EP0042789B1 - Procédé de mesure de grande sensibilité des concentrations de gaz et produits volatils in situ et en continu et appareil de mise en oeuvre - Google Patents

Procédé de mesure de grande sensibilité des concentrations de gaz et produits volatils in situ et en continu et appareil de mise en oeuvre Download PDF

Info

Publication number
EP0042789B1
EP0042789B1 EP81400967A EP81400967A EP0042789B1 EP 0042789 B1 EP0042789 B1 EP 0042789B1 EP 81400967 A EP81400967 A EP 81400967A EP 81400967 A EP81400967 A EP 81400967A EP 0042789 B1 EP0042789 B1 EP 0042789B1
Authority
EP
European Patent Office
Prior art keywords
chamber
expansion chamber
gases
enclosure
concentrations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81400967A
Other languages
German (de)
English (en)
Other versions
EP0042789A1 (fr
Inventor
Jean-Claude Baubron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bureau de Recherches Geologiques et Minieres BRGM
Original Assignee
Bureau de Recherches Geologiques et Minieres BRGM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bureau de Recherches Geologiques et Minieres BRGM filed Critical Bureau de Recherches Geologiques et Minieres BRGM
Priority to AT81400967T priority Critical patent/ATE15722T1/de
Publication of EP0042789A1 publication Critical patent/EP0042789A1/fr
Application granted granted Critical
Publication of EP0042789B1 publication Critical patent/EP0042789B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/24Vacuum systems, e.g. maintaining desired pressures

Definitions

  • the invention relates to a method of highly sensitive measurements carried out in situ and continuously of the concentrations of gases and volatile products as well as to apparatuses for implementing the method.
  • such devices although having abundance detection thresholds of the order of 50 ppm when the measurement is made in situ and from 15 to 20 ppm in the laboratory, are still insufficient especially in the case of forecasts of '' volcanic eruptions because they can neither detect very small differences in concentrations nor the presence of a new element at very low concentration.
  • a detection is essential to detect and measure the contributions of elements from leaks from the lower layers located for example at a depth of thirty kilometers and which can be disturbed by the atmosphere and the waters in cycles which cannot be establish the evolution only by systematic and continuous measurements over a long period.
  • the object of the present invention is a method of measurement, high sensitivity, gas concentrations and volatile products from natural sites or not and regardless of the pressures and flow rates since these pressures are greater than 10- 2 bars, by means of an access pipe connected to a mass spectrometer via an expansion chamber, pumps simultaneously maintaining the pressures at optimal values in the expansion chamber and an analysis chamber, characterized in that the gases and volatile products are sampled for which it is desired to know the variations in concentrations, by establishing a permanent passage between the expansion chamber and the access pipe and maintaining the pressure of the expansion chamber at a value determined constant, on the order of magnitude from 10- 1 to 10- 2 mbar, by all of the automatic adjustments of the flow rate of access to the expansion chamber, the output flow of this expansion chamber and the pumping e of the latter in order to obtain a constant pressure.
  • Such a method has the advantage of being able to measure with an accuracy of the order of 2 ppm and continuously the concentrations of gaseous or volatile elements originating from any emergence, whether it be very small emanations or leaks at high flow rates, pressures up to 5 bar for example.
  • Another object of the invention and an apparatus for implementing the process thus defined characterized in that it comprises a semi-flexible stainless metal probe, connected by a low-flow conduit to an expansion chamber connected on the one hand to a gas transfer pump, on the other hand to a pressure gauge of said chamber, a controlled inlet valve controlling the flow rate accessing said chamber, a piezoelectric valve connecting said expansion chamber to the analysis chamber a mass spectrometer, said piezoelectric valve being controlled by an ion gauge for controlling the pressure of the analysis chamber or by the spectrometer itself.
  • the device used still makes it possible, because of the access valves, to avoid the use of long capillary tubes intended to lower the pressure to a predetermined level but the use of which increases the response times of the devices to which they are connected.
  • Another feature of the invention is a device of this type, the mass spectrometer of which is a quadrupole spectrometer so that the whole of the device and the pumps for emptying and establishing low pressures is easily inserted into a sealed housing of small dimensions, the measurements provided by the mass spectrometer being transmitted by cables or radio to any station far from the place of measurement.
  • the single figure represents in schematic form the whole of the measuring device in its enclosure and of the connected elements.
  • the enclosure shown in 1, can take any desired shape depending on the easements of use but is preferably in a parallelepiped shape, rainproof and of reduced dimensions due to the methods and means of implementation adopted. .
  • Access to the various organs can be obtained by any known means by means of a station 2 outside the enclosure.
  • This general control and command station 2 is connected to the electrical supply device 3 by the multiple link cable 4, the device 3 supplying voltage to the various elements of the device.
  • a probe for sampling gases and volatile products has been shown diagrammatically in 5.
  • This probe is permanently introduced into an appropriate vent.
  • the sample thus collected is preferably channeled by a semi-flexible stainless steel tube 6 whose upstream end provided with a breather comprises a filter 7, optionally followed by any device for trapping water and carbon dioxide shown diagrammatically at 8
  • the assembly can also be brought to a high temperature, 120 ° C. for example.
  • a connection 9 brings in the gases and volatile products sampled at the inlet 10 of the device, this inlet being connected to an expansion chamber 11.
  • a valve 12 for example a needle valve or any slaved valve, makes it possible to adjust the flow of gases and volatiles removed to maintain a certain pressure of 10- 2 to 10- 1 mbar for example in the expansion chamber 11 in order to ensure the reproducibility of measurements.
  • the chamber 11 is connected to the pump 13 by the conduit 14.
  • This pump is preferably a two-stage vane pump with a flow rate of 4.5 m 3 per hour or less depending on the applications.
  • the gases exit from the enclosure 1 takes place via the conduit 15, the end of which is directed towards the ground.
  • a pressure gauge 16, of the “Pirani for example” type, supplied by the cable 17 provides the value of the pressure on the indication 18 of the control and command station 2.
  • This station may also include a means for adjusting the valve. 12, the manual or automatic adjustment being performed to maintain a constant pressure in the range of 10- 2 to 10- 1 mbar in the chamber 11.
  • the expansion chamber 11 is connected to the analysis chamber 19 of the mass spectrometer 20 by the pipe 21 and under the control of the piezoelectric valve 22.
  • This valve is automatically controlled by the ion gauge 23 connected to the chamber d analysis 19 by means of the metal fitting 24 or even directly controlled by the spectrometer itself.
  • the ion gauge 23 and the piezoelectric valve 22 are supplied by the electric cable 25 and the devices 26 and 27, the device 27 being a reaction circuit directly controlling the piezoelectric valve 22.
  • the reaction circuit 27 has been shown schematically, this circuit can be of any known type.
  • the adjustment and control of the reaction circuit 27 as a function of the pressure of the analysis chamber 19 are such that they make it possible to vary the flow rate of the volatile products and of the expanded gases from the chamber 11 towards the analysis chamber 19 in order to maintain a stable pressure of 10- 8 to 10- 7 mbar. They can also cause the valve 22 to cut off all communication between the two chambers 11 and 19 in order to obtain perfect safety of the apparatus, in particular in the event of an operating incident liable to affect the filament of the spectrometer 20.
  • the valve 22 also remains closed when the device is in the standby position between the measurements if they are done discontinuously.
  • the analysis chamber 19 is emptied by means of a primary pump 28, of the same type as the pump 13, provided with an outlet pipe 29 and the connector 30 connected to the outlet of the ultra-fast pump 31 which is preferably an oil diffusion pump or a turbomolecular pump.
  • the pump is surmounted by a baffle 32, the cooling of the pump being ensured by forced ventilation.
  • This pumping can also be provided by any other known means, such as a turbo pump for example.
  • a set of control and display means 33 of the control station 2 makes it possible to control each of the pumps 13, 28 and 31 supplied respectively by the electrical circuits 34, 35 and 36.
  • the station 2 likewise allows the control of the ion gauge the spectrometer 20 and the reaction circuit 27 controlling the piezoelectric valve 22 as well as the Pirani gauge 16, its reaction circuit and the valve 12.
  • the results of the mass spectrometer 20, which is of the quadrupole type supplied by the cable 37, are transmitted by the cable 39 to an information processing device 39 possibly connected by the cable 40 to the control and command station 2.
  • the device 39 can be a digital or analog computing device and can be located at any station more or less away from the analysis site. It can be connected by means of the cable 43 to all auxiliary display 41 or print 42 devices.
  • the enclosure 1 of reduced dimensions of the order for example of 40 ⁇ 50 ⁇ 60 cm at least, in the immediate vicinity of this site and to carry out measurements of very low gas concentrations with a view to detecting variations in elements such as H, He, CH 4 , NH 3 etc ... in a mass of H 2 0, CO z , N 2 , l apparatus thus produced having an abundance sensitivity of the order of 2 ppm.
  • the apparatus being in the vicinity of the site, operating autonomously and being permanently controlled by the station 2 possibly slaved to the data processing system 39, it is possible, depending on the results obtained, to repeat the sampling cycles by the probed 5 and of introduction into the analysis chamber 19 by passing through the expansion chamber 11, according to variable frequencies.
  • the data processing device 39 therefore makes it possible to control the frequency of repetition of the measurement cycles as a function of the values of the concentrations obtained independently of the pressures of the gases collected by the probe.
  • the response time of the device can be very short since on the one hand its reduced dimensions lend themselves to a possibility of installation very close to the chosen vent and on the other hand, due to the controls of valves 12 and 22 it is not necessary to connect the device to the probe 5 by a capillary extending over the entire distance existing between probe and device.
  • a single calculation device 39 can be connected to several enclosures 1, each of which permanently receives the emanations from a neighboring emergence.
  • the device can also be used to control the gassing of geothermal boreholes and detect gas anomalies in geothermal energy or in mining research.
  • the apparatus can then be coupled to a scintillation probe 44 for the detection and simultaneous measurement of the Radon.
  • This usual type probe can be connected by any suitable expansion junction 11.
  • the current supply to the probe has been shown diagrammatically by wire 45 and the output by wire 46.
  • the station 2 for monitoring and controlling the elements contained in the enclosure 1 is then controlled by the results of the remote information processing device 39 supplied by the mass spectrometer 20 and by the scintillation probe 44 connected to the expansion chamber 11.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Electron Tubes For Measurement (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

  • L'invention se rapporte à un procédé de mesures de grande sensibilité effectuées in situ et de façon continue des concentrations de gaz et produits volatils ainsi qu'aux appareils de mise en oeuvre du procédé.
  • On connaît, par exemple par la demande de brevet français FR-A-2 438 267, des procédés de mesures permettant de surveiller les variations de concentration de gaz, ces mesures étant effectuées en continu au laboratoire. Cependant ces mesures ne portent que sur des gaz à la pression atmosphérique ou à pressions plus faibles, et il n'y a aucune difficulté à utiliser tous appareillages connus pour effectuer de telles mesures.
  • Par contre lorsque l'on désire étudier de très faibles variations de concentrations de gaz susceptibles de contenir en outre des produits volatils, ces gaz se présentant sous des pressions variables, comme cela est notamment le cas d'émanations volcaniques où la pression des gaz peut être considérable et fluctuer entre de très larges limites, on ne dispose d'aucun moyen capable d'effectuer de telles mesures en continu in situ et sur une longue période.
  • Il existe bien des appareils capables d'effectuer des prélèvements de gaz de sources volcaniques afin de mesurer les concentrations par chromatographie en phase gazeuse mais ces appareils ne permettent pas d'opérer des mesures de façon continue.
  • En outre de tels appareils, bien qu'ayant des seuils de détection d'abondance de l'ordre de 50 ppm lorsque la mesure est faite in situ et de 15 à 20 ppm en laboratoire, sont encore insuffisants notamment dans le cas de prévisions d'éventuelles éruptions volcaniques car ils ne peuvent ni détecter de très faibles écarts de concentrations ni la présence d'un élément nouveau à très faible concentration. Or une telle détection est indispensable pour déceler et mesurer les apports d'éléments provenant des fuites des couches inférieures situées par exemple à une trentaine de kilomètres de profondeur et qui peuvent être perturbés par l'atmosphère et les eaux dans des cycles dont on ne peut établir l'évolution que par des mesures systématiques et de façon continue sur une longue période.
  • En résumé on sait mesurer avec une grande précision les variations de concentrations de gaz, par exemple au moyen d'un spectromètre de masse, mais alors les mesures ne peuvent s'effectuer qu'en laboratoire à l'aide d'appareillages volumineux ou bien encore on sait mesurer des variations de concentration in situ mais alors les mesures sont discontinues et manquent de précision pour la détection de faibles concentrations.
  • L'objet de la présente invention est un procédé de mesure, de grande sensibilité, des concentrations de gaz et produits volatils émanant de sites naturels ou non et quels que soient les pressions et les débits dès lors que ces pressions sont supérieures à 10-2 bars, au moyen d'une canalisation d'accès reliée à un spectromètre de masse par l'intermédiaire d'une chambre de détente, des pompes maintenant simultanément les pressions aux valeurs optimales dans la chambre de détente et une chambre d'analyse, caractérisé en ce que l'on prélève les gaz et produits volatils dont on désire connaître les variations de concentrations, en établissant un passage permanent entre la chambre de détente et la canalisation d'accès et en maintenant la pression de la chambre de détente à une valeur constante déterminée, de l'ordré de grandeur de 10-1 à 10-2 mbar, par l'ensemble des réglages automatiques du débit d'accès à la chambre de détente, du débit de sortie de cette chambre de détente et du pompage de celle-ci en vue d'obtenir une pression constante.
  • Un tel procédé présente l'avantage de pouvoir mesurer avec une précision de l'ordre de 2 ppm et de façon continue les concentrations d'éléments gazeux ou volatils provenant de toute émergence qu'il s'agisse de très faibles émanations ou de fuites à forts débits, les pressions pouvant attein- dre 5 bars par exemple.
  • En particulier, s'il s'agit de surveiller un site volcanique on mesure les variations de concentration des éléments en tous points désirés, de telle sorte qu'il devient possible d'étudier avec rigueur toute corrélation en vue d'établir des prévisions d'éventuelles éruptions alors qu'aucune méthode permanente jusqu'à ce jour ne permettait d'établir la prévision de tels risques.
  • Un autre objet de l'invention et un apareil de mise en oeuvre du procédé ainsi défini caractérisé en ce qu'il comprend une sonde métallique semi souple inoxydable, reliée par un conduit à faible débit à une chambre de détente connectée d'une part à une pompe de transfert des gaz, d'autre part à une jauge de pression de ladite chambre, une vanne d'entrée asservie contrôlant le débit accédant à ladite chambre, une vanne piézo-électrique reliant ladite chambre de détente à la chambre d'analyse d'un spectromètre de masse, ladite vanne piézo-électrique étant contrôlée par une jauge ionique de contrôle de la pression de la chambre d'analyse ou par le spectromètre lui-même.
  • Quelle que soit la pression des gaz dirigés en permanence vers l'appareil, il est donc possible de régler le débit d'accès à la chambre d'analyse du spectromètre de masse avec une grande précision et d'évaluer en permanence toutes variations des concentrations des éléments du mélange sans que les temps de réponse du dispositif soient prohibitifs. En effet le dispositif utilisé permet encore, en raison des vannes d'accès, d'éviter l'emploi de longs tubes capillaires destinés à baisser la pression à un niveau prédéterminé mais dont l'emploi accroît les temps de réponse des appareils auxquels ils sont connectés.
  • Une autre caractéristique de l'invention est un appareil de ce type dont le spectromètre de masse est un spectromètre quadrupolaire de telle sorte que l'ensemble de l'appareil et des pompes de vidage et d'établissement de faibles pressions soit aisément inséré dans un logement étanche de faibles dimensions, les mesures fournies par le spectromètre de masse étant transmises par câbles ou radio à toute station éloignée du lieu de mesure.
  • Il devient alors possible d'utiliser un tel appareil en tout lieu difficile d'accès dans l'industrie ou dans la nature, dans ce cas l'appareil pouvant être aisément transporté.
  • D'autres caractéristiques et avantages ressortiront de la description suivante faite en référence au dessin annexé qui représente, à titre d'exemple non limitatif, un mode de réalisation de la présente invention.
  • Sur le dessin, la figure unique représente sous forme schématique l'ensemble de l'appareil de mesure dans son enceinte et des éléments connectés.
  • L'enceinte, figurée en 1, peut prendre toute forme désirée en fonction des servitudes d'emploi mais se présente de préférence sous une forme parallélépipédique, étanche à la pluie et de dimensions réduites en raison des procédés et des moyens de mise en oeuvre adoptés. Les accès aux divers organes peuvent être obtenus par tous moyens connus au moyen d'un poste 2 extérieur à l'enceinte. Ce poste de contrôle et de commande général 2 est connecté au dispositif d'alimentation électrique 3 par le câble de liaison multiple 4, le dispositif 3 alimentant en tension les divers éléments de l'appareil.
  • Une sonde de prélèvement des gaz et produits volatils a été schématisée en 5. Cette sonde est introduite en permanence dans un évent approprié. Le prélèvement ainsi recueilli est canalisé de préférence par un tube métallique 6 inoxydable semi-souple dont l'extrémité amont pourvue d'un reniflard comprend un filtre 7, suivi éventuellement de tout dispositif de piégeage de l'eau et du gaz carbonique schématisé en 8. L'ensemble peut être aussi porté à une température élevée, 120 °C par exemple. Un raccord 9 amène les gaz et produits volatils prélevés à l'entrée 10 de l'appareil, cette entrée étant reliée à une chambre de détente 11. Une vanne 12, par exemple une vanne à pointeau ou une vanne quelconque asservie, permet de régler le débit des gaz et produits volatils prélevés pour maintenir une pression bien déterminée de 10-2 à 10-1 mbar par exemple dans la chambre de détente 11 en vue d'assurer la reproductibilité des mesures.
  • A cet effet la chambre 11 est reliée à la pompe 13 par le conduit 14. Cette pompe est de préférence une pompe à palettes biétagée d'un débit de 4,5 m3 par heure ou moins selon les applications. La sortie des gaz hors de l'enceinte 1 s'effectue par le conduit 15 dont l'extrémité est dirigée vers le sol. Une jauge de pression 16, du type « Pirani par exemple, alimentée par le câble 17 fournit la valeur de la pression sur l'indication 18 du poste de contrôle et de commande 2. Ce poste peut aussi comporter un moyen de réglage de la vanne 12, ce réglage manuel ou automatique étant effectué pour maintenir une pression constante de l'ordre de 10-2 à 10-1 mbar dans la chambre 11.
  • La chambre de détente 11 est raccordée à la chambre d'analyse 19 du spectromètre de masse 20 par la canalisation 21 et sous le contrôle de la vanne piézo-électrique 22. Cette vanne est contrôlée automatiquement par la jauge ionique 23 raccordée à la chambre d'analyse 19 au moyen du raccord métallique 24 ou encore directement contrôlée par le spectromètre lui-même. La jauge ionique 23 et la vanne piézo-électrique 22 sont alimentées par le câble électrique 25 et les dispositifs 26 et 27, le dispositif 27 étant un circuit de réaction commandant directement la vanne piézo-électrique 22. Le circuit de réaction 27 a été représenté de façon schématique, ce circuit pouvant être de tout type connu. Le réglage et la commande du circuit de réaction 27 en fonction de la pression de la chambre d'analyse 19 sont tels qu'ils permettent de faire varier le débit des produits volatils et des gaz détendus de la chambre 11 vers la chambre d'analyse 19 pour y maintenir une pression stable de 10-8 à 10-7 mbar. Ils peuvent en outre entraîner la coupure par la vanne 22 de toute communication entre les deux chambres 11 et 19 afin d'obtenir une parfaite sécurité de l'appareil notamment en cas d'incident de fonctionnement susceptible d'affecter le filament du spectromètre 20.
  • La vanne 22 reste aussi fermée lorsque l'appareil est en position d'attente entre les mesures si celles-ci se font de manière discontinue.
  • La chambre d'analyse 19 est vidée au moyen d'une pompe primaire 28, de même type que la pompe 13, pourvue d'une canalisation de sortie 29 et du raccord 30 relié à la sortie de la pompe ultra-rapide 31 qui est de préférence une pompe à diffusion d'huile ou une pompe turbomoléculaire. Afin d'éviter les rétro-diffusions d'huile, la pompe est surmontée d'un baffle 32, le refroidissement de la pompe étant assuré par une ventilation forcée.
  • Ce pompage peut aussi être assuré par tout autre moyen connu, tel une pompe turbo par exemple.
  • Un ensemble de moyens de commande et de visualisation 33 du poste de commande 2 permet de contrôler chacune des pompes 13, 28 et 31 alimentées respectivement par les circuits électriques 34, 35 et 36. Le poste 2 permet de même le contrôle de la jauge ionique du spectromètre 20 et du circuit de réaction 27 commandant la vanne piézo-électrique 22 ainsi que la jauge de Pirani 16, son circuit de réaction et la vanne 12.
  • Les résultats du spectromètre de masse 20, qui est du type quadrupolaire alimenté par le câble 37, sont transmis par le câble 39 à un dispositif de traitement de l'information 39 éventuellement connecté par le câble 40 au poste de contrôle et de commande 2. Le dispositif 39 peut être un dispositif de calcul numérique ou analogique et peut être situé à toute station plus ou moins éloignée du site d'analyse. Il peut être connecté au moyen du câble 43 à tous appareils auxiliaires de visualisation 41 ou d'impression 42.
  • Il est ainsi possible, quelles que soient les difficultés d'accès au site choisi, de disposer l'enceinte 1 de dimensions réduites, de l'ordre par exemple de 40 x 50 x 60 cm au moins, au voisinage immédiat de ce site et de procéder à des mesures de très faibles concentrations de gaz en vue de détecter des variations des éléments tels que H, He, CH4, NH3 etc... dans une masse de H20, COz, N2, l'appareil ainsi réalisé ayant une sensibilité en abondance de l'ordre de 2 ppm.
  • L'appareil étant au voisinage du site, fonctionnant de façon autonome et étant contrôlé en permanence par le poste 2 éventuellement asservi au système de traitement de données 39, on peut, en fonction des résultats obtenus, procéder à la répétition des cycles de prélèvement par la sondé 5 et d'introduction dans la chambre d'analyse 19 en transitant par la chambre de détente 11, selon des fréquences variables. Le dispositif de traitement de données 39 permet donc de contrôler la fréquence de répétition des cycles de mesure en fonction des valeurs des concentrations obtenues indépendamment des pressions des gaz recueillis par la sonde. Le temps de réponse de l'appareil peut être très court puisque d'une part ses dimensions réduites se prêtent à une possibilité d'installation très proche de l'évent choisi et d'autre part, en raison des contrôles des vannes 12 et 22 il n'est pas nécessaire de relier l'appareil à la sonde 5 par un capillaire s'étendant sur toute la distance existant entre sonde et appareil.
  • Si l'on désire détecter les variations des concentrations de gaz émanant d'émergences volcaniques, on peut effectuer aisément par ce procédé l'analyse systématique et permanente sur le site même des gaz tels que : H, He, CH4 de masse 16, 15 et 14, NH3 de masse 17, 16 et 15, H20 de masse 18 et 17, Ne de masse 20 et 22, N2, O2, H2S de masse 28, 32 et 34, HCI de masse 36 et 38, Ar, C02 de masse 44 et 48, S02 de masse 64 et 68 etc...
  • Si l'on doit surveiller toute une installation ou une zone volcanique on peut connecter un dispositif de calcul unique 39 à plusieurs enceintes 1 dont chacune reçoit en permanence les émanations d'une émergence voisine.
  • L'appareil peut également être utilisé pour contrôler les dégagements gazeux de forages géothermiques et détecter les anomalies de gaz en géothermie ou en recherche minière. On peut alors coupler l'appareil à une sonde de scintillation 44 en vue de la détection et de la mesure simultanée du Radon. Cette sonde de type habituel peut être connectée par toute jonction appropriée de détente 11. L'alimentation en courant de la sonde a été schématisée par le fil 45 et la sortie par le fil 46.
  • Le poste 2 de contrôle et de commande des éléments contenus dans l'enceinte 1 est alors contrôlé par les résultats du dispositif éloigné de traitement des informations 39 fournies par le spectromètre de masse 20 et par la sonde de scintillation 44 connectée à la chambre de détente 11.

Claims (8)

1. Procédé de mesure, de grande sensibilité, des concentrations de gaz et produits volatils émanant de sites naturels ou non et quels que soient les pressions et les débits dès lors que ces pressions sont supérieures à 10-2 bars, au moyen d'une canalisation d'accès reliée à un spectromètre de masse par l'intermédiaire d'une chambre de détente (11), des pompes maintenant simultanément les pressions aux valeurs optimales dans la chambre de détente (11) et une chambre d'analyse (19), caractérisé en ce que l'on prélève les gaz et produits volatils dont on désire connaître les variations de concentrations, en établissant un passage permanent entre la chambre de détente (11) et la canalisation d'accès (9) et en maintenant la pression de la chambre de détente (11) à une valeur constante déterminée, de l'ordre de grandeur de 10-1 à 10-2 mbar, par l'ensemble des réglages automatiques du débit d'accès à la chambre de détente (11), du débit de sortie de cette chambre de détente et du pompage de celle-ci en vue d'obtenir une pression constante.
2. Procédé tel que revendiqué en 1 selon lequel les opérations de circulation des gaz et produits volatils dans les chambres de détente (11) et d'analyse (19) sont contrôlées par un poste de commande disposé au voisinage du spectromètre de masse, caractérisé en ce que le poste de commande assure le réglage du débit permanent des gaz à travers la chambre de détente (11) et la chambre d'analyse (19).
3. Procédé tel que revendiqué dans l'une quelconque des revendications 1 et 2 selon lequel les mesures des pressions et concentrations sont transmises à une station de traitement des données (39) éloignée du site des mesures.
4. Procédé tel que revendiqué en 3 dont le dispositif de traitement de l'information contrôle la fréquence de répétition des cycles de mesures en fonction des valeurs des concentrations obtenues indépendamment des pressions des gaz recueillis par la sonde.
5. Appareil de mise en oeuvre du procédé revendiqué dans l'une quelconque des revendications 1 à 4 comprenant une canalisation d'amenée des gaz et produits volatils à pression quelconque à analyser et raccordée, au moyen d'une vanne et d'une chambre de détente, à la chambre d'analyse d'un spectromètre de masse, ainsi que des moyens de pompage, caractérisé en ce que la canalisation comporte une sonde (5) reliée à la chambre de détente (11) par une conduite (9) dont le débit des gaz est limité par une vanne de réglage (12) amenant les gaz de façon continue à ladite chambre (11), celle-ci étant connectée d'une part à une pompe de transfert des gaz (13) d'autre part à une jauge (16) de la pression de ladite chambre, une vanne piézo-électrique (22), connectée entre la chambre d'analyse (19) du spectromètre de masse (20) et la chambre de détente (11), assurant le réglage du débit continu du gaz provenant de la chambre de détente (11) sous la commande de la jauge ionique (23) de contrôle de la pression de la chambre d'analyse 19, la pompe (13) assurant le maintien de la pression de la chambre de détente (11) avec les vannes de contrôle (12) du débit continu d'entrée des gaz dans la chambre de détente (11) et de contrôle du débit d'entrée (22) dans la chambre d'analyse (19).
6. Appareil tel que revendiqué en 5 dont le spectromètre de masse (20) est un spectromètre quadrupolaire logé dans une enceinte (1) étanche à la pluie et transportable, ladite enceinte (1) étant pourvue d'une source d'alimentation en tension, caractérisé en ce que ladite enceinte (1) contient une seconde pompe (31) à grand débit surmontée ou non d'un baffle (32) destiné à réduire les rétrodiffusions d'huile dans la chambre d'analyse (19), une troisième pompe (28) assurant le vide primaire en vue de vider la chambre d'analyse (19).
7. Appareil tel que revendiqué dans l'une quelconque des revendications 5 et 6 dont l'ensemble des éléments est contrôlé par un poste (2) extérieur à l'enceinte, caractérisé en ce que la sortie du dispositif de mesure de spectromètre (20) est connectée à un câble de transmission (38) des données à un système de traitement de l'information (39) et de ses équipements de visualisation (41) et d'impression (42) éloignés du site de mesure.
8. Appareil tel que revendiqué en 7 dont le poste (2) de contrôle et de commande des éléments contenus dans l'enceinte (1) est contrôlé par les résultats du dispositif éloigné de traitement des informations (39) fournies par le spectromètre de masse (20), et par une sonde de scintillation (44) connectée à l'enceinte de détente (11).
EP81400967A 1980-06-20 1981-06-17 Procédé de mesure de grande sensibilité des concentrations de gaz et produits volatils in situ et en continu et appareil de mise en oeuvre Expired EP0042789B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81400967T ATE15722T1 (de) 1980-06-20 1981-06-17 Verfahren zum in situ und ununterbrochenen messen mit hoher empfindlichkeit von gaskonzentrationen und fluechtigen produkten und vorrichtung zur ausfuehrung des verfahrens.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8013776A FR2485201A1 (fr) 1980-06-20 1980-06-20 Procede de mesure de grande precision des concentrations de gaz et produits volatils en situ et en continu et appareil in situ en oeuvre
FR8013776 1980-06-20

Publications (2)

Publication Number Publication Date
EP0042789A1 EP0042789A1 (fr) 1981-12-30
EP0042789B1 true EP0042789B1 (fr) 1985-09-18

Family

ID=9243343

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81400967A Expired EP0042789B1 (fr) 1980-06-20 1981-06-17 Procédé de mesure de grande sensibilité des concentrations de gaz et produits volatils in situ et en continu et appareil de mise en oeuvre

Country Status (7)

Country Link
US (1) US4442353A (fr)
EP (1) EP0042789B1 (fr)
JP (1) JPS5774656A (fr)
AT (1) ATE15722T1 (fr)
CA (1) CA1170079A (fr)
DE (1) DE3172323D1 (fr)
FR (1) FR2485201A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4924097A (en) * 1984-06-22 1990-05-08 Georgia Tech Rss. Corp Monodisperse aerosol generator for use with infrared spectrometry
JPH0746074B2 (ja) * 1984-11-27 1995-05-17 日電アネルバ株式会社 真空計
DE3510378A1 (de) * 1985-03-22 1986-10-02 Coulston International Corp., Albany, N.Y. Verfahren zur analytischen bestimmung von organischen stoffen
DE3631862A1 (de) * 1986-09-19 1988-03-31 Strahlen Umweltforsch Gmbh Einrichtung zur analytischen bestimmung von organischen stoffen
AU6281586A (en) * 1985-08-24 1987-03-10 John Maxwell Bather Method and apparatus for detecting dangerous substances
US5313061A (en) * 1989-06-06 1994-05-17 Viking Instrument Miniaturized mass spectrometer system
AU5856490A (en) * 1989-06-06 1991-01-08 Viking Instruments Corp. Miniaturized mass spectrometer system
US5153433A (en) * 1991-09-10 1992-10-06 The United States Of America As Represented By The United States Department Of Energy Portable mass spectrometer with one or more mechanically adjustable electrostatic sectors and a mechanically adjustable magnetic sector all mounted in a vacuum chamber
US5525799A (en) * 1994-04-08 1996-06-11 The United States Of America As Represented By The United States Department Of Energy Portable gas chromatograph-mass spectrometer
JP2003344230A (ja) * 2002-05-24 2003-12-03 Hitachi Ltd ガス導入装置とガス分析システム
JP4218756B2 (ja) * 2003-10-17 2009-02-04 株式会社荏原製作所 真空排気装置
US9518904B2 (en) * 2011-12-07 2016-12-13 Peter R. Bossard System and method of quantifying impurities mixed within a sample of hydrogen gas
US9091618B1 (en) 2012-08-23 2015-07-28 The Boeing Company Gas sampling system
CN105842404B (zh) * 2016-05-12 2017-09-22 郑州光力科技股份有限公司 提高矿井火情气体监测实时性的控制系统和控制方法
CN109839654B (zh) * 2017-11-27 2024-01-12 核工业西南物理研究院 一种家庭便携氡气测量仪

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2610300A (en) * 1951-08-07 1952-09-09 Wilson W Walton Flow control
US2721270A (en) * 1951-08-14 1955-10-18 Willard H Bennett Leak primarily for mass spectrometers
US3992626A (en) * 1973-02-23 1976-11-16 Honeywell Inc. Test instrument
US3895231A (en) * 1973-04-30 1975-07-15 Univ Colorado Method and inlet control system for controlling a gas flow sample to an evacuated chamber
US4201913A (en) * 1978-10-06 1980-05-06 Honeywell Inc. Sampling system for mass spectrometer

Also Published As

Publication number Publication date
CA1170079A (fr) 1984-07-03
FR2485201B1 (fr) 1984-03-09
US4442353A (en) 1984-04-10
ATE15722T1 (de) 1985-10-15
JPS5774656A (en) 1982-05-10
EP0042789A1 (fr) 1981-12-30
FR2485201A1 (fr) 1981-12-24
DE3172323D1 (en) 1985-10-24

Similar Documents

Publication Publication Date Title
EP0042789B1 (fr) Procédé de mesure de grande sensibilité des concentrations de gaz et produits volatils in situ et en continu et appareil de mise en oeuvre
Jones et al. Investigation of gas–solid reactions by modulated molecular beam mass spectrometry
Stanley et al. Greenhouse gas measurements from a UK network of tall towers: technical description and first results
US6686594B2 (en) On-line UV-Visible light halogen gas analyzer for semiconductor processing effluent monitoring
US6791692B2 (en) Method and device utilizing plasma source for real-time gas sampling
US20080149819A1 (en) Apparatus and methods for oil-water-gas analysis using terahertz radiation
Brown et al. In‐situ measurement of atmospheric NO3 and N2O5 via cavity ring‐down spectroscopy
US5783152A (en) Thin-film fiber optic hydrogen and temperature sensor system
CN111239062B (zh) 气体定量检测设备及方法
CA1147393A (fr) Systeme et methode de mesure du courant sur une ligne haute tension utilisant la transmission d'information digitale sur fibre optique
RU2146811C1 (ru) Способ экологического мониторинга органических соединений и устройство для его осуществления
FR2496890A1 (fr) Detecteur d'hydrogene
EP0033945B1 (fr) Détecteur de fuites à hélium
FR2790316A1 (fr) Procede d'analyse d'un melange gazeux pour la determination de son explosibilite et dispositif pour la mise en oeuvre d'un tel procede
EP0114009B1 (fr) Procédé et dispositif de détermination du taux d'explosivité d'un milieu gazeux
EP1914535B1 (fr) Caractérisation de gaz par spectrométrie optique à émission
FR2510761A1 (fr) Appareil de mesure des concentrations dans l'air des produits de filiation de radon et de thoron
EP0294283A1 (fr) Procédé et dispositif de mesure de la concentration en lithium dans le circuit primaire de refroidissement d'un réacteur nucléaire
JP3858844B2 (ja) 炭酸ガスの地中固定におけるガスモニタリング装置およびガスモニタリング方法
WO2014049408A2 (fr) Dispositif de prédiction des séismes et des éruptions volcaniques, de localisation des épicentres et des magnitudes par la mesure du radon dans le sol
US4038864A (en) Hydrocarbon measurement
EP0070341B1 (fr) Détecteur de fuites à hélium
EP3255406A1 (fr) Dispositif de prélèvement et d'analyse d'un échantillon gazeux
EP0053527B1 (fr) Procédé et appareil d'analyse directe et continue de traces d'arsine
EP0068910B1 (fr) Procédé et appareil d'analyse directe et continue de traces d'hydrures gazeux

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE GB IT LI

17P Request for examination filed

Effective date: 19811223

ITF It: translation for a ep patent filed

Owner name: INTERBREVETTI S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH DE GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19850918

REF Corresponds to:

Ref document number: 15722

Country of ref document: AT

Date of ref document: 19851015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3172323

Country of ref document: DE

Date of ref document: 19851024

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19870630

Ref country code: CH

Effective date: 19870630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19880301

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118