EP0054680B1 - Smoke detector according to the radiation extinction principle - Google Patents

Smoke detector according to the radiation extinction principle Download PDF

Info

Publication number
EP0054680B1
EP0054680B1 EP81108849A EP81108849A EP0054680B1 EP 0054680 B1 EP0054680 B1 EP 0054680B1 EP 81108849 A EP81108849 A EP 81108849A EP 81108849 A EP81108849 A EP 81108849A EP 0054680 B1 EP0054680 B1 EP 0054680B1
Authority
EP
European Patent Office
Prior art keywords
radiation
smoke detector
detector according
evaluation circuit
smoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81108849A
Other languages
German (de)
French (fr)
Other versions
EP0054680A1 (en
Inventor
Jürg Dr. sc. nat. Muggli
Martin Dr. Sc. Nat. Labhart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cerberus AG
Original Assignee
Cerberus AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cerberus AG filed Critical Cerberus AG
Priority to AT81108849T priority Critical patent/ATE24787T1/en
Publication of EP0054680A1 publication Critical patent/EP0054680A1/en
Application granted granted Critical
Publication of EP0054680B1 publication Critical patent/EP0054680B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/20Calibration, including self-calibrating arrangements
    • G08B29/24Self-calibration, e.g. compensating for environmental drift or ageing of components

Definitions

  • the invention relates to a smoke detector based on the radiation extinction principle with radiation transmitters of different wavelengths and radiation receivers, which radiation transmitters transmit rays via a smoke-accessible measurement section to the measurement radiation receiver and rays via a comparison path which is not or less accessible to the comparison radiation receiver, an evaluation circuit arranged downstream of the two receivers sending a signal generated with a certain radiation weakness.
  • a smoke detector of this type With a smoke detector of this type, a relatively small decrease in the radiation directed from a radiation transmitter onto a radiation receiver must be detected.
  • the disadvantage here is that a decrease in radiation, for example due to aging of the radiation source, dusting optically effective surfaces, or the temperature response of radiation transmitters and receivers can have a similar effect to the presence of smoke in the measuring section, so that a faulty alarm signal is triggered can become, even if there is no smoke, or the smoke detector becomes less sensitive and therefore unusable.
  • US Pat. No. 3,895,233 describes a device for analyzing S0 2 in exhaust gases with solid suspended particles (smoke), in which two alternately actuated radiation transmitters direct their beams of different wavelengths into a measuring section and a comparative section via a radiation splitter, each section contains its own radiation receiver at its end.
  • the disadvantage here is that the solid suspended particles (smoke) have no influence on the measurement result of the analysis, and therefore an extinction of the radiation is excluded.
  • the object of the invention is to avoid the disadvantages of the prior art and to provide a smoke detector based on the extinction principle which is insensitive to temperature fluctuations, dusting or condensation, aging of the components and other slow changes in properties and which has improved long-term stability and is not susceptible to faults and operates reliably, and the smoke is more reliable from other types of particle that trigger false alarms, e.g. B. dust or fog drops, can distinguish and has a lower susceptibility to false alarms.
  • two radiation transmitters L, and L G are arranged in such a way that their main emission directions intersect at an angle of 90 °.
  • a semi-transparent mirror D is arranged at an angle of 45 ° to the two radiation directions.
  • a comparison radiation receiver S v is provided in the direct radiation direction of the one radiation transmitter L.
  • a measuring path M that is accessible to smoke, for example in the length of 10 cm-20 cm.
  • a radiation reflector R At the end of the measuring section there is a radiation reflector R, which reflects the radiation passing through the measuring section M back to a measuring radiation receiver S M.
  • This arrangement has the effect that both the radiation from the radiation transmitter L R , deflected by the semitransparent mirror D, and the portion of the other radiation transmitter L G transmitted by this mirror D pass the measurement path M and are reflected by the reflector R, by the measurement radiation receiver S M is recorded.
  • the direct radiation emitted by the radiation transmitter LR after passing through the semi-transparent mirror D and the radiation emitted by the other radiation transmitter L G and reflected by the semi-transparent mirror D after passing through a comparison path which is not or less accessible to smoke hits the comparison radiation receiver S v .
  • This arrangement thus has the effect that the two radiation receivers are acted upon almost identically by the two radiation transmitters in the absence of smoke, but are very different when smoke is present in the measuring section.
  • the two radiation transmitters L R and L G are now designed so that they emit radiation under transmit different wavelength ranges. It has proven expedient to design the one radiation transmitter so that it preferably emits radiation with a wavelength below 600 nm, preferably in the range of green light, while the other radiation transmitter produces radiation above 600 nm, preferably red light or infrared radiation.
  • the wavelength ranges can also be selected so that their mean values are at a distance of at least 50 nm from one another. With the choice of the wavelength ranges, the different extinction properties of different suspended particles can be used to distinguish smoke, since it has been shown that the difference in absorption in the two spectral ranges mentioned has a characteristic value for different types of particles.
  • the evaluation circuit connected to the two radiation receivers is matched to this difference, it can be achieved that smoke particles deliver a particularly large output signal, while other particle types, e.g. dust or fog droplets, have a significantly lower influence, so that an alarm signal is essentially caused by smoke, but not by other types of particles.
  • Broadband emitters e.g. B. incandescent lamps, with appropriate upstream color filters.
  • the use of light-emitting diodes, which are aimed at the emission of radiation in certain wavelength ranges, has proven particularly expedient.
  • the use of a collimator lens K is recommended in order to avoid radiation losses.
  • Such a collimator lens can, however, be dispensed with if the radiation sources are designed as LASER diodes.
  • the two radiation receiver S v and S m are expediently adapted to the radiation of the two radiation transmitters L G and L R, that is, they are expediently designed so that they are sensitive to the spectral ranges of both Strahiungssender L G and L R.
  • the partial ratio of the semi-transparent mirror D can, but need not, be 1: 1. If radiation transmitters L R and L G with very different intensities or radiation receivers S, and S v with very different sensitivity are used, it is expedient to choose a different ratio, if necessary up to 50: 1, in order to achieve that the receivers Emit approximately the same output signal in both spectral ranges.
  • FIG. 2 shows a modified embodiment of a smoke detector arrangement in which a separate collimator lens K 1 and K 2 is provided for each of the two radiation transmitters L G and L.
  • the radiation is not reflected after passing through the measurement section M, but is returned to the measurement radiation receiver S M using a radiation guide F (fiber optics).
  • measurement radiation receiver S and comparison radiation receiver S v can be arranged directly adjacent to one another, or in a further development of the invention, can be designed as a dual radiation receiver. This makes the connection to the evaluation circuit considerably easier, and the same optical properties and the same temperature response are achieved.
  • Figure 3 shows a smoke detector arrangement with directly adjacent radiation transmitters L G and L R.
  • the dispersion of a prism P is used.
  • the radiation from the two radiation transmitters L R and L G is first aligned by a collimator K and passes through the same prism P. If light is refracted less than shorter-wave light, the angle of the main radiation directions is compensated and both beams M emerge from the prism parallel to one another. This ensures that the measurement beam paths largely agree for both wavelengths or spectral ranges and are subject to the same influences.
  • the comparison radiation can be taken in front of or behind the prism at a suitable point.
  • FIG. 4 shows a further smoke detector arrangement with a matching measuring beam M in both spectral areas.
  • the two radiation sources L R and L G are arranged one behind the other on the same axis.
  • a green-emitting LED chip can be mounted on an infrared-emitting chip, so that the radiation emitted by the infrared chip radiates through the green chip.
  • the two types of radiation are directed in parallel by a collimator K and pass through the measuring section M in identical ways.
  • a semitransparent mirror D is provided in front of or behind the collimator K, which directs a portion of the radiation onto the comparison radiation receiver S v . This ensures complete compensation for all intensity fluctuations and misalignments.
  • the radiation from the two radiation transmitters L G and L R can also be combined by means of radiation-conducting elements F 1 , F 2 (fiber optics) and a collimator K at the output of the elements to form the measuring beam M.
  • the two radiation transmitters L G , L R can also irradiate the same focusing screen element MS, the radiation emanating from this being guided into the measuring path M by means of the collimator K.
  • the in slightly different Chen directions emitted radiation of the two radiation transmitters L R , L G can also be directed in the same direction of the measuring path M by means of a roof edge prism DP.
  • a more uniform illumination of the aperture can still be achieved if an entire array (side by side arrangement) of narrow roof edge prisms is used instead of the one roof edge prism (Fresnel prism).
  • the two radiation transmitters are installed one behind the other, their light can be combined into the measuring section by using a bifocal Fresnel lens. Every second ring of this Fresnel lens maps one radiation transmitter to a point (which can also be at infinity), while the other rings map the other radiation transmitter to the same point. If the two radiation transmitters are mounted next to each other, they can be imaged on the same pixel using a cylindrical bifocal Fresnel lens.
  • a complete identity of the measuring section for the two spectral areas can moreover be achieved by the two radiation transmitters being connected to a spectrally variable radiation source, e.g. an incandescent lamp with an optical filter that can be switched to two different spectral regions or a tunable light-emitting diode.
  • a spectrally variable radiation source e.g. an incandescent lamp with an optical filter that can be switched to two different spectral regions or a tunable light-emitting diode.
  • FIG. 8 shows a suitable evaluation circuit which can be connected to the radiation receivers S m and S v and can be used to operate the radiation transmitters L R and L G.
  • the comparison radiation receiver S v is connected to the negative input of an operational amplifier C 1 of the MC 34002 type, the positive input of which is grounded and the output of which is coupled to the negative input via a resistor R 1 .
  • the output of the operational amplifier C 1 is connected to a controllable switch S w , for example a FET switch MC 14066, which is periodically switched from one initial position to the other by an oscillator OS.
  • Both outputs of the switching device SW are each connected to a driver channel for the two radiation transmitters L G and LR.
  • the oscillator has the effect that the two radiation transmitters emit radiation alternately, either adjoining one another or with intermediate times, ie in the form of alternating radiation pulses.
  • both channels can be constructed identically or, taking into account different properties of the radiation transmitters, can be constructed at least analogously.
  • the analog components are placed in parentheses.
  • the two outputs of the switching device SW are connected to earth via a resistor R 3 (R 7 ) and are simultaneously connected to the negative input of an operational amplifier C 3 (C 4 ) of the type MC 34002, the positive input of which is at the tap of a voltage divider R 4 , R s (R a , R 9 ).
  • the output of the operational amplifier C 3 (C 4 ) operates the associated radiation transmitter L G (L R ) via a resistor R 6 (R 10 ).
  • a resistance of the voltage divider for example resistance R 4 (R 8 ), can expediently be set or exchanged in order to be able to set the control level for the intensity of the two radiation sources.
  • the circuit described has the effect that the intensity of the two radiation transmitters L G and L R is automatically regulated to a specific intensity level depending on the intensity of the reference radiation received by the reference radiation receiver S v , so that intensity fluctuations due to aging, temperature changes and similar effects are automatically compensated for.
  • the measuring radiation receiver S M is also connected to the negative input of an operational amplifier C 2 of the type MC 34002, the positive input of which is in turn grounded and the output of which is coupled through a resistor R 2 to the negative input.
  • the output of this operational amplifier C 2 is connected to an AC amplifier AC, at the output of which there is an alarm circuit A.
  • the amplitude of the output signal of the AC voltage amplifier AC supplied to the alarm circuit thus depends in the following manner on the radiation intensities I G and I R recorded by the measurement radiation receiver S M in the two spectral ranges and on the reference radiation intensities I Rv and I Gv recorded by the reference radiation receiver S v in the same spectral ranges from: a and b are factors that result from the properties of the components, especially in the voltage divider ratio R 4 / R 5 (R 8 / R 9 ).
  • R 4 resistance
  • the output signal A becomes directly dependent on the smoke density, and the alarm circuit can be set up in such a way that an alarm signal is triggered or passed on as soon as the output signal A exceeds a predetermined threshold value. Since in this case the deviation from zero serves as a criterion for triggering an alarm signal, the difficulties of previously known extinguishing smoke detectors, in which a small deviation from a large and difficult to stabilize value had to be determined, are avoided from the outset.
  • An alarm signal is triggered when one of the sizes A, B / a, C / b or 2D / a exceeds a value between 0.01 (due to the stability of the smoke detector) and 0.2 (due to the length of the measuring section) , where a and b are chosen such that will.
  • the circuit can be developed in such a way that additional parameters are formed, for example or which depend on the type of smoke and which allow a conclusion to be drawn about the type of smoke.
  • It can also be formed which, in combination with the main criteria A, B, C or D, can also be used to change the response differences for different types of fire.
  • An additional evaluation of one of the sizes E, F, G, or H can also be used to distinguish between smoke and disturbance variables such as dust or condensation.
  • the smoke development can be tracked if the time differential quotient dA / dt, dB / dt, dC / dt or dD / dt of the output signal A, B, C or D is also formed.
  • the stability of the smoke detector can be significantly increased if you suppress the small and slow changes in the output signal and only evaluate signals that are at least as fast as can be generated by a fire. This can be achieved either by slowly changing at least one of the factors a, b, c, d, e, f, g or h in order to compensate for these fluctuations or by comparing the output signal with its moving average.
  • FIG. 9 Another evaluation circuit is recorded in FIG. 9.
  • the signal of the measurement radiation receiver S M as well as the signal of the comparison radiation receiver S v is integrated in time (A 2 , C 2 , S 2 or A 1 , C 1 , S,).
  • the comparator K compares the integral of the comparison radiation receiver with a predetermined value, which is determined by the voltage divider E3, R 4 , and opens the switch S 3 of the sample and hold amplifier (S 3 , C 3 , A 3 ) at that time which the integration value exceeds the specified value.
  • An alarm circuit A is located at the output of the amplifier A 3.
  • the oscillator OS controls the repetition of the integration process and switches between the two radiation transmitters L G and L R with the aid of the flip-flop FF.
  • the smoke detectors described have significantly improved stability, even over longer periods, as well as improved functional reliability and greater susceptibility to faults. Changes due to dust and changes in the properties of the components are automatically compensated for without the risk of an incorrect alarm triggering and without loss of sensitivity. By appropriately selecting the spectral ranges used, it can also be achieved that the smoke detectors described preferably react to smoke particles, but not or only weakly to other types of particles.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Security & Cryptography (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Devices For Medical Bathing And Washing (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

A smoke detector contains two radiation transmitters and two radiation receivers. Each of the radiation transmitters emits in a different spectral region, for instance, one emits above and the other one below 600 nm. One part of the radiation of both radiation transmitters is conducted via a measuring path, which is accessible to smoke, to one of the receivers constituting a measuring radiation receiver, and another part of such radiation is conducted via a comparison path, which is not accessible to smoke, to the other of the receivers constituting a comparison radiation receiver. Connected to both radiation receivers is an evaluation circuit which forms from the measuring radiation intensities prevailing in the two spectral regions and from the comparison radiation intensities prevailing in the same spectral regions a function of the type: <IMAGE> By suitably adjusting or selecting the components of the evaluation circuit, the coefficients a and b are selected such that in the absence of smoke in the measuring path, A becomes zero and in the presence of smoke such is proportional to the smoke density.

Description

Die Erfindung betrifft einen Rauchmelder nach dem Strahlungs-Extinktions-Prinzip mit Strahlungssender unterschiedlicher Wellenlänge und Strahlungsempfänger, welche Strahlungssender Strahlen über eine rauchzugängliche Messstrekke zum Messstrahlungsempfänger und Strahlen über eine nicht oder weniger rauchzugängliche Vergleichsstrecke zum Vergleichsstrahlungsempfänger senden, wobei eine den beiden Empfängern nachgeordnete Auswerteschaltung ein Signal bei einer bestimmten Strahlungsschwäche erzeugt.The invention relates to a smoke detector based on the radiation extinction principle with radiation transmitters of different wavelengths and radiation receivers, which radiation transmitters transmit rays via a smoke-accessible measurement section to the measurement radiation receiver and rays via a comparison path which is not or less accessible to the comparison radiation receiver, an evaluation circuit arranged downstream of the two receivers sending a signal generated with a certain radiation weakness.

Bei einem derartigen Rauchmelder muss eine relativ kleine Abnahme der von einem Strahlungssender auf eine Strahlungsempfänger gerichteten Strahlung nachgewiesen werden. Nachteilig wirkt sich dabei aus, dass eine Bestrahlungsabnahme, beispielsweise durch Alterung der Strahlungsquelle, durch Verstaubung optisch wirksamer Flächen, oder der Temperaturgang von Strahlungssendern und -Empfängern eine ähnliche Wirkung haben können wie das Vorhandensein von Rauch in der Messstrecke, so dass ein fehlerhaftes Alarmsignal ausgelöst werden kann, auch wenn kein Rauch vorhanden ist, oder der Rauchmelder unempfindlicher und daher unbrauchbar wird.With a smoke detector of this type, a relatively small decrease in the radiation directed from a radiation transmitter onto a radiation receiver must be detected. The disadvantage here is that a decrease in radiation, for example due to aging of the radiation source, dusting optically effective surfaces, or the temperature response of radiation transmitters and receivers can have a similar effect to the presence of smoke in the measuring section, so that a faulty alarm signal is triggered can become, even if there is no smoke, or the smoke detector becomes less sensitive and therefore unusable.

Gemäss US-Patent 3 994 603 kann dieser Nachteil dadurch beseitigt werden, dass ein Vergleichsstrahlengang vorgesehen ist, der nicht oder weniger durch Rauch beeinflusstwird, wobei die Auswerteschaltung mittels eines Vergleichsstrahlungsempfängers die nicht durch Rauch bedingten Strahlungsänderungen kompensiert. Auf diese Weise können zwar die genannten Nachteile weitgehend vermieden werden, jedoch lässt sich auf diese Weise Rauch nicht mit Sicherheit von anderen Schwebeteilchenarten, z.B. Staubpartikel oder Nebeldämpfe, unterscheiden.According to US Pat. No. 3,994,603, this disadvantage can be eliminated by providing a comparison beam path which is not or less influenced by smoke, the evaluation circuit using a comparison radiation receiver compensating for the radiation changes not caused by smoke. Although the disadvantages mentioned can largely be avoided in this way, smoke cannot be reliably removed from other types of floating particles, e.g. Distinguish dust particles or mist vapors.

Im US-Patent 3 895 233 ist ein Gerät zur Analyse von S02 in Abgasen mit festen Schwebeteilchen (Rauch) beschrieben, in welchen zwei abwechselnd betätigte Strahlungssender ihre unterschiedliche Wellenlängen aufweisenden Strahlen über einen Strahlungsteiler in eine Messstrecke und eine Vergleichsstrecke lenken, wobei jede Strecke an ihrem Ende einen eigenen Strahlungsempfänger enthält. Nachteilig hierbei ist, dass die festen Schwebeteilchen (Rauch) keinen Einfluss auf das Messergebnis der Analyse ausüben, und daher eine Extinktion der Strahlung ausgeschlossen ist.US Pat. No. 3,895,233 describes a device for analyzing S0 2 in exhaust gases with solid suspended particles (smoke), in which two alternately actuated radiation transmitters direct their beams of different wavelengths into a measuring section and a comparative section via a radiation splitter, each section contains its own radiation receiver at its end. The disadvantage here is that the solid suspended particles (smoke) have no influence on the measurement result of the analysis, and therefore an extinction of the radiation is excluded.

Die Erfindung hat die Aufgabe, die Nachteile des Standes der Technik zu vermeiden und einen Rauchmelder nach dem Extinktions-Prinzip zu schaffen, der gegen Temperaturschwankungen, Verstaubung oder Betauung, Alterung der Bauelemente und andere langsame Eigenschaftsänderungen unempfindlich ist, der eine verbesserte Langzeit-Stabilität aufweist und störunanfällig und betriebssicher arbeitet, und der Rauch mit grösserer Sicherheit von anderen Fehlalarme auslösenden Partikelarten, z. B. Staub oder Nebeltropfen, zu unterscheiden vermag und eine geringere Fehlalarmanfälligkeit aufweist.The object of the invention is to avoid the disadvantages of the prior art and to provide a smoke detector based on the extinction principle which is insensitive to temperature fluctuations, dusting or condensation, aging of the components and other slow changes in properties and which has improved long-term stability and is not susceptible to faults and operates reliably, and the smoke is more reliable from other types of particle that trigger false alarms, e.g. B. dust or fog drops, can distinguish and has a lower susceptibility to false alarms.

Die Aufgabe der Erfindung wird durch die Merkmale des kennzeichnenden Teiles des Patentanspruch 1 gelöst.The object of the invention is achieved by the features of the characterizing part of patent claim 1.

Die Erfindung, sowie zweckmässige Weiterbildungen derselben, werden anhand der in den Figuren dargestellten Ausführungsbeispielen beschrieben.

  • Figur 1 zeigt eine Rauchmelder-Anordnung mit Reflektor.
  • Figur 2 zeigt eine Rauchmelder-Anordnung mit Strahlungsleiter im Anschluss an die Messstrekke.
  • Figur 3 zeigt eine Rauchmelder-Anordnung mit Dispersions-Prisma.
  • Figur 4 zeigt eine Rauchmelder-Anordnung mit hintereinander angeordneten Strahlungssendern.
  • Figur 5 zeigt eine Rauchmelder-Anordnung mit Strahlungsleitern vor der Messstrecke.
  • Figur 6 zeigt eine Rauchmelder-Anordnung mit Mattscheibe.
  • Figur 7 zeigt eine Rauchmelder-Anordnung mit Dachkanten-Prisma.
  • Figuren 8 und 9 zeigen je eine Auswerteschaltung für einen Rauchmelder.
The invention, as well as expedient developments of the same, are described on the basis of the exemplary embodiments illustrated in the figures.
  • Figure 1 shows a smoke detector arrangement with reflector.
  • FIG. 2 shows a smoke detector arrangement with a radiation conductor following the measuring section.
  • Figure 3 shows a smoke detector arrangement with a dispersion prism.
  • FIG. 4 shows a smoke detector arrangement with radiation transmitters arranged one behind the other.
  • FIG. 5 shows a smoke detector arrangement with radiation conductors in front of the measuring section.
  • Figure 6 shows a smoke detector arrangement with a focusing screen.
  • Figure 7 shows a smoke detector arrangement with roof edge prism.
  • FIGS. 8 and 9 each show an evaluation circuit for a smoke detector.

Bei der in Figur 1 dargestellten Rauchmelder-Anordnung sind zwei Strahlungssender L, und LG so angeordnet, dass ihre Hauptausstrahlungsrichtungen sich unter einem Winkel von 90° kreuzen. Unter einem Winkel von 45° zu den beiden Strahlungsrichtungen ist ein halbdurchlässiger Spiegel D angeordnet. In der direkten Strahlungsrichtung des einen Strahlungssenders L, ist ein Vergleichsstrahlungsempfänger Sv vorgesehen. In Strahlungsrichtung des anderen Strahlungssenders LG liegt eine rauchzugängliche Messstrecke M, beispielsweise in der Länge von 10 cm-20 cm. Am Ende der Messstrecke befindet sich ein Strahlungsreflektor R, der die die Messstrecke M durchsetzende Strahlung auf einen Messstrahlungsempfänger SM zurückwirft. Mit dieser Anordnung wird bewirkt, dass sowohl die Strahlung des Strahlungssenders LR, umgelenkt durch den halbdurchlässigen Spiegel D, als auch der von diesem Spiegel D durchgelassene Anteil des anderen Strahlungssenders LG die Messstrekke M passiert und vom Reflektor R zurückgeworfen, vom Messstrahlungsempfänger SM aufgenommen wird. Dahingegen trifft die vom Strahlungssender LR ausgehende direkte Strahlung nach Durchsetzen des halbdurchlässigen Spiegels D und die vom anderen Strahlungssender LG ausgehende, vom halbdurchlässigen Spiegel D reflektierte Strahlung nach Durchlaufen einer nicht oder weniger rauchzugänglichen Vergleichsstrecke auf den Vergleichsstrahlungsempfänger Sv. Durch diese Anordnung wird also bewirkt, dass die beiden Strahlungsempfänger bei Abwesenheit von Rauch durch die beiden Strahlungssender nahezu gleich beaufschlagt werden, bei Anwesenheit von Rauch in der Messstrecke dagegen stark unterschiedlich.In the smoke detector arrangement shown in FIG. 1, two radiation transmitters L, and L G are arranged in such a way that their main emission directions intersect at an angle of 90 °. A semi-transparent mirror D is arranged at an angle of 45 ° to the two radiation directions. A comparison radiation receiver S v is provided in the direct radiation direction of the one radiation transmitter L. In the radiation direction of the other radiation transmitter L G there is a measuring path M that is accessible to smoke, for example in the length of 10 cm-20 cm. At the end of the measuring section there is a radiation reflector R, which reflects the radiation passing through the measuring section M back to a measuring radiation receiver S M. This arrangement has the effect that both the radiation from the radiation transmitter L R , deflected by the semitransparent mirror D, and the portion of the other radiation transmitter L G transmitted by this mirror D pass the measurement path M and are reflected by the reflector R, by the measurement radiation receiver S M is recorded. On the other hand, the direct radiation emitted by the radiation transmitter LR after passing through the semi-transparent mirror D and the radiation emitted by the other radiation transmitter L G and reflected by the semi-transparent mirror D after passing through a comparison path which is not or less accessible to smoke, hits the comparison radiation receiver S v . This arrangement thus has the effect that the two radiation receivers are acted upon almost identically by the two radiation transmitters in the absence of smoke, but are very different when smoke is present in the measuring section.

Die beiden Strahlungssender LR und LG sind nun so ausgebildet, dass sie Strahlung in unterschiedlichen Wellenlängengebieten aussenden. Es hat sich als zweckmässig erwiesen, den einen Strahlungssender so auszubilden, dass er bevorzugt Strahlung mit einer Wellenlänge unter 600 nm aussendet, vorzugsweise im Bereich des grünen Lichtes, während der andere Strahlungssender Strahlung über 600 nm produziert, vorzugsweise rotes Licht oder Infrarotstrahlung. Die Wellenlängengebiete können auch so gewählt werden, dass ihre Mittelwerte einen Abstand von mindestens 50 nm voneinander haben. Mit der Wahl der Wellenlängenbereiche können die unterschiedlichen Extinktionseigenschaften verschiedener Schwebeteilchen zur Unterscheidung von Rauch ausgenützt werden, da es sich gezeigt hat, dass der Unterschied der Absorption in den beiden genannten Spektralbereichen für verschiedene Partikelarten einen charakteristischen Wert hat. Wenn nun die an die beiden Strahlungsempfänger angeschlossene Auswerteschaltung, wie später erläutert, auf diesen Unterschied abgestimmt ist, so kann erreicht werden, dass Rauchpartikel ein besonders grosses Ausgangssignal liefern, während andere Partikelarten, z.B. Staub oder Nebeltröpfchen, einen wesentlich geringeren Einfluss zeigen, so dass eine Alarmsignalgabe im Wesentlichen durch Rauch bewirkt wird, jedoch nicht durch andere Partikelarten. Als Strahlungsquellen können dabei Breitbandstrahler, z. B. Glühlampen, mit entsprechenden, vorgeschalteten Farbfiltern verwendet werden. Besonders zweckmässig hat sich die Verwendung von Leuchtdioden erwiesen, die auf die Emission von Strahlung in bestimmten Wellenlängenbereichen ausgerichtet sind. Zur Fokussierung der Strahlung auf die Messstrecke M ist dabei die Verwendung einer Kollimatorlinse K empfehlenswert, um Strahlungsverluste zu vermeiden. Auf eine solche Kollimatorlinse kann jedoch verzichtet werden, wenn die Strahlungsquellen als LASER-Dioden ausgebildet sind. Die beiden Strahlungsempfänger Sv und Sm sind zweckmässigerweise auf die Strahlung der beiden Strahlungssender LG und LR abgestimmt, d.h., sie sind zweckmässigerweise so ausgebildet, dass sie für die Spektralbereiche beider Strahiungssender LG und LR empfindlich sind.The two radiation transmitters L R and L G are now designed so that they emit radiation under transmit different wavelength ranges. It has proven expedient to design the one radiation transmitter so that it preferably emits radiation with a wavelength below 600 nm, preferably in the range of green light, while the other radiation transmitter produces radiation above 600 nm, preferably red light or infrared radiation. The wavelength ranges can also be selected so that their mean values are at a distance of at least 50 nm from one another. With the choice of the wavelength ranges, the different extinction properties of different suspended particles can be used to distinguish smoke, since it has been shown that the difference in absorption in the two spectral ranges mentioned has a characteristic value for different types of particles. If, as explained later, the evaluation circuit connected to the two radiation receivers is matched to this difference, it can be achieved that smoke particles deliver a particularly large output signal, while other particle types, e.g. dust or fog droplets, have a significantly lower influence, so that an alarm signal is essentially caused by smoke, but not by other types of particles. Broadband emitters, e.g. B. incandescent lamps, with appropriate upstream color filters. The use of light-emitting diodes, which are aimed at the emission of radiation in certain wavelength ranges, has proven particularly expedient. To focus the radiation on the measurement path M, the use of a collimator lens K is recommended in order to avoid radiation losses. Such a collimator lens can, however, be dispensed with if the radiation sources are designed as LASER diodes. The two radiation receiver S v and S m are expediently adapted to the radiation of the two radiation transmitters L G and L R, that is, they are expediently designed so that they are sensitive to the spectral ranges of both Strahiungssender L G and L R.

Das Teilverhältnis des halbdurchlässigen Spiegels D kann, aber muss nicht 1 : 1 betragen. Falls Strahlungssender LR und LG mit stark unterschiedlicher Intensität oder Strahlungsempfänger S, und Sv mit stark unterschiedlicher Empfindlichkeit benützt werden, ist es zweckmässig, das Teilverhältnis abweichend zu wählen, nötigenfalls bis zu 50: 1, um zu erreichen, dass die Empfänger bei Bestrahlung in beiden Spektralbereichen etwa das gleiche Ausgangssignal abgeben.The partial ratio of the semi-transparent mirror D can, but need not, be 1: 1. If radiation transmitters L R and L G with very different intensities or radiation receivers S, and S v with very different sensitivity are used, it is expedient to choose a different ratio, if necessary up to 50: 1, in order to achieve that the receivers Emit approximately the same output signal in both spectral ranges.

Statt eines einzigen Reflektors R können im Übrigen auch mehrere Reflektorelemente vorgesehen sein, mit denen die Messstrecke M mehrfach gefaltet wird, z.B. in Stern-Form (DE 2 856 259).Instead of a single reflector R, several reflector elements can also be provided, with which the measuring section M is folded several times, e.g. in a star shape (DE 2 856 259).

Figur 2 zeigt eine abgewandelte Ausführung einer Rauchmelder-Anordnung, bei der für jeden der beiden Strahlungssender LG und L, jeweils eine separate Kollimatorlinse K1 und K2 vorgesehen ist. Zum Unterschied vom ersten Beispiel wird die Strahlung nach Durchlaufen der Messstrecke M nicht reflektiert, sondern mit einem Strahlungsleiter F (Fiberoptik) zum Messstrahlungsempfänger SM zurückgeleitet. In diesem Ausführungsbeispiel können Messstrahlungsempfänger S, und Vergleichsstrahlungsempfänger Sv unmittelbar benachbart zueinander angeordnet sein, oder in einer Weiterbildung der Erfindung, als Dual-Strahlungsempfänger ausgebildet sein. Der Anschluss an die Auswerteschaltung wird hierdurch wesentlich erleichtert, und es werden gleiche optische Eigenschaften und gleicher Temperaturgang erreicht.FIG. 2 shows a modified embodiment of a smoke detector arrangement in which a separate collimator lens K 1 and K 2 is provided for each of the two radiation transmitters L G and L. In contrast to the first example, the radiation is not reflected after passing through the measurement section M, but is returned to the measurement radiation receiver S M using a radiation guide F (fiber optics). In this exemplary embodiment, measurement radiation receiver S and comparison radiation receiver S v can be arranged directly adjacent to one another, or in a further development of the invention, can be designed as a dual radiation receiver. This makes the connection to the evaluation circuit considerably easier, and the same optical properties and the same temperature response are achieved.

Figur 3 zeigt eine Rauchdetektor-Anordnung mit unmittelbar benachbart angeordneten Strahlungssendern LG und LR. Um zu erreichen, dass bei einer solchen Anordnung die Messstrahlen beider Strahlungssender parallel zueinander verlaufen, wird die Dispersion eines Prismas P ausgenützt Die Strahlung der beiden Strahlungssender LR und LG wird zunächst von einem Kollimator K ausgerichtet und durchsetzt das gleiche Prisma P. Da längerwelliges Licht weniger gebrochen wird als kürzerwelliges Licht, wird dabei der Winkel der Hauptstrahlungsrichtungen ausgeglichen und beide Strahlen M treten parallel zueinander aus dem Prisma aus. Damit kann gewährleistet werden, dass für beide Wellenlängen oder Spektralbereiche die Messstrahlengänge weitgehend übereinstimmen und den gleichen Einflüssen unterliegen. Die Vergleichsstrahlung kann dabei vor oder hinter dem Prisma an einer geeigneten Stelle abgenommen werden.Figure 3 shows a smoke detector arrangement with directly adjacent radiation transmitters L G and L R. In order to ensure that the measurement beams of both radiation transmitters run parallel to one another in such an arrangement, the dispersion of a prism P is used. The radiation from the two radiation transmitters L R and L G is first aligned by a collimator K and passes through the same prism P. If light is refracted less than shorter-wave light, the angle of the main radiation directions is compensated and both beams M emerge from the prism parallel to one another. This ensures that the measurement beam paths largely agree for both wavelengths or spectral ranges and are subject to the same influences. The comparison radiation can be taken in front of or behind the prism at a suitable point.

Figur 4 zeigt eine weitere Rauchmelder-Anordnung mit übereinstimmendem Messstrahl M in beiden Spektralgebieten. In diesem Beispiel wird dies dadurch erreicht, dass die beiden Strahlungsquellen LR und LG auf der gleichen Achse hintereinander angeordnet sind. Dabei kann beispielsweise ein grün emittierender LED-Chip auf einem Infrarot-emittierenden Chip montiert sein, so dass die vom Infrarot-Chip ausgesandte Strahlung durch den Grün-Chip hindurch strahlt. Die beiden Strahlungsarten werden durch einen Kollimator K parallel gerichtet und durchlaufen die Messstrecke M auf identischen Wegen. Dabei ist vor oder hinter dem Kollimator K ein halbdurchlässiger Spiegel D vorgesehen, der einen Teil der Strahlung auf den Vergleichsstrahlungsempfänger Sv leitet. Dies gewährleistet eine vollständige Kompensation aller Intensitätsschwankungen und Dejustierungen.FIG. 4 shows a further smoke detector arrangement with a matching measuring beam M in both spectral areas. In this example, this is achieved in that the two radiation sources L R and L G are arranged one behind the other on the same axis. In this case, for example, a green-emitting LED chip can be mounted on an infrared-emitting chip, so that the radiation emitted by the infrared chip radiates through the green chip. The two types of radiation are directed in parallel by a collimator K and pass through the measuring section M in identical ways. In this case, a semitransparent mirror D is provided in front of or behind the collimator K, which directs a portion of the radiation onto the comparison radiation receiver S v . This ensures complete compensation for all intensity fluctuations and misalignments.

Wie in Figur 5 dargestellt, kann die Strahlung der beiden Strahlungssender LG und LR auch mittels strahlungsleitender Elemente F1, F2 (Fiberoptik) und einem Kollimator K am Ausgang der Elemente zum Messstrahl M vereinigt werden.As shown in FIG. 5, the radiation from the two radiation transmitters L G and L R can also be combined by means of radiation-conducting elements F 1 , F 2 (fiber optics) and a collimator K at the output of the elements to form the measuring beam M.

Nach Figur 6 können die beiden Strahlungssender LG, LR auch das gleiche Mattscheiben-Element MS bestrahlen, wobei die von diesem ausgehende Strahlung mittels des Kollimators K in die Messstrecke M geleitet wird.According to FIG. 6, the two radiation transmitters L G , L R can also irradiate the same focusing screen element MS, the radiation emanating from this being guided into the measuring path M by means of the collimator K.

Gemäss Figur 7 kann die in leicht unterschiedlichen Richtungen ausgesandte Strahlung der beiden Strahlungssender LR, LG auch mittels eines Dachkantenprismas DP in der gleichen Richtung der Messstrecke M gerichtet werden. Eine gleichmässigere Ausleuchtung der Apertur kann dabei noch erreicht werden, wenn anstelle des einen Dachkantenprismas ein ganzer Array (Nebeneinanderanordnung) von schmalen Dachkantenprismen verwendet wird (Fresnelprisma).According to Figure 7, the in slightly different Chen directions emitted radiation of the two radiation transmitters L R , L G can also be directed in the same direction of the measuring path M by means of a roof edge prism DP. A more uniform illumination of the aperture can still be achieved if an entire array (side by side arrangement) of narrow roof edge prisms is used instead of the one roof edge prism (Fresnel prism).

Falls die beiden Strahlungssender hintereinander montiert sind, lässt sich deren Licht in die Messstrecke vereinigen, indem man eine bifokale Fresnellinse verwendet. Jeder zweite Ring dieser Fresnellinse bildet den einen Strahlungssender auf einen Punkt (der sich auch im Unendlich befinden kann) ab, während die anderen Ringe den anderen Strahlungssender auf denselben Punkt abbilden. Falls die beiden Strahlungssender nebeneinander montiert sind, können sie mit Hilfe einer zylindrischen bifokalen Fresnellinse auf denselben Bildpunkt abgebildet werden.If the two radiation transmitters are installed one behind the other, their light can be combined into the measuring section by using a bifocal Fresnel lens. Every second ring of this Fresnel lens maps one radiation transmitter to a point (which can also be at infinity), while the other rings map the other radiation transmitter to the same point. If the two radiation transmitters are mounted next to each other, they can be imaged on the same pixel using a cylindrical bifocal Fresnel lens.

Eine vollständige Identität der Messstrecke für die beiden Spekträlgebiete kann im Übrigen dadurch erreicht werden, dass die beiden Strahlungssender zu einer spektralvariablen Strahlungsquelle, z.B. einer Glühlampe mit einem auf zwei verschiedene Spektralgebiete umschaltbaren optischen Filter oder einer durchstimmbaren Leuchtdiode, vereinigt sind.A complete identity of the measuring section for the two spectral areas can moreover be achieved by the two radiation transmitters being connected to a spectrally variable radiation source, e.g. an incandescent lamp with an optical filter that can be switched to two different spectral regions or a tunable light-emitting diode.

Figur 8 zeigt eine geeignete Auswerteschaltung, die an die Strahlungsempfänger Sm und Sv angeschlossen werden und zum Betrieb der Strahlungssender LR und LG dienen kann.FIG. 8 shows a suitable evaluation circuit which can be connected to the radiation receivers S m and S v and can be used to operate the radiation transmitters L R and L G.

In dieser Schaltung ist der Vergleichsstrahlungsempfänger Sv an den negativen Eingang eines Operationsverstärkers C1 vom Typ MC 34002 angeschlossen, dessen positiver Eingang geerdet ist und dessen Ausgang über einen Widerstand R1 mit dem negativen Eingang gegengekoppelt ist. Der Ausgang des Operationsverstärkers C1 ist an einen steuerbaren Schalter Sw angeschlossen, z.B. ein FET-Schalter MC 14066, der von einem Oszillator OS periodisch von einer Ausgangsstellung auf die andere umgeschaltet wird. Beide Ausgänge der Schalteinrichtung SW sind an je einen Treiberkanal für die beiden Strahlungssender LG und LR angeschlossen. Der Oszillator bewirkt, dass die beiden Strahlungssender alternierend Strahlung aussenden, und zwar entweder aneinander anschliessend oder mit Zwischenzeiten, d.h. in Form alternierender Strahlungsimpulse. Beide Kanäle können im Prinzip identisch oder unter Berücksichtigung unterschiedlicher Eigenschaften der Strahlungssender zumindest analog aufgebaut sein. In der folgenden Beschreibung sind die analogen Komponenten jeweils in Klammern gesetzt. Die beiden Ausgänge der Schalteinrichtung SW liegen über einen Widerstand R3 (R7) an Erde und sind gleichzeitig mit dem negativen Eingang eines Operationsverstärkers C3 (C4) vom Typ MC 34002 verbunden, dessen positiver Eingang am Abgriff eines Spannungsteilers R4, Rs (Ra, R9) liegt. Der Ausgang des Operationsverstärkers C3 (C4) betreibt über einen Widerstand R6 (R10) den zugehörigen Strahlungssender LG (LR). Ein Widerstand des Spannungsteilers, beispielsweise Widerstand R4 (R8), ist zweckmässigerweise einstellbar oder auswechselbar, um das Regelniveau für die Intensität der beiden Strahlungsquellen einstellen zu können.In this circuit, the comparison radiation receiver S v is connected to the negative input of an operational amplifier C 1 of the MC 34002 type, the positive input of which is grounded and the output of which is coupled to the negative input via a resistor R 1 . The output of the operational amplifier C 1 is connected to a controllable switch S w , for example a FET switch MC 14066, which is periodically switched from one initial position to the other by an oscillator OS. Both outputs of the switching device SW are each connected to a driver channel for the two radiation transmitters L G and LR. The oscillator has the effect that the two radiation transmitters emit radiation alternately, either adjoining one another or with intermediate times, ie in the form of alternating radiation pulses. In principle, both channels can be constructed identically or, taking into account different properties of the radiation transmitters, can be constructed at least analogously. In the following description, the analog components are placed in parentheses. The two outputs of the switching device SW are connected to earth via a resistor R 3 (R 7 ) and are simultaneously connected to the negative input of an operational amplifier C 3 (C 4 ) of the type MC 34002, the positive input of which is at the tap of a voltage divider R 4 , R s (R a , R 9 ). The output of the operational amplifier C 3 (C 4 ) operates the associated radiation transmitter L G (L R ) via a resistor R 6 (R 10 ). A resistance of the voltage divider, for example resistance R 4 (R 8 ), can expediently be set or exchanged in order to be able to set the control level for the intensity of the two radiation sources.

Die beschriebene Schaltung bewirkt, dass die Intensität der beiden Strahlungssender LG und LR je nach Intensität der vom Referenzstrahlungsempfänger Sv aufgenommenen Referenzstrahlung auf ein bestimmtes Intensitätsniveau automatisch geregelt wird, so dass Intensitätsschwankungen durch Alterung, Temperaturänderungen und ähnliche Effekte automatisch kompensiert werden.The circuit described has the effect that the intensity of the two radiation transmitters L G and L R is automatically regulated to a specific intensity level depending on the intensity of the reference radiation received by the reference radiation receiver S v , so that intensity fluctuations due to aging, temperature changes and similar effects are automatically compensated for.

Der Messstrahlungsempfänger SM ist ebenfalls an den negativen Eingang eines Operationsverstärkers C2 vom Typ MC 34002 angeschlossen, dessen positiver Eingang wiederum geerdet ist und dessen Ausgang über einen Widerstand R2 mit dem negativen Eingang gegengekoppelt ist. Der Ausgang dieses Operationsverstärkers C2 ist mit einem Wechselspannungsverstärker AC verbunden, an dessen Ausgang eine Alarmschaltung A liegt.The measuring radiation receiver S M is also connected to the negative input of an operational amplifier C 2 of the type MC 34002, the positive input of which is in turn grounded and the output of which is coupled through a resistor R 2 to the negative input. The output of this operational amplifier C 2 is connected to an AC amplifier AC, at the output of which there is an alarm circuit A.

Die Amplitude des der Alarmschaltung zugeführten Ausgangssignales des Wechselspannungsverstärkers AC hängt also in folgender Weise von den vom Messstrahlungsempfänger SM aufgenommenen Strahlungsintensitäten IG und IR in den beiden Spektralbereichen und von den vom Referenzstrahlungsempfänger Sv in den gleichen Spektralbereichen aufgenommenen Referenzstrahlungsintensitäten IRv und IGv ab:

Figure imgb0001
dabei sind a und b Faktoren, die sich aus den Eigenschaften der Komponenten speziell im Spannungsteilerverhältnis R4/R5 (R8/R9) ergeben. Durch geeignete Einstellung des Widerstandes R4 (Rs) kann dabei erreicht werden, dass das Wechselspannungssignal A Null wird, wenn kein Rauch in der Messstrecke M vorhanden ist. Das Ausgangssignal A wird dabei unmittelbar abhängig von der Rauchdichte, und die Alarmschaltung kann so eingerichtet werden, dass ein Alarmsignal ausgelöst oder weitergegeben wird, sobald das Ausgangssignal A einen vorgegebenen Schwellenwert übersteigt. Da in diesem Fall die Abweichung von Null als Kriterium zur Auslösung eines Alarmsignales dient, werden die Schwierigkeiten vorbekannter, nach dem Extinktionsprinzip arbeitende Rauchmelder, bei denen eine kleine Abweichung von einem grossen und schwierig zu stabilisierenden Wert bestimmt werden musste, von Vornherein vermieden.The amplitude of the output signal of the AC voltage amplifier AC supplied to the alarm circuit thus depends in the following manner on the radiation intensities I G and I R recorded by the measurement radiation receiver S M in the two spectral ranges and on the reference radiation intensities I Rv and I Gv recorded by the reference radiation receiver S v in the same spectral ranges from:
Figure imgb0001
a and b are factors that result from the properties of the components, especially in the voltage divider ratio R 4 / R 5 (R 8 / R 9 ). By suitably setting the resistance R 4 (R s ) it can be achieved that the AC voltage signal A becomes zero when there is no smoke in the measuring section M. The output signal A becomes directly dependent on the smoke density, and the alarm circuit can be set up in such a way that an alarm signal is triggered or passed on as soon as the output signal A exceeds a predetermined threshold value. Since in this case the deviation from zero serves as a criterion for triggering an alarm signal, the difficulties of previously known extinguishing smoke detectors, in which a small deviation from a large and difficult to stabilize value had to be determined, are avoided from the outset.

Es besteht auch die Möglichkeit eine der Grössen

Figure imgb0002
oder
Figure imgb0003
oder
Figure imgb0004
zu bilden und als Alarmkriterium auszuwerten. Sie sind ebenfalls ein Mass für die Rauchdichte.There is also the possibility of one of the sizes
Figure imgb0002
or
Figure imgb0003
or
Figure imgb0004
to form and evaluate as an alarm criterion. They are also a measure of smoke density.

Dabei wird ein Alarmsignal ausgelöst, wenn eine der Grössen A, B/a, C/b oder 2D/a einen Wert zwischen 0,01 (bedingt durch die Stabilität des Rauchmelders) und 0,2 (bedingt durch die Länge der Messstrecke) überschreitet, wobei a und b so gewählt werden, dass

Figure imgb0005
werden.An alarm signal is triggered when one of the sizes A, B / a, C / b or 2D / a exceeds a value between 0.01 (due to the stability of the smoke detector) and 0.2 (due to the length of the measuring section) , where a and b are chosen such that
Figure imgb0005
will.

Die Schaltung kann noch so weitergebildet werden, dass zusätzlich weitere Kenngrössen gebildet werden, z.B.

Figure imgb0006
oder
Figure imgb0007
die von der Rauchart abhängen und die einen Schluss darauf zulassen, welche Art von Rauch vorliegt.The circuit can be developed in such a way that additional parameters are formed, for example
Figure imgb0006
or
Figure imgb0007
which depend on the type of smoke and which allow a conclusion to be drawn about the type of smoke.

Es kann auch

Figure imgb0008
gebildet werden,
welche ebenfalls, in Kombination mit dem Hauptkriterium A, B, C oder D, dazu verwendet werden können, die Unterschiede im Ansprechverhalten für verschiedene Feuerarten zu verändern. Eine Zusatzauswertung einer der Grössen E, F, G, oder H kann auch verwendet werden, um noch schärfer zwischen Rauch und Störgrössen wie Staub oder Betauung zu unterscheiden.It can also
Figure imgb0008
be formed
which, in combination with the main criteria A, B, C or D, can also be used to change the response differences for different types of fire. An additional evaluation of one of the sizes E, F, G, or H can also be used to distinguish between smoke and disturbance variables such as dust or condensation.

Die Rauchentwicklung kann verfolgt werden, wenn zusätzlich noch der zeitliche Differentialquotient dA/dt, dB/dt, dC/dt oder dD/dt des Ausgangssignales A, B, C oder D gebildet wird.The smoke development can be tracked if the time differential quotient dA / dt, dB / dt, dC / dt or dD / dt of the output signal A, B, C or D is also formed.

Die Stabilität des Rauchmelders kann noch erheblich erhöht werden, wenn man die kleinen und langsamen Veränderungen des Ausgangssignals unterdrückt und nur Signale auswertet, welche mindestens so schnell sind, wie sie durch ein Feuer erzeugt werden können. Dies kann erzielt werden entweder dadurch, dass mindestens einer der Faktoren a, b, c, d, e, f, g oder h langsam verändert wird, um diese Schwankungen auszugleichen oder dadurch, dass das Ausgangssignal mit seinem gleitenden Mittelwert verglichen wird.The stability of the smoke detector can be significantly increased if you suppress the small and slow changes in the output signal and only evaluate signals that are at least as fast as can be generated by a fire. This can be achieved either by slowly changing at least one of the factors a, b, c, d, e, f, g or h in order to compensate for these fluctuations or by comparing the output signal with its moving average.

Eine andere Auswerteschaltung ist in Figur 9 aufgezeichnet. Das Signal des Messstrahlungsempfängers SM wie auch das Signal des Vergleichsstrahlungsempfängers Sv wird zeitlich integriert (A2, C2, S2 bzw. A1, C1, S,). Der Komparator K vergleicht das Integral des Vergleichsstrahlungsempfängers mit einem vorgegebenen Wert, welcher durch den Spannungsteiler E3, R4 bestimmt wird, und öffnet den Schalter S3 des Sample and Hold-Verstärkers (S3, C3, A3) zu demjenigen Zeitpunkt zu dem der Integrationswert den vorgegebenen Wert überschreitet. Am Ausgang des Verstärkers A3 liegt eine Alarmschaltung A. Der Oszillator OS steuert die Wiederholung des Integrationsvorganges und schaltet mit Hilfe des Flip-Flops FF zwischen den beiden Strahlungssendern LG und LR um.Another evaluation circuit is recorded in FIG. 9. The signal of the measurement radiation receiver S M as well as the signal of the comparison radiation receiver S v is integrated in time (A 2 , C 2 , S 2 or A 1 , C 1 , S,). The comparator K compares the integral of the comparison radiation receiver with a predetermined value, which is determined by the voltage divider E3, R 4 , and opens the switch S 3 of the sample and hold amplifier (S 3 , C 3 , A 3 ) at that time which the integration value exceeds the specified value. An alarm circuit A is located at the output of the amplifier A 3. The oscillator OS controls the repetition of the integration process and switches between the two radiation transmitters L G and L R with the aid of the flip-flop FF.

Die beschriebenen Rauchmelder weisen eine wesentlich verbesserte Stabilität, auch über längere Zeiträume, sowie eine verbesserte Funktionssicherheit und eine grössere Störunanfälligkeit auf. Änderungen durch Verstaubung und Änderungen der Eigenschaften der Komponenten werden automatisch kompensiert ohne die Gefahr einer fehlerhaften Alarmauslösung und ohne Empfindlichkeitsverlust. Durch eine zweckmässige Auswahl der benützten Spektralbereiche kann zudem erreicht werden, dass die beschriebenen Rauchmelder vorzugsweise auf Rauchpartikel reagieren, jedoch nicht oder nur schwach auf andere Partikelarten.The smoke detectors described have significantly improved stability, even over longer periods, as well as improved functional reliability and greater susceptibility to faults. Changes due to dust and changes in the properties of the components are automatically compensated for without the risk of an incorrect alarm triggering and without loss of sensitivity. By appropriately selecting the spectral ranges used, it can also be achieved that the smoke detectors described preferably react to smoke particles, but not or only weakly to other types of particles.

Claims (24)

1. Smoke detector according to the radiation- extinction principle, having two radiation transmitters (LR, LG) of different wave length which are to be actuated in a time sequence, said radiation transmitters (LR, LG) transmitting a radiation (IR, IG) over a smoke-accessible measurement path (M) to a measurement radiation receiver (SM) and a radiation (IRV, IGV) over a no or less smoke-accessible comparison path (V) to a comparison radiation receiver (Sv) whereby an evaluation circuit subordinated to the two receivers generates an output-signal which, at a certain radiation weakness of the radiation (IR, IG) across the measurement path (M), causes an alarm release, characterized in that the evaluation circuit generates, from the radiation intensity IR, IG of the radiation received successively from the two radiation transmitters (LR, LG) after passage of the measurement path (M) and from the radiation intensity IRv, IGV of the radiation received from the two radiation transmitters after passage of the comparison path (V), the output signal
Figure imgb0017
a, b being predetermined coefficients which are set by means of circuit components of the evaluation circuit or are programmed in said evaluation circuit. (figs. 8, 9)
2. Smoke detector according to claim 1, characterized in that the evaluation circuit generates, from the radiation (IR, IG) received after passage of the measurement path (M) and from the radiation (IRV, IGV) received after passage of the comparison path (V), the output
Figure imgb0018
or
Figure imgb0019
or
Figure imgb0020
a, b being predetermined coefficients that are programmed in the evaluation circuit. (fig. 9)
3. Smoke detektor according to claim 1, characterized in that circuit components of the evaluation circuit, preferable, resistors (R4, R8) in voltage dividers (R4, Rs; Re, Rg), are selected in such a way that the output A is zero when there is no smoke in the measurement path. (fig. 8)
4. Smoke detector according to one of claims 1 or 2, characterized in that the evaluation circuit in addition selectively generates the output signal
Figure imgb0021
or
Figure imgb0022
c, d, e and f being predetermined coefficients and programmed in the evaluation circuit. (fig. 9)
5. Smoke detector according to one of claims 1, 2, 4, characterized in that in the evaluation circuit additionally the output signal
Figure imgb0023
is selectively generated, g and h being predetermined coefficients and programmed in the evaluation circuit. (fig. 9)
6. Smoke detector according to one of claims 1 to 5, characterized in that the evaluation circuit is formed such that at least one of the coefficients a, b, c, d, e, f, g or h can be slowly varied. (figs. 8, 9)
7. Smoke detector according to one of claims 1 to 6, characterized in that the evaluation circuit compares the instant values of at least one of the output signals A, B, C, D, E, F, G or H with the shifting average value of the selected output signal or signals. (figs. 8, 9)
8. Smoke detector according to claims 1 and 2 or one of claims 4 to 6, characterized in that the evaluation circuit generates, in addition to at least one of the output signals, the time differential quotient of this or another output signal. (figs. 8, 9)
9. Smoke detector according to one of claims 1, 3, 6, 7, 8, characterized in that the evaluation circuit comprises a current circuit (AC) in which the alternate part of the output signal of the measurement radiation receiver (SM) is generated as a criterion for relaising the alarm. (fig. 8)
10. Smoke detector according to one of claims 1, 3, 6, 7, 8, 9, characterized in that the evaluation circuit comprises control means (R1, C1, R3, R4, C3, R6; R1, C1, R7, Rs, Rg, C4, R10) that controls the radiation intensity of the two radiation transmitters (LG, LR) onto a predetermined level in response to the received radiation intensity (IGV, IRV) within the corresponding wave length field. (fig. 8)
11. Smoke detector according to claim 10, characterized in that the control level (R4, Rs; R8, Rg) for the radiation within the two wave length fields is adjustable. (fig. 8)
12. Smoke detector according to one of claims 1, 2, 4, 5, 6, 7, 8, characterized in that the evaluation circuit comprises at least one integration stage (S1, C1, A1; S2, C2, A2) which carries out a time integration of the signal of at least one of the two radiation receivers (SM, Sv). (fig. 9)
13. Smoke detector according to claim 12, characterized in that the evaluation circuit comprising a comparator (K) and a current circuit (S3) evaluates the integration value of the signal of the measurement radiation receiver (SM) in that moment in which the integral of the signal of the comparison receiver (Sv) reaches a predetermined level. (fig. 9)
14. Smoke detector according to claim 2, characterized in that the evaluation circuit generates an alarm signal when one of the coefficients A, B/a, C/b or 2D/a exceeds a value being within 0,01 and 0,2 whereby the coefficients a, b are selected such that
Figure imgb0024
if there is no smoke in the measurement path (M). (figs. 8, 9)
15. Smoke detector according to one of claims 1-14, characterized in that the two radiation transmitters (LR, LG) on one hand, for parallely conducting their rays (IR, IG, IRV, IRG), and/or the two radiation receivers (SM, Sv) on the other hand, for compensating their temperatures, are arranged in close vicinity to each other and that the two radiation emitters are triggered by the evaluation circuit in such a manner that they give alternating rays onto the radiation receivers.
16. Smoke detector according to claim 15, characterized in that a prism (P) is arranged between the radiation transmitters (LR, LG) and the measuring path (M) which, by means of its dispersion, deviates the rays (IR, IG) in such a manner that the measuring path is nearly equal for the two wave lengths. (fig. 3)
17. Smoke detector according to claim 15, characterized in that the two radiation transmitters (LR, LG) are disposed on behind the other in the radiating direction so that the radiation of one radiation transmitter (LR) penetrates the other radiation transmitter (LG). (fig. 4)
18. Smoke detector according to claim 15, characterized in that the two radiation transmitters (LR, LG) are disposed one behind the other or side by side in the radiating direction and that a bifocal Fresnel lens is provided that depicts the radiation of the two radiation transmitters (LR, LG) on the same viewpoint.
19. Smoke detector according to claim 15, characterized in that the two radiating transmitters (LR, LG) are disposed such that they radiate onto a focussing screen (MS), whereby the radiation emanating from the radiated surface of the focussing screen is conducted into the measuring path (M). (fig. 6)
20. Smoke detector according to claim 15, characterized in that there is provided a greater number of roof edge prisms which each combine the radiation of the two radiating transmitters (LR, LG) toward the measuring path (M). (fig. 7)
21. Smoke detector according to one of claims 15-20, characterized in that each radiating transmitter (LR, LG) is made up as a wide-band radiation source having an optic filter which is in front with it.
22. Smoke detector according to one of claims 15 to 21, characterized in that the two radiation transmitters (LR, LG) are made up as a wide-band radiation source having an optic filter in front with it whose passband is variable by means of electric signals.
23. Smoke detector according to one of claims 15-20, characterized in that the radiation transmitters (LR, LG) are made up as an entirely tuneable light emitting diode.
24. Smoke detector according to claim 15, characterized in that the measuring radiation receiver (SM) and the comparison radiation receiver (Sv) are combined to a dual radiation receiver.
EP81108849A 1980-12-18 1981-10-24 Smoke detector according to the radiation extinction principle Expired EP0054680B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81108849T ATE24787T1 (en) 1980-12-18 1981-10-24 SMOKE DETECTOR ACCORDING TO THE RADIATION EXTINCTION PRINCIPLE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH9342/80 1980-12-18
CH934280 1980-12-18

Publications (2)

Publication Number Publication Date
EP0054680A1 EP0054680A1 (en) 1982-06-30
EP0054680B1 true EP0054680B1 (en) 1987-01-07

Family

ID=4350969

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81108849A Expired EP0054680B1 (en) 1980-12-18 1981-10-24 Smoke detector according to the radiation extinction principle

Country Status (10)

Country Link
US (1) US4547675A (en)
EP (1) EP0054680B1 (en)
JP (1) JPS57128831A (en)
AT (1) ATE24787T1 (en)
AU (1) AU544283B2 (en)
CA (1) CA1208331A (en)
DE (1) DE3175819D1 (en)
DK (1) DK543181A (en)
ES (1) ES8303773A1 (en)
NO (1) NO814089L (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014009642A1 (en) * 2014-06-26 2016-01-14 Elmos Semiconductor Aktiengesellschaft Method for detecting a physical quantity for the detection and characterization of gases, mists and smoke, in particular a device for measuring the particle concentration

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144458U (en) * 1984-03-05 1985-09-25 ホーチキ株式会社 fire detection device
JPH0765963B2 (en) * 1986-04-07 1995-07-19 ホーチキ株式会社 Dimming smoke detector
JPH0765964B2 (en) * 1986-11-14 1995-07-19 ホーチキ株式会社 Dimming smoke detector
JP2585559B2 (en) * 1986-12-27 1997-02-26 ホーチキ株式会社 Fire judgment device
FI83696B (en) * 1987-01-27 1991-04-30 Halton Oy FOERFARANDE FOER REGLERING AV VENTILATION.
US4814628A (en) * 1987-03-20 1989-03-21 Precitronic Gesellschaft Fuer Feinmechanik Und Electronic Mbh Arrangement for the transmission of laser light with reference source for backscatter obstruction detection
US4857895A (en) * 1987-08-31 1989-08-15 Kaprelian Edward K Combined scatter and light obscuration smoke detector
FR2666163B1 (en) * 1990-08-22 1995-03-17 Bertin & Cie OPTO-ELECTRONIC DEVICE FOR DETECTING SMOKE OR GAS SUSPENDED IN AIR.
US5473314A (en) * 1992-07-20 1995-12-05 Nohmi Bosai, Ltd. High sensitivity smoke detecting apparatus using a plurality of sample gases for calibration
DE4320873A1 (en) * 1993-06-23 1995-01-05 Hekatron Gmbh Circuit arrangement for an optical detector for environmental monitoring and display of an interference medium
EP0813178A1 (en) * 1996-06-13 1997-12-17 Cerberus Ag Optical smoke detector
JPH1123458A (en) * 1997-05-08 1999-01-29 Nittan Co Ltd Smoke sensor and monitoring control system
GB9721861D0 (en) 1997-10-15 1997-12-17 Kidde Fire Protection Ltd High sensitivity particle detection
GB2389176C (en) * 2002-05-27 2011-07-27 Kidde Ip Holdings Ltd Smoke detector
US7564365B2 (en) * 2002-08-23 2009-07-21 Ge Security, Inc. Smoke detector and method of detecting smoke
WO2004019294A2 (en) * 2002-08-23 2004-03-04 General Electric Company Rapidly responding, false detection immune alarm signal producing smoke detector
UA73398C2 (en) * 2003-07-03 2005-07-15 Private Entpr Arton Smoke fire detector ?? ?? ?? ??
US7301641B1 (en) * 2004-04-16 2007-11-27 United States Of America As Represented By The Secretary Of The Navy Fiber optic smoke detector
JP2006003233A (en) * 2004-06-17 2006-01-05 Otsuka Denshi Co Ltd Optical cell measuring device
WO2009149498A1 (en) 2008-06-10 2009-12-17 Xtralis Technologies Ltd Particle detection
TWI600891B (en) 2009-05-01 2017-10-01 愛克斯崔里斯科技有限公司 Particle detection
EP3276680A1 (en) * 2017-01-25 2018-01-31 Siemens Schweiz AG Optical smoke detection based on the two colour principle using a light emitting diode with an led chip for light emission and with a light converter for converting a part of the emitted light to longer wave light
JP7244604B2 (en) 2020-11-02 2023-03-22 キストラー ホールディング アクチエンゲゼルシャフト accelerometer
ES2971916T3 (en) 2020-11-02 2024-06-10 Kistler Holding Ag Acceleration transducer
EP3992639B1 (en) 2020-11-02 2024-06-26 Kistler Holding AG Acceleration sensor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3521958A (en) * 1969-01-30 1970-07-28 Kettering Scient Research Inc Rapid scanning spectrophotometer
US3843258A (en) * 1971-08-25 1974-10-22 Bendix Corp Dual beam absorption type optical spectrometer
JPS555157B2 (en) * 1972-06-24 1980-02-04
FR2193486A5 (en) * 1972-07-24 1974-02-15 Hotellier Jac Ues L
US3895233A (en) * 1972-10-26 1975-07-15 Bailey Meter Co Gas analyzer
CH561942A5 (en) * 1974-03-08 1975-05-15 Cerberus Ag
JPS51127786A (en) * 1975-04-30 1976-11-08 Kokusai Gijutsu Kaihatsu Kk Smoke sensor
JPS51127787A (en) * 1975-04-30 1976-11-08 Kokusai Gijutsu Kaihatsu Kk Smoke sensor
US4057734A (en) * 1975-08-28 1977-11-08 Barringer Research Limited Spectroscopic apparatus with balanced dual detectors
US3982130A (en) * 1975-10-10 1976-09-21 The United States Of America As Represented By The Secretary Of The Air Force Ultraviolet wavelength smoke detector
US4076425A (en) * 1976-02-17 1978-02-28 Julian Saltz Opacity measuring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014009642A1 (en) * 2014-06-26 2016-01-14 Elmos Semiconductor Aktiengesellschaft Method for detecting a physical quantity for the detection and characterization of gases, mists and smoke, in particular a device for measuring the particle concentration

Also Published As

Publication number Publication date
ES508644A0 (en) 1983-02-01
NO814089L (en) 1982-06-21
US4547675A (en) 1985-10-15
ES8303773A1 (en) 1983-02-01
JPS57128831A (en) 1982-08-10
ATE24787T1 (en) 1987-01-15
EP0054680A1 (en) 1982-06-30
CA1208331A (en) 1986-07-22
AU7856481A (en) 1982-06-24
DK543181A (en) 1982-06-19
DE3175819D1 (en) 1987-02-12
AU544283B2 (en) 1985-05-23

Similar Documents

Publication Publication Date Title
EP0054680B1 (en) Smoke detector according to the radiation extinction principle
DE2754139C3 (en) Smoke detector
DE2504300C3 (en) Device for measuring the absorption capacity of a medium, in particular smoke
EP3029646B1 (en) Scattered light smoke detector with a two-colour light emitting diode
DE69738627T2 (en) GAS DETECTOR
EP0209860B1 (en) Apparatus for contactless reflection measurement
DE19940280C2 (en) Gas sensor with an open optical measuring section
EP1887536A1 (en) Smoke alarm using light scattering
EP3504692A1 (en) Method for detecting a fire according to the scattered light principle with a staggered addition of a further led unit for radiating in further light pulses with different wavelengths and scattered light angles, and such scattered light smoke detectors
DE2851444A1 (en) LIGHT GRID
DE10130763A1 (en) Device for optical distance measurement over a large measuring range
DE3437580A1 (en) Apparatus for optically testing a cigarette rod
EP0762174B1 (en) Device for linear illumination of sheet material, e.g. bank notes or securities
EP0145877B1 (en) Photometer for continuous analysis of a medium (gas or liquid)
WO2013153106A1 (en) Gas detector system
DE69319184T2 (en) Liquid contamination sensor
DE19741853A1 (en) Hollow ellipse smoke alarm
DE2310817C3 (en) Device for detecting particles carried along in a fluid, in particular smoke alarms
EP0802499A2 (en) Luminance scanner
DE102015012429A1 (en) Method for signal acquisition in a gas analysis system
DE2714130A1 (en) OPTICAL FIRE DETECTOR
DE2709866C2 (en) Device for the detection of suspended particles
DE2632876A1 (en) Smoke detector using LED - light is reflected by smoke particles onto adjacent photodetector with rectifier layer for threshold device
DE4215908A1 (en) Optical particle size measurement appts. e.g. for clean room - periodically modulates light incident on measuring vol. e.g by varying light source power or using grating, acoustic=optic modulator or hologram, and detects scattered light.
DE102004058408B4 (en) Device for determining surface properties

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19821103

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 24787

Country of ref document: AT

Date of ref document: 19870115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3175819

Country of ref document: DE

Date of ref document: 19870212

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19890911

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890915

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890927

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19891031

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900823

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900910

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900912

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900928

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19901024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19901025

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19901031

BERE Be: lapsed

Owner name: CERBERUS A.G.

Effective date: 19901031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19911024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19911031

Ref country code: CH

Effective date: 19911031

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 81108849.1

Effective date: 19910603