EP0054680B1 - Smoke detector according to the radiation extinction principle - Google Patents
Smoke detector according to the radiation extinction principle Download PDFInfo
- Publication number
- EP0054680B1 EP0054680B1 EP81108849A EP81108849A EP0054680B1 EP 0054680 B1 EP0054680 B1 EP 0054680B1 EP 81108849 A EP81108849 A EP 81108849A EP 81108849 A EP81108849 A EP 81108849A EP 0054680 B1 EP0054680 B1 EP 0054680B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- radiation
- smoke detector
- detector according
- evaluation circuit
- smoke
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 168
- 239000000779 smoke Substances 0.000 title claims abstract description 77
- 230000008033 biological extinction Effects 0.000 title claims description 6
- 238000011156 evaluation Methods 0.000 claims abstract description 30
- 238000005259 measurement Methods 0.000 claims description 22
- 230000010354 integration Effects 0.000 claims description 5
- 230000001960 triggered effect Effects 0.000 claims description 4
- 239000006185 dispersion Substances 0.000 claims description 3
- 230000009977 dual effect Effects 0.000 claims description 2
- 230000003595 spectral effect Effects 0.000 abstract description 13
- 239000002245 particle Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 6
- 239000000428 dust Substances 0.000 description 5
- 230000032683 aging Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000005494 condensation Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000010410 dusting Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/10—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
- G08B17/103—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B29/00—Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
- G08B29/18—Prevention or correction of operating errors
- G08B29/20—Calibration, including self-calibrating arrangements
- G08B29/24—Self-calibration, e.g. compensating for environmental drift or ageing of components
Definitions
- the invention relates to a smoke detector based on the radiation extinction principle with radiation transmitters of different wavelengths and radiation receivers, which radiation transmitters transmit rays via a smoke-accessible measurement section to the measurement radiation receiver and rays via a comparison path which is not or less accessible to the comparison radiation receiver, an evaluation circuit arranged downstream of the two receivers sending a signal generated with a certain radiation weakness.
- a smoke detector of this type With a smoke detector of this type, a relatively small decrease in the radiation directed from a radiation transmitter onto a radiation receiver must be detected.
- the disadvantage here is that a decrease in radiation, for example due to aging of the radiation source, dusting optically effective surfaces, or the temperature response of radiation transmitters and receivers can have a similar effect to the presence of smoke in the measuring section, so that a faulty alarm signal is triggered can become, even if there is no smoke, or the smoke detector becomes less sensitive and therefore unusable.
- US Pat. No. 3,895,233 describes a device for analyzing S0 2 in exhaust gases with solid suspended particles (smoke), in which two alternately actuated radiation transmitters direct their beams of different wavelengths into a measuring section and a comparative section via a radiation splitter, each section contains its own radiation receiver at its end.
- the disadvantage here is that the solid suspended particles (smoke) have no influence on the measurement result of the analysis, and therefore an extinction of the radiation is excluded.
- the object of the invention is to avoid the disadvantages of the prior art and to provide a smoke detector based on the extinction principle which is insensitive to temperature fluctuations, dusting or condensation, aging of the components and other slow changes in properties and which has improved long-term stability and is not susceptible to faults and operates reliably, and the smoke is more reliable from other types of particle that trigger false alarms, e.g. B. dust or fog drops, can distinguish and has a lower susceptibility to false alarms.
- two radiation transmitters L, and L G are arranged in such a way that their main emission directions intersect at an angle of 90 °.
- a semi-transparent mirror D is arranged at an angle of 45 ° to the two radiation directions.
- a comparison radiation receiver S v is provided in the direct radiation direction of the one radiation transmitter L.
- a measuring path M that is accessible to smoke, for example in the length of 10 cm-20 cm.
- a radiation reflector R At the end of the measuring section there is a radiation reflector R, which reflects the radiation passing through the measuring section M back to a measuring radiation receiver S M.
- This arrangement has the effect that both the radiation from the radiation transmitter L R , deflected by the semitransparent mirror D, and the portion of the other radiation transmitter L G transmitted by this mirror D pass the measurement path M and are reflected by the reflector R, by the measurement radiation receiver S M is recorded.
- the direct radiation emitted by the radiation transmitter LR after passing through the semi-transparent mirror D and the radiation emitted by the other radiation transmitter L G and reflected by the semi-transparent mirror D after passing through a comparison path which is not or less accessible to smoke hits the comparison radiation receiver S v .
- This arrangement thus has the effect that the two radiation receivers are acted upon almost identically by the two radiation transmitters in the absence of smoke, but are very different when smoke is present in the measuring section.
- the two radiation transmitters L R and L G are now designed so that they emit radiation under transmit different wavelength ranges. It has proven expedient to design the one radiation transmitter so that it preferably emits radiation with a wavelength below 600 nm, preferably in the range of green light, while the other radiation transmitter produces radiation above 600 nm, preferably red light or infrared radiation.
- the wavelength ranges can also be selected so that their mean values are at a distance of at least 50 nm from one another. With the choice of the wavelength ranges, the different extinction properties of different suspended particles can be used to distinguish smoke, since it has been shown that the difference in absorption in the two spectral ranges mentioned has a characteristic value for different types of particles.
- the evaluation circuit connected to the two radiation receivers is matched to this difference, it can be achieved that smoke particles deliver a particularly large output signal, while other particle types, e.g. dust or fog droplets, have a significantly lower influence, so that an alarm signal is essentially caused by smoke, but not by other types of particles.
- Broadband emitters e.g. B. incandescent lamps, with appropriate upstream color filters.
- the use of light-emitting diodes, which are aimed at the emission of radiation in certain wavelength ranges, has proven particularly expedient.
- the use of a collimator lens K is recommended in order to avoid radiation losses.
- Such a collimator lens can, however, be dispensed with if the radiation sources are designed as LASER diodes.
- the two radiation receiver S v and S m are expediently adapted to the radiation of the two radiation transmitters L G and L R, that is, they are expediently designed so that they are sensitive to the spectral ranges of both Strahiungssender L G and L R.
- the partial ratio of the semi-transparent mirror D can, but need not, be 1: 1. If radiation transmitters L R and L G with very different intensities or radiation receivers S, and S v with very different sensitivity are used, it is expedient to choose a different ratio, if necessary up to 50: 1, in order to achieve that the receivers Emit approximately the same output signal in both spectral ranges.
- FIG. 2 shows a modified embodiment of a smoke detector arrangement in which a separate collimator lens K 1 and K 2 is provided for each of the two radiation transmitters L G and L.
- the radiation is not reflected after passing through the measurement section M, but is returned to the measurement radiation receiver S M using a radiation guide F (fiber optics).
- measurement radiation receiver S and comparison radiation receiver S v can be arranged directly adjacent to one another, or in a further development of the invention, can be designed as a dual radiation receiver. This makes the connection to the evaluation circuit considerably easier, and the same optical properties and the same temperature response are achieved.
- Figure 3 shows a smoke detector arrangement with directly adjacent radiation transmitters L G and L R.
- the dispersion of a prism P is used.
- the radiation from the two radiation transmitters L R and L G is first aligned by a collimator K and passes through the same prism P. If light is refracted less than shorter-wave light, the angle of the main radiation directions is compensated and both beams M emerge from the prism parallel to one another. This ensures that the measurement beam paths largely agree for both wavelengths or spectral ranges and are subject to the same influences.
- the comparison radiation can be taken in front of or behind the prism at a suitable point.
- FIG. 4 shows a further smoke detector arrangement with a matching measuring beam M in both spectral areas.
- the two radiation sources L R and L G are arranged one behind the other on the same axis.
- a green-emitting LED chip can be mounted on an infrared-emitting chip, so that the radiation emitted by the infrared chip radiates through the green chip.
- the two types of radiation are directed in parallel by a collimator K and pass through the measuring section M in identical ways.
- a semitransparent mirror D is provided in front of or behind the collimator K, which directs a portion of the radiation onto the comparison radiation receiver S v . This ensures complete compensation for all intensity fluctuations and misalignments.
- the radiation from the two radiation transmitters L G and L R can also be combined by means of radiation-conducting elements F 1 , F 2 (fiber optics) and a collimator K at the output of the elements to form the measuring beam M.
- the two radiation transmitters L G , L R can also irradiate the same focusing screen element MS, the radiation emanating from this being guided into the measuring path M by means of the collimator K.
- the in slightly different Chen directions emitted radiation of the two radiation transmitters L R , L G can also be directed in the same direction of the measuring path M by means of a roof edge prism DP.
- a more uniform illumination of the aperture can still be achieved if an entire array (side by side arrangement) of narrow roof edge prisms is used instead of the one roof edge prism (Fresnel prism).
- the two radiation transmitters are installed one behind the other, their light can be combined into the measuring section by using a bifocal Fresnel lens. Every second ring of this Fresnel lens maps one radiation transmitter to a point (which can also be at infinity), while the other rings map the other radiation transmitter to the same point. If the two radiation transmitters are mounted next to each other, they can be imaged on the same pixel using a cylindrical bifocal Fresnel lens.
- a complete identity of the measuring section for the two spectral areas can moreover be achieved by the two radiation transmitters being connected to a spectrally variable radiation source, e.g. an incandescent lamp with an optical filter that can be switched to two different spectral regions or a tunable light-emitting diode.
- a spectrally variable radiation source e.g. an incandescent lamp with an optical filter that can be switched to two different spectral regions or a tunable light-emitting diode.
- FIG. 8 shows a suitable evaluation circuit which can be connected to the radiation receivers S m and S v and can be used to operate the radiation transmitters L R and L G.
- the comparison radiation receiver S v is connected to the negative input of an operational amplifier C 1 of the MC 34002 type, the positive input of which is grounded and the output of which is coupled to the negative input via a resistor R 1 .
- the output of the operational amplifier C 1 is connected to a controllable switch S w , for example a FET switch MC 14066, which is periodically switched from one initial position to the other by an oscillator OS.
- Both outputs of the switching device SW are each connected to a driver channel for the two radiation transmitters L G and LR.
- the oscillator has the effect that the two radiation transmitters emit radiation alternately, either adjoining one another or with intermediate times, ie in the form of alternating radiation pulses.
- both channels can be constructed identically or, taking into account different properties of the radiation transmitters, can be constructed at least analogously.
- the analog components are placed in parentheses.
- the two outputs of the switching device SW are connected to earth via a resistor R 3 (R 7 ) and are simultaneously connected to the negative input of an operational amplifier C 3 (C 4 ) of the type MC 34002, the positive input of which is at the tap of a voltage divider R 4 , R s (R a , R 9 ).
- the output of the operational amplifier C 3 (C 4 ) operates the associated radiation transmitter L G (L R ) via a resistor R 6 (R 10 ).
- a resistance of the voltage divider for example resistance R 4 (R 8 ), can expediently be set or exchanged in order to be able to set the control level for the intensity of the two radiation sources.
- the circuit described has the effect that the intensity of the two radiation transmitters L G and L R is automatically regulated to a specific intensity level depending on the intensity of the reference radiation received by the reference radiation receiver S v , so that intensity fluctuations due to aging, temperature changes and similar effects are automatically compensated for.
- the measuring radiation receiver S M is also connected to the negative input of an operational amplifier C 2 of the type MC 34002, the positive input of which is in turn grounded and the output of which is coupled through a resistor R 2 to the negative input.
- the output of this operational amplifier C 2 is connected to an AC amplifier AC, at the output of which there is an alarm circuit A.
- the amplitude of the output signal of the AC voltage amplifier AC supplied to the alarm circuit thus depends in the following manner on the radiation intensities I G and I R recorded by the measurement radiation receiver S M in the two spectral ranges and on the reference radiation intensities I Rv and I Gv recorded by the reference radiation receiver S v in the same spectral ranges from: a and b are factors that result from the properties of the components, especially in the voltage divider ratio R 4 / R 5 (R 8 / R 9 ).
- R 4 resistance
- the output signal A becomes directly dependent on the smoke density, and the alarm circuit can be set up in such a way that an alarm signal is triggered or passed on as soon as the output signal A exceeds a predetermined threshold value. Since in this case the deviation from zero serves as a criterion for triggering an alarm signal, the difficulties of previously known extinguishing smoke detectors, in which a small deviation from a large and difficult to stabilize value had to be determined, are avoided from the outset.
- An alarm signal is triggered when one of the sizes A, B / a, C / b or 2D / a exceeds a value between 0.01 (due to the stability of the smoke detector) and 0.2 (due to the length of the measuring section) , where a and b are chosen such that will.
- the circuit can be developed in such a way that additional parameters are formed, for example or which depend on the type of smoke and which allow a conclusion to be drawn about the type of smoke.
- It can also be formed which, in combination with the main criteria A, B, C or D, can also be used to change the response differences for different types of fire.
- An additional evaluation of one of the sizes E, F, G, or H can also be used to distinguish between smoke and disturbance variables such as dust or condensation.
- the smoke development can be tracked if the time differential quotient dA / dt, dB / dt, dC / dt or dD / dt of the output signal A, B, C or D is also formed.
- the stability of the smoke detector can be significantly increased if you suppress the small and slow changes in the output signal and only evaluate signals that are at least as fast as can be generated by a fire. This can be achieved either by slowly changing at least one of the factors a, b, c, d, e, f, g or h in order to compensate for these fluctuations or by comparing the output signal with its moving average.
- FIG. 9 Another evaluation circuit is recorded in FIG. 9.
- the signal of the measurement radiation receiver S M as well as the signal of the comparison radiation receiver S v is integrated in time (A 2 , C 2 , S 2 or A 1 , C 1 , S,).
- the comparator K compares the integral of the comparison radiation receiver with a predetermined value, which is determined by the voltage divider E3, R 4 , and opens the switch S 3 of the sample and hold amplifier (S 3 , C 3 , A 3 ) at that time which the integration value exceeds the specified value.
- An alarm circuit A is located at the output of the amplifier A 3.
- the oscillator OS controls the repetition of the integration process and switches between the two radiation transmitters L G and L R with the aid of the flip-flop FF.
- the smoke detectors described have significantly improved stability, even over longer periods, as well as improved functional reliability and greater susceptibility to faults. Changes due to dust and changes in the properties of the components are automatically compensated for without the risk of an incorrect alarm triggering and without loss of sensitivity. By appropriately selecting the spectral ranges used, it can also be achieved that the smoke detectors described preferably react to smoke particles, but not or only weakly to other types of particles.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Emergency Management (AREA)
- Business, Economics & Management (AREA)
- Analytical Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Computer Security & Cryptography (AREA)
- Fire-Detection Mechanisms (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Devices For Medical Bathing And Washing (AREA)
- Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
- Spectrometry And Color Measurement (AREA)
Abstract
Description
Die Erfindung betrifft einen Rauchmelder nach dem Strahlungs-Extinktions-Prinzip mit Strahlungssender unterschiedlicher Wellenlänge und Strahlungsempfänger, welche Strahlungssender Strahlen über eine rauchzugängliche Messstrekke zum Messstrahlungsempfänger und Strahlen über eine nicht oder weniger rauchzugängliche Vergleichsstrecke zum Vergleichsstrahlungsempfänger senden, wobei eine den beiden Empfängern nachgeordnete Auswerteschaltung ein Signal bei einer bestimmten Strahlungsschwäche erzeugt.The invention relates to a smoke detector based on the radiation extinction principle with radiation transmitters of different wavelengths and radiation receivers, which radiation transmitters transmit rays via a smoke-accessible measurement section to the measurement radiation receiver and rays via a comparison path which is not or less accessible to the comparison radiation receiver, an evaluation circuit arranged downstream of the two receivers sending a signal generated with a certain radiation weakness.
Bei einem derartigen Rauchmelder muss eine relativ kleine Abnahme der von einem Strahlungssender auf eine Strahlungsempfänger gerichteten Strahlung nachgewiesen werden. Nachteilig wirkt sich dabei aus, dass eine Bestrahlungsabnahme, beispielsweise durch Alterung der Strahlungsquelle, durch Verstaubung optisch wirksamer Flächen, oder der Temperaturgang von Strahlungssendern und -Empfängern eine ähnliche Wirkung haben können wie das Vorhandensein von Rauch in der Messstrecke, so dass ein fehlerhaftes Alarmsignal ausgelöst werden kann, auch wenn kein Rauch vorhanden ist, oder der Rauchmelder unempfindlicher und daher unbrauchbar wird.With a smoke detector of this type, a relatively small decrease in the radiation directed from a radiation transmitter onto a radiation receiver must be detected. The disadvantage here is that a decrease in radiation, for example due to aging of the radiation source, dusting optically effective surfaces, or the temperature response of radiation transmitters and receivers can have a similar effect to the presence of smoke in the measuring section, so that a faulty alarm signal is triggered can become, even if there is no smoke, or the smoke detector becomes less sensitive and therefore unusable.
Gemäss US-Patent 3 994 603 kann dieser Nachteil dadurch beseitigt werden, dass ein Vergleichsstrahlengang vorgesehen ist, der nicht oder weniger durch Rauch beeinflusstwird, wobei die Auswerteschaltung mittels eines Vergleichsstrahlungsempfängers die nicht durch Rauch bedingten Strahlungsänderungen kompensiert. Auf diese Weise können zwar die genannten Nachteile weitgehend vermieden werden, jedoch lässt sich auf diese Weise Rauch nicht mit Sicherheit von anderen Schwebeteilchenarten, z.B. Staubpartikel oder Nebeldämpfe, unterscheiden.According to US Pat. No. 3,994,603, this disadvantage can be eliminated by providing a comparison beam path which is not or less influenced by smoke, the evaluation circuit using a comparison radiation receiver compensating for the radiation changes not caused by smoke. Although the disadvantages mentioned can largely be avoided in this way, smoke cannot be reliably removed from other types of floating particles, e.g. Distinguish dust particles or mist vapors.
Im US-Patent 3 895 233 ist ein Gerät zur Analyse von S02 in Abgasen mit festen Schwebeteilchen (Rauch) beschrieben, in welchen zwei abwechselnd betätigte Strahlungssender ihre unterschiedliche Wellenlängen aufweisenden Strahlen über einen Strahlungsteiler in eine Messstrecke und eine Vergleichsstrecke lenken, wobei jede Strecke an ihrem Ende einen eigenen Strahlungsempfänger enthält. Nachteilig hierbei ist, dass die festen Schwebeteilchen (Rauch) keinen Einfluss auf das Messergebnis der Analyse ausüben, und daher eine Extinktion der Strahlung ausgeschlossen ist.US Pat. No. 3,895,233 describes a device for analyzing S0 2 in exhaust gases with solid suspended particles (smoke), in which two alternately actuated radiation transmitters direct their beams of different wavelengths into a measuring section and a comparative section via a radiation splitter, each section contains its own radiation receiver at its end. The disadvantage here is that the solid suspended particles (smoke) have no influence on the measurement result of the analysis, and therefore an extinction of the radiation is excluded.
Die Erfindung hat die Aufgabe, die Nachteile des Standes der Technik zu vermeiden und einen Rauchmelder nach dem Extinktions-Prinzip zu schaffen, der gegen Temperaturschwankungen, Verstaubung oder Betauung, Alterung der Bauelemente und andere langsame Eigenschaftsänderungen unempfindlich ist, der eine verbesserte Langzeit-Stabilität aufweist und störunanfällig und betriebssicher arbeitet, und der Rauch mit grösserer Sicherheit von anderen Fehlalarme auslösenden Partikelarten, z. B. Staub oder Nebeltropfen, zu unterscheiden vermag und eine geringere Fehlalarmanfälligkeit aufweist.The object of the invention is to avoid the disadvantages of the prior art and to provide a smoke detector based on the extinction principle which is insensitive to temperature fluctuations, dusting or condensation, aging of the components and other slow changes in properties and which has improved long-term stability and is not susceptible to faults and operates reliably, and the smoke is more reliable from other types of particle that trigger false alarms, e.g. B. dust or fog drops, can distinguish and has a lower susceptibility to false alarms.
Die Aufgabe der Erfindung wird durch die Merkmale des kennzeichnenden Teiles des Patentanspruch 1 gelöst.The object of the invention is achieved by the features of the characterizing part of
Die Erfindung, sowie zweckmässige Weiterbildungen derselben, werden anhand der in den Figuren dargestellten Ausführungsbeispielen beschrieben.
Figur 1 zeigt eine Rauchmelder-Anordnung mit Reflektor.- Figur 2 zeigt eine Rauchmelder-Anordnung mit Strahlungsleiter im Anschluss an die Messstrekke.
- Figur 3 zeigt eine Rauchmelder-Anordnung mit Dispersions-Prisma.
- Figur 4 zeigt eine Rauchmelder-Anordnung mit hintereinander angeordneten Strahlungssendern.
- Figur 5 zeigt eine Rauchmelder-Anordnung mit Strahlungsleitern vor der Messstrecke.
- Figur 6 zeigt eine Rauchmelder-Anordnung mit Mattscheibe.
- Figur 7 zeigt eine Rauchmelder-Anordnung mit Dachkanten-Prisma.
- Figuren 8 und 9 zeigen je eine Auswerteschaltung für einen Rauchmelder.
- Figure 1 shows a smoke detector arrangement with reflector.
- FIG. 2 shows a smoke detector arrangement with a radiation conductor following the measuring section.
- Figure 3 shows a smoke detector arrangement with a dispersion prism.
- FIG. 4 shows a smoke detector arrangement with radiation transmitters arranged one behind the other.
- FIG. 5 shows a smoke detector arrangement with radiation conductors in front of the measuring section.
- Figure 6 shows a smoke detector arrangement with a focusing screen.
- Figure 7 shows a smoke detector arrangement with roof edge prism.
- FIGS. 8 and 9 each show an evaluation circuit for a smoke detector.
Bei der in Figur 1 dargestellten Rauchmelder-Anordnung sind zwei Strahlungssender L, und LG so angeordnet, dass ihre Hauptausstrahlungsrichtungen sich unter einem Winkel von 90° kreuzen. Unter einem Winkel von 45° zu den beiden Strahlungsrichtungen ist ein halbdurchlässiger Spiegel D angeordnet. In der direkten Strahlungsrichtung des einen Strahlungssenders L, ist ein Vergleichsstrahlungsempfänger Sv vorgesehen. In Strahlungsrichtung des anderen Strahlungssenders LG liegt eine rauchzugängliche Messstrecke M, beispielsweise in der Länge von 10 cm-20 cm. Am Ende der Messstrecke befindet sich ein Strahlungsreflektor R, der die die Messstrecke M durchsetzende Strahlung auf einen Messstrahlungsempfänger SM zurückwirft. Mit dieser Anordnung wird bewirkt, dass sowohl die Strahlung des Strahlungssenders LR, umgelenkt durch den halbdurchlässigen Spiegel D, als auch der von diesem Spiegel D durchgelassene Anteil des anderen Strahlungssenders LG die Messstrekke M passiert und vom Reflektor R zurückgeworfen, vom Messstrahlungsempfänger SM aufgenommen wird. Dahingegen trifft die vom Strahlungssender LR ausgehende direkte Strahlung nach Durchsetzen des halbdurchlässigen Spiegels D und die vom anderen Strahlungssender LG ausgehende, vom halbdurchlässigen Spiegel D reflektierte Strahlung nach Durchlaufen einer nicht oder weniger rauchzugänglichen Vergleichsstrecke auf den Vergleichsstrahlungsempfänger Sv. Durch diese Anordnung wird also bewirkt, dass die beiden Strahlungsempfänger bei Abwesenheit von Rauch durch die beiden Strahlungssender nahezu gleich beaufschlagt werden, bei Anwesenheit von Rauch in der Messstrecke dagegen stark unterschiedlich.In the smoke detector arrangement shown in FIG. 1, two radiation transmitters L, and L G are arranged in such a way that their main emission directions intersect at an angle of 90 °. A semi-transparent mirror D is arranged at an angle of 45 ° to the two radiation directions. A comparison radiation receiver S v is provided in the direct radiation direction of the one radiation transmitter L. In the radiation direction of the other radiation transmitter L G there is a measuring path M that is accessible to smoke, for example in the length of 10 cm-20 cm. At the end of the measuring section there is a radiation reflector R, which reflects the radiation passing through the measuring section M back to a measuring radiation receiver S M. This arrangement has the effect that both the radiation from the radiation transmitter L R , deflected by the semitransparent mirror D, and the portion of the other radiation transmitter L G transmitted by this mirror D pass the measurement path M and are reflected by the reflector R, by the measurement radiation receiver S M is recorded. On the other hand, the direct radiation emitted by the radiation transmitter LR after passing through the semi-transparent mirror D and the radiation emitted by the other radiation transmitter L G and reflected by the semi-transparent mirror D after passing through a comparison path which is not or less accessible to smoke, hits the comparison radiation receiver S v . This arrangement thus has the effect that the two radiation receivers are acted upon almost identically by the two radiation transmitters in the absence of smoke, but are very different when smoke is present in the measuring section.
Die beiden Strahlungssender LR und LG sind nun so ausgebildet, dass sie Strahlung in unterschiedlichen Wellenlängengebieten aussenden. Es hat sich als zweckmässig erwiesen, den einen Strahlungssender so auszubilden, dass er bevorzugt Strahlung mit einer Wellenlänge unter 600 nm aussendet, vorzugsweise im Bereich des grünen Lichtes, während der andere Strahlungssender Strahlung über 600 nm produziert, vorzugsweise rotes Licht oder Infrarotstrahlung. Die Wellenlängengebiete können auch so gewählt werden, dass ihre Mittelwerte einen Abstand von mindestens 50 nm voneinander haben. Mit der Wahl der Wellenlängenbereiche können die unterschiedlichen Extinktionseigenschaften verschiedener Schwebeteilchen zur Unterscheidung von Rauch ausgenützt werden, da es sich gezeigt hat, dass der Unterschied der Absorption in den beiden genannten Spektralbereichen für verschiedene Partikelarten einen charakteristischen Wert hat. Wenn nun die an die beiden Strahlungsempfänger angeschlossene Auswerteschaltung, wie später erläutert, auf diesen Unterschied abgestimmt ist, so kann erreicht werden, dass Rauchpartikel ein besonders grosses Ausgangssignal liefern, während andere Partikelarten, z.B. Staub oder Nebeltröpfchen, einen wesentlich geringeren Einfluss zeigen, so dass eine Alarmsignalgabe im Wesentlichen durch Rauch bewirkt wird, jedoch nicht durch andere Partikelarten. Als Strahlungsquellen können dabei Breitbandstrahler, z. B. Glühlampen, mit entsprechenden, vorgeschalteten Farbfiltern verwendet werden. Besonders zweckmässig hat sich die Verwendung von Leuchtdioden erwiesen, die auf die Emission von Strahlung in bestimmten Wellenlängenbereichen ausgerichtet sind. Zur Fokussierung der Strahlung auf die Messstrecke M ist dabei die Verwendung einer Kollimatorlinse K empfehlenswert, um Strahlungsverluste zu vermeiden. Auf eine solche Kollimatorlinse kann jedoch verzichtet werden, wenn die Strahlungsquellen als LASER-Dioden ausgebildet sind. Die beiden Strahlungsempfänger Sv und Sm sind zweckmässigerweise auf die Strahlung der beiden Strahlungssender LG und LR abgestimmt, d.h., sie sind zweckmässigerweise so ausgebildet, dass sie für die Spektralbereiche beider Strahiungssender LG und LR empfindlich sind.The two radiation transmitters L R and L G are now designed so that they emit radiation under transmit different wavelength ranges. It has proven expedient to design the one radiation transmitter so that it preferably emits radiation with a wavelength below 600 nm, preferably in the range of green light, while the other radiation transmitter produces radiation above 600 nm, preferably red light or infrared radiation. The wavelength ranges can also be selected so that their mean values are at a distance of at least 50 nm from one another. With the choice of the wavelength ranges, the different extinction properties of different suspended particles can be used to distinguish smoke, since it has been shown that the difference in absorption in the two spectral ranges mentioned has a characteristic value for different types of particles. If, as explained later, the evaluation circuit connected to the two radiation receivers is matched to this difference, it can be achieved that smoke particles deliver a particularly large output signal, while other particle types, e.g. dust or fog droplets, have a significantly lower influence, so that an alarm signal is essentially caused by smoke, but not by other types of particles. Broadband emitters, e.g. B. incandescent lamps, with appropriate upstream color filters. The use of light-emitting diodes, which are aimed at the emission of radiation in certain wavelength ranges, has proven particularly expedient. To focus the radiation on the measurement path M, the use of a collimator lens K is recommended in order to avoid radiation losses. Such a collimator lens can, however, be dispensed with if the radiation sources are designed as LASER diodes. The two radiation receiver S v and S m are expediently adapted to the radiation of the two radiation transmitters L G and L R, that is, they are expediently designed so that they are sensitive to the spectral ranges of both Strahiungssender L G and L R.
Das Teilverhältnis des halbdurchlässigen Spiegels D kann, aber muss nicht 1 : 1 betragen. Falls Strahlungssender LR und LG mit stark unterschiedlicher Intensität oder Strahlungsempfänger S, und Sv mit stark unterschiedlicher Empfindlichkeit benützt werden, ist es zweckmässig, das Teilverhältnis abweichend zu wählen, nötigenfalls bis zu 50: 1, um zu erreichen, dass die Empfänger bei Bestrahlung in beiden Spektralbereichen etwa das gleiche Ausgangssignal abgeben.The partial ratio of the semi-transparent mirror D can, but need not, be 1: 1. If radiation transmitters L R and L G with very different intensities or radiation receivers S, and S v with very different sensitivity are used, it is expedient to choose a different ratio, if necessary up to 50: 1, in order to achieve that the receivers Emit approximately the same output signal in both spectral ranges.
Statt eines einzigen Reflektors R können im Übrigen auch mehrere Reflektorelemente vorgesehen sein, mit denen die Messstrecke M mehrfach gefaltet wird, z.B. in Stern-Form (DE 2 856 259).Instead of a single reflector R, several reflector elements can also be provided, with which the measuring section M is folded several times, e.g. in a star shape (DE 2 856 259).
Figur 2 zeigt eine abgewandelte Ausführung einer Rauchmelder-Anordnung, bei der für jeden der beiden Strahlungssender LG und L, jeweils eine separate Kollimatorlinse K1 und K2 vorgesehen ist. Zum Unterschied vom ersten Beispiel wird die Strahlung nach Durchlaufen der Messstrecke M nicht reflektiert, sondern mit einem Strahlungsleiter F (Fiberoptik) zum Messstrahlungsempfänger SM zurückgeleitet. In diesem Ausführungsbeispiel können Messstrahlungsempfänger S, und Vergleichsstrahlungsempfänger Sv unmittelbar benachbart zueinander angeordnet sein, oder in einer Weiterbildung der Erfindung, als Dual-Strahlungsempfänger ausgebildet sein. Der Anschluss an die Auswerteschaltung wird hierdurch wesentlich erleichtert, und es werden gleiche optische Eigenschaften und gleicher Temperaturgang erreicht.FIG. 2 shows a modified embodiment of a smoke detector arrangement in which a separate collimator lens K 1 and K 2 is provided for each of the two radiation transmitters L G and L. In contrast to the first example, the radiation is not reflected after passing through the measurement section M, but is returned to the measurement radiation receiver S M using a radiation guide F (fiber optics). In this exemplary embodiment, measurement radiation receiver S and comparison radiation receiver S v can be arranged directly adjacent to one another, or in a further development of the invention, can be designed as a dual radiation receiver. This makes the connection to the evaluation circuit considerably easier, and the same optical properties and the same temperature response are achieved.
Figur 3 zeigt eine Rauchdetektor-Anordnung mit unmittelbar benachbart angeordneten Strahlungssendern LG und LR. Um zu erreichen, dass bei einer solchen Anordnung die Messstrahlen beider Strahlungssender parallel zueinander verlaufen, wird die Dispersion eines Prismas P ausgenützt Die Strahlung der beiden Strahlungssender LR und LG wird zunächst von einem Kollimator K ausgerichtet und durchsetzt das gleiche Prisma P. Da längerwelliges Licht weniger gebrochen wird als kürzerwelliges Licht, wird dabei der Winkel der Hauptstrahlungsrichtungen ausgeglichen und beide Strahlen M treten parallel zueinander aus dem Prisma aus. Damit kann gewährleistet werden, dass für beide Wellenlängen oder Spektralbereiche die Messstrahlengänge weitgehend übereinstimmen und den gleichen Einflüssen unterliegen. Die Vergleichsstrahlung kann dabei vor oder hinter dem Prisma an einer geeigneten Stelle abgenommen werden.Figure 3 shows a smoke detector arrangement with directly adjacent radiation transmitters L G and L R. In order to ensure that the measurement beams of both radiation transmitters run parallel to one another in such an arrangement, the dispersion of a prism P is used. The radiation from the two radiation transmitters L R and L G is first aligned by a collimator K and passes through the same prism P. If light is refracted less than shorter-wave light, the angle of the main radiation directions is compensated and both beams M emerge from the prism parallel to one another. This ensures that the measurement beam paths largely agree for both wavelengths or spectral ranges and are subject to the same influences. The comparison radiation can be taken in front of or behind the prism at a suitable point.
Figur 4 zeigt eine weitere Rauchmelder-Anordnung mit übereinstimmendem Messstrahl M in beiden Spektralgebieten. In diesem Beispiel wird dies dadurch erreicht, dass die beiden Strahlungsquellen LR und LG auf der gleichen Achse hintereinander angeordnet sind. Dabei kann beispielsweise ein grün emittierender LED-Chip auf einem Infrarot-emittierenden Chip montiert sein, so dass die vom Infrarot-Chip ausgesandte Strahlung durch den Grün-Chip hindurch strahlt. Die beiden Strahlungsarten werden durch einen Kollimator K parallel gerichtet und durchlaufen die Messstrecke M auf identischen Wegen. Dabei ist vor oder hinter dem Kollimator K ein halbdurchlässiger Spiegel D vorgesehen, der einen Teil der Strahlung auf den Vergleichsstrahlungsempfänger Sv leitet. Dies gewährleistet eine vollständige Kompensation aller Intensitätsschwankungen und Dejustierungen.FIG. 4 shows a further smoke detector arrangement with a matching measuring beam M in both spectral areas. In this example, this is achieved in that the two radiation sources L R and L G are arranged one behind the other on the same axis. In this case, for example, a green-emitting LED chip can be mounted on an infrared-emitting chip, so that the radiation emitted by the infrared chip radiates through the green chip. The two types of radiation are directed in parallel by a collimator K and pass through the measuring section M in identical ways. In this case, a semitransparent mirror D is provided in front of or behind the collimator K, which directs a portion of the radiation onto the comparison radiation receiver S v . This ensures complete compensation for all intensity fluctuations and misalignments.
Wie in Figur 5 dargestellt, kann die Strahlung der beiden Strahlungssender LG und LR auch mittels strahlungsleitender Elemente F1, F2 (Fiberoptik) und einem Kollimator K am Ausgang der Elemente zum Messstrahl M vereinigt werden.As shown in FIG. 5, the radiation from the two radiation transmitters L G and L R can also be combined by means of radiation-conducting elements F 1 , F 2 (fiber optics) and a collimator K at the output of the elements to form the measuring beam M.
Nach Figur 6 können die beiden Strahlungssender LG, LR auch das gleiche Mattscheiben-Element MS bestrahlen, wobei die von diesem ausgehende Strahlung mittels des Kollimators K in die Messstrecke M geleitet wird.According to FIG. 6, the two radiation transmitters L G , L R can also irradiate the same focusing screen element MS, the radiation emanating from this being guided into the measuring path M by means of the collimator K.
Gemäss Figur 7 kann die in leicht unterschiedlichen Richtungen ausgesandte Strahlung der beiden Strahlungssender LR, LG auch mittels eines Dachkantenprismas DP in der gleichen Richtung der Messstrecke M gerichtet werden. Eine gleichmässigere Ausleuchtung der Apertur kann dabei noch erreicht werden, wenn anstelle des einen Dachkantenprismas ein ganzer Array (Nebeneinanderanordnung) von schmalen Dachkantenprismen verwendet wird (Fresnelprisma).According to Figure 7, the in slightly different Chen directions emitted radiation of the two radiation transmitters L R , L G can also be directed in the same direction of the measuring path M by means of a roof edge prism DP. A more uniform illumination of the aperture can still be achieved if an entire array (side by side arrangement) of narrow roof edge prisms is used instead of the one roof edge prism (Fresnel prism).
Falls die beiden Strahlungssender hintereinander montiert sind, lässt sich deren Licht in die Messstrecke vereinigen, indem man eine bifokale Fresnellinse verwendet. Jeder zweite Ring dieser Fresnellinse bildet den einen Strahlungssender auf einen Punkt (der sich auch im Unendlich befinden kann) ab, während die anderen Ringe den anderen Strahlungssender auf denselben Punkt abbilden. Falls die beiden Strahlungssender nebeneinander montiert sind, können sie mit Hilfe einer zylindrischen bifokalen Fresnellinse auf denselben Bildpunkt abgebildet werden.If the two radiation transmitters are installed one behind the other, their light can be combined into the measuring section by using a bifocal Fresnel lens. Every second ring of this Fresnel lens maps one radiation transmitter to a point (which can also be at infinity), while the other rings map the other radiation transmitter to the same point. If the two radiation transmitters are mounted next to each other, they can be imaged on the same pixel using a cylindrical bifocal Fresnel lens.
Eine vollständige Identität der Messstrecke für die beiden Spekträlgebiete kann im Übrigen dadurch erreicht werden, dass die beiden Strahlungssender zu einer spektralvariablen Strahlungsquelle, z.B. einer Glühlampe mit einem auf zwei verschiedene Spektralgebiete umschaltbaren optischen Filter oder einer durchstimmbaren Leuchtdiode, vereinigt sind.A complete identity of the measuring section for the two spectral areas can moreover be achieved by the two radiation transmitters being connected to a spectrally variable radiation source, e.g. an incandescent lamp with an optical filter that can be switched to two different spectral regions or a tunable light-emitting diode.
Figur 8 zeigt eine geeignete Auswerteschaltung, die an die Strahlungsempfänger Sm und Sv angeschlossen werden und zum Betrieb der Strahlungssender LR und LG dienen kann.FIG. 8 shows a suitable evaluation circuit which can be connected to the radiation receivers S m and S v and can be used to operate the radiation transmitters L R and L G.
In dieser Schaltung ist der Vergleichsstrahlungsempfänger Sv an den negativen Eingang eines Operationsverstärkers C1 vom Typ MC 34002 angeschlossen, dessen positiver Eingang geerdet ist und dessen Ausgang über einen Widerstand R1 mit dem negativen Eingang gegengekoppelt ist. Der Ausgang des Operationsverstärkers C1 ist an einen steuerbaren Schalter Sw angeschlossen, z.B. ein FET-Schalter MC 14066, der von einem Oszillator OS periodisch von einer Ausgangsstellung auf die andere umgeschaltet wird. Beide Ausgänge der Schalteinrichtung SW sind an je einen Treiberkanal für die beiden Strahlungssender LG und LR angeschlossen. Der Oszillator bewirkt, dass die beiden Strahlungssender alternierend Strahlung aussenden, und zwar entweder aneinander anschliessend oder mit Zwischenzeiten, d.h. in Form alternierender Strahlungsimpulse. Beide Kanäle können im Prinzip identisch oder unter Berücksichtigung unterschiedlicher Eigenschaften der Strahlungssender zumindest analog aufgebaut sein. In der folgenden Beschreibung sind die analogen Komponenten jeweils in Klammern gesetzt. Die beiden Ausgänge der Schalteinrichtung SW liegen über einen Widerstand R3 (R7) an Erde und sind gleichzeitig mit dem negativen Eingang eines Operationsverstärkers C3 (C4) vom Typ MC 34002 verbunden, dessen positiver Eingang am Abgriff eines Spannungsteilers R4, Rs (Ra, R9) liegt. Der Ausgang des Operationsverstärkers C3 (C4) betreibt über einen Widerstand R6 (R10) den zugehörigen Strahlungssender LG (LR). Ein Widerstand des Spannungsteilers, beispielsweise Widerstand R4 (R8), ist zweckmässigerweise einstellbar oder auswechselbar, um das Regelniveau für die Intensität der beiden Strahlungsquellen einstellen zu können.In this circuit, the comparison radiation receiver S v is connected to the negative input of an operational amplifier C 1 of the MC 34002 type, the positive input of which is grounded and the output of which is coupled to the negative input via a resistor R 1 . The output of the operational amplifier C 1 is connected to a controllable switch S w , for example a FET switch MC 14066, which is periodically switched from one initial position to the other by an oscillator OS. Both outputs of the switching device SW are each connected to a driver channel for the two radiation transmitters L G and LR. The oscillator has the effect that the two radiation transmitters emit radiation alternately, either adjoining one another or with intermediate times, ie in the form of alternating radiation pulses. In principle, both channels can be constructed identically or, taking into account different properties of the radiation transmitters, can be constructed at least analogously. In the following description, the analog components are placed in parentheses. The two outputs of the switching device SW are connected to earth via a resistor R 3 (R 7 ) and are simultaneously connected to the negative input of an operational amplifier C 3 (C 4 ) of the type MC 34002, the positive input of which is at the tap of a voltage divider R 4 , R s (R a , R 9 ). The output of the operational amplifier C 3 (C 4 ) operates the associated radiation transmitter L G (L R ) via a resistor R 6 (R 10 ). A resistance of the voltage divider, for example resistance R 4 (R 8 ), can expediently be set or exchanged in order to be able to set the control level for the intensity of the two radiation sources.
Die beschriebene Schaltung bewirkt, dass die Intensität der beiden Strahlungssender LG und LR je nach Intensität der vom Referenzstrahlungsempfänger Sv aufgenommenen Referenzstrahlung auf ein bestimmtes Intensitätsniveau automatisch geregelt wird, so dass Intensitätsschwankungen durch Alterung, Temperaturänderungen und ähnliche Effekte automatisch kompensiert werden.The circuit described has the effect that the intensity of the two radiation transmitters L G and L R is automatically regulated to a specific intensity level depending on the intensity of the reference radiation received by the reference radiation receiver S v , so that intensity fluctuations due to aging, temperature changes and similar effects are automatically compensated for.
Der Messstrahlungsempfänger SM ist ebenfalls an den negativen Eingang eines Operationsverstärkers C2 vom Typ MC 34002 angeschlossen, dessen positiver Eingang wiederum geerdet ist und dessen Ausgang über einen Widerstand R2 mit dem negativen Eingang gegengekoppelt ist. Der Ausgang dieses Operationsverstärkers C2 ist mit einem Wechselspannungsverstärker AC verbunden, an dessen Ausgang eine Alarmschaltung A liegt.The measuring radiation receiver S M is also connected to the negative input of an operational amplifier C 2 of the type MC 34002, the positive input of which is in turn grounded and the output of which is coupled through a resistor R 2 to the negative input. The output of this operational amplifier C 2 is connected to an AC amplifier AC, at the output of which there is an alarm circuit A.
Die Amplitude des der Alarmschaltung zugeführten Ausgangssignales des Wechselspannungsverstärkers AC hängt also in folgender Weise von den vom Messstrahlungsempfänger SM aufgenommenen Strahlungsintensitäten IG und IR in den beiden Spektralbereichen und von den vom Referenzstrahlungsempfänger Sv in den gleichen Spektralbereichen aufgenommenen Referenzstrahlungsintensitäten IRv und IGv ab:
Es besteht auch die Möglichkeit eine der Grössen
Dabei wird ein Alarmsignal ausgelöst, wenn eine der Grössen A, B/a, C/b oder 2D/a einen Wert zwischen 0,01 (bedingt durch die Stabilität des Rauchmelders) und 0,2 (bedingt durch die Länge der Messstrecke) überschreitet, wobei a und b so gewählt werden, dass
Die Schaltung kann noch so weitergebildet werden, dass zusätzlich weitere Kenngrössen gebildet werden, z.B.
Es kann auch
welche ebenfalls, in Kombination mit dem Hauptkriterium A, B, C oder D, dazu verwendet werden können, die Unterschiede im Ansprechverhalten für verschiedene Feuerarten zu verändern. Eine Zusatzauswertung einer der Grössen E, F, G, oder H kann auch verwendet werden, um noch schärfer zwischen Rauch und Störgrössen wie Staub oder Betauung zu unterscheiden.It can also
which, in combination with the main criteria A, B, C or D, can also be used to change the response differences for different types of fire. An additional evaluation of one of the sizes E, F, G, or H can also be used to distinguish between smoke and disturbance variables such as dust or condensation.
Die Rauchentwicklung kann verfolgt werden, wenn zusätzlich noch der zeitliche Differentialquotient dA/dt, dB/dt, dC/dt oder dD/dt des Ausgangssignales A, B, C oder D gebildet wird.The smoke development can be tracked if the time differential quotient dA / dt, dB / dt, dC / dt or dD / dt of the output signal A, B, C or D is also formed.
Die Stabilität des Rauchmelders kann noch erheblich erhöht werden, wenn man die kleinen und langsamen Veränderungen des Ausgangssignals unterdrückt und nur Signale auswertet, welche mindestens so schnell sind, wie sie durch ein Feuer erzeugt werden können. Dies kann erzielt werden entweder dadurch, dass mindestens einer der Faktoren a, b, c, d, e, f, g oder h langsam verändert wird, um diese Schwankungen auszugleichen oder dadurch, dass das Ausgangssignal mit seinem gleitenden Mittelwert verglichen wird.The stability of the smoke detector can be significantly increased if you suppress the small and slow changes in the output signal and only evaluate signals that are at least as fast as can be generated by a fire. This can be achieved either by slowly changing at least one of the factors a, b, c, d, e, f, g or h in order to compensate for these fluctuations or by comparing the output signal with its moving average.
Eine andere Auswerteschaltung ist in Figur 9 aufgezeichnet. Das Signal des Messstrahlungsempfängers SM wie auch das Signal des Vergleichsstrahlungsempfängers Sv wird zeitlich integriert (A2, C2, S2 bzw. A1, C1, S,). Der Komparator K vergleicht das Integral des Vergleichsstrahlungsempfängers mit einem vorgegebenen Wert, welcher durch den Spannungsteiler E3, R4 bestimmt wird, und öffnet den Schalter S3 des Sample and Hold-Verstärkers (S3, C3, A3) zu demjenigen Zeitpunkt zu dem der Integrationswert den vorgegebenen Wert überschreitet. Am Ausgang des Verstärkers A3 liegt eine Alarmschaltung A. Der Oszillator OS steuert die Wiederholung des Integrationsvorganges und schaltet mit Hilfe des Flip-Flops FF zwischen den beiden Strahlungssendern LG und LR um.Another evaluation circuit is recorded in FIG. 9. The signal of the measurement radiation receiver S M as well as the signal of the comparison radiation receiver S v is integrated in time (A 2 , C 2 , S 2 or A 1 , C 1 , S,). The comparator K compares the integral of the comparison radiation receiver with a predetermined value, which is determined by the voltage divider E3, R 4 , and opens the switch S 3 of the sample and hold amplifier (S 3 , C 3 , A 3 ) at that time which the integration value exceeds the specified value. An alarm circuit A is located at the output of the amplifier A 3. The oscillator OS controls the repetition of the integration process and switches between the two radiation transmitters L G and L R with the aid of the flip-flop FF.
Die beschriebenen Rauchmelder weisen eine wesentlich verbesserte Stabilität, auch über längere Zeiträume, sowie eine verbesserte Funktionssicherheit und eine grössere Störunanfälligkeit auf. Änderungen durch Verstaubung und Änderungen der Eigenschaften der Komponenten werden automatisch kompensiert ohne die Gefahr einer fehlerhaften Alarmauslösung und ohne Empfindlichkeitsverlust. Durch eine zweckmässige Auswahl der benützten Spektralbereiche kann zudem erreicht werden, dass die beschriebenen Rauchmelder vorzugsweise auf Rauchpartikel reagieren, jedoch nicht oder nur schwach auf andere Partikelarten.The smoke detectors described have significantly improved stability, even over longer periods, as well as improved functional reliability and greater susceptibility to faults. Changes due to dust and changes in the properties of the components are automatically compensated for without the risk of an incorrect alarm triggering and without loss of sensitivity. By appropriately selecting the spectral ranges used, it can also be achieved that the smoke detectors described preferably react to smoke particles, but not or only weakly to other types of particles.
Claims (24)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT81108849T ATE24787T1 (en) | 1980-12-18 | 1981-10-24 | SMOKE DETECTOR ACCORDING TO THE RADIATION EXTINCTION PRINCIPLE. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH9342/80 | 1980-12-18 | ||
CH934280 | 1980-12-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0054680A1 EP0054680A1 (en) | 1982-06-30 |
EP0054680B1 true EP0054680B1 (en) | 1987-01-07 |
Family
ID=4350969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81108849A Expired EP0054680B1 (en) | 1980-12-18 | 1981-10-24 | Smoke detector according to the radiation extinction principle |
Country Status (10)
Country | Link |
---|---|
US (1) | US4547675A (en) |
EP (1) | EP0054680B1 (en) |
JP (1) | JPS57128831A (en) |
AT (1) | ATE24787T1 (en) |
AU (1) | AU544283B2 (en) |
CA (1) | CA1208331A (en) |
DE (1) | DE3175819D1 (en) |
DK (1) | DK543181A (en) |
ES (1) | ES8303773A1 (en) |
NO (1) | NO814089L (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014009642A1 (en) * | 2014-06-26 | 2016-01-14 | Elmos Semiconductor Aktiengesellschaft | Method for detecting a physical quantity for the detection and characterization of gases, mists and smoke, in particular a device for measuring the particle concentration |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60144458U (en) * | 1984-03-05 | 1985-09-25 | ホーチキ株式会社 | fire detection device |
JPH0765963B2 (en) * | 1986-04-07 | 1995-07-19 | ホーチキ株式会社 | Dimming smoke detector |
JPH0765964B2 (en) * | 1986-11-14 | 1995-07-19 | ホーチキ株式会社 | Dimming smoke detector |
JP2585559B2 (en) * | 1986-12-27 | 1997-02-26 | ホーチキ株式会社 | Fire judgment device |
FI83696B (en) * | 1987-01-27 | 1991-04-30 | Halton Oy | FOERFARANDE FOER REGLERING AV VENTILATION. |
US4814628A (en) * | 1987-03-20 | 1989-03-21 | Precitronic Gesellschaft Fuer Feinmechanik Und Electronic Mbh | Arrangement for the transmission of laser light with reference source for backscatter obstruction detection |
US4857895A (en) * | 1987-08-31 | 1989-08-15 | Kaprelian Edward K | Combined scatter and light obscuration smoke detector |
FR2666163B1 (en) * | 1990-08-22 | 1995-03-17 | Bertin & Cie | OPTO-ELECTRONIC DEVICE FOR DETECTING SMOKE OR GAS SUSPENDED IN AIR. |
US5473314A (en) * | 1992-07-20 | 1995-12-05 | Nohmi Bosai, Ltd. | High sensitivity smoke detecting apparatus using a plurality of sample gases for calibration |
DE4320873A1 (en) * | 1993-06-23 | 1995-01-05 | Hekatron Gmbh | Circuit arrangement for an optical detector for environmental monitoring and display of an interference medium |
EP0813178A1 (en) * | 1996-06-13 | 1997-12-17 | Cerberus Ag | Optical smoke detector |
JPH1123458A (en) * | 1997-05-08 | 1999-01-29 | Nittan Co Ltd | Smoke sensor and monitoring control system |
GB9721861D0 (en) | 1997-10-15 | 1997-12-17 | Kidde Fire Protection Ltd | High sensitivity particle detection |
GB2389176C (en) * | 2002-05-27 | 2011-07-27 | Kidde Ip Holdings Ltd | Smoke detector |
US7564365B2 (en) * | 2002-08-23 | 2009-07-21 | Ge Security, Inc. | Smoke detector and method of detecting smoke |
WO2004019294A2 (en) * | 2002-08-23 | 2004-03-04 | General Electric Company | Rapidly responding, false detection immune alarm signal producing smoke detector |
UA73398C2 (en) * | 2003-07-03 | 2005-07-15 | Private Entpr Arton | Smoke fire detector ?? ?? ?? ?? |
US7301641B1 (en) * | 2004-04-16 | 2007-11-27 | United States Of America As Represented By The Secretary Of The Navy | Fiber optic smoke detector |
JP2006003233A (en) * | 2004-06-17 | 2006-01-05 | Otsuka Denshi Co Ltd | Optical cell measuring device |
WO2009149498A1 (en) | 2008-06-10 | 2009-12-17 | Xtralis Technologies Ltd | Particle detection |
TWI600891B (en) | 2009-05-01 | 2017-10-01 | 愛克斯崔里斯科技有限公司 | Particle detection |
EP3276680A1 (en) * | 2017-01-25 | 2018-01-31 | Siemens Schweiz AG | Optical smoke detection based on the two colour principle using a light emitting diode with an led chip for light emission and with a light converter for converting a part of the emitted light to longer wave light |
JP7244604B2 (en) | 2020-11-02 | 2023-03-22 | キストラー ホールディング アクチエンゲゼルシャフト | accelerometer |
ES2971916T3 (en) | 2020-11-02 | 2024-06-10 | Kistler Holding Ag | Acceleration transducer |
EP3992639B1 (en) | 2020-11-02 | 2024-06-26 | Kistler Holding AG | Acceleration sensor |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3521958A (en) * | 1969-01-30 | 1970-07-28 | Kettering Scient Research Inc | Rapid scanning spectrophotometer |
US3843258A (en) * | 1971-08-25 | 1974-10-22 | Bendix Corp | Dual beam absorption type optical spectrometer |
JPS555157B2 (en) * | 1972-06-24 | 1980-02-04 | ||
FR2193486A5 (en) * | 1972-07-24 | 1974-02-15 | Hotellier Jac Ues L | |
US3895233A (en) * | 1972-10-26 | 1975-07-15 | Bailey Meter Co | Gas analyzer |
CH561942A5 (en) * | 1974-03-08 | 1975-05-15 | Cerberus Ag | |
JPS51127786A (en) * | 1975-04-30 | 1976-11-08 | Kokusai Gijutsu Kaihatsu Kk | Smoke sensor |
JPS51127787A (en) * | 1975-04-30 | 1976-11-08 | Kokusai Gijutsu Kaihatsu Kk | Smoke sensor |
US4057734A (en) * | 1975-08-28 | 1977-11-08 | Barringer Research Limited | Spectroscopic apparatus with balanced dual detectors |
US3982130A (en) * | 1975-10-10 | 1976-09-21 | The United States Of America As Represented By The Secretary Of The Air Force | Ultraviolet wavelength smoke detector |
US4076425A (en) * | 1976-02-17 | 1978-02-28 | Julian Saltz | Opacity measuring apparatus |
-
1981
- 1981-10-24 DE DE8181108849T patent/DE3175819D1/en not_active Expired
- 1981-10-24 AT AT81108849T patent/ATE24787T1/en active
- 1981-10-24 EP EP81108849A patent/EP0054680B1/en not_active Expired
- 1981-11-20 CA CA000390621A patent/CA1208331A/en not_active Expired
- 1981-11-30 NO NO814089A patent/NO814089L/en unknown
- 1981-12-07 US US06/328,403 patent/US4547675A/en not_active Expired - Fee Related
- 1981-12-08 DK DK543181A patent/DK543181A/en not_active Application Discontinuation
- 1981-12-16 AU AU78564/81A patent/AU544283B2/en not_active Ceased
- 1981-12-18 JP JP56203836A patent/JPS57128831A/en active Pending
- 1981-12-18 ES ES508644A patent/ES8303773A1/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014009642A1 (en) * | 2014-06-26 | 2016-01-14 | Elmos Semiconductor Aktiengesellschaft | Method for detecting a physical quantity for the detection and characterization of gases, mists and smoke, in particular a device for measuring the particle concentration |
Also Published As
Publication number | Publication date |
---|---|
ES508644A0 (en) | 1983-02-01 |
NO814089L (en) | 1982-06-21 |
US4547675A (en) | 1985-10-15 |
ES8303773A1 (en) | 1983-02-01 |
JPS57128831A (en) | 1982-08-10 |
ATE24787T1 (en) | 1987-01-15 |
EP0054680A1 (en) | 1982-06-30 |
CA1208331A (en) | 1986-07-22 |
AU7856481A (en) | 1982-06-24 |
DK543181A (en) | 1982-06-19 |
DE3175819D1 (en) | 1987-02-12 |
AU544283B2 (en) | 1985-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0054680B1 (en) | Smoke detector according to the radiation extinction principle | |
DE2754139C3 (en) | Smoke detector | |
DE2504300C3 (en) | Device for measuring the absorption capacity of a medium, in particular smoke | |
EP3029646B1 (en) | Scattered light smoke detector with a two-colour light emitting diode | |
DE69738627T2 (en) | GAS DETECTOR | |
EP0209860B1 (en) | Apparatus for contactless reflection measurement | |
DE19940280C2 (en) | Gas sensor with an open optical measuring section | |
EP1887536A1 (en) | Smoke alarm using light scattering | |
EP3504692A1 (en) | Method for detecting a fire according to the scattered light principle with a staggered addition of a further led unit for radiating in further light pulses with different wavelengths and scattered light angles, and such scattered light smoke detectors | |
DE2851444A1 (en) | LIGHT GRID | |
DE10130763A1 (en) | Device for optical distance measurement over a large measuring range | |
DE3437580A1 (en) | Apparatus for optically testing a cigarette rod | |
EP0762174B1 (en) | Device for linear illumination of sheet material, e.g. bank notes or securities | |
EP0145877B1 (en) | Photometer for continuous analysis of a medium (gas or liquid) | |
WO2013153106A1 (en) | Gas detector system | |
DE69319184T2 (en) | Liquid contamination sensor | |
DE19741853A1 (en) | Hollow ellipse smoke alarm | |
DE2310817C3 (en) | Device for detecting particles carried along in a fluid, in particular smoke alarms | |
EP0802499A2 (en) | Luminance scanner | |
DE102015012429A1 (en) | Method for signal acquisition in a gas analysis system | |
DE2714130A1 (en) | OPTICAL FIRE DETECTOR | |
DE2709866C2 (en) | Device for the detection of suspended particles | |
DE2632876A1 (en) | Smoke detector using LED - light is reflected by smoke particles onto adjacent photodetector with rectifier layer for threshold device | |
DE4215908A1 (en) | Optical particle size measurement appts. e.g. for clean room - periodically modulates light incident on measuring vol. e.g by varying light source power or using grating, acoustic=optic modulator or hologram, and detects scattered light. | |
DE102004058408B4 (en) | Device for determining surface properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19821103 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 24787 Country of ref document: AT Date of ref document: 19870115 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3175819 Country of ref document: DE Date of ref document: 19870212 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19890911 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19890915 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19890927 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19891031 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19900823 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19900910 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19900912 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19900928 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19901024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19901025 |
|
ITTA | It: last paid annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19901031 |
|
BERE | Be: lapsed |
Owner name: CERBERUS A.G. Effective date: 19901031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19910501 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19911024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19911031 Ref country code: CH Effective date: 19911031 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19920630 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19920701 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
EUG | Se: european patent has lapsed |
Ref document number: 81108849.1 Effective date: 19910603 |