EP1773502B1 - Buse d'arrosage - Google Patents

Buse d'arrosage Download PDF

Info

Publication number
EP1773502B1
EP1773502B1 EP05793269A EP05793269A EP1773502B1 EP 1773502 B1 EP1773502 B1 EP 1773502B1 EP 05793269 A EP05793269 A EP 05793269A EP 05793269 A EP05793269 A EP 05793269A EP 1773502 B1 EP1773502 B1 EP 1773502B1
Authority
EP
European Patent Office
Prior art keywords
turbulence chamber
spray nozzle
nozzle according
inlet duct
sector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05793269A
Other languages
German (de)
English (en)
Other versions
EP1773502A1 (fr
Inventor
Vincent Baujat
Hugues De Turckheim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Internationale De Dessalement - Sidem Ste
Original Assignee
Internationale De Dessalement - Sidem Ste
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Internationale De Dessalement - Sidem Ste filed Critical Internationale De Dessalement - Sidem Ste
Publication of EP1773502A1 publication Critical patent/EP1773502A1/fr
Application granted granted Critical
Publication of EP1773502B1 publication Critical patent/EP1773502B1/fr
Priority to CY20081100205T priority Critical patent/CY1107208T1/el
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • B05B1/3421Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber
    • B05B1/3426Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels emerging in the swirl chamber perpendicularly to the outlet axis

Definitions

  • the invention relates to a watering nozzle, in particular a watering nozzle for multi-effect distillation seawater desalination plants.
  • Multi-effect distillation is, alongside successive distillation, one of the two main industrial methods of desalination of sea water imitating the natural cycle of water (evaporation- condensation-rain).
  • This method takes advantage of the heat of condensation, released during the condensation of a first quantity of water vapor, to vaporize sea water and thus again generate water vapor that can be condensed. , etc.
  • This succession of evaporations and condensations is possible only if the vaporization pressure decreases sufficiently at each stage to allow a corresponding lowering of the vaporization temperature.
  • a multi-effect distillation seawater desalination plant thus comprises a multitude of juxtaposed chambers or distillation cells, called "effects", which operate at decreasing pressure and temperature from first to last effect.
  • the first effect which is also the hottest, is fed by steam condensing at a temperature generally between about 60 and 70 ° C (heating vapor).
  • the condensation of this hot vapor in the heat exchanger of the first effect releases condensation heat.
  • This heat of condensation provides the vaporization energy (latent heat of evaporation) necessary to transform into vapor some of the seawater flowing in thin film on the other side of the heat exchanger.
  • the water vapor thus formed can be used to supply the heat exchanger with a second effect of similar design to the first but operating at a lower temperature and pressure.
  • the watering nozzle described in this application comprises a cylindrical turbulence chamber in which the coolant is rotated according to a main swirling flow.
  • the particular stepped conformation of the upper face of the turbulence chamber creates a series of secondary vortices carried by the main vortex, the vortex assembly filling the turbulence chamber such that the sprinkler cone formed by the diffuser is a solid cone.
  • this nozzle allows in principle a homogeneous dispersion of the seawater without risk of clogging or loss of pressure
  • this device under the actual operating conditions with injection of the fluid under pressure in a partial vacuum chamber, has proved partly unsatisfactory because it provides an unstable watering rate with more or less regular pulsations impossible to correct.
  • the subject of the present invention is therefore a watering nozzle comprising a substantially cylindrical turbulence chamber with an upper wall and a lower wall, an inlet duct for the cooling liquid discharging into the turbulence chamber in a direction causing a turbulence.
  • the upper wall of the turbulence chamber comprises , on its inner face, a central depression and a number of grooves radially arranged in a first sector corresponding to the beginning of the tangential flow path of the cooling liquid in the turbulence chamber, the other sector, complementary to the sector, being free of train paths.
  • the nozzle of the present invention can be used in all applications where it is necessary to disperse finely, without risk of clogging, a liquid medium. slightly viscous according to a solid dispersion cone.
  • this spatial orientation is such that the central axis of the turbulence chamber and the diffuser is a vertical axis and the lower and upper walls of the cylindrical turbulence chamber are each in a horizontal plane, perpendicular to this central vertical axis. In this position, the flow direction of the liquid in the arrival duct is also located in a substantially horizontal plane.
  • the turbulence chamber of the watering nozzle according to the invention preferably has the shape of a relatively flat cylinder, that is to say a cylinder having a height less than the diameter of the base.
  • the ratio of the height of the turbulence chamber to the diameter of the The lower or upper wall is preferably between 0.6 and 0.8 and in particular between 0.65 and 0.75.
  • the coolant is injected into the turbulence chamber in a substantially horizontal tangential direction.
  • the liquid thus injected under pressure flows tangentially to the casing of the cylinder (turbulence chamber) and forms a main vortex.
  • the centrifugal force of this main vortex in the absence of central depression and grooves in the upper wall of the nozzle, would result in a dispersion of the liquid in a hollow cone, only watering the edges of a circular area.
  • the grooves and the central depression provided in the upper wall of the nozzle according to the invention have the function of creating secondary turbulence and decreasing the relative importance of the main vortex, by bringing part of the liquid towards the central zone of the chamber turbulence.
  • a second sector free of grooves corresponds to the end of the tangential flow path of the cooling liquid in the turbulence chamber.
  • This second groove-free sector preferably covers an angle ⁇ of between 180 ° and 90 °, preferably between 150 ° and 120 °.
  • the number and the dimensions of the radial grooves located in the first sector have a great influence on the hydrodynamic behavior of the watering nozzle according to the invention. In fact, an insufficient or excessive number of grooves respectively results in an excess or a lack of watering in the periphery of the watering zone.
  • the Applicant has found that a number of grooves equal to 3, 4, 5, 6 or 7, preferably 4, 5 or 6 and in particular 5, gave the best results in terms of homogeneity of watering.
  • the inlet pipe has a substantially rectangular cross section at least in the part where it opens into the turbulence chamber. Upstream of this zone with a rectangular section, the inlet duct advantageously has a circular cross-section and a thread enabling the nozzle to be fixed on the supply of cooling liquid.
  • a vertical face of the inlet duct is preferably located in a plane tangent to the casing of the cylinder of the turbulence chamber.
  • the height of this vertical face and the face opposite to it is approximately equal to half the total height of the turbulence chamber, ie the ratio of the height (vertical dimension) of the cross section of the duct to reach the height of the cylindrical turbulence chamber is preferably between 0.7 and 0.3, preferably between 0.4 and 0.6.
  • the horizontal dimension (width) of the inlet duct is preferably close to the radius of the cylindrical chamber, ie the ratio of the width of the cross section of the inlet duct to the radius (r) of the turbulence chamber is included between 0.8 and 1.1, preferably between 0.9 and 1.
  • the upper wall of the turbulence chamber comprises a number of grooves radially arranged and joining at the center of the wall.
  • the first of these grooves is preferably substantially parallel to the axis of the arrival duct or forms with it an acute angle ( ⁇ ) less than or equal to 20 °, preferably less than or equal to 10 °.
  • the other grooves are arranged radially at the same angular distance from each other in the image of the petals of a flower corolla, except that they do not cover the entire disc formed by the upper wall but only a first sector of it. The visual effect is comparable to that of a flower corolla to which the petals were torn out over part of its circumference.
  • the furrows to be effective, must have a certain depth relative to the overall height of the turbulence chamber. In fact, too flat grooves do not effectively disturb the main vortex of the cooling liquid and oppose the centrifugal force thereof. Too deep furrows, on the contrary, would lead to excessive "centralization" of the watering liquid resulting in an excess of liquid in the center of the watering cone.
  • groove depth here means the maximum depth of the grooves at their peripheral end. This depth decreases towards the center of the "corolla” of grooves because of the central depression which affects the entire surface of the upper wall, that is to say both the sector with grooves that the sector without furrows. The depth of the grooves can thus be reduced by more than half between their peripheral end and the place where the furrows meet in a central hollow zone.
  • the width of the grooves is preferably similar to the maximum depth thereof. More precisely, a preferred ratio of the width to the maximum depth of between 0.8 and 1.2, and in particular between 0.9 and 1.1, can be defined.
  • the irrigation water leaves the turbulence chamber through the diffuser provided in the lower wall of the turbulence chamber.
  • This diffuser is coaxial with the turbulence chamber.
  • the ratio of the internal diameter of this diffuser to the internal diameter of the turbulence chamber is preferably between 0.2 and 0.4, in particular between 0.25 and 0.35.
  • the diffuser includes a substantially cylindrical portion located between the turbulence chamber and the trumpet horn portion of the diffuser.
  • the ratio of the height of the substantially cylindrical portion to the height of the trumpet horn shaped portion is preferably in the range of from 0.1 to 0.5, in particular from 0.2 to 0.4.
  • the invention further relates to a desalination plant of seawater by distillation comprising at least one watering nozzle as described above.
  • This desalination plant is preferably a multi-effect installation as described in the introduction.
  • each effect comprises at least one watering nozzle according to the invention disposed above the heat exchange tubes in which the condensation of water vapor takes place, which will supply the energy necessary for the evaporation of the sea water sprayed by the spray nozzles.
  • the watering nozzle according to the invention can, however, also be used in other industrial processes such as processes for cleaning up fumes or treating water.
  • Figure 1 shows a nozzle according to the invention with a turbulence chamber 1 having a substantially cylindrical shape, more particularly the shape of a flat cylinder whose height is slightly less than the diameter of its base.
  • this turbulence chamber 1 opens an inlet pipe of the cooling liquid 3 disposed along a substantially horizontal axis AA '.
  • the inlet pipe of the cooling liquid has a rectangular section.
  • One of the four faces of this portion of the inlet duct 3 is located in the plane tangent to the casing of the cylinder of the turbulence chamber, a feature that is best seen in Figure 2 described in detail below.
  • the inlet pipe of the cooling liquid has a circular section and has an external thread.
  • the turbulence chamber comprises a second, circular opening located in the center of the bottom wall 2b of the turbulence chamber, where the diffuser 5 of the cooling liquid originates.
  • This diffuser 5 is perfectly coaxial with respect to the turbulence chamber. It consists of a first portion, upper, substantially cylindrical and a second part in the form of a trumpet horn.
  • the outer surface of the upper wall 2a is perfectly flat and does not reflect the particular geometry of its inner surface explained in detail with reference to Figures 2, 3 and 4 below.
  • the Applicant also intends to protect nozzles where the shape of the outer surface of the upper wall 2a at least partially reflects the geometry of the inner face, with the recessed portions corresponding to the protruding portions on the opposite face and vice versa.
  • Figure 2 shows the particular arrangement of the grooves in the inner surface of the upper wall 2a of the nozzle according to the invention.
  • This surface comprises a total of five grooves 6 rounded at their ends.
  • These five grooves define a first sector 4a of an angle complementary to the angle ⁇ .
  • This first sector 4a corresponds to the beginning of the flow path of the cooling liquid arriving via the conduit 3.
  • the second sector 4b is free of grooves and here has an angle ⁇ equal to 155 °.
  • the grooved sector 4b and the four triangular surfaces separating the grooves are not horizontal surfaces but slopes towards the center of the wall 2a. This slope, invisible in this figure 2 because of the perspective from below, appears clearly in Figures 3 and 4 below.
  • Figure 3 is a cross-sectional view from point A 'of the turbulence chamber. This figure clearly shows the cross section of the inlet duct of the cooling liquid 3.
  • the wall 2a has a central depression 7 which here covers the all of its surface.
  • the present invention also encompasses embodiments or a peripheral zone of the inner surface of the upper wall 2a is perfectly horizontal and comprises a central depression of a relatively more limited size than in this FIG. 3.
  • the depression 7 corresponds here to a concavity of the inner surface of the upper wall 2a but may equally well be a cone-shaped hollow, truncated or not, with a constant slope along the entire length of the grooves.
  • Figure 4 is a synthesis of Figures 2 and 3 showing both the arrangement of the five grooves and the central depression in the inner surface of the upper wall.
  • the slope of the central depression is a straight slope of a value such that the depth of the grooves decreases approximately by half between their peripheral end and the point where each groove joins the neighboring groove (s) .

Landscapes

  • Nozzles (AREA)

Description

  • L'invention concerne une buse d'arrosage, notamment une buse d'arrosage pour des installations de dessalement d'eau de mer par distillation à effets multiples.
  • La distillation à effets multiples (MED, multiple effect distillation) est, à côté de la distillation par détentes successives, l'une des deux principales méthodes industrielles de dessalement de l'eau de mer imitant le cycle naturel de l'eau (évaporation-condensation-pluie).
  • Cette méthode met à profit la chaleur de condensation, libérée lors de la condensation d'une première quantité de vapeur d'eau, pour vaporiser de l'eau de mer et générer ainsi de nouveau de la vapeur d'eau susceptible d'être condensée, etc... Cette succession d'évaporations et de condensations n'est possible qu'à condition que la pression de vaporisation diminue suffisamment à chaque étape pour permettre un abaissement correspondant de la température de vaporisation.
  • Une installation de dessalement d'eau de mer par distillation à effets multiples comprend ainsi une multitude de chambres ou cellules de distillation juxtaposées, appelées « effets », qui fonctionnent à des pressions et températures décroissantes du premier au dernier effet. Le premier effet, qui est aussi le plus chaud, est alimenté par de la vapeur d'eau se condensant à une température généralement comprise entre environ 60 et 70 °C (vapeur de chauffe). La condensation de cette vapeur chaude dans l'échangeur de chaleur du premier effet libère de la chaleur de condensation. Cette chaleur de condensation fournit l'énergie de vaporisation (chaleur latente d'évaporation) nécessaire pour transformer en vapeur une partie de l'eau de mer s'écoulant en film mince sur l'autre face de l'échangeur de chaleur. La vapeur d'eau ainsi formée peut être utilisée pour alimenter l'échangeur de chaleur d'un deuxième effet de conception similaire au premier mais fonctionnant à une température et une pression plus basses.
  • Pour qu'une telle installation à effets multiples fonctionne avec un bon rendement et sans perturbations, il est essentiel de garantir un écoulement régulier de l'eau de mer d'alimentation en film mince sur la plus grande surface externe possible des tubes échangeurs de chaleur, généralement rassemblés en faisceaux, c'est-à-dire une aspersion homogène de ces tubes. Or, la pulvérisation d'un milieu liquide en fines gouttelettes suppose généralement le passage de ce liquide sous pression à travers des orifices de faibles dimensions ou à travers des chambres de turbulence contenant des éléments déflecteurs internes formant obstacle à l'écoulement du fluide. On comprendra facilement qu'un tel mécanisme de pulvérisation est problématique pour des milieux liquides naturels tels que l'eau de mer, contenant un grand nombre d'impuretés insolubles (algues, plancton, sable) susceptibles de boucher ces orifices. Une filtration poussée préalable du milieu liquide prélevé implique une perte de charge importante préjudiciable au bon rendement de l'installation et crée en outre un coût de fonctionnement lié à la nécessité de nettoyer régulièrement les éléments filtrants. DE 199 48 939 décrit une buse d'arrosage selon le préambule de la revendication 1.
  • Une autre approche pour disperser finement et de façon homogène un liquide naturel tel que l'eau de mer sans le faire passer par des obstacles ou des orifices de faibles dimensions est décrite dans la demande française de la Demanderesse, publiée sous le numéro FR 2 811 916 . La buse d'arrosage décrite dans cette demande comprend une chambre de turbulence cylindrique dans laquelle le fluide d'arrosage est mis en rotation selon un écoulement tourbillonnaire principal. La conformation particulière en gradins de la face supérieure de la chambre de turbulence crée une série de vortex secondaires portés par le tourbillon principal, l'ensemble tourbillonnaire remplissant la chambre de turbulence de telle sorte que le cône d'arrosage formé par le diffuseur est un cône plein. Le risque de bouchage d'une telle buse, exempte d'obstacles ou d'orifices de faibles dimensions, peut être totalement éliminé par une simple filtration grossière n'impliquant pratiquement aucune perte de charge ni coût de nettoyage.
  • Bien que cette buse permette en principe une dispersion homogène de l'eau de mer sans risque de bouchage ni perte de charge, ce dispositif, dans les conditions réelles de fonctionnement avec injection du fluide sous pression dans une enceinte sous vide partiel, s'est avéré en partie insatisfaisant car il fournit un débit d'arrosage instable présentant des pulsations plus ou moins régulières impossibles à corriger.
  • La Demanderesse a par conséquent poursuivi ses recherches pour améliorer l'hydrodynamique de la buse du type décrit ci-dessus. Ces recherches ont abouti à une buse d'arrosage comportant, en tant que moyen mécanique pour créer les tourbillons secondaires, non pas des gradins tels que décrits dans FR 2 811 916 , mais des sillons radiaux disposés de façon particulière, sans symétrie de rotation par rapport à l'axe central de la chambre de turbulence.
  • La présente invention a par conséquent pour objet une buse d'arrosage comportant une chambre de turbulence essentiellement cylindrique avec une paroi supérieure et une paroi inférieure, un conduit d'arrivée du liquide d'arrosage débouchant dans la chambre de turbulence selon une direction provoquant un écoulement tangentiel du liquide dans la chambre de turbulence, et un diffuseur, en forme de pavillon de trompette s'élargissant vers le bas, coaxial par rapport à la chambre de turbulence, caractérisé par le fait que la paroi supérieure de la chambre de turbulence comporte, sur sa face interne, une dépression centrale ainsi qu'un certain nombre de sillons disposés radialement dans un premier secteur correspondant au début du chemin d'écoulement tangentiel du liquide d'arrosage dans la chambre de turbulence, l'autre secteur, complémentaire du secteur, étant exempt de sillons.
  • Bien que particulièrement utile dans des installations de dessalement d'eau de mer par distillation à effets multiples, la buse de la présente invention peut être utilisées dans toutes les applications où il s'agit de disperser finement, sans risque de bouchage, un milieu liquide faiblement visqueux selon un cône de dispersion plein.
  • Dans la description ci-après, on utilisera à plusieurs reprises les adjectifs « horizontal » et « vertical » qui n'ont de sens que dans la mesure où la buse d'arrosage qu'il s'agit décrire a une orientation déterminée dans l'espace. Pour les fins de la description, cette orientation spatiale est telle que l'axe central de la chambre de turbulence et du diffuseur est un axe vertical et les parois inférieure et supérieure de la chambre de turbulence cylindrique sont chacune dans un plan horizontal, perpendiculaire à cet axe central vertical. Dans cette position, la direction d'écoulement du liquide dans le conduit d'arrivé est également située dans un plan sensiblement horizontal.
  • La chambre de turbulence de la buse d'arrosage selon l'invention a de préférence la forme d'un cylindre relativement plat, c'est-à-dire d'un cylindre ayant une hauteur inférieure au diamètre de la base. Le rapport de la hauteur de la chambre de turbulence au diamètre des parois inférieure ou supérieur est de préférence compris entre 0,6 et 0,8 et en particulier entre 0,65 et 0,75.
  • Dans la buse de la présente invention, le liquide d'arrosage est injecté dans la chambre de turbulence selon une direction tangentielle sensiblement horizontale. Le liquide injecté ainsi sous pression s'écoule tangentiellement à l'enveloppe du cylindre (chambre de turbulence) et forme un tourbillon principal. La force centrifuge de ce tourbillon principal, en l'absence de dépression centrale et de sillons dans la paroi supérieure de la buse, donnerait lieu à une dispersion du liquide selon un cône creux, arrosant uniquement les bords d'une zone circulaire. Les sillons et la dépression centrale prévus dans la paroi supérieure de la buse selon l'invention ont pour fonction de créer des turbulences secondaires et de diminuer l'importance relative du tourbillon principal, en amenant une partie du liquide vers la zone centrale de la chambre de turbulence. La Demanderesse, dans le cadre des très nombreux essais hydrodynamique réalisés pour aboutir à la présente invention, a constaté avec surprise qu'une disposition des sillons selon une symétrie de révolution ne permettait pas une dispersion parfaitement régulière du liquide et donnait systématiquement lieu à un défaut d'arrosage dans une zone excentrée. Par contre, lorsque les sillons sont prévus uniquement dans un secteur donné de la paroi supérieure de la chambre de turbulence, on obtient un cône d'arrosage plein permettant une humidification régulière de l'ensemble de la zone d'arrosage circulaire. Ce secteur présentant des sillons radiaux doit couvrir au moins la moitié de la surface de la paroi supérieure et doit correspondre au début du chemin d'écoulement tangentiel du liquide d'arrosage dans la chambre de turbulence. Un deuxième secteur exempt de sillons, complémentaire au premier secteur, correspond à la fin du chemin d'écoulement tangentiel du liquide d'arrosage dans la chambre de turbulence. Ce deuxième secteur exempt de sillons couvre de préférence un angle α compris entre 180° et 90°, de préférence entre 150° et 120°.
  • Le nombre et les dimensions des sillons radiaux situés dans le premier secteur ont une grande influence sur le comportement hydrodynamique de la buse d'arrosage selon l'invention. En effet, un nombre insuffisant ou excessif de sillons se traduit respectivement par un excès ou par un défaut d'arrosage dans la périphérie de la zone d'arrosage. La Demanderesse a constaté qu'un nombre de sillons égal à 3, 4, 5, 6 ou 7, de préférence égal à 4, 5 ou 6 et en particulier égal à 5, donnait les meilleurs résultats en termes d'homogénéité d'arrosage.
  • Dans un mode de réalisation préféré de la buse d'arrosage selon l'invention, le conduit d'arrivée a une section transversale sensiblement rectangulaire au moins dans la partie où il débouche dans la chambre de turbulence. En amont de cette zone à section rectangulaire, le conduit d'arrivée a avantageusement une section transversale circulaire et un filetage permettant de fixer la buse sur l'alimentation en liquide d'arrosage.
  • Dans la zone à section rectangulaire, une face verticale du conduit d'arrivée est située de préférence dans un plan tangent à l'enveloppe du cylindre de la chambre de turbulence. La hauteur de cette face verticale et de la face opposée à celle-ci est a peu près égale à la moitié de la hauteur totale de la chambre de turbulence, autrement dit le rapport de la hauteur (dimension verticale) de la section transversale du conduit d'arrivé à la hauteur de la chambre de turbulence cylindrique est de préférence compris entre 0,7 et 0,3, de préférence entre 0,4 et 0,6. La dimension horizontale (largeur) du conduit d'arrivée est de préférence voisine du rayon de la chambre cylindrique, autrement dit le rapport de la largeur de la section transversale du conduit d'arrivée au rayon (r) de la chambre de turbulence est compris entre 0,8 et 1,1, de préférence entre 0,9 et 1.
  • Le liquide d'arrosage est ainsi injecté dans la chambre de turbulence sur une largeur a peu près égale au rayon de la chambre de turbulence. Comme indiqué ci-dessus, dans cette première zone d'écoulement, la paroi supérieure de la chambre de turbulence comporte un certain nombre de sillons disposés radialement et se rejoignant au centre de la paroi. Le premier de ces sillons est de préférence sensiblement parallèle à l'axe du conduit d'arrivé ou forme avec celui-ci un angle aigu (β) inférieur ou égal à 20 °, de préférence inférieur ou égal à 10 °. Les autres sillons sont disposés radialement à une même distance angulaire les uns des autres à l'image des pétales d'une corolle de fleur, à ceci près qu'ils ne couvrent pas la totalité du disque formé par la paroi supérieure mais uniquement un premier secteur de celui-ci. L'effet visuel est comparable à celui d'une corolle de fleur à laquelle on aurait arraché les pétales sur une partie de sa circonférence.
  • Les sillons, pour être efficaces, doivent avoir une certaine profondeur par rapport à la hauteur globale de la chambre de turbulence. Des sillons trop plats n'arrivent en effet pas à perturber efficacement le tourbillon principal du liquide d'arrosage et à s'opposer à la force centrifuge de celui-ci. Des sillons trop profonds, au contraire, entraîneraient une « centralisation » excessive du liquide d'arrosage aboutissant à un excès de liquide au centre du cône d'arrosage. La Demanderesse a constaté que l'on obtenait généralement un cône d'arrosage plein d'une régularité satisfaisante pour un rapport de la profondeur des sillons à la hauteur totale de la chambre de turbulence (= profondeur des sillons + hauteur libre) compris entre 0,2 et 0,5, de préférence entre 0,25 et 0,35. On entend par « profondeur des sillons » ici la profondeur maximale des sillons au niveau de leur extrémité périphérique. Cette profondeur décroît vers le centre de la « corolle » de sillons en raison de la dépression centrale qui touche l'ensemble de la surface de la paroi supérieure, c'est-à-dire aussi bien le secteur comportant des sillons que le secteur dépourvu de sillons. La profondeur des sillons peut ainsi être réduite de plus de la moitié entre leur extrémité périphérique et l'endroit où les sillons se rejoignent en une zone centrale creuse.
  • La largeur des sillons est de préférence similaire à la profondeur maximale de ceux-ci. On peut définir plus précisément un rapport préféré de la largeur à la profondeur maximale compris entre 0,8 et 1,2, et en particulier entre 0,9 et 1,1.
  • L'eau d'arrosage quitte la chambre de turbulence par le diffuseur prévu dans la paroi inférieure de la chambre de turbulence. Ce diffuseur est coaxial par rapport à la chambre de turbulence. Le rapport du diamètre interne de ce diffuseur au diamètre interne de la chambre de turbulence est de préférence compris entre 0,2 et 0,4, en particulier entre 0,25 et 0,35. Le diffuseur comprend une partie essentiellement cylindrique, située entre la chambre de turbulence et la partie en forme de pavillon de trompette du diffuseur. Le rapport de la hauteur de la partie essentiellement cylindrique à la hauteur de la partie en forme de pavillon de trompette est de préférence compris entre 0,1 et 0,5, en particulier entre 0,2 et 0,4.
  • L'invention a en outre pour objet une installation de dessalement d'eau de mer par distillation comportant au moins une buse d'arrosage telle que décrite ci-dessus. Cette installation de dessalement est de préférence une installation à effets multiples telle que décrite dans l'introduction. Dans une telle installation chaque effet comporte au moins une buse d'arrosage selon l'invention, disposée(s) au dessus des tubes échangeurs de chaleur dans lesquels a lieu la condensation de vapeur d'eau qui fournira l'énergie nécessaire pour l'évaporation de l'eau de mer pulvérisée par les buses d'arrosage.
  • La buse d'arrosage selon l'invention peut toutefois également être utilisée dans d'autres procédés industriels tels que des procédés de dépollution des fumées ou de traitement des eaux.
  • L'invention est maintenant décrite en référence aux dessins annexés, non limitatifs, dans lesquels :
    • la figure 1 est une vue en perspective de la buse d'arrosage selon l'invention,
    • la figure 2 est une vue schématique en section transversale de la buse de la figure 1 selon le plan horizontal comprenant l'axe A-A' montrant la face intérieure de la paroi supérieure de la chambre de turbulence,
    • la figure 3 est une vue en section transversale de la buse de la figure 1 selon le plan vertical perpendiculaire à l'axe A-A', et
    • la figure 4 est une vue en perspective par le dessous de la surface interne de la paroi supérieure de la chambre de turbulence d'une buse d'arrosage selon l'invention.
  • La figure 1 montre une buse selon l'invention avec une chambre de turbulence 1 ayant une forme essentiellement cylindrique, plus particulièrement la forme d'un cylindre plat dont la hauteur est légèrement inférieure au diamètre de sa base. Dans cette chambre de turbulence 1 débouche un conduit d'arrivée du liquide d'arrosage 3 disposé selon un axe A-A' sensiblement horizontal. Dans la partie qui précède immédiatement l'embouchure dans la chambre de turbulence, le conduit d'arrivée du liquide d'arrosage a une section rectangulaire. Une des quatre faces de cette partie du conduit d'arrivée 3 est située dans le plan tangent à l'enveloppe du cylindre de la chambre de turbulence, particularité qui est mieux visible sur la figure 2 décrite en détail ci-après. A son extrémité distale, le conduit d'arrivée du liquide d'arrosage a une section circulaire et comporte un filetage extérieur permettant de le fixer par vissage dans le système d'alimentation en liquide d'arrosage.
    La chambre de turbulence comporte une deuxième ouverture, circulaire, située au centre de la paroi inférieure 2b de la chambre de turbulence, où prend naissance le diffuseur 5 du liquide d'arrosage. Ce diffuseur 5 est parfaitement coaxial par rapport à la chambre de turbulence. Il est constitué d'une première partie, supérieure, essentiellement cylindrique et d'une deuxième partie en forme de pavillon de trompette. Sur cette figure 1 la surface externe de la paroi supérieure 2a est parfaitement plane et ne reflète aucunement la géométrie particulière de sa surface interne expliquée en détail en référence aux figures 2, 3 et 4 ci-après. La Demanderesse entend toutefois également protéger des buses où la forme de la surface extérieure de la paroi supérieure 2a reflète au moins partiellement la géométrie de la face intérieure, avec les parties en creux correspondant aux parties en saillie sur la face opposée et inversement.
  • La figure 2 montre la disposition particulière des sillons dans la surface interne de la paroi supérieure 2a de la buse selon l'invention. Cette surface comporte au total cinq sillons 6 arrondis à leurs extrémités. Ces cinq sillons définissent un premier secteur 4a d'un angle complémentaire à l'angle α. Ce premier secteur 4a correspond au début du chemin d'écoulement du liquide d'arrosage arrivant par le conduit 3. Le deuxième secteur 4b est exempt de sillons et a ici un angle α égal à 155 °. Le premier sillon 6a forme ici un angle aigu β de 12° avec l'axe du conduit d'arrivé mais peut éventuellement être parallèle à cet axe (β = 0).
  • Le secteur 4b exempt de sillons ainsi que les quatre surfaces triangulaires séparant les sillons ne sont pas des surfaces horizontales mais des surfaces pentues vers le centre de la paroi 2a. Cette pente, invisible sur cette figure 2 du fait de la perspective par le dessous, apparaît clairement sur les figures 3 et 4 ci-après.
  • La figure 3 est une vue en section transversale, depuis le point A', de la chambre de turbulence. Sur cette figure apparaît clairement la section transversale du conduit d'arrivée du liquide d'arrosage 3.
  • Pour des raisons de clarté de la représentation, les sillons présents sur une partie de la paroi supérieure 2a ont été omis sur cette figure. La paroi 2a comporte une dépression centrale 7 qui couvre ici la totalité de sa surface. La présente invention englobe toutefois également des modes de réalisation ou une zone périphérique de la surface interne de la paroi supérieure 2a est parfaitement horizontale et comporte une dépression centrale d'une taille relativement plus limitée que sur cette figure 3. La dépression 7 correspond ici à une concavité de la surface interne de la paroi supérieure 2a mais peut tout aussi bien être un creux en forme de cône, tronqué ou non, avec une pente constante sur toute la longueur des sillons.
  • La figure 4 est une synthèse des figures 2 et 3 montrant à la fois la disposition des cinq sillons et la dépression centrale dans la surface interne de la paroi supérieure. Sur cette figure, la pente de la dépression centrale est une pente droite d'une valeur telle que la profondeur des sillons diminue environ de moitié entre leur extrémité périphérique et le point où chaque sillon rejoint le ou les sillon(s) voisin(s).

Claims (12)

  1. Buse d'arrosage comportant une chambre de turbulence (1) essentiellement cylindrique avec une paroi supérieure (2a) et une paroi inférieure (2b), un conduit d'arrivée (3) du liquide d'arrosage débouchant dans la chambre de turbulence selon une direction provoquant un écoulement tangentiel du liquide dans la chambre de turbulence, et un diffuseur (5), en forme de pavillon de trompette s'élargissant vers le bas, coaxial par rapport à la chambre de turbulence, caractérisé par le fait que la paroi supérieure (2a) de la chambre de turbulence comporte, sur sa face interne, une dépression centrale (7) ainsi qu'un certain nombre de sillons (6) disposés radialement dans un premier secteur (4a) correspondant au début du chemin d'écoulement tangentiel du liquide d'arrosage dans la chambre de turbulence, l'autre secteur (4b), complémentaire du secteur (4a), étant exempt de sillons.
  2. Buse d'arrosage selon la revendication 1, caractérisée par le fait que le rapport de la hauteur de la chambre de turbulence au diamètre des parois inférieure ou supérieur est compris entre 0,6 et 0,8 de préférence entre 0,65 et 0,75.
  3. Buse d'arrosage selon l'une des revendications précédentes, caractérisée par le fait que l'angle (α) du secteur (4b) exempt de sillons est compris entre 180 ° et 90 °, de préférence entre 150 ° et 120 °.
  4. Buse d'arrosage selon la revendication 1 ou 2, caractérisée par le fait que le nombre de sillons (6) est égal à 3, 4, 5, 6 ou 7, de préférence égal à 4, 5 ou 6 et en particulier égal à 5.
  5. Buse d'arrosage selon l'une des revendications 1 à 3, caractérisée par le fait que la section transversale du conduit d'arrivée (3), dans la partie où il débouche dans la chambre de turbulence, est sensiblement rectangulaire, une face du conduit d'arrivée étant située dans un plan tangent à l'enveloppe du cylindre de la chambre de turbulence.
  6. Buse d'arrosage selon la revendication 4, caractérisé par le fait que le rapport de la largeur (dimension horizontale) de la section transversale du conduit d'arrivée au rayon (r) de la chambre de turbulence est compris entre 0,8 et 1,1, de préférence entre 0,9 et 1.
  7. Buse d'arrosage selon la revendication 4 ou 5, caractérisé par le fait que le rapport de la hauteur (dimension verticale) de la section transversale du conduit d'arrivé à la hauteur de la chambre de turbulence cylindrique est compris entre 0,7 et 0,3, de préférence entre 0,4 et 0,6.
  8. Buse d'arrosage selon l'une des revendications précédentes, caractérisée par le fait que le premier sillon (6a) forme avec l'axe du conduit d'arrivée un angle aigu (β) inférieur ou égal à 20 °, de préférence inférieur ou égal à 10 °.
  9. Buse d'arrosage selon l'une quelconque des revendications précédentes, caractérisée par le fait que le rapport de la profondeur des sillons (6) à la hauteur totale de la chambre de turbulence (1) est compris entre 0,2 et 0,5, de préférence entre 0,25 et 0,35.
  10. Buse d'arrosage selon l'une quelconque des revendications précédentes, caractérisé par le fait que le diffuseur (5) comprend une première partie (5a) essentiellement cylindrique et une deuxième partie (5b) en forme de pavillon de trompette.
  11. Installation de dessalement d'eau de mer par distillation comportant au moins une buse d'arrosage selon l'une quelconque des revendications précédentes.
  12. Installation de dessalement d'eau de mer selon la revendication 11, caractérisée par le fait qu'il s'agit d'une installation à effets multiples et que chaque effet comporte au moins une buse d'arrosage, disposée(s) au dessus et arrosant des tubes échangeurs de chaleur dans lesquels a lieu la condensation de vapeur d'eau fournissant l'énergie nécessaire pour l'évaporation de l'eau de mer pulvérisée par les buses d'arrosage.
EP05793269A 2004-08-06 2005-07-28 Buse d'arrosage Not-in-force EP1773502B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CY20081100205T CY1107208T1 (el) 2004-08-06 2008-02-21 Ακροφυσιο ψεκασμου

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0408720A FR2873938B1 (fr) 2004-08-06 2004-08-06 Buse d'arrosage
PCT/FR2005/001974 WO2006024755A1 (fr) 2004-08-06 2005-07-28 Buse d'arrosage

Publications (2)

Publication Number Publication Date
EP1773502A1 EP1773502A1 (fr) 2007-04-18
EP1773502B1 true EP1773502B1 (fr) 2007-11-28

Family

ID=34947749

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05793269A Not-in-force EP1773502B1 (fr) 2004-08-06 2005-07-28 Buse d'arrosage

Country Status (7)

Country Link
EP (1) EP1773502B1 (fr)
CY (1) CY1107208T1 (fr)
DE (1) DE602005003584D1 (fr)
ES (1) ES2297759T3 (fr)
FR (1) FR2873938B1 (fr)
PT (1) PT1773502E (fr)
WO (1) WO2006024755A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0615257D0 (en) * 2006-08-01 2006-09-06 Incro Ltd Nozzle Arrangement And Dispenser Incorporating A Nozzle Arrangement

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3024472C2 (de) * 1980-06-28 1983-01-05 Lechler Gmbh & Co Kg, 7012 Fellbach Vollkegeldüse zum Versprühen von Flüssigkeit
US6092742A (en) * 1998-08-18 2000-07-25 South Carolina Systems, Inc. Nozzle for spraying liquids
DE19948939C1 (de) * 1999-10-11 2001-10-11 Spraying Systems Deutschland G Vollkegeldüse mit axialem Anschluss
FR2811916B1 (fr) * 2000-07-24 2002-10-31 Int De Dessalement Soc Buse d'arrosage, notamment pour les installations de dessalement de l'eau de mer

Also Published As

Publication number Publication date
CY1107208T1 (el) 2012-11-21
EP1773502A1 (fr) 2007-04-18
PT1773502E (pt) 2008-02-25
FR2873938A1 (fr) 2006-02-10
DE602005003584D1 (de) 2008-01-10
FR2873938B1 (fr) 2006-11-17
ES2297759T3 (es) 2008-05-01
WO2006024755A1 (fr) 2006-03-09

Similar Documents

Publication Publication Date Title
EP0312428B1 (fr) Dispositif d'injection d'une charge d'hydrocarbures dans un réacteur de craquage catalytique
CA2343844C (fr) Sous-ensemble polyfonctionnel assurant la mise en contact, la distribution de matiere et l'echange de chaleur et/ou de matiere d'au moins une phase gazeuse et d'au moins une phaseliquide
EP3833467B1 (fr) Dispositif et procédé de mise en contact d'un flux gazeux et d'un flux de liquide, et utilisation du dispositif
EP3323484A1 (fr) Plâteau distributeur pour colonne d'échange comprenant un matériau dispersif au sein d'une cheminée pour le passage du gaz
EP1773502B1 (fr) Buse d'arrosage
FR2654502A1 (fr) Procede et dispositif d'echange thermique avec film ruisselant.
FR2598800A1 (fr) Separateur de particules liquides a ailettes
WO2010146307A1 (fr) Dispositif de motorisation
EP3227622B1 (fr) Dispositif de pulvérisation compact
EP2896447B1 (fr) Plateau distributeur pour colonne d'échange entre un gaz et un liquide avec déflecteur de liquide
EP0068958B1 (fr) Générateur de vapeur muni d'un dispositif de purge dynamique
EP2883013B1 (fr) Absorbeur a echangeur a plaque spiralee avec alimentation fluidique homogene
EP1756504B1 (fr) Tour de refroidissement
EP3600646B1 (fr) Dispositif d'injection de charge d'une unite fcc a perte de charge limitee
EP0730131A1 (fr) Dispositif de refroidissement d'un fluide ou de condensation d'une vapeur
EP0012782A1 (fr) Réfrigérant atmosphérique
EP0097097A1 (fr) Procédé pour le transfert de chaleur par échange direct entre fluides gazeux et liquide et échangeur mettant en oeuvre ce procédé
WO2014086779A1 (fr) Echangeur thermique a generateurs d'ultrasons
FR2506443A3 (fr) Appareil d'echange thermique centrifuge a film liquide
FR2818734A1 (fr) Generateur de vapeur instantane
FR2768067A1 (fr) Appareil separateur et epurateur de la pollution d'au moins un melange fluide
LU85336A1 (fr) Procede et dispositif d'extraction
BE448094A (fr)
FR3113611A1 (fr) Distributeur filaire de liquide pour colonne a garnissage
BE455312A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

DAX Request for extension of the european patent (deleted)
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 602005003584

Country of ref document: DE

Date of ref document: 20080110

Kind code of ref document: P

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20080214

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20080400560

Country of ref document: GR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080228

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071128

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2297759

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071128

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071128

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080328

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071128

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071128

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071128

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071128

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071128

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071128

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080229

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071128

26N No opposition filed

Effective date: 20080829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071128

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080529

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080728

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120719

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20120727

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20120130

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20130624

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20130729

Year of fee payment: 9

Ref country code: BE

Payment date: 20130719

Year of fee payment: 9

Ref country code: CY

Payment date: 20130717

Year of fee payment: 9

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20140128

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130728

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20080400560

Country of ref document: GR

Effective date: 20140204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140728

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140729

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140728

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190718

Year of fee payment: 15

Ref country code: IT

Payment date: 20190730

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200728