger Einfluß auf das Gesamtsystem erfolgt, während sich beim Betrieb auf der mittleren und höheren Frequenz eine erwünschte induktive Beeinflußung einstellt. Dadurch ist es möglich, unerwünschte kapazitive Anteile der Phasenleitung, verursacht durch die Rohre der Phasenleitung, auszugleichen. Damit ist es auch möglich, das Antennensystem besser an das Speisekabel anzupassen und die nutzbare Bandbreite zu erhöhen. Es zeigt sich, daß speziell im von 28.000 bis 29.700 KHz reichenden 10 m Band z. B. auch bei der Frequenz 29.700 KHz noch gute SWR-Anpassung (weniger 2) vorhanden ist. Außerdem ermöglichen die Umwegleitungen, (man verwendet sie auch an den Reflektoren) eine Steigerung des Vor-Rück-Verhältnisses, weil die genaue Phasenbeziehung der Elemente zueinander ohne Änderung von deren Abstand untereinander eingestellt werden kann.
  • Je nach gewünschtem Antennenparameter wird die Länge der Umwegleitung bemessen, sie ist typisch zwischen 0,3 und 1 m lang, wenn Frequenzen von 14 - 21 - 28 MHz verwendet werden. Dies entspricht einer Länge von 0,015 bis 0,05 k bezogen auf die niedrigste Frequenz.
  • Die Umwegleitung wird aus Rohr gefertigt, dessen Durchmesser 10 - 15 mm beträgt. Sie ist somit wesentlich dünner als die Elementrohre, die typisch 30 - 50 mm 0 haben.

Claims (3)

1. Mehrelement Richtantenne für mehrere UKW- oder KW-Bereiche bestehend aus einer Grundeinheit (G) von drei elektrisch miteinander verkoppelten Dipolen (1, 2, 3) und aus einem oder mehreren über eine gekreuzte Phasenleitung (7) miterregten Reflektoren (6) und gegebenenfalls weiteren parasitär erregten Reflektor- oder Direktorelementen ohne als Sperrkreise ausgebildete Abstimmelemente, dadurch gekennzeichnet, daß die Grundeinheit aus drei Dipolen besteht, die mechanisch so bemessen sind, daß der für den niedrigsten Frequenzbereich bestimmte Dipol (3) etwa die mechanische Länge eines frei schwingenden Dipols besitzt, während der Dipol (2) für die nächsthöhere Frequenz mechanisch um 5 - 20 0 0 zu lang und der Dipol (1) für die höchste Frequenz entsprechend zu kurz bemessen ist und die drei Dipole allein durch gegenseitige Annäherung auf einen Abstand von 0.01 - 0.03 λ bezogen auf die niedrigste Frequenz, elektrisch so miteinander verkoppelt sind, daß sich die jeweils durch die Verlängerung bzw. Verkürzung der Elemente ergebenden induktiven bzw. kapazitiven Blindanteile unter gleichzeitiger Ausbildung der gewünschten Resonanzfrequenzen gegenseitig kompensieren, wobei die Dipole (2, 3) für den niedrigsten und mittleren Frequenzbereich gemeinsam direkt eingespeist werden, während der Dipol (1) für den höchsten Frequenzbereich parasitär erregt wird.
2. Mehrelement Richtantenne nach Anspruch 1, gekennzeichnet durch eine Zusatzleitung (10) nach Art einer offenen Lecherleitung, welche an dem vom Antennenfußpunkt abgewandten Teil der gekreuzten Phasenleitung (7) angeschlossen und auf eine Länge gebracht ist, welche das Gesamtsystem am Fußpunkt der Antenne auf den gewünschten Fußpunktwiderstand bringt.
3. Verfahren zur Abstimmung einer Mehrbereichsantenne nach Anspruch 1, dadurch gekennzeichnet, daß man den induktiven Blindanteil des zu langen Dipoles (2) der Grundeinheit mit dem kapazitiven Blindanteil des zu kurzen Dipoles (1) allein durch räumliche Annäherung kompensiert und die Antenne dadurch gleichzeitig auf die gewünschten Frequenzbereiche abstimmt, die von den Frequenzbereichen, die der mechanischen Länge eines jeweils gleichen frei schwingenden Dipols entsprechen, abweichen.
EP82900016A 1980-12-04 1981-12-02 Mehrelement-richtantennen-system Expired EP0065973B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3045684 1980-12-04
DE19803045684 DE3045684A1 (de) 1980-12-04 1980-12-04 Mehrelement-richtantennen-system

Publications (2)

Publication Number Publication Date
EP0065973A1 EP0065973A1 (de) 1982-12-08
EP0065973B1 true EP0065973B1 (de) 1989-05-31

Family

ID=6118268

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82900016A Expired EP0065973B1 (de) 1980-12-04 1981-12-02 Mehrelement-richtantennen-system

Country Status (4)

Country Link
EP (1) EP0065973B1 (de)
JP (1) JPS57502033A (de)
DE (2) DE3045684A1 (de)
WO (1) WO1982002119A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10012809A1 (de) * 2000-03-16 2001-09-27 Kathrein Werke Kg Dualpolarisierte Dipolantenne
DE10150150B4 (de) 2001-10-11 2006-10-05 Kathrein-Werke Kg Dualpolarisiertes Antennenarray

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB813614A (en) * 1956-05-18 1959-05-21 Antiference Ltd Improvements relating to aerials
USRE24413E (en) * 1955-09-12 1958-01-07 Radio frequency antennas-
US3007167A (en) * 1958-02-05 1961-10-31 Winegard Co Universal tv and fm antenna
DE1224796B (de) * 1961-07-07 1966-09-15 Hirschmann Radiotechnik Kombinations-Dipolantenne zum Empfang von mehreren Sendern
GB937686A (en) * 1961-07-20 1963-09-25 Antiference Ltd Aerials
US3599217A (en) * 1968-08-19 1971-08-10 J F D Electronics Corp Log periodic dipole antenna array
US3503074A (en) * 1968-12-05 1970-03-24 Duncan L Carter Log-periodic antenna array having closely spaced linear elements

Also Published As

Publication number Publication date
DE3045684A1 (de) 1982-07-08
JPS57502033A (de) 1982-11-11
EP0065973A1 (de) 1982-12-08
WO1982002119A1 (en) 1982-06-24
DE3177064D1 (en) 1989-07-06

Similar Documents

Publication Publication Date Title
DE60319306T2 (de) Richtantenne/Rundstrahlende Antenne für Zweibandbetrieb
DE69620453T2 (de) Gegenläufig gewickelte ringförmige spiralantenne
DE60102052T2 (de) Doppeltwirkende Antenne
DE60209686T3 (de) Interne Mehrbandantenne
EP1239543B1 (de) Flachantenne für die mobile Satellitenkommunikation
EP2664025B1 (de) Multiband-empfangsantenne für den kombinierten empfang von satellitensignalen und terrestrisch ausgestrahlten rundfunksignalen
DE1964601A1 (de) Hochfrequenzantenne
DE60213902T2 (de) M-förmige Antenne
US4217589A (en) Ground and/or feedline independent resonant feed device for coupling antennas and the like
EP2592691B1 (de) Empfangsantenne für zirkular polarisierte Satellitenfunksignale
DE19533105A1 (de) Hochempfindliche, ungerichtete Schleifenantennenanordnung, die geeignet ist für eine Verwendung in einem Kraftfahrzeug
DE102013012315A1 (de) Hohlleiter-Strahler. Gruppenantennen-Strahler und Synthetik-Apertur-Radar-System
DE1051919B (de) Richtantenne fuer Kurzwellen und Ultrakurzwellen
DE3232931A1 (de) Antenne
CH659544A5 (de) Breitband-vhf-antenne.
DE2136759C2 (de) Antenne mit metallischem Rahmen und den Rahmen erregendem Unipol
EP1312136B1 (de) Verkürzter schleifen-dipol und schleifen-monopol
DE19738381A1 (de) Abstrahlendes koaxiales Hochfrequenz-Kabel
EP0065973B1 (de) Mehrelement-richtantennen-system
DE1616745B1 (de) Antennenanordnung mit wenigstens einer gruppe einander paralleler dipolstrahler
US3229298A (en) Bent-arm multiband dipole antenna wherein overall dimension is quarter wavelength on low band
WO2004102742A1 (de) Mehrbandfähige antenne
DE1006910B (de) Metallische, rohrfoermige Antenne
EP1232537A1 (de) Antennensystem
DE912710C (de) Goniometer, insbesondere fuer Kurzwellenpeilung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB NL SE

17P Request for examination filed

Effective date: 19821223

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19890531

Ref country code: NL

Effective date: 19890531

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19890531

REF Corresponds to:

Ref document number: 3177064

Country of ref document: DE

Date of ref document: 19890706

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19891231

Ref country code: CH

Effective date: 19891231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900129

Year of fee payment: 9

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19901113

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19911202

GBPC Gb: european patent ceased through non-payment of renewal fee