EP0044529B1 - Grille de déflexion d'un courant de fluide et dispositif en faisant application - Google Patents

Grille de déflexion d'un courant de fluide et dispositif en faisant application Download PDF

Info

Publication number
EP0044529B1
EP0044529B1 EP81105578A EP81105578A EP0044529B1 EP 0044529 B1 EP0044529 B1 EP 0044529B1 EP 81105578 A EP81105578 A EP 81105578A EP 81105578 A EP81105578 A EP 81105578A EP 0044529 B1 EP0044529 B1 EP 0044529B1
Authority
EP
European Patent Office
Prior art keywords
grid
fluid
strip
plane
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81105578A
Other languages
German (de)
English (en)
Other versions
EP0044529A1 (fr
Inventor
Jacques Poux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom SA
Original Assignee
Alsthom Atlantique SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alsthom Atlantique SA filed Critical Alsthom Atlantique SA
Publication of EP0044529A1 publication Critical patent/EP0044529A1/fr
Application granted granted Critical
Publication of EP0044529B1 publication Critical patent/EP0044529B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/02Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/001Flow of fluid from conduits such as pipes, sleeves, tubes, with equal distribution of fluid flow over the evacuation surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/004Nozzle assemblies; Air knives; Air distributors; Blow boxes

Definitions

  • the invention relates to a deflection grid of a fluid stream for receiving an incident fluid stream arriving in a direction of incidence and forming an emerging fluid stream flowing in a substantially uniform manner over its entire section away from the grid in a direction of emergence differing by more than 45 ° from the direction of incidence, this grid having orifices distributed over its entire surface.
  • Such a grid is known, for example from document US-A-4,173,831.
  • it consists of a plurality of thin sheets in the shape of an inverted U. It is used to direct drying air jets at objects.
  • the known grid presents certain defects: Indeed, the space between two neighboring sheets not being rigorously constant, it is difficult to ensure the homogeneity of the flow .
  • the increase in the number of sheets being limited by mechanical considerations, it is impossible to distribute the fluid in a sufficiently high number of jets so that one can speak of a homogeneous current behind the grid.
  • a similar arrangement is moreover described in document FR-A-975,566.
  • Fluid circulation chambers usually include a fluid inlet distributor grid and a fluid outlet or return grid.
  • the purpose of the inlet grids is to cause a deflection of the flow with fluid deceleration, and the outlet grate a deflection of the flow with fluid acceleration, so as to establish a uniform velocity field between these grids.
  • the correcting system for entering the fluid can be improved by creating a flow rectifying effect using a thick perforated sheet, such that the ratio of the thickness of this sheet to the diameter of the perforations is sufficiently high and greater than five.
  • the fluid which penetrates obliquely into the perforations, sticks to the walls of said perforations, then exits in jets of direction substantially normal to the plane of this sheet.
  • This arrangement has the drawback of requiring either the use of thick, heavy and costly sheets, or of very thinly perforated sheets of medium thickness, which makes them susceptible to fouling by solid particles which may be suspended in drying air.
  • a variant sometimes used with some success consists in using panels in the shape of a honeycomb of sufficient thickness to obtain a good straightening of the flow.
  • the honeycomb has the disadvantage of a low pressure drop and of very variable value depending on the angle of incidence of the fluid on its surface. Its application thus remains limited to situations in which the fluid to be diverted is itself brought to the panel with a very regular speed and direction, which can lead to adding a perforated sheet metal to create an additional distributing average pressure drop.
  • the glued honeycombs have very limited temperature resistance.
  • the perforated sheet having no deflector effect on the air which passes therethrough almost normally, it is created, to set in motion the air at high speed in a generally parallel direction at the grid in the outlet passage, a significant difference in pressure in this passage with respect to its end arranged at the intake of a fan.
  • the object of the invention is simply to obtain good uniformity of the fluid stream downstream of an inlet grid and / or upstream of an outlet grid, this without creating an excessive pressure drop.
  • the height of the waves is between 1.5 and 5 times the width of the bottom strip.
  • the invention also relates to a device for circulating a fluid to make an object interact with a fluid in uniform flow in an internal chamber, this circulation chamber being characterized in that it comprises an inlet grid according to claim 1 and means for placing said object downstream of this grid a distance at least equal to 10 times the undulation pitch of the latter.
  • grids in the form of a thin corrugated and perforated sheet already exist, see for example the document GB-A-718418. Holes are located at the bottom of the corrugations and near a sheet that is to be treated by jets of the fluid passing through the orifices. The fluid is then sucked in by a fan which communicates with other orifices in the grid, these orifices being located at the tops of the undulations.
  • the grid is therefore used for the separation of the two fluids, namely the fresh fluid and the used fluid, which both cross against the sheet.
  • drying In drying, and in particular in the drying of a multitude of elaborate or pasty objects which cannot be placed in bulk in contact with one another, it is necessary to use drying chambers of large dimensions where the product to be dried offers little resistance to the flow of hot coolant gas. It is necessary to create throughout the extent of the drying chamber at the same time a circulation at uniform speed of the fluid itself brought to uniform temperature to obtain a dried product of regular quality, and to ensure a speed of said fluid sufficiently high to increase the dryer production and reduce the cost of investments and heat losses through the dryer walls.
  • the heat transfer fluid suitably heated and dried, generally by extracting hot humid air and admitting fresh dry air, is recycled to the product to be dried.
  • the space reserved for housing the fluid recycling circuits is of such limited dimensions that the recycled fluid flows therein with a speed much higher than that which it possessed by crossing the drying chamber; it is therefore necessary to control its admission at high speed into the drying chamber and its resumption at the outlet thereof, functions which are carried out by the use of deflection grids according to the invention ensuring at the same time the distribution functions or of recovery.
  • the drying chamber 1 of the dryer contains the sheets of pasta 18 suspended on horizontal rods 2 which run perpendicular to the plane of the drawing in the dryer.
  • the dryer shown has for simplicity only a single layer of pasta.
  • the air contained in the heat-insulated enclosure 6 of the dryer is recycled by a fan 3 and a heating battery 4 installed in a lateral corridor 5, then is admitted into an upper entry corridor 7 through a flat entry grille 11 on the pasta curtain.
  • the speed in lane 7 can reach a value greater by at least three to five times the value of the average speed desired on the pasta curtain through the drying chamber; likewise, the air is taken up at the lower part of the drying chamber 1 through a flat outlet grille 12 and sucked in a lower exit corridor 8 at a high speed.
  • the degree of drying of the pasta obtained is then very uneven and the production of the dryer is reduced, even if the device is used to periodically reverse the direction of air circulation, because the phenomena of drying are not linear over time.
  • FIG 2 there is shown in the same schematic form a dryer according to the invention produced so as to obtain a good distribution of the air flow over the pasta.
  • the air from the lateral corridor 5 is introduced into the upper corridor 7 after having been deflected in a conventional manner by a deflecting grid 9.
  • a convergent shape is given to the corridor 7 using the upper external wall 10 of the dryer which is arranged at an angle, the law of linearly decreasing section of the channel thus formed being, as is well known, the theoretical law suitable for ensuring the compatibility of an aerodynamic field of uniform approach in speed and pressure in lane 7 with a sampling uniform flow through the inlet distributor grid 11.
  • an outlet or return grille 12 intended to deflect the air by accelerating it, returns it obliquely into the divergent lower corridor 8.
  • This corridor 8 is produced by means of the lower external wall 13, according to a law of linearly increasing section, suitable for ensuring the regular evacuation of the flow injected uniformly by the grid of so room 12 of room 1.
  • the velocity and pressure fields in the inlet lane 7, in the drying chamber on the »Iit « of pasta and in the recovery lane 8, are then uniform if the inlet distribution grid 11 deflects the oblique flow of the corridor 7 in a vertical flow at the entrance to the chamber and if the outlet grid 12 ensures a deflection of the vertical flow in an oblique flow at its exit according to a leak angle equal to the angle slope of the outer wall 13.
  • the inlet distribution grid 11 shown in FIG. 3 is obtained from a thin stamped panel so as to form corrugations having facing the flow of the roundings 15 arranged in parallel according to a step referenced at 14.
  • the roundings 15 are extend by upstream flanks 16 and downstream flanks 16 'relative to the incident flow represented by an arrow 25. These flanks are rectilinear and inclined on the normal to the plane of the panel, so as to form channels 19 which converge slightly towards a bottom 23 having perforations 20 leaving spacer tongues 21.
  • the grid 11 is folded at the bottom of the channel 19 in a flat or rounded shape.
  • the width referenced 17, of the perforated bottom 23 is at most equal to 1.5 times the projection of the pitch 14 of the undulations on a plane perpendicular to the generally oblique direction of the incident flow 25. It follows that, for the angle normal incidence of the flow of the fluid to be diverted and distributed over the grid 11, the approach speed of the fluid diverted to the bottom of the channel retains a value close to and at least equal to 0.6 times the value of the speed of incident flow 25.
  • the day or rate of perforation created by the perforations 20 does not exceed 85% so as to leave tabs 21 of sufficient width to ensure the mechanical continuity of the corrugations and the good performance of the panel grid.
  • the day at the bottom of the channel can, however, be reduced to values lower than 85%, for example up to 50%, to improve if necessary the distributing qualities of the grid at the cost of an increased pressure drop.
  • the height of the channel referenced at 26 is between 1.5 and 5 times the width 17 of the bottom 23 of a channel 19.
  • the inclination of the sides 16 and 16 'of the undulations on the normal to the overall plane of the grid is not more than 20 ° angle.
  • the fluid escapes from the perforations 20 in the form of high-speed jets, which after diffusion form a uniform velocity flow which is restored at a distance downstream from the grid of the order of ten times the step 14 of the undulations.
  • a distributing grid with a given profile retains its deflecting and distributing qualities for a large range of incident angles of the fluid to be distributed, from an angle of approach normal to the grid up to a maximum value of the angle of approach in oblique attack of the panel.
  • This value can be all the higher as the ratio of the space 17 at the bottom of the channel to the pitch 14 is low.
  • the flow takes off on the rounded edges 15 ′ in order to abut and rebound on the downstream flank 16 ′ of the channel 19, disposed opposite the incident flow, the output jets can even be returned in a direction opposite to the direction of flow approach.
  • auxiliary perforations 24 can be provided in the downstream sides 16 ′ at the limit of the rounding 15 of the wave, on the side opposite to the oblique impact of the fluid to deviate.
  • the fluid sucked in by the auxiliary perforations 24 results in the resorption of the release pockets and at the same time causes the correct rounding of the roundness 15 of the corrugation.
  • the fluid sucked through the perforations 24 serves to supply the downstream flow through the dead space located under the grid 11 and thus improves the uniformity of the flow of the fluid downstream of the panel.
  • the auxiliary perforations 24 can be at most equal to the normal perforation 20 of the bottom 23 of the channels 19.
  • the essential qualities resulting from the distribution grid according to FIG. 3 are aerodynamic, technical and economic.
  • the grid adapts to a very variable angle of incidence of the approach flow up to a high limit angle depending on the perforations and the profiling of said grid, this good ability being linked to the presence rounded 15 of the corrugation facing the flow and the converging shape of the channels 19 between the flanks 16 and 16 'of the rounded, the flow being deflected and traversing said channels practically without slowing down or losses.
  • the pressure drop of the grid is weakly dependent on the approach angle up to the limit angle of use, the loss being practically only constituted by the diffusion of the jets from the perforations 20 by sudden widening at the outlet.
  • the grid thus has practically the minimum loss for deviating and distributing the fluid in an oblique approach.
  • the manufacturing principle by stamping, we obtain a very regular grid, rigid and light, without welding or gluing, which allows to use it at high temperature if it is metallic.
  • the grid is not very sensitive to the fouling phenomenon because of its rounded shape facing the flow and the absence of re-entrant angles, where particles could be deposited.
  • the undulation pitch is chosen to be less than 1/10 of the distance between the grid 11 and the pasta plies 18 so as to ensure uniform flow at the level of these plies.
  • the use of the distributing grid according to the invention is not limited to the sole case of the general oblique approach at a constant angle of the fluid flow to be diverted and distributed, but can be extended to the case of fluids approaching from different angles in space.
  • FIG. 5 shows an embodiment of the outlet grid 12 from the chamber 1 and of entry into the exit corridor.
  • the purpose of the outlet grille 12 is to deflect the air and return it at an oblique exit angle by accelerating it, the directions of incidence and emergence being represented by the arrows 25 'and 42' respectively.
  • the grid 12 consists of a thin-walled panel from which perforations 33 have been previously cut. The panel is then pleated by stamping so as to form blades 30 parallel to each other, at the step referenced at 29. The blades 30 are inclined on the overall plane of the grid 12 a wedging angle referenced at 31 the smaller the greater the deflection of the desired flow. The blades 30 are mechanically joined together by tongues 32 remaining after perforation of the panel and forming an angle 39 with the blades 30.
  • the fluid which passes through the grid 12 abuts against the blades 30 and passes after separation of the flow on the upstream lip 34 of the blade 30 in the perforations 33 released by cutting between the tongues 32.
  • These perforations 33 can be square or rectangular , or even oblong or circular.
  • the deviation sought is all the more easily obtained and for a pressure drop all the lower the greater the projection referenced at 38 of the blade 30 on the plane of the panel of the grid 12 compared to the pitch referenced at 29, the projection referenced at 37 of the tongue 32 being reduced to the minimum compatible with the requirements for folding the tongue 32.
  • the gap 37 is approximately equal to twice the minimum internal radius of folding of the sheet. This radius is therefore approximately five times the thickness of the sheet metal constituting the panel.
  • the outlet grid 12 according to the invention can be attacked by the fluid at an angle deviating from the normal to the grid. It then transforms the tangential component normal to the generators of the blades and keeps the tengential component parallel to the generators and restores the component normal to the plane of the grid after diffusion of the output jets.
  • the grid 12 will be used without approach component parallel to the generatrices of the blades 30.
  • the exit angle of the speed varies as a function of the angle of approach with normal to the grid. For sufficiently deviating grids, more than 70 °, this exit angle varies however quite small for an oblique attack not deviating by more than 20 ° from the normal attack, and the same grid can be used in this range, which allows it to be placed obliquely if necessary at the outlet of the drying chamber.
  • the outlet grids according to the invention have deflecting and distributing qualities, in particular in association with a divergent return passage 8 which brings their performance closer to that which could theoretically be achieved with a grid of the turbine blade type, while keeping the qualities of simplicity and economy of construction, robustness and the advantage of a large format.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Drying Of Solid Materials (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

  • L'invention concerne une grille de déflexion d'un courant de fluide pour recevoir un courant de fluide incident arrivant selon une direction d'incidence et former un courant de fluide émergent s'écoulant de manière sensiblement uniforme sur toute sa section à distance de la grille selon une direction d'émergence différant de plus de 45° de la direction d'incidence, cette grille comportant des orifices répartis sur toute sa surface.
  • Une telle grille est connue, par exemple à partir du document US-A-4 173 831. Dans ce cas, elle est constituée d'une pluralité de tôles minces en forme de U renversé. Elle sert à diriger des jets d'air de séchage sur des objets. Si l'on veut créer un flux homogène du fluide derrière la grille, la grille connue présente certains défauts: En effet, l'espace entre deux tôles voisines n'étant pas rigoureusement constant, il est difficile d'assurer l'homogénéité du flux. En outre, l'augmentation du nombre de tôles étant limitée par des considérations mécaniques, il est impossible de repartir le fuide en un nombre suffisamment élevé de jets pour qu'on puisse parler d'un courant homogène derrière la grille. Une disposition similaire est d'ailleurs décrite dans le document FR-A-975 566.
  • Les chambres de circulation de fluide comportent habituellement une grille distributrice d'entrée du fluide et une grille de sortie du fluide ou de reprise. Les grilles d'entrée ont pour but de provoquer une déviation de l'écoulement avec décélération du fluide, et la grille de sortie une déviation de l'écoulement avec accélération du fluide, de manière à établir un champ de vitesse uniforme entre ces grilles.
  • Dans les modes habituels de réalisation des chambres de ce type, il est fait usage de grilles de distribution d'entrée d'air et/ou de reprise constituées de tôles perforées minces et planes, généralement associées à des couloirs d'entrée et de sortie de hauteur constante. Comme les perforations à bord mince de ces grilles n'ont aucun effet redresseur sur les composantes tangentielles de l'air à l'entrée, il subsiste, malgré un effet de répartition du débit à l'entrée, des composantes obliques importantes d'écoulement dans la chambre qui, combinées avec les effets de paroi de la chambre, laissent subsister une mauvaise répartition de l'air.
  • Le système correcteur d'entrée du fluide peut être amélioré en créant un effet redresseur de l'écoulement à l'aide d'une épaisse tôle perforée, telle que le rapport de l'épaisseur de cette tôle au diamètre des perforations soit suffisamment élevé et supérieur à cinq. Le fluide, qui pénètre en jet oblique dans les perforations recolle aux parois desdites perforations, sort alors en jets de direction sensiblement normale au plan de cette tôle. Cette disposition a l'inconvénient de nécessiter soit l'usage de tôles épaisses, lourdes et coûteuses, soit de tôles d'épaisseur moyenne très finement perforées, ce qui les rend sensibles à l'encrassement par les particules solides qui peuvent être en suspension dans l'air de séchage.
  • Une variante parfois utilisée avec un certain succès consiste à utiliser des panneaux en forme de nid d'abeilles en épaisseur suffisante pour obtenir un bon redressement de l'écoulement. Le nid d'abeilles présente cependant l'inconvénient d'une perte de charge faible et de valeur très variable suivant l'angle d'incidence du fluide à sa surface. Son application reste ainsi limitée aux situations dans lesquelles le fluide à dévier est lui-même amené sur le panneau avec une vitesse et une direction très régulière, ce qui peut conduire à adjoindre une tôle perforée pour créer une perte de charge moyenne supplémentaire répartitrice. De plus, les nids d'abeilles collés présentent une tenue très limitée en température.
  • De même, à la sortie de la chambre, la tôle perforée n'ayant aucun effet déflecteur sur l'air qui la traverse à peu près normalement, il se crée, pour mettre en mouvement l'air à grande vitesse suivant une direction généralement parallèle à la grille dans le couloir de sortie, une différence importante de pression dans ce couloir par rapport à son extrémité disposée à l'aspiration d'un ventilateur. Pour remédier à cette différence de pression, qui déséquilibre la distribution de l'écoulement dans la chambre, il convient de donner à la grille de sortie une perte de charge extrêmement élevée pour compenser cette différence de succion qui s'exerce au travers. On est donc ainsi conduit à utiliser des tôles avec des pertes de charge excessives pour un résultat médiocre, même en utilisant des couloirs divergents.
  • L'invention a pour but d'obtenir simplement une bonne uniformité du courant de fluide en aval d'une grille d'entrée et/ou en amont d'une grille de sortie, ceci sans créer une perte de charge excessive.
  • L'invention a notamment pour objet une grille de déflexion d'un courant de fluide pour recevoir un courant de fluide incident arrivant selon une direction d'incidence et former un courant de fluide émergent s'écoulant de manière sensiblement uniforme sur toute sa section à distance de la grille selon une direction d'émergence différant de plus de 45". de la direction d'incidence, cette grille comportant des orifices répartis sur toute sa surface, caractérisée par le fait qu'elle a la forme générale d'un panneau constitué par au moins une tôle mince ondulée et perforée, la direction des ondes étant perpendiculaire à la fois aux deux directions d'incidence et d'émergence, chaque onde de la tôle comportant en partant du côté d'émergence,
    • - une bande de fond sensiblement plane parallèle au plan moyen, avec une largeur au plus égale à 1,5 fois la projection du pas d'ondulation sur un plan perpendiculaire à la direction d'incidence, et avec des perforations principales,
    • - deux bandes de flanc sensiblement planes situées de part et d'autre de cette bande de fond et divergeant à partir de celle-ci,
    • - et une bande de sommet incurvée raccordant une des bandes de flanc de cette onde à une bande de flanc de l'onde adjacente, la concavité étant disposée du côté du fluide émergent.
  • De préférence la hauteur des ondes est comprise entre 1,5 et 5 fois la largeur de la bande de fond.
  • Dans le cas d'une grille de sortie permettant d'obtenir une direction d'émergence fortement inclinée sur le plan de la grille, il semble avantageux d'adopter une disposition selon laquelle chaque onde de la tôle est constituée par:
    • - une bande de guidage sensiblement plane qui dévie l'écoulement incident vers des perforations,
    • - une bande perforée sensiblement perpendiculaire au plan du panneau,
    • - les perforations s'étendant sur toute la largeur de cette bande perforée de manière que le fluide débouche desdites perforations en jets obliques décollés du panneau, ces jets reconstituant après diffusion un écoulement aval uniforme fortement incliné sur le plan de panneau.
  • L'invention a également pour objet un dispositif de circulation d'un fluide pour faire interagir un objet avec un fuide en écoulement uniforme dans une chambre interne, cette chambre de circulation étant caractérisée par le fait qu'elle comporte une grille d'entrée selon la revendication 1 et des moyens pour placer ledit objet en aval de cette grille une distance au moins égale à 10 fois le pas d'ondulation de cette dernière.
  • Il est à noter que des grilles sous forme d'une tôle mince ondulée et perforée existent déjà, voir par exemple le document GB-A-718418. Des orifices se trouvent au fond des ondulations et à proximité d'une feuille qu'on veut traiter par des jets du fluide traversant les orifices. Le fluide est ensuite aspiré par un ventilateur qui communique avec d'autres orifices de la grille, ces orifices étant situés aux sommets des ondulations. La grille sert donc à la séparation des deux fluides, à savoir le fluide frais et le fluide usé, qui traversent tous deux en contresens la tôle.
  • Les caractéristiques et avantages de l'invention ressortiront de la description d'un mode de réalisation donné à titre d'exemple et illustré dans le dessin, dans le cadre d'un séchoir à pâtes alimentaires allongées.
    • La figure 1 représente une vue schématique en coupe transversale d'un séchoir selon l'art antérieur.
    • La figure 2 représente une vue schématique en coupe transversale d'un dispositif selon l'invention, ce dispositif constituant ici un séchoir.
    • La figure 3 représente une vue en perspective schématique partielle de la grille d'entrée du séchoir selon la figure 2, cette grille étant une grille de déflexion selon l'invention.
    • La figure 4 est une vue en perspective schématique d'une double grille de déflexion selon l'invention, également utilisable pour un séchoir.
    • La figure 5 est une vue en perspective schématique partielle de la grille de sortie du séchoir selon la figure 2, cette grille étant encore une grille de déflexion selon l'invention.
  • Dans le séchage, et notamment dans le séchage d'une multitude d'objets élaborés ou pâteux ne pouvant être disposés en vrac au contact les uns des autres, on est conduit à utiliser des chambres de séchage de grandes dimensions où le produit à sécher offre peu de résistance à l'écoulement du gaz chaud caloporteur. Il faut créer dans toute l'étendue de la chambre de séchage à la fois une circulation à vitesse uniforme du fluide lui-même amené à température uniforme pour obtenir un produit séché de qualité régulière, et assurer une vitesse dudit fluide suffisamment élevée pour augmenter la production du séchoir et réduire le coût des investissements et les déperditions calorifiques par les parois du séchoir. Corrélativement, pour des raisons d'économie, le fluide caloporteur, convenablement réchauffé et desséché, généralement par extraction d'air chaud humige et admission d'air sec frais, est recyclé sur le produit à sécher. Pour les mêmes raisons économiques, l'espace réservé pour loger les circuits de recyclage du fluide est de dimensions si restreintes que le fluide recyclé s'y écoule avec une vitesse très supérieure à celle qu'il possédait en traversant la chambre de séchage; il faut donc contrôler son admission sous vitesse élevée dans la chambre de séchage et sa reprise à la sortie de celle-ci, fonctions qui sont réalisées par l'utilisation de grilles de déflexion suivant l'invention assurant en même temps les fonctions de distribution ou de reprise.
  • Dans la figure 1 la chambre de séchage 1 du séchoir contient les nappes de pâtes 18 suspendues sur des cannes horizontales 2 qui défilent perpendiculaire au plan du dessin dans le séchoir. Le séchoir représenté ne comporte pour simplifier qu'une seule nappe de pâtes. L'air contenu dans l'enceinte calorifugée 6 du séchoir est recyclé par un ventilateur 3 et une batterie de chauffe 4 installés dans un couloir latéral 5, puis est admis dans un couloir supérieur d'entrée 7 à travers une grille d'entrée plane 11 sur le rideau de pâtes. La vitesse dans le couloir 7 peut atteindre une valeur supérieure d'au-moins trois à cinq fois la valeur de la vitesse moyenne désirée sur le rideau de pâtes à travers la chambre de séchage; de même, l'air est repris à la partie inférieure de la chambre de séchage 1 à travers une grille de sortie plane 12 et aspiré par un couloir inférieur de sortie 8 à une vitesse élevée. La forte énergie cinétique de l'air dans le couloir supérieur 7 combinée avec l'aspiration du ventilateur 3 dans le couloir inférieur 8 provoque un fort déséquilibre dynamique qui se traduit par une répartition de vitesse très irrégulière en direction et grandeur sur le rideau de pâtes, des valeurs maximum de deux à trois fois la valeur moyenne attendue pouvant se manifester du côté opposé au couloir 5 de retour, et des vitesses faibles et même des recirculations de bas en haut pouvant se produire en partie supérieure du rideau de pâtes du côté adjacent au couloir 5. Le degré de séchage des pâtes obtenu est alors très inégal et la production du séchoir s'en trouve diminuée, même si on utilise l'artifice d'inverser périodiquement le sens de circulation de l'air, car les phénomènes de séchage ne sont pas linéaires en fonction du temps. On est alors conduit à disposer à la sortie des chambres de séchage un silo de rétention dans lequel le rééquilibrage d'humidité entre les différentes pâtes plus ou moins sèches se produit.
  • Pour simplifier, dans la figure 1, on n'a pas représenté les dispositifs d'extraction d'air humide et d'admission d'air sec destinés à contrôler l'humidité moyenne de l'air de séchage.
  • Dans la figure 2 on a représenté sous la même forme schématique un séchoir selon l'invention réalisé de manière à obtenir une bonne répartition du flux d'air sur les pâtes. L'air issu du couloir latéral 5 est introduit dans le couloir supérieur 7 après avoir été dévié de manière classique par une grille déflectrice 9. Une forme convergente est donné au couloir 7 à l'aide de la paroi extérieure supérieure 10 du séchoir qui est disposée en biais, la loi de section linéairement décroissante du canal ainsi formé étant, comme il est bien connu, la loi théorique convenable pour assurer la compatibilité d'un champ aérodynamique d'approche uniforme en vitesse et pression dans le couloir 7 avec un prélèvement de débit uniforme par la grille distributrice d'entrée 11. Par ailleurs, à la sortie du »lit« de pâtes, une grille de sortie ou de reprise 12, destinée à dévier l'air en l'accélérant, le renvoie obliquement dans le couloir inférieur divergent 8. Ce couloir 8 est réalisé à l'aide de la paroi externe inférieure 13, suivant une loi de section linéairement croissante, convenable pour assurer l'évacuation régulière du débit injecté uniformément par la grille de sortie 12 de la chambre 1.
  • Les champs de vitesse et de pression dans le couloir d'entrée 7, dans la chambre de séchage sur le »Iit« de pâtes et dans le couloir de reprise 8, sont alors uniformes si la grille distributrice d'entrée 11 assure la déviation de l'écoulement oblique du couloir 7 en un écoulement vertical à l'entrée de la chambre et si la grille de sortie 12 assure une déviation de l'écoulement vertical en un écoulement oblique à sa sortie suivant un angle de fuite égal à l'angle de pente de la paroi externe 13.
  • La grille distributrice d'entrée 11 représentée dans la figure 3 est obtenue à partir d'un panneau mince embouti de manière à former des ondulations présentant face à l'écoulement des arrondis 15 disposés parallèlement suivant un pas référencé en 14. Les arrondis 15 se prolongent par des flancs amont 16 et des flancs aval 16' par rapport à l'écoulement incident représenté par une flèche 25. Ces flancs sont rectilignes et inclinés sur la normale au plan du panneau, de manière à former des canaux 19 qui convergent légèrement vers un fond 23 comportant des perforations 20 laissant subsister des languettes entretoises 21. La grille 11 est pliée au fond du canal 19 suivant une forme méplate ou arrondie. La largeur référencée 17, du fond perforé 23 est au plus égale à 1,5 fois la projection du pas 14 des ondulations sur un plan perpendiculaire à la direction généralement oblique de l'écoulement incident 25. Il en résulte que, pour l'angle normal d'incidence de l'écoulement du fluide à dévier et répartir sur la grille 11, la vitesse d'approche du fluide dévié au fond du canal conserve une valeur voisine et au moins égale à 0,6 fois la valeur de la vitesse de l'écoulement incident 25.
  • L'air s'échappe de la grille 11 à travers les perforations 20 qui peuvent être de forme circulaire, oblongue, carrée ou rectangulaire. Le jour ou taux de perforation créé par les perforations 20 ne dépasse pas 85% de manière à laisser subsister des languettes 21 d'une largeur suffisante afin d'assurer la continuité mécanique des ondulations et la bonne tenue de la grille du panneau.
  • Le jour à fond de canal peut, cependant, être réduit à des valeurs inférieures à 85%, par exemple jusqu'à 50%, pour améliorer si nécessaire les qualités répartitrices de la grille au prix d'une perte de charge accrue. La hauteur du canal référencée en 26 est comprise entre 1,5 et 5 fois la largeur 17 du fond 23 d'un canal 19. L'inclinaison des flancs 16 et 16' des ondulations sur la normale au plan d'ensemble de la grille n'est pas supérieure à 20° d'angle. Le fluide s'échappe des perforations 20 sous forme de jets à grande vitesse, qui après diffusion forment un écoulement de vitesse uniforme qui est rétabli à une distance aval de la grille de l'ordre de dix fois le pas 14 des ondulations.
  • En pratique, une grille distributrice dotée d'un profil donné conserve ses qualités déviatrices et distributrices pour une plage importante d'angles d'incidense du fluide à répartir, depuis un angle d'approche normale à la grille jusqu'a une valeur maximale de l'angle d'approche en attaque oblique du panneau. Cette valeur peut être d'autant plus élevée que le rapport de l'espace 17 à fond de canal au pas 14 est faible. Pour des angles d'approche trop faibles par rapport au plan de la grille, l'écoulement décolle sur les arrondis 15' pour buter et rebondir sur le flanc aval 16' du canal 19, disposé à l'opposé de l'écoulement incident, les jets de sortie pouvant même être renvoyés dans une direction opposée à la direction d'approche de l'écoulement.
  • Pour améliorer le fonctionnement de la grille aux grands angles d'approche, des perforations auxiliaires 24 peuvent être ménagées dans les flancs aval 16' à la limite de l'arrondi 15 de l'onde, du côté opposé à l'impact oblique du fluide à dévier. Le fluide aspiré par les perforations auxiliaires 24 entraîne la résorption des poches de décollement et provoque parallèlement le bon contournement de l'arrondi 15 de l'ondulation.
  • Il en résulte de plus que le fluide aspiré par les perforations 24 sert à alimenter l'écoulement aval à travers l'espace mort situé sous la grille 11 et améliore ainsi l'uniformité de l'écoulement du fluide en aval du panneau. Les perforations auxiliaires 24 peut être au maximum égale à la perforation normale 20 du fond 23 des canaux 19.
  • Les qualités essentielles résultant de la grille distributrice suivant la figure 3 sont d'ordre aérodynamique et d'ordre technique et économique.
  • Sur le plan aérodynamique, la grille s'adapte à un angle d'incidence très variable de l'écoulement d'approche jusqu'à un angle limite élevé dépendant des perforations et du profilage de ladite grille, cette bonne aptitude étant liée à la présence des arrondis 15 de l'ondulation face à l'écoulement et à la forme convergente des canaux 19 compris entre les flancs 16 et 16' des arrondis, l'écoulement étant dévié et parcourant lesdits canaux pratiquement sans ralentissement ni pertes. La perte de charge de la grille est faiblement dépendante de l'angle d'approche jusqu'à l'angle limite d'utilisation, la perte étant pratiquement uniquement constituée par la diffusion des jets issus des perforations 20 par élargissement brusque au débouché. La grille possède ainsi pratiquement la perte minimale pour réaliser la déviation et la répartition du fluide en approche oblique.
  • Sue le plan technique, de par le principe de fabrication, par emboutissage, on obtient une grille très régulière, rigide et légère, sans soudure ni collage, ce qui permet de l'employer à haute température si elle est métallique. De plus, la grille est peu sensible au phénomène d'encrassement du fait de sa forme arrondie face à l'écoulement et de l'absence d'angles rentrants, où pourraient se déposer des particules.
  • La fabrication de ces grilles suivant les procédés de fabrication des tôles perforées ondulées classiques, en économisant les coûts de main-d'oeuvre, rend ces grilles particulièrement économiques.
  • Le pas d'ondulation est choisi inférieur au 1/10 de la distance entre la grille 11 et les nappes de pates 18 de manière à assurer un écoulement uniforme au niveau de ces nappes.
  • L'utilisation de la grille distributrice suivant l'invention n'est pas limitée au seul cas de l'approche générale oblique sous un angle constant de l'écoulement fluide à dévier et répartir, mais peut être étendue au cas de fluides s'approchant sous des angles différents dans l'espace.
  • Dans l'exemple de réalisation de la chambre cylindrique 1 de la figure 4, l'emploi de deux grilles 11 et 11', disposées en série dans des plans parallèles de telle façon que leurs arrondis soient orientés perpendiculairement les uns aux autres, permet de détruire toutes les composantes tangentielles de l'écoulement amont et de restituer une vitesse aval parfaitement orientée suivant la normale au plan des grilles.
  • La figure 5 montre un mode de réalisation de la grille de sortie 12 de la chambre 1 et d'entrée dans le couloir de sortie.
  • La grille de sortie 12 a pour but de dévier l'air et de le renvoyer sous un angle de sortie oblique en l'accélérant, les directions d'incidence et d'émergence étant représentées par les flèches 25' et 42' respectivement. La grille 12 est constituée par un panneau à paroi mince dans lequel on a préalablement découpé des perforations 33. Le panneau est ensuite plissé par emboutissage de façon à former des lames 30 parallèles entre elles, au pas référencé en 29. Les lames 30 sont inclinées sur le plan d'ensemble de la grille 12 d'un angle de calage référencé en 31 d'autant plus petit que la déflexion de l'écoulement recherchée est forte. Les lames 30 sont solidarisées mécaniquement entre elles par des languettes 32 subsistant après perforation du panneau et faisant un angle 39 avec les lames 30.
  • Le fluide qui traverse la grille 12 vient buter contre les lames 30 et passe après séparation du flux sur la lèvre amont 34 de la lame 30 dans les perforations 33 dégagés par découpage entre les languettes 32. Ces perforations 33 peuvent être de forme carrée ou rectangulaire, ou même oblongue ou circulaire.
  • La déviation recherchée est d'autant plus facilement obtenue et pour une perte de charge d'autant plus faible que la projection référencée en 38 de la lame 30 sur le plan du panneau de la grille 12 est importante par rapport au pas référencé en 29, la projection référencée en 37 de la languette 32 étant réduite au minimum compatible avec les exigences du pliage de la languette 32. L'écart 37 est à peu près égal à deux fois le rayon interne minimal de pliage de la tôle. Ce rayon vaut donc environ cinq fois l'épaisseur de la tôle constituant le panneau.
  • La grille de sortie 12 suivant l'invention peut être attaquée par le fluide suivant un angle s'écartant de la normale à la grille. Elle transforme alors la composante tangentielle normale aux génératrices des lames et conserve la composante tengentielle parallèle aux génératrices et restitue la composante normale au plan de la grille après diffusion des jets de sortie.
  • Dans son utilisation la plus fréquente et la plus intéressante, la grille 12 sera utilisée sans composante d'approche parallèle aux génératrices des lames 30. Pour une grille donnée, l'angle de sortie de la vitesse varie en fonction de l'angle d'approche avec la normale à la grille. Pour les grilles suffisamment déviatrices, plus de 70°, cet angle de sortie varie cependant de façon assez faible pour une attaque oblique ne s'écartant pas de plus que 20° de l'attaque normale, et une même grille peut être utilisée dans cette plage, ce qui permet de la placer éventuellement obliquement à la sortie de la chambre de séchage.
  • Les grilles de sortie, suivant l'invention présentent des qualités déflectrices et répartitrices, notamment en association avec un couloir de reprise 8 divergent qui rapproche leurs performances de celles que l'on pourrait théoriquement atteindre avec une grille du type d'aube de turbine, tout en gardant les qualités de simplicité et d'économie de réalisation, de robustesse et l'avantage d'un format de grande dimension.

Claims (7)

1. Grille de déflexion d'un courant de fluide pour recevoir un courant de fluide incident arrivant selon une direction d'incidence (25) et former un courant de fluide émergent s'écoulant de manière sensiblement uniforme sur toute sa section à distance de la grille selon une direction d'émergence (42) différant de plus de 45° de la direction d'incidence, cette grille comportant des orifices répartis sur toute sa surface, caractérisée par le fait qu'elle a la forme générale d'un panneau (11) constitué par au moins une tôle mince ondulée et perforée, la direction des ondes étant perpendiculaire à la fois aux deux directions d'incidence et d'émergence, chaque onde de la tôle comportant en partant du côté d'émergence,
- une bande de fond (23) sensiblement plane parallèle au plan moyen, avec une largeur au plus égale à 1,5 fois la projection du pas d'ondulation sur un plan perpendiculaire à la direction d'incidence (25), et avec des perforations principales (20),
- deux bandes de flanc (16, 16') sensiblement planes situées de part et d'autre de cette bande de fond et divergeant à partir de celle-ci,
- et une bande de sommet (15) incurvée raccordant une des bandes de flanc de cette onde à une bande de flanc de l'onde adjacente, la concavité étant disposée du côté du fluide émergent.
2. Grille selon la revendication 1, caractérisée par le fait que des perforations auxiliaires (24) sont formées à cheval sur la bande de sommet (15) et la bande de flanc (16') située en aval de la bande de sommet par rapport à l'écoulement incident.
3. Grille selon la revendication 2, caractérisée par le fait que la hauteur des ondes est comprise entre 1,5 et 5 fois la largeur de la bande de fond (23).
4. Grille de déflexion d'un courant de fluide pour recevoir un courant de fluide incident arrivant selon une direction d'incidence (25') et former un courant de fluide émergent selon une direction d'émergence (42') différant de plus de 45° de la direction d'incidence, cette grille comportant des orifices répartis sur toute sa surface, caractérisée par le fait qu'elle a la forme générale d'un panneau (12) constitué d'au moins une tôle mince ondulée et perforée, la direction des ondes étant perpendiculaire à la fois aux directions d'incidence et d'émergence, chaque onde de la tôle étant constituée par
- une bande de guidage (30) sensiblement plane qui dévie l'ecoulement incident vers des perforations (33),
- une bande perforée (32, 33) sensiblement perpendiculaire au plan du panneau,
- les perforations (33) s'étendant sur toute la largeur de cette bande perforée de manière que le fluide débouche desdites perforations (33) en jets obliques décollés du panneau ces jets reconstituant après diffusion un écoulement aval uniforme fortement incliné sur le plan du panneau.
5. Grille selon la revendication 4, caractérisée par le fait que l'angle (31) d'inclinaison des lames de guidage (30) sur le plan du panneau est au plus égal à 45°.
6. Dispositif de circulation d'un fluide pour faire interagir un objet avec un fluide en écoulement uniforme dans une chambre (1), caractérisée par le fait qu'il comporte une grille d'entrée selon la revendication 1, et des moyens pour placer ledit objet (18) en aval de cette grille (11) une distance au moins égale à dix fois le pas d'ondulation de cette dernière.
7. Dispositif selon la revendication 6, caractérisée par le fait que la chambre (1) est disposée entre une grille d'entrée (11) selon la revendication 1 et une grille de sortie (12) selon la revendication 4 en regard de la grille d'entrée.
EP81105578A 1980-07-23 1981-07-16 Grille de déflexion d'un courant de fluide et dispositif en faisant application Expired EP0044529B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8016221 1980-07-23
FR8016221A FR2487450A1 (fr) 1980-07-23 1980-07-23 Chambre de circulation d'un courant de fluide

Publications (2)

Publication Number Publication Date
EP0044529A1 EP0044529A1 (fr) 1982-01-27
EP0044529B1 true EP0044529B1 (fr) 1984-01-11

Family

ID=9244441

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81105578A Expired EP0044529B1 (fr) 1980-07-23 1981-07-16 Grille de déflexion d'un courant de fluide et dispositif en faisant application

Country Status (6)

Country Link
US (1) US4380877A (fr)
EP (1) EP0044529B1 (fr)
JP (1) JPS5765315A (fr)
CA (1) CA1163798A (fr)
DE (1) DE3161892D1 (fr)
FR (1) FR2487450A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4757800A (en) * 1987-01-14 1988-07-19 Lincoln Foodservice Products, Inc. Air flow system for a low profile impingement oven
US5488785A (en) * 1993-09-23 1996-02-06 Culp; George Controlled upper row airflow method and apparatus
US5414944A (en) * 1993-11-03 1995-05-16 Culp; George Method and apparatus for decreasing separation about a splitter plate in a kiln system
DE19720065C1 (de) * 1997-05-14 1998-12-17 Helmut Fresenberger Ofen zum Trocknen von lackierten Proben
US6467190B2 (en) 2000-03-22 2002-10-22 George R. Gulp Drying kiln
US6219937B1 (en) 2000-03-30 2001-04-24 George R. Culp Reheaters for kilns, reheater-like structures, and associated methods
US6370792B1 (en) 2000-09-01 2002-04-16 George R. Culp Structure and methods for introducing heated ari into a kiln chamber
FR2911393B1 (fr) * 2007-01-16 2009-04-03 3A Soc Responsabilite Limitee Unite mobile de sechage des produits de finition
US8543245B2 (en) * 2009-11-20 2013-09-24 Halliburton Energy Services, Inc. Systems and methods for specifying an operational parameter for a pumping system
DE102010024020B4 (de) * 2010-06-16 2019-08-01 Clyde Bergemann Drycon Gmbh Fördermittel und Verfahren zum Fördern von heißem Material
ITVI20110209A1 (it) * 2011-07-29 2013-01-30 Feltre Srl Impianto di essiccazione per pelli con circolazione d'aria perfezionata
KR102416936B1 (ko) * 2017-11-29 2022-07-05 엘지전자 주식회사 냉장고
CN111076498B (zh) * 2019-12-25 2021-06-11 广东利元亨智能装备股份有限公司 电芯的干燥方法
IT202000004933A1 (it) * 2020-03-09 2021-09-09 Storci S P A Apparato per l’essiccazione di un prodotto

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1293799A (en) * 1916-06-30 1919-02-11 Pacific Evaporator Company Drier.
FR975566A (fr) * 1942-02-21 1951-03-07 Anciens Ets Brissonneau & Lotz Perfectionnements aux appareils de chauffage ou de refroidissement des produits alimentaires
GB718418A (en) * 1950-01-21 1954-11-17 Julien Dungler Improvement in method and apparatus for treating fibrous sheet material by superheated steam or vapours
FR1088468A (fr) * 1952-11-28 1955-03-08 Courtaulds Ltd Perfectionnements aux séchoirs-tunnels
FR1497984A (fr) * 1966-10-28 1967-10-13 Windmoeller & Hoelscher Dispositif pour le traitement de feuilles continues de matériau en mouvement, de préférence de feuilles continues de papier ou de matière plastique, à l'aide d'un fluide gazeux
US3765103A (en) * 1971-12-03 1973-10-16 Foamat Foods Corp Plural gas stream dryer
DE2547902C3 (de) * 1975-10-25 1979-09-13 Albert-Frankenthal Ag, 6710 Frankenthal Trockungskasten für bedruckte Bogen
US4173831A (en) * 1978-04-26 1979-11-13 Diamond International Corporation Egg drying apparatus
CH636661A5 (de) * 1979-06-05 1983-06-15 Ver Faerbereien Appretur Mit dampf und warmluft betriebene trocknungseinrichtung fuer textile kleidungsstuecke.

Also Published As

Publication number Publication date
JPS5765315A (en) 1982-04-20
FR2487450A1 (fr) 1982-01-29
CA1163798A (fr) 1984-03-20
FR2487450B1 (fr) 1984-04-06
DE3161892D1 (en) 1984-02-16
EP0044529A1 (fr) 1982-01-27
US4380877A (en) 1983-04-26

Similar Documents

Publication Publication Date Title
EP0044529B1 (fr) Grille de déflexion d'un courant de fluide et dispositif en faisant application
FR3029959A1 (fr) Refroidissement de composants de moteur
EP1395787B1 (fr) Ailette a persiennes pour echangeur de chaleur
EP2870410B1 (fr) Bruleur a gaz a combustion de surface
EP1232944A1 (fr) Procédé de dégivrage par circulation forcée d'un fluide, d'un capot d'entrée d'air de moteur à réaction et dispositif pour sa mise en oeuvre
WO2009103891A2 (fr) Dispositif de soufflage de gaz sur une face d'un materiau en bande en defilement
FR2877855A1 (fr) Filtre a ailettes
EP0191786B1 (fr) Cartouche de filtration a surface externe en nids d'abeilles et procede de realisation
EP0031272B1 (fr) Procédé et dispositif pour la séparation isotopique par diffusion gazeuse
BE1004130A5 (fr) Procede pour extraire une substance presente dans un fluide gazeux porteur, sous forme de particules solides ou de liquide et systeme pour la mise en oeuvre de ce procede.
FR2598800A1 (fr) Separateur de particules liquides a ailettes
EP2982925B1 (fr) Echangeur thermique à plaques et à efficacité thermique améliorée pour turbomoteur
EP2076659B1 (fr) Ligne d'echappement munie d'un injecteur de carburant et de moyens d'homogeneisation des gaz brules
EP0914855B1 (fr) Séparateur de l'eau contenue dans un écoulement de fluide
EP2906326B1 (fr) Ensemble de piegeage de particules en suspension dans un fluide
WO2019063946A1 (fr) Dispositif de ventilation pour module d'echange de chaleur de vehicule automobile a guides d'air du flux d'air traversant les collecteurs d'air
EP3645184A1 (fr) Tube pour echangeur de chaleur avec dispositif de perturbation
EP0096607A1 (fr) Perfectionnements aux dispositifs pour séparer, des fluides qui les transportent, les corps nettoyants des échangeurs à tubes
EP0189029B1 (fr) Condenseur à mélange, notamment pour l'exploitation de l'énergie thermique des mers
WO2013001223A1 (fr) Regenerateur de chaleur
FR3071873B1 (fr) Dispositif de ventilation a tubes pour module d’echange de chaleur de vehicule automobile a cloisons de repartition du flux d’air dans les collecteurs d’air
EP1773502B1 (fr) Buse d'arrosage
CA2451830A1 (fr) Bande pour module de garnissage, module et installation correspondants
WO2019122765A1 (fr) Dispositif de ventilation pour véhicule automobile
FR2467375A1 (fr) Installation pour la mise en contact d'un courant gazeux et d'un liquide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19820712

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 3161892

Country of ref document: DE

Date of ref document: 19840216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840425

Year of fee payment: 4

Ref country code: CH

Payment date: 19840425

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840510

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19840630

Year of fee payment: 4

Ref country code: BE

Payment date: 19840630

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19850731

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19860717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19860731

Ref country code: CH

Effective date: 19860731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19870201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19880731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

BERE Be: lapsed

Owner name: ALSTHOM-ATLANTIQUE S.A.

Effective date: 19880731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 81105578.9

Effective date: 19870609