EP0054680B1 - Détecteur de fumée d'après le principe d'extinction de radiation - Google Patents

Détecteur de fumée d'après le principe d'extinction de radiation Download PDF

Info

Publication number
EP0054680B1
EP0054680B1 EP81108849A EP81108849A EP0054680B1 EP 0054680 B1 EP0054680 B1 EP 0054680B1 EP 81108849 A EP81108849 A EP 81108849A EP 81108849 A EP81108849 A EP 81108849A EP 0054680 B1 EP0054680 B1 EP 0054680B1
Authority
EP
European Patent Office
Prior art keywords
radiation
smoke detector
detector according
evaluation circuit
smoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81108849A
Other languages
German (de)
English (en)
Other versions
EP0054680A1 (fr
Inventor
Jürg Dr. sc. nat. Muggli
Martin Dr. Sc. Nat. Labhart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cerberus AG
Original Assignee
Cerberus AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cerberus AG filed Critical Cerberus AG
Priority to AT81108849T priority Critical patent/ATE24787T1/de
Publication of EP0054680A1 publication Critical patent/EP0054680A1/fr
Application granted granted Critical
Publication of EP0054680B1 publication Critical patent/EP0054680B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/20Calibration, including self-calibrating arrangements
    • G08B29/24Self-calibration, e.g. compensating for environmental drift or ageing of components

Definitions

  • the invention relates to a smoke detector based on the radiation extinction principle with radiation transmitters of different wavelengths and radiation receivers, which radiation transmitters transmit rays via a smoke-accessible measurement section to the measurement radiation receiver and rays via a comparison path which is not or less accessible to the comparison radiation receiver, an evaluation circuit arranged downstream of the two receivers sending a signal generated with a certain radiation weakness.
  • a smoke detector of this type With a smoke detector of this type, a relatively small decrease in the radiation directed from a radiation transmitter onto a radiation receiver must be detected.
  • the disadvantage here is that a decrease in radiation, for example due to aging of the radiation source, dusting optically effective surfaces, or the temperature response of radiation transmitters and receivers can have a similar effect to the presence of smoke in the measuring section, so that a faulty alarm signal is triggered can become, even if there is no smoke, or the smoke detector becomes less sensitive and therefore unusable.
  • US Pat. No. 3,895,233 describes a device for analyzing S0 2 in exhaust gases with solid suspended particles (smoke), in which two alternately actuated radiation transmitters direct their beams of different wavelengths into a measuring section and a comparative section via a radiation splitter, each section contains its own radiation receiver at its end.
  • the disadvantage here is that the solid suspended particles (smoke) have no influence on the measurement result of the analysis, and therefore an extinction of the radiation is excluded.
  • the object of the invention is to avoid the disadvantages of the prior art and to provide a smoke detector based on the extinction principle which is insensitive to temperature fluctuations, dusting or condensation, aging of the components and other slow changes in properties and which has improved long-term stability and is not susceptible to faults and operates reliably, and the smoke is more reliable from other types of particle that trigger false alarms, e.g. B. dust or fog drops, can distinguish and has a lower susceptibility to false alarms.
  • two radiation transmitters L, and L G are arranged in such a way that their main emission directions intersect at an angle of 90 °.
  • a semi-transparent mirror D is arranged at an angle of 45 ° to the two radiation directions.
  • a comparison radiation receiver S v is provided in the direct radiation direction of the one radiation transmitter L.
  • a measuring path M that is accessible to smoke, for example in the length of 10 cm-20 cm.
  • a radiation reflector R At the end of the measuring section there is a radiation reflector R, which reflects the radiation passing through the measuring section M back to a measuring radiation receiver S M.
  • This arrangement has the effect that both the radiation from the radiation transmitter L R , deflected by the semitransparent mirror D, and the portion of the other radiation transmitter L G transmitted by this mirror D pass the measurement path M and are reflected by the reflector R, by the measurement radiation receiver S M is recorded.
  • the direct radiation emitted by the radiation transmitter LR after passing through the semi-transparent mirror D and the radiation emitted by the other radiation transmitter L G and reflected by the semi-transparent mirror D after passing through a comparison path which is not or less accessible to smoke hits the comparison radiation receiver S v .
  • This arrangement thus has the effect that the two radiation receivers are acted upon almost identically by the two radiation transmitters in the absence of smoke, but are very different when smoke is present in the measuring section.
  • the two radiation transmitters L R and L G are now designed so that they emit radiation under transmit different wavelength ranges. It has proven expedient to design the one radiation transmitter so that it preferably emits radiation with a wavelength below 600 nm, preferably in the range of green light, while the other radiation transmitter produces radiation above 600 nm, preferably red light or infrared radiation.
  • the wavelength ranges can also be selected so that their mean values are at a distance of at least 50 nm from one another. With the choice of the wavelength ranges, the different extinction properties of different suspended particles can be used to distinguish smoke, since it has been shown that the difference in absorption in the two spectral ranges mentioned has a characteristic value for different types of particles.
  • the evaluation circuit connected to the two radiation receivers is matched to this difference, it can be achieved that smoke particles deliver a particularly large output signal, while other particle types, e.g. dust or fog droplets, have a significantly lower influence, so that an alarm signal is essentially caused by smoke, but not by other types of particles.
  • Broadband emitters e.g. B. incandescent lamps, with appropriate upstream color filters.
  • the use of light-emitting diodes, which are aimed at the emission of radiation in certain wavelength ranges, has proven particularly expedient.
  • the use of a collimator lens K is recommended in order to avoid radiation losses.
  • Such a collimator lens can, however, be dispensed with if the radiation sources are designed as LASER diodes.
  • the two radiation receiver S v and S m are expediently adapted to the radiation of the two radiation transmitters L G and L R, that is, they are expediently designed so that they are sensitive to the spectral ranges of both Strahiungssender L G and L R.
  • the partial ratio of the semi-transparent mirror D can, but need not, be 1: 1. If radiation transmitters L R and L G with very different intensities or radiation receivers S, and S v with very different sensitivity are used, it is expedient to choose a different ratio, if necessary up to 50: 1, in order to achieve that the receivers Emit approximately the same output signal in both spectral ranges.
  • FIG. 2 shows a modified embodiment of a smoke detector arrangement in which a separate collimator lens K 1 and K 2 is provided for each of the two radiation transmitters L G and L.
  • the radiation is not reflected after passing through the measurement section M, but is returned to the measurement radiation receiver S M using a radiation guide F (fiber optics).
  • measurement radiation receiver S and comparison radiation receiver S v can be arranged directly adjacent to one another, or in a further development of the invention, can be designed as a dual radiation receiver. This makes the connection to the evaluation circuit considerably easier, and the same optical properties and the same temperature response are achieved.
  • Figure 3 shows a smoke detector arrangement with directly adjacent radiation transmitters L G and L R.
  • the dispersion of a prism P is used.
  • the radiation from the two radiation transmitters L R and L G is first aligned by a collimator K and passes through the same prism P. If light is refracted less than shorter-wave light, the angle of the main radiation directions is compensated and both beams M emerge from the prism parallel to one another. This ensures that the measurement beam paths largely agree for both wavelengths or spectral ranges and are subject to the same influences.
  • the comparison radiation can be taken in front of or behind the prism at a suitable point.
  • FIG. 4 shows a further smoke detector arrangement with a matching measuring beam M in both spectral areas.
  • the two radiation sources L R and L G are arranged one behind the other on the same axis.
  • a green-emitting LED chip can be mounted on an infrared-emitting chip, so that the radiation emitted by the infrared chip radiates through the green chip.
  • the two types of radiation are directed in parallel by a collimator K and pass through the measuring section M in identical ways.
  • a semitransparent mirror D is provided in front of or behind the collimator K, which directs a portion of the radiation onto the comparison radiation receiver S v . This ensures complete compensation for all intensity fluctuations and misalignments.
  • the radiation from the two radiation transmitters L G and L R can also be combined by means of radiation-conducting elements F 1 , F 2 (fiber optics) and a collimator K at the output of the elements to form the measuring beam M.
  • the two radiation transmitters L G , L R can also irradiate the same focusing screen element MS, the radiation emanating from this being guided into the measuring path M by means of the collimator K.
  • the in slightly different Chen directions emitted radiation of the two radiation transmitters L R , L G can also be directed in the same direction of the measuring path M by means of a roof edge prism DP.
  • a more uniform illumination of the aperture can still be achieved if an entire array (side by side arrangement) of narrow roof edge prisms is used instead of the one roof edge prism (Fresnel prism).
  • the two radiation transmitters are installed one behind the other, their light can be combined into the measuring section by using a bifocal Fresnel lens. Every second ring of this Fresnel lens maps one radiation transmitter to a point (which can also be at infinity), while the other rings map the other radiation transmitter to the same point. If the two radiation transmitters are mounted next to each other, they can be imaged on the same pixel using a cylindrical bifocal Fresnel lens.
  • a complete identity of the measuring section for the two spectral areas can moreover be achieved by the two radiation transmitters being connected to a spectrally variable radiation source, e.g. an incandescent lamp with an optical filter that can be switched to two different spectral regions or a tunable light-emitting diode.
  • a spectrally variable radiation source e.g. an incandescent lamp with an optical filter that can be switched to two different spectral regions or a tunable light-emitting diode.
  • FIG. 8 shows a suitable evaluation circuit which can be connected to the radiation receivers S m and S v and can be used to operate the radiation transmitters L R and L G.
  • the comparison radiation receiver S v is connected to the negative input of an operational amplifier C 1 of the MC 34002 type, the positive input of which is grounded and the output of which is coupled to the negative input via a resistor R 1 .
  • the output of the operational amplifier C 1 is connected to a controllable switch S w , for example a FET switch MC 14066, which is periodically switched from one initial position to the other by an oscillator OS.
  • Both outputs of the switching device SW are each connected to a driver channel for the two radiation transmitters L G and LR.
  • the oscillator has the effect that the two radiation transmitters emit radiation alternately, either adjoining one another or with intermediate times, ie in the form of alternating radiation pulses.
  • both channels can be constructed identically or, taking into account different properties of the radiation transmitters, can be constructed at least analogously.
  • the analog components are placed in parentheses.
  • the two outputs of the switching device SW are connected to earth via a resistor R 3 (R 7 ) and are simultaneously connected to the negative input of an operational amplifier C 3 (C 4 ) of the type MC 34002, the positive input of which is at the tap of a voltage divider R 4 , R s (R a , R 9 ).
  • the output of the operational amplifier C 3 (C 4 ) operates the associated radiation transmitter L G (L R ) via a resistor R 6 (R 10 ).
  • a resistance of the voltage divider for example resistance R 4 (R 8 ), can expediently be set or exchanged in order to be able to set the control level for the intensity of the two radiation sources.
  • the circuit described has the effect that the intensity of the two radiation transmitters L G and L R is automatically regulated to a specific intensity level depending on the intensity of the reference radiation received by the reference radiation receiver S v , so that intensity fluctuations due to aging, temperature changes and similar effects are automatically compensated for.
  • the measuring radiation receiver S M is also connected to the negative input of an operational amplifier C 2 of the type MC 34002, the positive input of which is in turn grounded and the output of which is coupled through a resistor R 2 to the negative input.
  • the output of this operational amplifier C 2 is connected to an AC amplifier AC, at the output of which there is an alarm circuit A.
  • the amplitude of the output signal of the AC voltage amplifier AC supplied to the alarm circuit thus depends in the following manner on the radiation intensities I G and I R recorded by the measurement radiation receiver S M in the two spectral ranges and on the reference radiation intensities I Rv and I Gv recorded by the reference radiation receiver S v in the same spectral ranges from: a and b are factors that result from the properties of the components, especially in the voltage divider ratio R 4 / R 5 (R 8 / R 9 ).
  • R 4 resistance
  • the output signal A becomes directly dependent on the smoke density, and the alarm circuit can be set up in such a way that an alarm signal is triggered or passed on as soon as the output signal A exceeds a predetermined threshold value. Since in this case the deviation from zero serves as a criterion for triggering an alarm signal, the difficulties of previously known extinguishing smoke detectors, in which a small deviation from a large and difficult to stabilize value had to be determined, are avoided from the outset.
  • An alarm signal is triggered when one of the sizes A, B / a, C / b or 2D / a exceeds a value between 0.01 (due to the stability of the smoke detector) and 0.2 (due to the length of the measuring section) , where a and b are chosen such that will.
  • the circuit can be developed in such a way that additional parameters are formed, for example or which depend on the type of smoke and which allow a conclusion to be drawn about the type of smoke.
  • It can also be formed which, in combination with the main criteria A, B, C or D, can also be used to change the response differences for different types of fire.
  • An additional evaluation of one of the sizes E, F, G, or H can also be used to distinguish between smoke and disturbance variables such as dust or condensation.
  • the smoke development can be tracked if the time differential quotient dA / dt, dB / dt, dC / dt or dD / dt of the output signal A, B, C or D is also formed.
  • the stability of the smoke detector can be significantly increased if you suppress the small and slow changes in the output signal and only evaluate signals that are at least as fast as can be generated by a fire. This can be achieved either by slowly changing at least one of the factors a, b, c, d, e, f, g or h in order to compensate for these fluctuations or by comparing the output signal with its moving average.
  • FIG. 9 Another evaluation circuit is recorded in FIG. 9.
  • the signal of the measurement radiation receiver S M as well as the signal of the comparison radiation receiver S v is integrated in time (A 2 , C 2 , S 2 or A 1 , C 1 , S,).
  • the comparator K compares the integral of the comparison radiation receiver with a predetermined value, which is determined by the voltage divider E3, R 4 , and opens the switch S 3 of the sample and hold amplifier (S 3 , C 3 , A 3 ) at that time which the integration value exceeds the specified value.
  • An alarm circuit A is located at the output of the amplifier A 3.
  • the oscillator OS controls the repetition of the integration process and switches between the two radiation transmitters L G and L R with the aid of the flip-flop FF.
  • the smoke detectors described have significantly improved stability, even over longer periods, as well as improved functional reliability and greater susceptibility to faults. Changes due to dust and changes in the properties of the components are automatically compensated for without the risk of an incorrect alarm triggering and without loss of sensitivity. By appropriately selecting the spectral ranges used, it can also be achieved that the smoke detectors described preferably react to smoke particles, but not or only weakly to other types of particles.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Computer Security & Cryptography (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Emergency Management (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Devices For Medical Bathing And Washing (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Claims (24)

1. Détecteur de fumée fonctionnant selon le principe de l'extinction du rayonnement et comprenant deux émetteurs (LR, LG), pouvant être actionnés successivement et délivrant des rayonnements de longueurs d'onde différentes, lesquels émetteurs de rayonnement (LR, LG) envoient un rayonnement (IR, IG) par l'intermédiaire d'une section de mesure (M) accessible à la fumée en direction d'un récepteur (SM) du rayonnement de mesure, et un rayonnement (IRv, IGV) par l'intermédiaire d'une section de comparaison (V) non ou moins accessible à la fumée, jusqu'à un détecteur de rayonnement de comparaison (Sv), auquel cas un circuit d'évaluation monté en aval des deux récepteurs produit un signal de sortie qui réalise le déclenchement d'une alarme dans le cas d'un affaiblissement déterminé du rayonnement (IR, IG) dans la section de mesure (M), caractérisé par le fait qu'à partir de l'intensité IR, IG des rayonnements, reçus successivement après traversée de la section de mesure (M), des deux émetteurs de rayonnement (LR, LG) et à partir de l'intensité IR, IGV des rayonnements reçus après traversée de la section de comparaison (V) des deux émetteurs de rayonnement, le circuit d'évaluation forme le signal de sortie
Figure imgb0025
dans lequel a, b sont des facteurs prédéterminés, qui sont réglés par les composantes du circuit d'évaluation ou sont programmés dans le circuit d'évaluation (figures 8, 9).
2. Détecteur de fumée suivant la revendication 1, caractérisé par le fait qu'à partir des rayonnements (IR, IG) reçus après traversée de la section de mesure (M), et à partir des rayonnements (IRv, IGv) reçus après traversée de la section de comparaison (V), le circuit d'évaluation forme le signal de sortie
Figure imgb0026
ou
Figure imgb0027
ou
Figure imgb0028
a, b étant des facteurs prédéterminés qui sont programmés dans le circuit d'évaluation. (Figure 9)
3. Détecteur de fumée selon la revendication 1, caractérisé en ce que les composantes du circuit d'évaluation, de préférence des résistances (R4, R8) situées dans des diviseurs de tension (R4, R5; R8, Rg), sont choisies de telle sorte que le signal de sortie A est nul lorsqu'aucune fumée n'est présente dans la section de mesure (M). (Figure 8)
4. Détecteur de fumée suivant l'une des revendications 1 ou 2, caractérisé par le fait que le circuit d'évaluation forme en outre au choix le signal de sortie
Figure imgb0029
ou
Figure imgb0030
c, d, e et f étant des fonctions des facteurs prédéterminés et étant programmées dans le circuit d'évaluation. (Figure 9)
5. Détecteur de fumée suivant l'une des revendications 1, 2, 4, caractérisé par le fait que, dans le circuit d'évaluation, le signal de sortie
Figure imgb0031
est formé au choix de façon supplémentaire, g et h étant des facteurs prédéterminés et étant programmés dans le circuit d'évaluation. (Figure 9)
6. Détecteur de fumée suivant l'une des revendications 1-5, caractérisé par le fait que le circuit d'évaluation est agencé de telle sorte qu'au moins l'un des facteurs a, b, c, d, e, f, g ou h est modifiable lentement. (Figures 8, 9)
7. Détecteur de fumée suivant l'une des revendications 1-6, caractérisé par le fait que le circuit d'évaluation compare les valeurs instantanées d'au moins l'un des signaux de sortie (A, B, C, D, E, F, G ou H) à la valeur moyenne mobile du ou des signaux de sortie choisis. (Figures 8, 9)
8. Détecteur de fumée suivant les revendications 1 et 2 ou suivant l'une des revendications 4 à 6, caractérisé par le fait que le circuit d'évaluation forme, en plus d'au moins l'un des signaux de sortie, le coefficient différentiel dans le temps de ce ou d'un autre signal de sortie. (Figures 8, 9)
9. Détecteur de fumée suivant l'une des revendications 1, 3, 6, 7, 8, caractérisé par le fait que le circuit d'évaluation contient un circuit (AC), dans lequel la composante alternative du signal de sortie du récepteur (SM) du rayonnement de mesure est formée en tant que critère du déclenchement d'une alarme (figure 8).
10. Détecteur de fumée suivant l'une des revendications 1, 3, 6, 7, 8, 9, caractérisé par le fait que le circuit d'évaluation contient des circuits de réglage (R1, C1, R3, R4, C3, Ra; R1' C1, R7, Ra, Rg, C4, R10), qui règlent l'intensité du rayonnement des deux émetteurs de rayonnement (LG, LR) à un niveau prédéterminé en fonction du rayonnement de comparaison reçu (IGV, IRV) dans la plage correspondante des longueurs d'onde. (Figure 8)
11. Détecteur de fumée suivant la revendication 10, caractérisé par le fait que le niveau de réglage (R4, R5; Ra, Rg) pour le rayonnement dans les deux gammes de longueurs d'onde est réglable. (Figure 8)
12. Détecteur de fumée suivant l'une des revendications 1, 2, 4, 6, 7, 8, caractérisé par le fait que le circuit d'évaluation contient au moins un étage intégrateur (S1, C1, A1; S2, C2, A2), qui intègre dans le temps le signal d'au moins l'un des deux récepteurs de rayonnement (SM, Sv). (Figure 9)
13. Détecteur de fumée suivant la revendication 12, caractérisé par le fait que le circuit d'évaluation contient un comparateur (K) et un circuit (S3), qui évalue la valeur d'intégration du signal du récepteur de rayonnement de mesure (SM) à l'instant auquel l'intégrale du signal du récepteur de comparaison (SV) a atteint un niveau prédéterminé (figure 9).
14. Détecteur de fumée suivant la revendication 2, caractérisé par le fait que le circuit d'évaluation déclenche un signal d'alarme lorsque l'une des grandeurs A, B/a, C/b ou 2D/a dépasse une valeur qui est comprise entre 0,01 et 0,2, auquel cas les facteurs a et b sont choisis de telle sorte que l'on a:
Figure imgb0032
lorsqu'aucune fumée n'est présente dans la section de mesure (M). (Figures 8, 9)
15. Détecteur de fumée suivant l'une des revendications 1-14, caractérisé par le fait que respectivement les deux émetteurs de rayonnement (LR, LG) sont disposés au voisinage direct l'un de l'autre pour réaliser le guidage en parallèle de leurs rayons (IR, IG, IRV, IRG) et/ou que respectivement les deux récepteurs de rayonnement (SM, Sv) sont disposés au voisinage direct l'un de l'autre pour leur compensation de température, et que les deux émetteurs de rayonnement sont commandés par le circuit d'évaluation de telle sorte qu'ils délivrent des rayons alternés aux récepteurs de rayonnement.
16. Détecteur de fumée suivant la revendication 15, caractérisé par le fait qu'entre les émetteurs de rayonnement (LR, LG) et la section de mesure (M) se trouve disposé un prisme (31) qui, au moyen de sa dispersion, dévie le rayon (IR, IG) de telle sorte que la section de mesure (M) est presque égale pour les deux longueurs d'onde. (Figure 3)
17. Détecteur de fumée suivant la revendication 15, caractérisé par le fait que les deux émetteurs de rayonnement (LR, LG) sont disposés l'un derrière l'autre dans la direction du rayonnement de sorte que le rayonnement d'un émetteur de rayonnement (LR) traverse l'autre émetteur de rayonnement (LG) (Figure 4).
18. Détecteur de fumée suivant la revendication 15, caractérisé par le fait que les deux émetteurs de rayonnement (LR, LG) sont disposés l'un derrière l'autre ou côte-à-côte dans la direction du rayonnement et qu'il est prévu une lentille bifocale de Fresnel, qui forme, au même instant, l'image du rayonnement des deux émetteurs de rayonnement (LR, LG).
19. Détecteur de fumée suivant la revendication 15, caractérisé par le fait que les deux émetteurs de rayonnement (LG, LR) sont disposés de telle sorte qu'ils irradient un verre dépoli (MS), le rayonnement délivré par la surface irradiée du disque dépoli étant dirigé dans la sélection de mesure (M). (Figure 6)
20. Détecteur de fumée suivant la revendication 15, caractérisé par le fait qu'il est prévu un nombre plus important de prismes en toit disposés côte-à-côte, qui réunissent respectivement le rayonnement des deux émetteurs de rayonnement (LG, LR) en direction de la section de mesure (M). (Figure 7)
21. Détecteur de fumée suivant l'une des revendications 15 à 20, caractérisé par le fait que chaque émetteur de rayonnement (LR, LG) est réalisé sous la forme d'une source de rayonnement à large bande, en amont de laquelle est monté un filtre optique.
22. Détecteur de fumée suivant l'une des revendications 15 à 21, caractérisé par le fait que les deux émetteurs de rayonnement (LR, LG) sont réalisés sous la forme d'une source de rayonnement à large bande en amont de laquelle est monté un filtre optique, dans la bande passante et est modifiable au moyen de signaux électriques.
23. Détecteur de fumée suivant l'une des revendications 15 à 20, caractérisé par le fait que les émetteurs de rayonnement (LR, LG) sont réalisés sous la forme d'une diode à luminescence raccordable.
24. Détecteur de fumée suivant la revendication 15, caractérisé par le fait que des récepteurs de rayonnement de mesure (SM) et des récepteurs de rayonnement de comparaison (Sv) sont réunis de manière à former un récepteur double de rayonnement.
EP81108849A 1980-12-18 1981-10-24 Détecteur de fumée d'après le principe d'extinction de radiation Expired EP0054680B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81108849T ATE24787T1 (de) 1980-12-18 1981-10-24 Rauchmelder nach dem strahlungs-extinktionsprinzip.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH9342/80 1980-12-18
CH934280 1980-12-18

Publications (2)

Publication Number Publication Date
EP0054680A1 EP0054680A1 (fr) 1982-06-30
EP0054680B1 true EP0054680B1 (fr) 1987-01-07

Family

ID=4350969

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81108849A Expired EP0054680B1 (fr) 1980-12-18 1981-10-24 Détecteur de fumée d'après le principe d'extinction de radiation

Country Status (10)

Country Link
US (1) US4547675A (fr)
EP (1) EP0054680B1 (fr)
JP (1) JPS57128831A (fr)
AT (1) ATE24787T1 (fr)
AU (1) AU544283B2 (fr)
CA (1) CA1208331A (fr)
DE (1) DE3175819D1 (fr)
DK (1) DK543181A (fr)
ES (1) ES508644A0 (fr)
NO (1) NO814089L (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014009642A1 (de) * 2014-06-26 2016-01-14 Elmos Semiconductor Aktiengesellschaft Verfahren zur Erfassung einer physikalischen Größe zur Detektion und Charakterisierung von Gasen, Nebel und Rauch, insbesondere einer Vorrichtung zur Messung der Partikelkonzentration

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144458U (ja) * 1984-03-05 1985-09-25 ホーチキ株式会社 火災検出装置
JPH0765963B2 (ja) * 1986-04-07 1995-07-19 ホーチキ株式会社 減光式煙感知器
JPH0765964B2 (ja) * 1986-11-14 1995-07-19 ホーチキ株式会社 減光式煙感知器
JP2585559B2 (ja) * 1986-12-27 1997-02-26 ホーチキ株式会社 火災判断装置
FI83696B (fi) * 1987-01-27 1991-04-30 Halton Oy Foerfarande foer reglering av ventilation.
US4814628A (en) * 1987-03-20 1989-03-21 Precitronic Gesellschaft Fuer Feinmechanik Und Electronic Mbh Arrangement for the transmission of laser light with reference source for backscatter obstruction detection
US4857895A (en) * 1987-08-31 1989-08-15 Kaprelian Edward K Combined scatter and light obscuration smoke detector
FR2666163B1 (fr) * 1990-08-22 1995-03-17 Bertin & Cie Dispositif opto-electronique de detection de fumees ou de gaz en suspension dans l'air.
US5473314A (en) * 1992-07-20 1995-12-05 Nohmi Bosai, Ltd. High sensitivity smoke detecting apparatus using a plurality of sample gases for calibration
DE4320873A1 (de) * 1993-06-23 1995-01-05 Hekatron Gmbh Schaltungsanordnung für einen optischen Melder zur Umweltüberwachung und Anzeige eines Störmediums
EP0813178A1 (fr) * 1996-06-13 1997-12-17 Cerberus Ag Détecteur de fumée optique
JPH1123458A (ja) * 1997-05-08 1999-01-29 Nittan Co Ltd 煙感知器および監視制御システム
GB9721861D0 (en) 1997-10-15 1997-12-17 Kidde Fire Protection Ltd High sensitivity particle detection
GB2389176C (en) * 2002-05-27 2011-07-27 Kidde Ip Holdings Ltd Smoke detector
DE60325254D1 (de) * 2002-08-23 2009-01-22 Gen Electric Mmuner alarmsignalerzeugungs-rauchdetektor
US7564365B2 (en) * 2002-08-23 2009-07-21 Ge Security, Inc. Smoke detector and method of detecting smoke
UA73398C2 (en) * 2003-07-03 2005-07-15 Private Entpr Arton Smoke fire detector ?? ?? ?? ??
US7301641B1 (en) * 2004-04-16 2007-11-27 United States Of America As Represented By The Secretary Of The Navy Fiber optic smoke detector
JP2006003233A (ja) * 2004-06-17 2006-01-05 Otsuka Denshi Co Ltd 光学セル測定装置
CA2959377C (fr) 2008-06-10 2020-03-10 Garrett Thermal Systems Limited Detection de particules
KR101863270B1 (ko) * 2009-05-01 2018-06-29 엑스트랄리스 테크놀로지 리미티드 입자 검출기에 대한 향상
EP3276680A1 (fr) * 2017-01-25 2018-01-31 Siemens Schweiz AG Détection optique de fumée selon le principe de deux couleurs au moyen d'une diode électroluminescente comprenant une puce à del destinée à émettre la lumière et comprenant un convertisseur de lumière pour convertir une partie de la lumière émise en lumière de grandes longueurs d'onde
EP4220190A3 (fr) 2020-11-02 2023-11-01 Kistler Holding AG Capteur d'accélération
ES2971916T3 (es) 2020-11-02 2024-06-10 Kistler Holding Ag Transductor de aceleración
JP7244604B2 (ja) 2020-11-02 2023-03-22 キストラー ホールディング アクチエンゲゼルシャフト 加速度変換器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3521958A (en) * 1969-01-30 1970-07-28 Kettering Scient Research Inc Rapid scanning spectrophotometer
US3843258A (en) * 1971-08-25 1974-10-22 Bendix Corp Dual beam absorption type optical spectrometer
JPS555157B2 (fr) * 1972-06-24 1980-02-04
FR2193486A5 (fr) * 1972-07-24 1974-02-15 Hotellier Jac Ues L
US3895233A (en) * 1972-10-26 1975-07-15 Bailey Meter Co Gas analyzer
CH561942A5 (fr) * 1974-03-08 1975-05-15 Cerberus Ag
JPS51127787A (en) * 1975-04-30 1976-11-08 Kokusai Gijutsu Kaihatsu Kk Smoke sensor
JPS51127786A (en) * 1975-04-30 1976-11-08 Kokusai Gijutsu Kaihatsu Kk Smoke sensor
US4057734A (en) * 1975-08-28 1977-11-08 Barringer Research Limited Spectroscopic apparatus with balanced dual detectors
US3982130A (en) * 1975-10-10 1976-09-21 The United States Of America As Represented By The Secretary Of The Air Force Ultraviolet wavelength smoke detector
US4076425A (en) * 1976-02-17 1978-02-28 Julian Saltz Opacity measuring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014009642A1 (de) * 2014-06-26 2016-01-14 Elmos Semiconductor Aktiengesellschaft Verfahren zur Erfassung einer physikalischen Größe zur Detektion und Charakterisierung von Gasen, Nebel und Rauch, insbesondere einer Vorrichtung zur Messung der Partikelkonzentration

Also Published As

Publication number Publication date
ES8303773A1 (es) 1983-02-01
EP0054680A1 (fr) 1982-06-30
ES508644A0 (es) 1983-02-01
DK543181A (da) 1982-06-19
ATE24787T1 (de) 1987-01-15
JPS57128831A (en) 1982-08-10
CA1208331A (fr) 1986-07-22
AU7856481A (en) 1982-06-24
DE3175819D1 (en) 1987-02-12
US4547675A (en) 1985-10-15
NO814089L (no) 1982-06-21
AU544283B2 (en) 1985-05-23

Similar Documents

Publication Publication Date Title
EP0054680B1 (fr) Détecteur de fumée d'après le principe d'extinction de radiation
DE2504300C3 (de) Vorrichtung zur Messung des Absorptionsvermögens eines Mediums, insbesondere von Rauch
EP3029646B1 (fr) Détecteur de fumée à écran diffusant doté d'une diode lumineuse bicolore
EP0209860B1 (fr) Appareil de mesure de la réflexion pour mesure sans contact
DE69738627T2 (de) Gasdetektor
DE19940280C2 (de) Gassensor mit offener optischer Meßstrecke
EP1887536A1 (fr) Détecteur de fumée à lumière diffusée
EP3504692A1 (fr) Procédé de détection d'incendie selon le principe de lumière diffusée avec allumage échelonné d'une autre unité de del pour rayonner d'autres impulsions lumineuses de différentes longueurs d'onde et selon d'autres angles de diffusion ainsi que détecteur de fumées à lumière diffusée
DE2851444A1 (de) Lichtgitter
DE10130763A1 (de) Vorrichtung zur optischen Distanzmessung über einen grossen Messbereich
DE2754139B2 (de) Rauchdetektor
DE3437580A1 (de) Vorrichtung zum optischen pruefen eines zigarettenstrangs
EP0762174B1 (fr) Dispositif d'éclairage linéaire de matériaux sous forme de feuilles comme par exemple des billets de banque ou papiers de valeur
EP0145877B1 (fr) Photomètre pour l'analyse en continu d'un milieu (gaz ou liquide)
DE102013211885A1 (de) Partikeldetektor und Verfahren zur Detektion von Partikeln
WO2013153106A1 (fr) Système de détection de gaz
DE19741853A1 (de) Rauchmelder
DE2310817B2 (de) Vorrichtung zur Erfassung von in einem Strömungsmittel mitgeführten Partikeln, insbesondere Rauchmelder
DE102015012429A1 (de) Verfahren zur Signalerfassung in einem Gasanalysesystem
DE2714130A1 (de) Optischer feuerdetektor
EP0802499A2 (fr) Balayeur à luminescence
DE3231025C2 (de) Einrichtung zur Identifizierung von gepulster Laserstrahlung
DE2632876A1 (de) Rauchdetektor
DE4215908A1 (de) Optische Einrichtung zur Bestimmung der Größe von Partikeln
DE10148748A1 (de) Verfahren und Vorrichtung zum berührungslosen Bestimmen biophysikalischer Parameter von Pflanzenbeständen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19821103

ITF It: translation for a ep patent filed

Owner name: VETTOR GALLETTI DI SAN CATALDO

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 24787

Country of ref document: AT

Date of ref document: 19870115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3175819

Country of ref document: DE

Date of ref document: 19870212

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19890911

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890915

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890927

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19891031

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900823

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900910

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900912

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900928

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19901024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19901025

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19901031

BERE Be: lapsed

Owner name: CERBERUS A.G.

Effective date: 19901031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19911024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19911031

Ref country code: CH

Effective date: 19911031

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 81108849.1

Effective date: 19910603