EP0054506A2 - Procédé et installation pour la fabrication en continu de coke métallurgique - Google Patents

Procédé et installation pour la fabrication en continu de coke métallurgique Download PDF

Info

Publication number
EP0054506A2
EP0054506A2 EP81630073A EP81630073A EP0054506A2 EP 0054506 A2 EP0054506 A2 EP 0054506A2 EP 81630073 A EP81630073 A EP 81630073A EP 81630073 A EP81630073 A EP 81630073A EP 0054506 A2 EP0054506 A2 EP 0054506A2
Authority
EP
European Patent Office
Prior art keywords
carboniferous
chamber
prevails
matter
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP81630073A
Other languages
German (de)
English (en)
Other versions
EP0054506A3 (fr
Inventor
Théophile Martens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siderurgie Maritime (maritieme Staalnijverheid) Sidmar Sa
Sidmar SA
Original Assignee
Siderurgie Maritime (maritieme Staalnijverheid) Sidmar Sa
Sidmar SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siderurgie Maritime (maritieme Staalnijverheid) Sidmar Sa, Sidmar SA filed Critical Siderurgie Maritime (maritieme Staalnijverheid) Sidmar Sa
Publication of EP0054506A2 publication Critical patent/EP0054506A2/fr
Publication of EP0054506A3 publication Critical patent/EP0054506A3/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B1/00Retorts
    • C10B1/02Stationary retorts
    • C10B1/04Vertical retorts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/18Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with moving charge
    • C10B47/20Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with moving charge according to the moving bed type

Definitions

  • the present invention relates to a process for the continuous production of metallurgical coke and to the installation necessary for implementing the process.
  • the manufacture of metallurgical coke which is essentially discontinued at the present time, consists of placing raw materials, mainly coking coal, in carbonization cells and heating these materials which, by distillation and agglutination, give products having the well-known form of coke used in metallurgical plants.
  • raw materials mainly coking coal
  • carbonization cells carbonization cells
  • heating these materials which, by distillation and agglutination, give products having the well-known form of coke used in metallurgical plants.
  • There are currently economic difficulties in such manufacture because of the decrease in coking coal reserves and the increase in the price of these coals. These difficulties are also becoming more acute due to the rapid increase in the price of labor for the construction of new conventional manufacturing units.
  • This process essentially provides for agglomeration of non-coking fine charcoal in the form of balls or briquettes whose dimensions are smaller than those of the final product, in that the raw agglomerates thus obtained are mixed with charcoal coking end and in that this mixture is subjected to a carbonization treatment.
  • the aim of the present invention is to propose a process for the continuous production of metallurgical coke superior to known processes, both from the economic point of view and from the point of view of environmental protection.
  • This object is achieved by the process according to the invention which provides for carbonizing carboniferous materials, such as coking coals or deemed non-coking coals, by indirect heating, characterized in that the carboniferous materials are moved continuously and in a vertical direction through an essentially closed system, which one adjusts the conditions of transfer of heat towards carboniferous materials in the process of carbonization, as well as their speed of movement so as to limit the cooking time to 6-7 hours and to establish in the system in which the carbonization takes place, zones of determined temperatures increasing in the direction of the displacement of the materials and that it is ensured that all the gaseous or liquid compounds which are formed during the process arrive from their formation zone in the specific zone where the maximum temperature prevails, from where they are evacuated.
  • carboniferous materials are moved continuously and in a vertical direction through an essentially closed system, which one adjusts the conditions of transfer of heat towards carboniferous materials in the process of carbonization, as well as their speed of movement so as to limit the cooking time to 6-7 hours and to establish in the system in which the
  • the passage of thermal energy from the outside to the caboniferous materials is accelerated by carbonization in a system which has a thermal conductivity greater than that which corresponds to conventional practice, the energy input being carried out by means of a caloriferous medium brought to 1000-1200 ° C.
  • a first zone is established where a temperature of 150-160 ° C. prevails, that in order to encourage the selective release of tars, and thereby the fusion of the coals, a zone is established where a temperature of 350-360 ° C prevails, that in order to cause the selective formation of condensable products, a zone is established where a temperature prevails from 500-600 ° C , and finally, that in order to complete the solidification of the coke produced, a last zone is established where a temperature of 1000 ° C. prevails.
  • the difference in volatile matter yields between slow heating and rapid heating is essentially due to the coking of bituminous products, such as primary tars, inside the carbon grains before the transition to the vapor phase which is all the more important that the heating is slower.
  • Very little cracked tars are products of high molecular mass, containing up to 50 to 60% of pitch and whose elementary constitution is very close to that of the starting coal with regard to oxygen, sulfur and nitrogen and little different for carbon and hydrogen. They can be represented as barely depolymerized coal fragments.
  • the cracking reactions produce constituents which are less polymerized than carbon and whose significant proportions will be liquids at pyrolysis temperatures.
  • the saturation of the two radicals formed by the break C - C requires hydrogen.
  • aromatization and condensation reactions consist in the formation of aromatic groups which are increasingly extended at the same time by dehydrogenation, therefore aromatization of saturated cycles and union of aromatic groups between them by formation of aromatic C - C bonds. . These reactions release hydrogen and lead to the formation of a solid carbon residue, either from the initial carbon or from the intermediate liquids formed.
  • the balance between the two types of reaction is a function of the hydrogen available to combine with oxygen and carbon in volatile matter.
  • the rate of pyrolysis of coal depends of course on its temperature, but also on time.
  • the reaction rate depends on their concentration and decreases as a function of time. Therefore, at constant temperature, the state of the reacting system is defined at all times by the number of unreacted molecules; and the reaction speed is only a function of this number.
  • a double wall (1) of steel delimits a cylindrical chamber (0) as well as an annular chamber (2,3) concentric, which 'There are provided passages (6) between the two chambers, the annular chamber being subdivided into at least two compartments (2) and (3) by at least one partition (7) essentially horizontal which. comprises passages (5), the lower compartment (3) comprising an inlet (4) for heating gas and that the ends of the cylindrical chamber (0) comprise airlocks serving for the introduction of carboniferous materials from above and at the evacuation of coke produced from below.
  • a conduit (10) also annular which is connected by several conduits (11) to said chamber as well as to a gas extraction system.
  • the cylindrical chamber (0) can be roughly subdivided into 3 main parts, namely a drying part (A), a heating part (B) and a cooling part (C).
  • the carboniferous materials are introduced continuously into part (A) via an airlock, not shown. They pass in turn through the different zones (160, 350, 600, 1000) of the heating part (B).
  • the gases and the liquids which are either formed, or cracked or otherwise modified in their physical and chemical constitution, are evacuated by the passages (6) and arrive in the compartment (2) where they are brought into contact with steam resp. the air. Indeed, the compartment (3) is supplied with steam and air which is introduced from below, through the inlet (4).
  • the gases which arrive from the compartment (2) in the duct (10), through the passages (11), are mainly hydrogen and l carbon monoxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Coke Industry (AREA)

Abstract

On carbonise des matières carbonifères par un chauffage indirect en déplaçant les matières en continu et dans un sens vertical à travers un système essentiellement fermé On ajuste les conditions de transfert de la chaleur vers les matières carbonifères en voie de carbonisation, ainsi que leur vitesse de déplacement de manière à limiter le temps de cuisson à 6-7 heures et à établir dans le système dans lequel s'effectue la carbonisation, des zones où règnent des températures déterminées croissantes dans le sens de déplacement des matières. On assure que tous les composés gazeux ou liquides qui sont formes au cours du processus, parviennent depuis leur zone de formation dans la zone spécifique où règne la température maximum, avant d'être évacués. Une double paroi (1) en acier délimite une chambre cylindrique (0) ainsi qu'une chambre annulaire (2, 3) concentriques. Il est prévu des passages (6) entre les deux chambres, la chambre annulaire étant subdivisée au moins en deux compartiments (2) et (3) par au moins une cloison (7) essentiellement horizontale, qui comporte des passages (5). Le compartiment (31 comprend une entrée (4) pour l'introduction du milieu calorifère et les extrémités de la chambre (0) comportent des sas servant à l'introduction de matières carbonifères respectivement à l'évacuation du coke fabriqué

Description

  • La présente invention concerne un procédé de fabrication en continu de coke métallurgique ainsi que l'installation nécessaire à la mise en oeuvre du procédé.
  • La fabrication de coke métallurgique, essentiellement discontinue à l'heure actuelle, consiste à enfourner les matières premières, principalement du charbon cokéfiable, dans des cellules de carbonisation et à chauffer ces matières qui par distillation et agglutination donnent des produits ayant la forme bien connue du coke utilisé dans les usines métallurgiques. On rencontre actuellement des difficultés d'ordre économiques dans une telle fabrication à cause de la diminution des réserves de charbon cokéfiable et de l'augmentation du prix de ces charbons. Ces difficultés deviennent également plus aigues du fait de l'augmentation rapide du prix de la main d'oeuvre pour ce qui est de la construction d'unités de fabrication classiques nouvelles.
  • Bien que la mise au point de procédés de fabrication de coke moulé ai.t atteint un stade de développement industriel, ces procédés présentent les inconvénients de nécessiter des investissements importants pour construire des nouvelles installations appropriées, de ne pas pouvoir toujours permettre l'utilisation de charbon non cokéfiable et de produire parfois des cokes qui sont de dimensions trop petites et qui ont une densité trop forte.
  • C'est dans ce contexte que le déposant a décrit dans la LU 72.666 un procédé de fabrication en di.scontinu de coke métallurgique dans des cellules classiques de carbonisation permettant d'utiliser un fort pourcentage de charbon non cokéfiable et ainsi de remédier aux difficultés et inconvénients décrits ci-dessus.
  • Ce procédé prévoit essentiellement que l'on agglomère du charbon fin non cokéfiable sous forme de boulets ou de briquettes dont les dimensions sont inférieurs à celles du produit final, en ce que l'on mélange les agglomérés crus ainsi obtenus avec du charbon fin cokéfiable et en ce que l'on soumet ce mélange à un traitement de carbonisation.
  • Malgré les avantages indéniables qu'apporte la possibilité d'utiliser du charbon non-cokéfiable en pourcentages plus ou moins élevés, ces avantages se situent uniquement sur le plan économique du .coût des matières premières. Or la cokéfaction classique est un processus que pose également des problèmes qui se situent sur le plan de la protection de l'environnement et ceci à cause des effluves liquides et des émanations gazeuses qui accompagnent les réactions de cokéfaction.
  • Le but de la présente invention consiste à proposer un procédé de fabrication en continu de coke métallurgique supérieur aux procédés connus, tant du point de vue économique que du point de vue de la protection de l'environnement.
  • Ce but est atteint par le procédé suivant l'invention qui prévoit de carboniser des matières carbonifères, telles que des charbons cokéfiables ou réputés non-cokéfiables, par un chauffage indirect, caractérisé en ce que l'on déplace les matières carbonifères en continu et dans un sens vertical à travers un système essentiellement fermé, que l'on ajuste les conditions de transfert de la chaleur vers les matières carbonifères en voie de carbonisation, ainsi que leur vitesse de déplacement de manière à limiter le temps de cuisson à 6-7 heures et à établir dans le système dans lequel s'effectue la carbonisation, des zones de températures déterminées croissantes dans le sens du déplacement des matières et que l'on assure que tous les composés gazeux ou liquides qui sont formés au cours du processus parviennent depuis leur zone de formation dans la zone spécifique où règne la température maximum, d'où on les évacue.
  • L'idée qui est à la base de l'invention découle de considérations sur les mécanismes des réactions qui se déroulent au cours de la carbonisation des matières carbonifères et sur la cinétique de la pyrolyse du charbon.
  • Suivant l'invention on accélère le passage de l'énergie thermique de l'extérieur vers les matières cabonifères en effectuant la carbonisation dans un système qui présente une conductibilité thermique supérieure à celle qui correspond à la pratique conventionnelle, l'apport d'énergie étant effectué par l'intermédiaire d'un milieu calorifère porté à 1000-1200 °C.
  • Ainsi il est prévu suivant l'invention qu'en vue de dégager l'humidité des matières carbonifères, on établit une première zone où règne une température de 150-160 °C, qu'en vue d'encourager le dégagement sélectif des goudrons, et par là la fusion des charbons, on établit une zone où règne une température de 350-360 °C, qu'en vue de provoquer la formation sélective des produits condensables, on établit une zone où règne une température de 500-600 °C, et fi.nalement qu'en vue de parfaire la solidification du coke produit, on établit une dernière zone où règne une température de 1000 °C.
  • En effet quand on chauffe progressivement -du charbon on peut distinguer plusieurs zones de température où se déroulent des réactions significatives:
    • - entre 100 et 150°, l'humidité se dégage;
    • - entre 200 et 350°, les charbons ne changent guère de poids;
    • - entre 400 et 500°, il y a décomposition rapide des charbons gras et flambants;
    • - au-dessus de 500°, la vitesse de perte de poids tombe à une valeur faible et remarquablement indépendante du charbon à condition d'avoir un mi.nimum de 20% en matières volatiles;
    • - à 1000°, le poids reste à peu près constant.
  • La différence de rendements en matière volatiles entre un chauffage lent et un chauffage rapide tient essentiellement à la cokéfaction des produits bitumineux, du type des goudrons primaires, à l'intérieur des grains de charbon avant le passage en phase vapeur qui est d'autant plus important que le chauffage est plus lent.
  • Avant 350°, ne se dégagent guère que des gaz déjà formé et occlus dans le charbon.
  • C'est.vers 350° pour les flambants et vers 400° pour les charbons à coke que commence le dégagement rapide constitué essentiellement par des goudrons.
  • A 500°, pour une vitesse de chauffage classique de 3°C/min., on obtient la quasi-totalité des produits condensables.
  • Il surprend de constater que les goudrons et benzols ne se forment que dans une zone aussi étroite.
  • Les goudrons très peu craqués sont des produits de masse moléculaire élevée, contenant jusqu'à 50 à 60% du brai et dont la constitution élémentaire est très voisine de celle du charbon de départ en ce qui concerne l'oxygène, le soufre et l'azote et peu différente pour le carbone et l'hydrogène. On peut les représenter comme des fragments de charbon à peine dépolymérisés.
  • Il est important d'expliquer l'influence d'un certain nombre de paramètres sur le cours de la carbonisation.
  • Il se produit presque simultanément deux types de réaction antagonistes quant à leurs efforts, mais forcément coexistantes pour que le bilan hydrogène s'équilibre.
  • D'une part les réactions de craquages produisent des constituants moins polymérisés que le charbon et dont des proportions importantes seront des liquides à la températures de pyrolyse. La saturation des deux radicaux formé par la rupture C - C exige de l'hydrogène.
  • D'autre part des réactions d'aromatisation et de condensation consistent en la formation de groupements aromatiques de plus en plus étendus à la fois par déshydrogénation, donc aromatisation de cycles saturés et réunion de groupements aromatiques entre eux par formation de liaisons C - C aromatiques. Ces reactions libèrent de l'hydrogène et conduisent à la formation d'un résidu solide de carbone, soit a partir du charbon initial, soit à partir des liquide intermédiaires formés.
  • L'équilibre entre les deux types de-réaction est fonction de l'hydrogène disponible pour se combiner à l'oxygène et au carbone dans les matières volatiles.
  • De là, il ressort que le teneur en matière volatiles dépend de leur constitution élémentaire, et en particulier de l'hydrogène disponible.
  • L'hydrogénation même très modérée des charbons augmentera donc le rendement en goudrons et benzol ce qui a été prouvé en laboratoire quand on carbonise sous courant d'hydrogène. L'oxydation est l'opération inverse, car elle consiste en une élimination d'hydrogène. Elle diminue la formation de goudrons, ce que l'on aperçoit quand on brûle du charbon oxydé : Il y a émission diminuée de fumées.
  • Ainsi on peut supposer que la fusion des charbons est très probablement provoquée par la formation de goudrons qui, avant de passer en phase gazeuse, dissolvent et solubilisent les parties non encore trop condensées du charbon.
  • Dans les charbons gras, les réactions de craquage se produi.sent les premières et entraînent l'état plastique. Après quoi, le résidu s'étant appauvri en hydrogène, les réactions antagonistes de condensation l'emportent et provoquent fi.nalement la resolidifica- tion. Mais si le charbon est très riche en groupements oxhydriles, ce qui est le cas des flambants, les réactions de condensation l'emportent dès le début et les goudrons ne provoquent plus de solubilisation.
  • Ceci pourrait expliquer pourquoi l'augmentation de la vitesse de chauffage accroît le rendement en matières volatiles, bien qu'elle conduise à effectuer la pyrolyse à température plus élevée.
  • La vitesse de pyrolyse du charbon, mesurée par exemple par sa perte de poids, dépend bien entendu de sa température, mais aussi du temps.
  • On sait qu'à température constante, la vitesse de perte de poids décroît en fonction du temps, par suite de l'épuisement progressif de la substance initiale.
  • Dans le cas simple où la vitesse de réaction de chaque molécule restante est indépendante de la concentration, la vitesse décroît exponentiellement en fonction du temps, étant à chaque instant proportionnelle au nombre de molécules n'ayant pas encore réagi.
  • Dans des cas où la pyrolyse se fait par exemple par réaction bi- moléculaire entre deux molécules initiales, la vitesse de réaction dépend de leur concentration et décroît en fonction du temps. Donc, à température constante, l'état du système en réaction est défini à chaque instant par le nombre de molécules qui n'ont pas réagi; et la vitesse de réaction est seulement fonction de ce nombre.
  • L'expérience confirme que pour des vitesses de chauffage comprises entre 0,25 et 5 degrés/minute:
    • - la vitesse maximale de perte de poids par rapport à la température doit être indépendante de la vitesse de chauffage.
    • - la température à laquelle cette vitesse est maximale doit croître avec la vitesse de chauffage, d'environ 15° quand la vitesse de chauffage double.
  • Il ressort de ce qui précède que le décalage en température constaé dans le dégagement des gaz et dans la température de nfsolidifica- tion sui.vant la vitesse de chauffage a des raisons fondamentales de nature chimique. Ainsi lorsqu'on augmente la vitesse de chauffage du charbon, les réactions chi.miques de pyrolyse, sans être fondamentalement modifiées, sont déplacées vers les températures plus élevées et d'autant plus que leur énergie d'activation est plus faible.
  • Les phénomènes de fusion et de solidification du charbon pendant sa carbonisation sont sous la dépendance de ces réactions chimiques et se déplacent avec elles.
  • L'installation nécessaire à la mise en oeuvre du procédé suivant l'invention est caractérisée en ce qu'une double paroi (1) en acier délimite une chambre cylindrique (0) ainsi qu'une chambre annulaire (2,3) concentriques, qu'il est prévu des passages (6) entre les deux chambres, la chambre annulaire étant subdivisée au moins en deux compartiment (2) et (3) par au moins une cloison (7) essentiellement horizontale qui. comporte des passages (5), le compartiment inférieur (3) comprenant une entrée (4) de gaz de chauffage et que les extrémités de la chambre cylindriques (0) comportent des sas servant à l'introduction des matières carbonifères par le haut et à l'évacuation du coke fabriqué par le bas. En plus il est disposé autour de l'extrémité supérieure de la chambre annulaire (2) un conduit (10) également annulaire qui est relié par plusieurs conduits (11) à ladite chambre ainsi qu'à un système d'extraction de gaz.
  • Le fonctionnement de l'installation suivant l'invention ressort de la description du dessin schématisé qui représente de manière non- limitative une forme d'exécution possible. La chambre cylindrique (0) peut être subdivisée grossièrement en 3 parties principales, à savoir une partie de séchage (A), une partie de chauffage (B) et une partie de refroidissement (C). Les matières carbonifères sont introduites en continu dans la partie (A) par l'intermédiaire d'un sas non-représenté. Elles traversent tour à tour les différentes zones (160, 350, 600, 1000) de la partie (B) de chauffage. Les gaz et les liquides qui sont soit formés, soit craqués ou autrement modifiés dans leur constitution physique et chimique, sont évacués par les passages (6) et parviennent dans le compartiment (2) où ils sont mis au contact avec de la vapeur resp. l'air. En effet on alimente le compartiment (3) de vapeur et d'air que l'on introduit par le bas, par l'entrée (4). Dans la partie du cylindre (0) qui est entourée par le compartiment (3) se déroule le refroidissement du coke produit. Grâce à la conception du procédé et de l'installation suivant l'invention, les gaz qui parviennent depuis le compartiment (2) dans le conduit (10), à travers les passages (11), sont principalement de l'hydrogène et de l'oxyde de carbone.
  • Il n'y a pas de vapeurs d'eau qui dans les procédés classiques donnent par la condensation des eaux résiduaires, exi.geant des installations importantes d'épuration avant de pouvoir être déversées en rivière.

Claims (10)

1. Procédé de fabrication de coke métallurgique qui consiste à carboniser des matières carbonifères, telles que des charbons cokéfiables ou réputés non-cokéfiables, par un chauffage indirect caractérise en ce que l'on déplace les matières carbonifères en continu et dans un sens vertical à travers un système essentiellement fermé, que l'on ajuste les conditions de transfert de la chaleur vers les matières carbonifères en voie de carbonisation, ainsi que leur vitesse de déplacement de manière à limiter le temps de cuisson à 6-7 heures et à établir dans le système dans lequel s'effectue la carbonisation, des zones où règnent des températures déterminées croissantes dans le sens de déplacement des matières et que l'on assure que tous les composés gazeux ou liquides qui sont formés au cours du processus parviennent depuis leur zone de formation dans la zone spécifique où règne la température maximum, avant d'être evacués.
2. Procédé suivant la revendication 1, caractérisé en ce que l'on accélère le passage de l'énergie thermique de l'extérieur vers les matières carbonifères en effectuant la carbonisation dans un système qui présente une conductibilité thermique supérieure à celle qui correspond à la pratique conventionnelle, l'apport d'énergie étant effectué par l'intermédiaire d'un milieu calorifère porté à 1000-1200°C.
3. Procédé suivant les revendications 1-2, caractérisé en ce qu'en vue de dégager l'humidité des matières carbonifères, on établit une première zone on règne une température de 150-160°C.
4. Procédé suivant les revendications 1-2, caractérisé en ce qu'en vue d'encourager le dégagement sélectif des goudrons, et par là la fusion des charbons, on établit une zone où règne une température de 350-360°C.
5. Procédé suivant les revendications 1-2, caractérisé en ce qu'en vue de provoquer la formation sélective des produits condensables, on établit une zone où règne une température de 500-600°C.
6. Procédé suivant les revendications 1-2, caractérisé en ce* qu'en vue de parfaire la solidification du coke produit, on établit une dernière zone où règne une température de 1000°C.
7. Procédé suivant les revendications 1-6, caractérisé en ce que l'on refrodidi.t le coke produit, directement à la suite de son passage à travers la dernière zone, en établissant dans le même système une zone de refroidissement.
8. Procédé suivant les revendications 1-7, caractérisé en ce que l'on refroidit le coke produit, en exposant la zone de refroidissement au contact indirect avec le milieu calorifère initialement froid.
9. Installation pour la mise en oeuvre du procédé suivant les revendications 1-8, caractérisée en ce qu'une double paroi (1) en acier délimite une chambre cylindrique (0) ainsi qu'une chambre annulaire (2,3) concentriques, qu'en vue de l'évacuation les composés formés il est prévu des passages (6) entre les deux chambres, la chambre annulaire étant subdivisée au moins en deux compartiments (2) et (3) par au moins une cloison (7) essentiellement horizontale, qui comporte des passages (5), le compartiment inférieur (3) comprenant une entrée (4) pour l'introduction du milieu calorifère, et que les deux extrémités de la chambre cylindrique comportent des sas servant à l'introduction de matières carbonifères respectivement à l'évacuation du coke fabriqué.
10. Installation suivant la revendication 9, caractérisée en ce qu'en vue de l'évacuation des composés formés il est disposé autour de l'extrémité supérieure de la chambre annulaire un conduit également annulaire qui est relié par plusieurs conduits à ladite chambre ainsi qu'à un système d'extraction de gaz.
EP81630073A 1980-12-12 1981-11-11 Procédé et installation pour la fabrication en continu de coke métallurgique Withdrawn EP0054506A3 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LU82999A LU82999A1 (fr) 1980-12-12 1980-12-12 Procede et installation pour la fabrication en continu de coke metallurgique
LU82999 1980-12-12

Publications (2)

Publication Number Publication Date
EP0054506A2 true EP0054506A2 (fr) 1982-06-23
EP0054506A3 EP0054506A3 (fr) 1983-01-26

Family

ID=19729543

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81630073A Withdrawn EP0054506A3 (fr) 1980-12-12 1981-11-11 Procédé et installation pour la fabrication en continu de coke métallurgique

Country Status (2)

Country Link
EP (1) EP0054506A3 (fr)
LU (1) LU82999A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004005428A1 (fr) * 2002-07-03 2004-01-15 Wesfarmers Premier Coal Limited Procede de sechage et de carbonisation de charbon
AU2003243816B2 (en) * 2002-07-03 2005-05-12 Premier Coal Limited Coal drying and charring process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR534537A (fr) * 1920-02-28 1922-03-28 Perfectionnements à la fabrication du coke
GB205268A (en) * 1922-08-15 1923-10-18 Thomas Malcolm Davidson Improvements in and relating to the destructive distillation of coal and other carbonaceous substances
GB236420A (en) * 1924-09-23 1925-07-09 Jackson Res Corp Process of distilling carbonaceous material such as oil-shale
GB1517244A (en) * 1976-03-24 1978-07-12 Hollaway J Apparatus and method for the carbonisation of coal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR534537A (fr) * 1920-02-28 1922-03-28 Perfectionnements à la fabrication du coke
GB205268A (en) * 1922-08-15 1923-10-18 Thomas Malcolm Davidson Improvements in and relating to the destructive distillation of coal and other carbonaceous substances
GB236420A (en) * 1924-09-23 1925-07-09 Jackson Res Corp Process of distilling carbonaceous material such as oil-shale
GB1517244A (en) * 1976-03-24 1978-07-12 Hollaway J Apparatus and method for the carbonisation of coal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004005428A1 (fr) * 2002-07-03 2004-01-15 Wesfarmers Premier Coal Limited Procede de sechage et de carbonisation de charbon
AU2003243816B2 (en) * 2002-07-03 2005-05-12 Premier Coal Limited Coal drying and charring process

Also Published As

Publication number Publication date
EP0054506A3 (fr) 1983-01-26
LU82999A1 (fr) 1982-07-07

Similar Documents

Publication Publication Date Title
FR2483258A1 (fr) Procede d'elimination de dechets solides
FR2680989A1 (fr) Procede de valorisation de dechets de tout type.
FR2490992A1 (fr) Procede et installation pour la conversion thermique des pneus usages ou au rebut en matieres utilisables notamment comme combustibles
FR2768424A1 (fr) Assistance electrique d'oxydation partielle d'hydrocarbures legers par l'oxygene
FR2516398A1 (fr) Procede et appareil pour refroidir et purifier un gaz chaud
FR2573750A1 (fr) Procede et installation pour produire du clinker de ciment blanc
EP0000463A1 (fr) "Procédé de séparation du toluène diisocyanate à partir des résidus de fabrication"
EP0054506A2 (fr) Procédé et installation pour la fabrication en continu de coke métallurgique
FR2723746A1 (fr) Procede de production de noir de carbone par pyrolyse de dechets de caoutchouc prealablement broyes et deferailles.
WO2020117033A1 (fr) Procédé pour la production du phosphore
EP0719177B1 (fr) Matiere granulaire poreuse obtenue a partir d'eaux de lavage de la laine, procede pour sa fabrication et ses applications
WO1995025779A1 (fr) Procede et dispositif de production de combustible par pyrolyse en continu de dechets broyes ou pateux
EP0032412B1 (fr) Procédé amélioré de fabrication de coke métallurgique à partir d'un mélange de charbons
BE497766A (fr)
WO1982003403A1 (fr) Procede pour fabriquer du coke metallurgique
BE558753A (fr)
BE572541A (fr)
BE380118A (fr)
BE881162A (fr) Procede ameliore de fabrication de coke metallurgique a partir d'un melange de charbons.
BE376100A (fr)
CH98554A (fr) Procédé perfectionné pour la préparation de l'ammoniaque.
BE446183A (fr)
BE460421A (fr)
BE373386A (fr)
CH280407A (fr) Procédé de distillation à sec de matières végétales.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE DE FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19840107

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MARTENS, THEOPHILE