EP0042789B1 - Verfahren zum in situ und ununterbrochenen Messen mit hoher Empfindlichkeit von Gaskonzentrationen und flüchtigen Produkten und Vorrichtung zur Ausführung des Verfahrens - Google Patents

Verfahren zum in situ und ununterbrochenen Messen mit hoher Empfindlichkeit von Gaskonzentrationen und flüchtigen Produkten und Vorrichtung zur Ausführung des Verfahrens Download PDF

Info

Publication number
EP0042789B1
EP0042789B1 EP81400967A EP81400967A EP0042789B1 EP 0042789 B1 EP0042789 B1 EP 0042789B1 EP 81400967 A EP81400967 A EP 81400967A EP 81400967 A EP81400967 A EP 81400967A EP 0042789 B1 EP0042789 B1 EP 0042789B1
Authority
EP
European Patent Office
Prior art keywords
chamber
expansion chamber
gases
enclosure
concentrations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81400967A
Other languages
English (en)
French (fr)
Other versions
EP0042789A1 (de
Inventor
Jean-Claude Baubron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bureau de Recherches Geologiques et Minieres BRGM
Original Assignee
Bureau de Recherches Geologiques et Minieres BRGM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bureau de Recherches Geologiques et Minieres BRGM filed Critical Bureau de Recherches Geologiques et Minieres BRGM
Priority to AT81400967T priority Critical patent/ATE15722T1/de
Publication of EP0042789A1 publication Critical patent/EP0042789A1/de
Application granted granted Critical
Publication of EP0042789B1 publication Critical patent/EP0042789B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/24Vacuum systems, e.g. maintaining desired pressures

Definitions

  • the invention relates to a method of highly sensitive measurements carried out in situ and continuously of the concentrations of gases and volatile products as well as to apparatuses for implementing the method.
  • such devices although having abundance detection thresholds of the order of 50 ppm when the measurement is made in situ and from 15 to 20 ppm in the laboratory, are still insufficient especially in the case of forecasts of '' volcanic eruptions because they can neither detect very small differences in concentrations nor the presence of a new element at very low concentration.
  • a detection is essential to detect and measure the contributions of elements from leaks from the lower layers located for example at a depth of thirty kilometers and which can be disturbed by the atmosphere and the waters in cycles which cannot be establish the evolution only by systematic and continuous measurements over a long period.
  • the object of the present invention is a method of measurement, high sensitivity, gas concentrations and volatile products from natural sites or not and regardless of the pressures and flow rates since these pressures are greater than 10- 2 bars, by means of an access pipe connected to a mass spectrometer via an expansion chamber, pumps simultaneously maintaining the pressures at optimal values in the expansion chamber and an analysis chamber, characterized in that the gases and volatile products are sampled for which it is desired to know the variations in concentrations, by establishing a permanent passage between the expansion chamber and the access pipe and maintaining the pressure of the expansion chamber at a value determined constant, on the order of magnitude from 10- 1 to 10- 2 mbar, by all of the automatic adjustments of the flow rate of access to the expansion chamber, the output flow of this expansion chamber and the pumping e of the latter in order to obtain a constant pressure.
  • Such a method has the advantage of being able to measure with an accuracy of the order of 2 ppm and continuously the concentrations of gaseous or volatile elements originating from any emergence, whether it be very small emanations or leaks at high flow rates, pressures up to 5 bar for example.
  • Another object of the invention and an apparatus for implementing the process thus defined characterized in that it comprises a semi-flexible stainless metal probe, connected by a low-flow conduit to an expansion chamber connected on the one hand to a gas transfer pump, on the other hand to a pressure gauge of said chamber, a controlled inlet valve controlling the flow rate accessing said chamber, a piezoelectric valve connecting said expansion chamber to the analysis chamber a mass spectrometer, said piezoelectric valve being controlled by an ion gauge for controlling the pressure of the analysis chamber or by the spectrometer itself.
  • the device used still makes it possible, because of the access valves, to avoid the use of long capillary tubes intended to lower the pressure to a predetermined level but the use of which increases the response times of the devices to which they are connected.
  • Another feature of the invention is a device of this type, the mass spectrometer of which is a quadrupole spectrometer so that the whole of the device and the pumps for emptying and establishing low pressures is easily inserted into a sealed housing of small dimensions, the measurements provided by the mass spectrometer being transmitted by cables or radio to any station far from the place of measurement.
  • the single figure represents in schematic form the whole of the measuring device in its enclosure and of the connected elements.
  • the enclosure shown in 1, can take any desired shape depending on the easements of use but is preferably in a parallelepiped shape, rainproof and of reduced dimensions due to the methods and means of implementation adopted. .
  • Access to the various organs can be obtained by any known means by means of a station 2 outside the enclosure.
  • This general control and command station 2 is connected to the electrical supply device 3 by the multiple link cable 4, the device 3 supplying voltage to the various elements of the device.
  • a probe for sampling gases and volatile products has been shown diagrammatically in 5.
  • This probe is permanently introduced into an appropriate vent.
  • the sample thus collected is preferably channeled by a semi-flexible stainless steel tube 6 whose upstream end provided with a breather comprises a filter 7, optionally followed by any device for trapping water and carbon dioxide shown diagrammatically at 8
  • the assembly can also be brought to a high temperature, 120 ° C. for example.
  • a connection 9 brings in the gases and volatile products sampled at the inlet 10 of the device, this inlet being connected to an expansion chamber 11.
  • a valve 12 for example a needle valve or any slaved valve, makes it possible to adjust the flow of gases and volatiles removed to maintain a certain pressure of 10- 2 to 10- 1 mbar for example in the expansion chamber 11 in order to ensure the reproducibility of measurements.
  • the chamber 11 is connected to the pump 13 by the conduit 14.
  • This pump is preferably a two-stage vane pump with a flow rate of 4.5 m 3 per hour or less depending on the applications.
  • the gases exit from the enclosure 1 takes place via the conduit 15, the end of which is directed towards the ground.
  • a pressure gauge 16, of the “Pirani for example” type, supplied by the cable 17 provides the value of the pressure on the indication 18 of the control and command station 2.
  • This station may also include a means for adjusting the valve. 12, the manual or automatic adjustment being performed to maintain a constant pressure in the range of 10- 2 to 10- 1 mbar in the chamber 11.
  • the expansion chamber 11 is connected to the analysis chamber 19 of the mass spectrometer 20 by the pipe 21 and under the control of the piezoelectric valve 22.
  • This valve is automatically controlled by the ion gauge 23 connected to the chamber d analysis 19 by means of the metal fitting 24 or even directly controlled by the spectrometer itself.
  • the ion gauge 23 and the piezoelectric valve 22 are supplied by the electric cable 25 and the devices 26 and 27, the device 27 being a reaction circuit directly controlling the piezoelectric valve 22.
  • the reaction circuit 27 has been shown schematically, this circuit can be of any known type.
  • the adjustment and control of the reaction circuit 27 as a function of the pressure of the analysis chamber 19 are such that they make it possible to vary the flow rate of the volatile products and of the expanded gases from the chamber 11 towards the analysis chamber 19 in order to maintain a stable pressure of 10- 8 to 10- 7 mbar. They can also cause the valve 22 to cut off all communication between the two chambers 11 and 19 in order to obtain perfect safety of the apparatus, in particular in the event of an operating incident liable to affect the filament of the spectrometer 20.
  • the valve 22 also remains closed when the device is in the standby position between the measurements if they are done discontinuously.
  • the analysis chamber 19 is emptied by means of a primary pump 28, of the same type as the pump 13, provided with an outlet pipe 29 and the connector 30 connected to the outlet of the ultra-fast pump 31 which is preferably an oil diffusion pump or a turbomolecular pump.
  • the pump is surmounted by a baffle 32, the cooling of the pump being ensured by forced ventilation.
  • This pumping can also be provided by any other known means, such as a turbo pump for example.
  • a set of control and display means 33 of the control station 2 makes it possible to control each of the pumps 13, 28 and 31 supplied respectively by the electrical circuits 34, 35 and 36.
  • the station 2 likewise allows the control of the ion gauge the spectrometer 20 and the reaction circuit 27 controlling the piezoelectric valve 22 as well as the Pirani gauge 16, its reaction circuit and the valve 12.
  • the results of the mass spectrometer 20, which is of the quadrupole type supplied by the cable 37, are transmitted by the cable 39 to an information processing device 39 possibly connected by the cable 40 to the control and command station 2.
  • the device 39 can be a digital or analog computing device and can be located at any station more or less away from the analysis site. It can be connected by means of the cable 43 to all auxiliary display 41 or print 42 devices.
  • the enclosure 1 of reduced dimensions of the order for example of 40 ⁇ 50 ⁇ 60 cm at least, in the immediate vicinity of this site and to carry out measurements of very low gas concentrations with a view to detecting variations in elements such as H, He, CH 4 , NH 3 etc ... in a mass of H 2 0, CO z , N 2 , l apparatus thus produced having an abundance sensitivity of the order of 2 ppm.
  • the apparatus being in the vicinity of the site, operating autonomously and being permanently controlled by the station 2 possibly slaved to the data processing system 39, it is possible, depending on the results obtained, to repeat the sampling cycles by the probed 5 and of introduction into the analysis chamber 19 by passing through the expansion chamber 11, according to variable frequencies.
  • the data processing device 39 therefore makes it possible to control the frequency of repetition of the measurement cycles as a function of the values of the concentrations obtained independently of the pressures of the gases collected by the probe.
  • the response time of the device can be very short since on the one hand its reduced dimensions lend themselves to a possibility of installation very close to the chosen vent and on the other hand, due to the controls of valves 12 and 22 it is not necessary to connect the device to the probe 5 by a capillary extending over the entire distance existing between probe and device.
  • a single calculation device 39 can be connected to several enclosures 1, each of which permanently receives the emanations from a neighboring emergence.
  • the device can also be used to control the gassing of geothermal boreholes and detect gas anomalies in geothermal energy or in mining research.
  • the apparatus can then be coupled to a scintillation probe 44 for the detection and simultaneous measurement of the Radon.
  • This usual type probe can be connected by any suitable expansion junction 11.
  • the current supply to the probe has been shown diagrammatically by wire 45 and the output by wire 46.
  • the station 2 for monitoring and controlling the elements contained in the enclosure 1 is then controlled by the results of the remote information processing device 39 supplied by the mass spectrometer 20 and by the scintillation probe 44 connected to the expansion chamber 11.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Electron Tubes For Measurement (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Claims (8)

1. Meßverfahren großer Empfindlichkeit für die Konzentration von an natürlichen oder nicht natürlichen Plätzen ausströmenden Gasen und flüchtigen Stoffen, wie auch immer ihre Drücke und Ausströmmengen sind, falls ihre Drücke über 10-2 bar liegen, mittels einer Zuführleitung, die mit einem Massenspektrometer über eine Expansionskammer (11) verbunden ist, wobei Pumpen zugleich in der Expansionskammer (11) und einer Analysekammer (19) die Drücke auf optimalen Werten halten, dadurch gekennzeichnet, daß man die Gase und flüchtigen Stoffe, deren Konzentrationsänderung man zu kennen wünscht, dadurch aufnimmt, daß man eine ständige Verbindung zwischen der Expansionskamme (11) und der Zuführleitung (9) einrichtet und den Druck der Expansionskammer (11) auf einen gegebenen Wert in der Grössenordnung von 10-1 bis 10-2 mbar hält durch das Zusammenwirken der automatischen Regelungen der Zuströmmenge zur Expansionskammer (11), der Ausströmmenge aus dieser Expansionskammer und der Arbeit der ihr zugeordneten Pumpe, um einen konstanten Druck zu erhalten.
2. Verfahren nach Anspruch 1, bei welchem die Zirkulationsvorgänge der Gase und der flüchtigen Stoffe in der Expansionskammer (11) und der Analysekammer (19) durch eine Steuereinheit gesteuert werden, die in der Nähe des Massenspektrometers angeordnet ist, dadurch gekennzeichnet, daß die Steuereinheit die Regelung der permanenten Zufuhr der Gase über die Expansionskammer (11) und die Analysekammer (19) sicherstellt.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Messungen der Drücke und Konzentrationen an eine von der Meßstelle entfernte Datenverarbeitungsstation (39) übertragen werden.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Einrichtung zur Informationsbearbeitung die Wiederholungsfrequenz der Meßzyklen als Funktion der erhaltenen Konzentrationswerte unabhängig von den durch die Sonde ermittelten Gasdrücken steuert.
5. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1-4 mit einer Zuführleitung für die zu analysierenden Gase und die flüchtigen Stoffe von beliebigem Druck, die mittels eines Schiebers und einer Expansionskammer mit der Analysekammer eines Massenspektrometers verbunden ist, sowie mit Pumpvorrichtungen, dadurch gekennzeichnet, daß die Leitung eine Sonde (5) umfaßt, die mit der Expansionskammer (11) über eine Leitung (9) verbunden ist, in der die Gasfördermenge durch einen Regelschieber (12) begrenzt wird und die die Gase kontinuierlich dieser Expansionskammer (11) zuführt, die einerseits mit einer Gasförderpumpe (13) und andererseits mit einem Meßgerät (16) zur Ermittlung des Druckes in dieser Kammer verbunden ist, daß ein piezoelektrischer Schieber (22) zwischen der Analysekammer (19) des Massenspektrometers (20) und der Expansionskammer (11) eingefügt ist, um die Regelung der kontinuierlichen Gasförderung aus der Expansionskammer (11) unter der Steuerung durch eines lonisationsmeßgeräts (23) zur Überwachung des Drucks in der Analysekammer (19) sicherzustellen, wobei die Pumpe (13) die Aufrechterhaltung des Drucks in der Expansionskammer (11) mit den Schiebern (12) zur Steuerung der kontinuierlichen Einströmung in die Expansionskammer (11) und (22) zur Steuerung der Einströmung in die Analysekammer (19) sicherstellt.
6. Vorrichtung nach Anspruch 5, bei welcher das Massenspektrometer (20) ein vierpoliges Spektrometer ist, das in einem regendichten und transportablen Gehäuse (1) angeordnet ist, das mit einer Spannungsquelle versehen ist, dadurch gekennzeichnet, daß dieses Gehäuse (1) mit einer zweiten Pumpe (31) mit großer Förderleistung versehen ist, über der eine zur Reduzierung der Rückdiffusion von Öl in die Analysekammer (19) bestimmte Abschirmung (32) angebracht sein kann, und daß eine dritte Pumpe (28) das Anfangsvakuum im Hinblick auf die Evakuierung der Analysekammer (19) sicherstellt.
7. Vorrichtung nach einem der Ansprüche 5 oder 6, bei welcher die Anordnung der Elemente durch eine Überwachungseinheit (2) außerhalb des Gehäuses gesteuert wird, dadurch gekennzeichnet, daß der Ausgang der Meßeinrichtung des Spektrometers (20) durch ein Datenübertragungskabel (38) mit einem Datenverarbeitungssystem (39) verbunden ist und mit seinen Anzeige- (41) und Druckeinrichtungen (42), welche von der Meßstelle entfernt gelegen sind.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die Einheit (2) zur Überwachung und Steuerung der im Gehäuse (1) enthaltenen Elemente durch die Ergebnisse der entfernt gelegenen Datenverarbeitungseinheit (39) gesteuert wird, die mit Daten vom Massenspektrometer (20) und von einer mit der Expansionskammer (11) verbundenen Szintillationssonde (44) versorgt wird.
EP81400967A 1980-06-20 1981-06-17 Verfahren zum in situ und ununterbrochenen Messen mit hoher Empfindlichkeit von Gaskonzentrationen und flüchtigen Produkten und Vorrichtung zur Ausführung des Verfahrens Expired EP0042789B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81400967T ATE15722T1 (de) 1980-06-20 1981-06-17 Verfahren zum in situ und ununterbrochenen messen mit hoher empfindlichkeit von gaskonzentrationen und fluechtigen produkten und vorrichtung zur ausfuehrung des verfahrens.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8013776 1980-06-20
FR8013776A FR2485201A1 (fr) 1980-06-20 1980-06-20 Procede de mesure de grande precision des concentrations de gaz et produits volatils en situ et en continu et appareil in situ en oeuvre

Publications (2)

Publication Number Publication Date
EP0042789A1 EP0042789A1 (de) 1981-12-30
EP0042789B1 true EP0042789B1 (de) 1985-09-18

Family

ID=9243343

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81400967A Expired EP0042789B1 (de) 1980-06-20 1981-06-17 Verfahren zum in situ und ununterbrochenen Messen mit hoher Empfindlichkeit von Gaskonzentrationen und flüchtigen Produkten und Vorrichtung zur Ausführung des Verfahrens

Country Status (7)

Country Link
US (1) US4442353A (de)
EP (1) EP0042789B1 (de)
JP (1) JPS5774656A (de)
AT (1) ATE15722T1 (de)
CA (1) CA1170079A (de)
DE (1) DE3172323D1 (de)
FR (1) FR2485201A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4924097A (en) * 1984-06-22 1990-05-08 Georgia Tech Rss. Corp Monodisperse aerosol generator for use with infrared spectrometry
JPH0746074B2 (ja) * 1984-11-27 1995-05-17 日電アネルバ株式会社 真空計
DE3510378A1 (de) * 1985-03-22 1986-10-02 Coulston International Corp., Albany, N.Y. Verfahren zur analytischen bestimmung von organischen stoffen
DE3631862A1 (de) * 1986-09-19 1988-03-31 Strahlen Umweltforsch Gmbh Einrichtung zur analytischen bestimmung von organischen stoffen
AU6281586A (en) * 1985-08-24 1987-03-10 John Maxwell Bather Method and apparatus for detecting dangerous substances
JPH05500726A (ja) * 1989-06-06 1993-02-12 ヴァイキング インストゥルメンツ コーポレーション 小型質量分析器システム
US5313061A (en) * 1989-06-06 1994-05-17 Viking Instrument Miniaturized mass spectrometer system
US5153433A (en) * 1991-09-10 1992-10-06 The United States Of America As Represented By The United States Department Of Energy Portable mass spectrometer with one or more mechanically adjustable electrostatic sectors and a mechanically adjustable magnetic sector all mounted in a vacuum chamber
US5525799A (en) * 1994-04-08 1996-06-11 The United States Of America As Represented By The United States Department Of Energy Portable gas chromatograph-mass spectrometer
JP2003344230A (ja) * 2002-05-24 2003-12-03 Hitachi Ltd ガス導入装置とガス分析システム
JP4218756B2 (ja) * 2003-10-17 2009-02-04 株式会社荏原製作所 真空排気装置
US9518904B2 (en) * 2011-12-07 2016-12-13 Peter R. Bossard System and method of quantifying impurities mixed within a sample of hydrogen gas
US9091618B1 (en) 2012-08-23 2015-07-28 The Boeing Company Gas sampling system
CN105842404B (zh) * 2016-05-12 2017-09-22 郑州光力科技股份有限公司 提高矿井火情气体监测实时性的控制系统和控制方法
CN109839654B (zh) * 2017-11-27 2024-01-12 核工业西南物理研究院 一种家庭便携氡气测量仪

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2610300A (en) * 1951-08-07 1952-09-09 Wilson W Walton Flow control
US2721270A (en) * 1951-08-14 1955-10-18 Willard H Bennett Leak primarily for mass spectrometers
US3992626A (en) * 1973-02-23 1976-11-16 Honeywell Inc. Test instrument
US3895231A (en) * 1973-04-30 1975-07-15 Univ Colorado Method and inlet control system for controlling a gas flow sample to an evacuated chamber
US4201913A (en) * 1978-10-06 1980-05-06 Honeywell Inc. Sampling system for mass spectrometer

Also Published As

Publication number Publication date
CA1170079A (en) 1984-07-03
JPS5774656A (en) 1982-05-10
FR2485201A1 (fr) 1981-12-24
FR2485201B1 (de) 1984-03-09
DE3172323D1 (en) 1985-10-24
ATE15722T1 (de) 1985-10-15
EP0042789A1 (de) 1981-12-30
US4442353A (en) 1984-04-10

Similar Documents

Publication Publication Date Title
EP0042789B1 (de) Verfahren zum in situ und ununterbrochenen Messen mit hoher Empfindlichkeit von Gaskonzentrationen und flüchtigen Produkten und Vorrichtung zur Ausführung des Verfahrens
Jones et al. Investigation of gas–solid reactions by modulated molecular beam mass spectrometry
Stanley et al. Greenhouse gas measurements from a UK network of tall towers: technical description and first results
US20080149819A1 (en) Apparatus and methods for oil-water-gas analysis using terahertz radiation
Brown et al. In‐situ measurement of atmospheric NO3 and N2O5 via cavity ring‐down spectroscopy
US5783152A (en) Thin-film fiber optic hydrogen and temperature sensor system
CN111239062B (zh) 气体定量检测设备及方法
CA1147393A (fr) Systeme et methode de mesure du courant sur une ligne haute tension utilisant la transmission d'information digitale sur fibre optique
RU2146811C1 (ru) Способ экологического мониторинга органических соединений и устройство для его осуществления
FR2496890A1 (fr) Detecteur d'hydrogene
EP0033945B1 (de) Lecksuchvorrichtung mit Helium
FR2790316A1 (fr) Procede d'analyse d'un melange gazeux pour la determination de son explosibilite et dispositif pour la mise en oeuvre d'un tel procede
Brown et al. Feasibility of on-line monitoring of the BTU content of natural gas with a near-infrared fiber optic system
EP0114009B1 (de) Verfahren und Vorrichtung zur Bestimmung der Explosionsgrenze in einem Gas
EP1914535B1 (de) Gascharakterisierung für optische Emissionsspektrometrie
FR2510761A1 (fr) Appareil de mesure des concentrations dans l'air des produits de filiation de radon et de thoron
EP0294283A1 (de) Messverfahren und -vorrichtung für die Lithiumkonzentration im primären kühlkreislauf eines Kernreaktors
JP3858844B2 (ja) 炭酸ガスの地中固定におけるガスモニタリング装置およびガスモニタリング方法
WO2014049408A2 (fr) Dispositif de prédiction des séismes et des éruptions volcaniques, de localisation des épicentres et des magnitudes par la mesure du radon dans le sol
US4038864A (en) Hydrocarbon measurement
EP0070341B1 (de) Heliumleckdetektor
EP0053527B1 (de) Verfahren und Vorrichtung zur direkten kontinuierlichen Analyse von Arsinspuren
EP0068910B1 (de) Verfahren und Einrichtung zur direkten und kontinuierlichen Analyse von Spuren gasförmiger Hydride
Kerr et al. A reflectometer for studying liquids in the vacuum ultraviolet
EP0188397A2 (de) Analyseverfahren und -vorrichtung mit einem Elektroneneinfangdetektor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE GB IT LI

17P Request for examination filed

Effective date: 19811223

ITF It: translation for a ep patent filed

Owner name: INTERBREVETTI S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH DE GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19850918

REF Corresponds to:

Ref document number: 15722

Country of ref document: AT

Date of ref document: 19851015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3172323

Country of ref document: DE

Date of ref document: 19851024

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19870630

Ref country code: CH

Effective date: 19870630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19880301

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118