EP0041077A2 - Antenna-feeding system for a tracking antenna - Google Patents

Antenna-feeding system for a tracking antenna Download PDF

Info

Publication number
EP0041077A2
EP0041077A2 EP80108118A EP80108118A EP0041077A2 EP 0041077 A2 EP0041077 A2 EP 0041077A2 EP 80108118 A EP80108118 A EP 80108118A EP 80108118 A EP80108118 A EP 80108118A EP 0041077 A2 EP0041077 A2 EP 0041077A2
Authority
EP
European Patent Office
Prior art keywords
polarization
signals
antenna
storage
coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80108118A
Other languages
German (de)
French (fr)
Other versions
EP0041077A3 (en
EP0041077B1 (en
Inventor
Günter Dr.-Ing. Mörz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Telecom GmbH
Original Assignee
ANT Nachrichtentechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ANT Nachrichtentechnik GmbH filed Critical ANT Nachrichtentechnik GmbH
Publication of EP0041077A2 publication Critical patent/EP0041077A2/en
Publication of EP0041077A3 publication Critical patent/EP0041077A3/en
Application granted granted Critical
Publication of EP0041077B1 publication Critical patent/EP0041077B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • H01P1/2131Frequency-selective devices, e.g. filters combining or separating two or more different frequencies with combining or separating polarisations

Definitions

  • the invention relates to an antenna feed system for circularly polarized signals with an exciter, the aperture cross section of which is symmetrical to at least one main axis, and a device for coupling higher wave types as storage signals for tracking the antenna, the excitation of which is proportional to the deviation of the main antenna axes from a received circularly polarized beacon signal he follows.
  • Future communications satellites will be required to illuminate a very specific area of the earth and, as little as possible, shine onto neighboring areas, especially when it comes to supplying neighboring countries with TV programs.
  • an alignment stabilization of the transmitting antenna In order to prevent the radiation field emitted by a satellite antenna from migrating to neighboring areas, an alignment stabilization of the transmitting antenna must be carried out. be made.
  • G. Mörz Analysis and synthesis of electromagnetic wave fields in reflector antennas with the help of multi-type waveguides, Diss. D82, TH-Aa chen (1978), p. 46 ff., a transmitting antenna known that works as a monopulse sensor.
  • the transmitting antenna also serves as a receiving antenna for a beacon signal which is emitted by a beacon station arranged in the center of the prescribed illumination area. Depending on the main axis deviation of the exciter of the satellite transmission antenna from the received beacon signal, the higher.
  • Wave types excited which are coupled via a mode coupler located directly behind the exciter and used as storage signals.
  • a linearly polarized signal is used as the beacon signal.
  • an antenna feed system with a device for coupling higher wave types as storage signals for circularly polarized signals is to be specified, whereby the exciter can also have a shape symmetrical only with respect to a main axis of the aperture surface in order to generate an elliptical radiation field on the earth.
  • the invention is based on the object of an antenna feed system for circularly polarized signals with an exciter whose aperture cross section is at least one Main axis is symmetrical, to create two independent storage signals for position stabilization according to the multi-mode monopulse principle, it has a high polarization purity of the transmitted message signals and the minimum required attenuation of the message signals as little as possible.
  • the object is achieved in that a polarization converter, which contains amplitude and phase compensation devices, is arranged between the exciter and the device for coupling higher wave types, in that the coupling of the higher wave types in a polarization switch connected to the polarization converter for separating two orthogonally polarized signals happens, which has a message signal input or output assigned to one polarization direction and an output for a first storage signal and assigned another message signal input or output and an output for a second storage signal to the other polarization direction and to the outputs for the storage signals of the polarization switch, if the storage signals for the two storage directions x, y are coupled to one another at the outputs, a correction network is connected which decouples the coupled storage signals.
  • the coupling structure for coupling the higher wave types is not arranged in the exciter, but behind it, does not interfere with the excitation of the hybrid modes advantageously used by grooved exciters (see DE-PS 26 16 125).
  • You will find before application because they best meet the high requirements in terms of area efficiency and freedom from cross-polarization as well as the adjustment of the lobe shapes in the E and H sections of the radiation diagrams.
  • a further advantage of this antenna feed system is the arrangement of the polarization converter between the exciter and the coupling structure. On the one hand, it does not interfere with the excitation of the hybrid modes and, on the other hand, it is possible to provide it with means for the interference effects of the exciter on the two storage signals and compensate for the polarization purity of the transmitted message signals.
  • Figure 1a shows the field types that are excited in the excitation horn with a rectangular or elliptical cross section and smooth wall.
  • the shaft types H 11 and E 11 there are the two shaft types H 11 and E 11 and with the elliptical cross section, the shaft types H 21 and E 01 (based on the designation of the shaft types in the circular waveguide).
  • the wave types H 11 and E 11 or H 21 and E 01 are superposed in a certain way.
  • the necessary transition from the throat cross section to the cross section of the polarization switch converts the higher wave types containing the storage information into the corresponding wave types of the input waveguide of the polarization switch (e.g. into the H 11 and E 11 waves) .
  • the beacon signal B is deposited ⁇ x
  • the two wave types in the polarization switch are superimposed in phase opposition with mode couplers, resulting in a field in the x direction.
  • the beacon signal is deposited ⁇ y
  • the two wave types are superposed in phase, which, as can be seen from FIG. 1c, results in a resulting field in the y direction. Only when the two higher wave types are superpositioned in the correct manner as described above, are the coupled signals independent of one another in their storage information.
  • each type of hybrid shaft in turn breaks down into the shaft types H 11 and E 11 described above.
  • FIG. 2 shows the block diagram of an antenna feed system for circularly polarized signals, the exciter 1 of which is symmetrical only to a main axis of the aperture area, in this exemplary embodiment rectangular.
  • a polarization converter 2 to which a polarization switch 3 with mode coupling is connected, is more frequently arranged with the interposition of a transition to cross-sectional adaptation.
  • the transmission signal S is fed into the input a of the polarization switch 3.
  • the storage signals ⁇ 1 and A2 are present at the outputs b and c, which generally contain mixed storage information, which is not unique, but mixed.
  • the mixing of the storage information is due to different transmission properties of the higher wave types in the waveguides, which means that the phase-correct superposition of the wave types and thus also the independence of the storage signals is lost.
  • a disturbing influence, which contributes to the coupling of the storage signals, is given by the different propagation constants of the excitation horn for the two higher wave types.
  • the different phase rotations of the excitation horn - in its two main planes - have a disruptive effect on the circularly polarized message signals to be transmitted.
  • the incoming circularly polarized field is elliptically distorted by the different phase rotations.
  • Another interference may result from a different antenna gain in the two main planes of the horn.
  • the circular polarization deteriorates to an elliptical one.
  • Gain and phase differences can also be caused by the reflector material of the antenna.
  • the polarization converter 2 located behind the exciter 1 in which these disturbances occur contains means for compensating for the described amplitude and phase errors.
  • a specific embodiment of such a special polarization converter is described below.
  • This polarization converter and the subsequent polarization turnouts 3 also cause the storage signals to be coupled by differently influencing the H 11 and E 11 waves. But irrespective of the individual causes of coupling, the signals ⁇ 1 and ⁇ 2 at the outputs b and c of the polarization switch are decoupled again with a mode coupler by means of a downstream correction coupler 4, for example in the form of a directional coupler normally used. The unmixed storage signals ⁇ x and Ay are then present at the outputs of the correction coupler.
  • the correction coupler can be dispensed with if the exciter fulfills certain phase conditions for the higher wave types.
  • the desired superimposition of the higher wave types H 21 and E 01 which then causes the decoupled storage signals ⁇ x and ⁇ y to appear directly at the outputs of the polarization switch 3 can be predetermined by the length of the exciter horn. It is therefore possible to generate a field configuration by means of a specific length specification of the excitation horn, which compensates for the interference from the exciter, polarization converter and polarization switch.
  • the length of the horn must be selected so that the individual fields H 21 and E 01 to be overlaid cause a mutual phase angle of 0 ° or a multiple of 180 ° for the corresponding waves at the mode couplings.
  • This phase relationship can also be set by specifying the length of the exciter horn throat, which does not necessarily have to have the same cross-sectional shape as the exciter aperture.
  • the horn throat advantageously has a circular cross-section (see patent application P 29 39 562.8).
  • the cross section of the horn throat must then be adapted to the cross section of the polarization converter with a waveguide transition.
  • the reception is at the output d of the polarization switch 3 signal E, which is broken down in a downstream crossover 5 into the reference signal t originating from the beacon signal and a possibly additionally transmitted message signal N.
  • a control variable for tracking the antenna can be derived from the comparison between the reference signal ⁇ and the storage signals ⁇ x and Ay derived from the beacon signal.
  • an interference signal S 1 appears , which is composed of undesired portions of the transmission signal S reflected in the exciter or on the antenna reflector b.
  • This reflected interference signal S 1 which would deteriorate the polarization purity of the radiation field without special compensation measures, is separated by the crossover 5 from the received signal and received by an absorber 7.
  • Figures 3a, b show the implementation of a polarization converter with means for polarization conversion for amplitude and phase compensation.
  • the front view is shown in FIG. 3a and the longitudinal section AA of the polarization converter is shown in FIG. 3b.
  • pathogens with identical propagation and radiation properties for the main orthogonal types, as is the case with pathogens that are symmetrical to two main axes of the aperture surface (e.g.
  • the coupling means are adjusted in their combination in the polarization converter that a fed-in, linearly polarized wave at the output of the polarization converter is split into broadband into two orthogonal waves (Ex, Ey) with the same amplitude and 90 ° phase difference (3.01 dB coupling). These waves then form the components of a circularly polarized wave.
  • Pathogen with unequal propagation and radiation properties for the orthogo nalen main types, namely those that are only symmetrical to a main axis of the aperture surface e.g.
  • the means for polarization conversion and amplitude compensation consist of two bevels 8 and 9 with grooves 8 'and 9', which are arranged in two diagonally opposite corners of the square polarization converter, and one which engages in grooves 8 'and 9'.
  • the bevels have an inductive effect and the diagonal dielectric plate has a capacitive character. These two capacitive and inductive coupling means together have an almost frequency-independent coupling behavior. In practice, it can happen that the antenna-related gain difference is frequency-dependent, so that the amplitude compensation must also be made frequency-dependent. This can take place with an increase in the coupling with the frequency with the aid of a mainly capacitive coupling and with a decrease with a predominantly inductive coupling. For a lower inductive coupling, a thicker or longer dielectric plate is used in connection with smaller bevels in the corners, whereas for a stronger inductive coupling a shorter or thinner plate is used in connection with enlarged bevels.
  • the bevels 8, 9 and the plate 10 can be constructed in steps over the length ( ⁇ / 4 transformers).
  • the amplitude compensation is achieved by dimensioning the coupling means described above in the diagonal planes in such a way that an uneven splitting of a wave fed into the two main planes of the quadratic polarization converter is achieved.
  • the output wave is not circularly polarized but rather elliptically polarized, the main axes of the polarization ellipse lying parallel to the central axes of the square output cross section of the polarization converter.
  • the wave components Ex and Ey of the elliptically polarized wave are 90 ° out of phase with each other, but are no longer the same amount.
  • the amounts of the wave components Ex and Ey can thus be influenced so that a difference in amount between Ex and Ey, e.g.
  • the elliptically polarized output wave of the polarization converter in turn generates a circularly polarized field in the radiation field of the exciter in the main beam direction.
  • a phase compensation is provided in the polarization converter, which compensates for phase shifts between Ex and Ey caused by a rectangular or elliptical exciter.
  • phase compensation Plate 11 which is arranged either horizontally or vertically in front of the diagonally running plate 10, depending on whether Ex in relation to Ey or Ey in relation to Ex is to be influenced in phase.
  • the phase correction can also be carried out with a rectangular waveguide section placed at the start of the excitation side in front of the square polarization converter, in which a side length is reduced compared to that of the polarization converter (not shown in the drawing).
  • Both means - dielectric plate and rectangular waveguide section - can be used together to compensate for the frequency response of the phase error.
  • one or the other compensation means must predominate.
  • the switch used for the present application and described in DE-OS 26 51 935 is used as the polarization switch with mode coupling.
  • This polarization switch with mode coupling begins with a square waveguide 12 in which the two orthogonally polarized waves of the H 10 and H 01 type exist.
  • the polarization converter must be connected to this.
  • two coupling windows 13 and 14 are arranged, which are embedded in the E position transversely to the square waveguide.
  • the width of the coupling window is about half as large as the side length of the square waveguide cross section.
  • the energy of the H 10 shaft that is coupled out at the coupling windows is passed on via a rectangular hollow body 15, 16.
  • Both rectangular waveguides 15 and 16 open into a waveguide branch (double-T branching) which, according to the designation in the block diagram in FIG. 2, has the input a for the transmission signal S and a waveguide gate b for energy components of the higher wave types H 11 and E 11 .
  • the signal coupled to the waveguide b has been designated ⁇ 1 in FIG.
  • the coupling window 13 and 14 are each provided with an electrically conductive rod 17 and 18, which is inserted into the side walls of the square waveguide 12. They are a countermeasure in order to suppress the resonances of higher waveforms that usually occur due to the enlargement of the waveguide space at the level of the coupling window.
  • the signal of the H 01 type is passed through a separating structure 19 in the square waveguide 12 to the output d, at which the received signal appears.
  • the separating structure 19 consists of a plate arranged between the upper and lower walls of the square waveguide, which, viewed in the direction of propagation, begins near the rear edges of the coupling window. Towards the front, the dividing plate 19 is approximately circularly tapered on both sides and extends into a tip 20. In this way, it is possible to deflect the H 10 -type wave arriving from the square waveguide 12 into the rectangular waveguides 15 and 16 with low resistance and reflection.
  • the directional attenuation of the coupling arrangement for the H 11 and E 11 shaft can be influenced over the length of the tip 20. Their length is set to the highest directional damping.
  • the signal 'coupled here has been designated 2 ⁇ in FIG. 2, the block diagram of the entire antenna feed system.
  • FIGS. 5a, b and c a possible structural design of the antenna feed system will be described with reference to FIGS. 5a, b and c.
  • the names of the individual elements of the antenna feed system correspond to those of the block diagram in FIG. 2.
  • the polarization converter with amplitude and phase compensation 2 is connected to the exciter 1.
  • the polarization switch 3 with mode coupling with the input a for the transmission signal S, the outputs b and c for the storage signals ⁇ 1 and ⁇ 2, which are generally still coupled and which are broken down into the uncoupled storage signals ⁇ x and ⁇ y with the aid of the correction coupler 4, and the output d for the received signal E.
  • the reference signal E is split off from the received signal with the crossover 5.
  • the interference signal S 1 and a possibly additionally transmitted message signal N which, which is not shown here, would still have to be separated from the interference signal via a further crossover.
  • the interference signal S 1 is finally supplied to an absorber not included in the drawing.
  • the correction coupler 4 can only fulfill its function if its coupling damping is adapted to the coupling of the storage signals ⁇ 1 and ⁇ 2 and a defined phase relationship of 90 ° is set at its input. This phase relationship is e.g. by selecting the length of the waveguide leading from the waveguide output b to the correction coupler 4.
  • the components of the antenna feed system can also be formed from a circular waveguide.
  • the arrangement of the antenna feed system according to the invention naturally also works with a round exciter as the limit case of the elliptical exciter; in this case there is no need for amplitude and phase compensation in the polarization converter.
  • a receive signal can also be obtained from the transmit input a or a transmit signal can be fed into the output N.

Abstract

Antennenspeisesystem für zirkular polarisierte Signale mit einem Erreger (1) einem sich daran anschliessenden Polarisationswandler (2) und einer Polarisationsweiche (3) für zwei orthogonal polarisierte Signale (E, S) mit einer Einrichtung zum Ankoppeln höherer Wellentypen als Ablagesignale zum Nachführen der Antenne, deren Anregung proportional zur Abweichung der Antennenhauptachsen von einem empfangenen zirkular polarisierten Bakensignal erfolgt. Der Polarisationswandler enthält Vorrichtungen zum Amplituden- und Phasenausgleich. Weiterhin ist an die Ausgänge der Polarisationsweiche für die Ablagesignale (Δ1, Δ2), sofern die Ablagesignale an diesen Ausgängen verkoppelt sind, ein Korrekturnetzwerk (4) angeschlossen, das die verkoppelten Ablagesignale entkoppelt.Antenna feed system for circularly polarized signals with an exciter (1) followed by a polarization converter (2) and a polarization switch (3) for two orthogonally polarized signals (E, S) with a device for coupling higher wave types than storage signals for tracking the antenna, the Excitation is proportional to the deviation of the main antenna axes from a received circularly polarized beacon signal. The polarization converter contains devices for amplitude and phase compensation. Furthermore, a correction network (4) is connected to the outputs of the polarization switch for the storage signals (Δ1, Δ2), provided the storage signals are coupled to these outputs, which decouples the coupled storage signals.

Description

Die Erfindung betrifft ein Antennenspeisesystem für zirkular polarisierte-Signale mit einem Erreger, dessen Aperturquerschnitt zu wenigstens einer Hauptachse symmetrisch ist, und einer Einrichtung zur Ankopplung höherer Wellentypen als Ablagesignale zum Nachführen der Antenne, deren Anregung proportional zur Abweichung der Antennenhauptachsen von einem empfangenen zirkular polarisierten Bakensignal erfolgt.The invention relates to an antenna feed system for circularly polarized signals with an exciter, the aperture cross section of which is symmetrical to at least one main axis, and a device for coupling higher wave types as storage signals for tracking the antenna, the excitation of which is proportional to the deviation of the main antenna axes from a received circularly polarized beacon signal he follows.

Von künftigen Nachrichtensatelliten wird gefordert, daß sie ein ganz bestimmtes Gebiet auf der Erde ausleuchten und dabei möglichst wenig auf Nachbargebiete überstrahlen, besonders, wenn es etwa um die Versorgung angrenzender Länder mit TV-Programmen geht.Future communications satellites will be required to illuminate a very specific area of the earth and, as little as possible, shine onto neighboring areas, especially when it comes to supplying neighboring countries with TV programs.

Um ein Auswandern des von einer Satellitenantenne ausgesandten Strahlungsfeldes auf Nachbargebiete zu verhindern, muß eine Ausrichtstabilisierung der Sendeantenne. vorgenommen werden. Beispielsweise ist aus G. Mörz: Analyse und Synthese von elektromagnetischen Wellenfeldern in Reflektorantennen mit Hilfe von Mehrtyp-Wellenleitern, Diss. D82, TH-Aachen (1978), S. 46 ff., eine Sendeantenne bekannt, die als Monopulssensor arbeitet. Und zwar dient hier die Sendeantenne gleichzeitig als Empfangsantenne für ein Bakensignal, das von einer im Zentrum des vorgeschriebenen Ausleuchtgebietes angeordneten Bakenstation ausgesendet wird. In Abhängigkeit von der Hauptachsenabweichung des Erregers der Satelliten-Sendeantenne von dem empfangenen Bakensignal werden höhere. Wellentypen angeregt, die über einen direkt hinter dem Erreger befindlichen Modenkoppler angekoppelt und als Ablagesignale verwendet werden. Als Bakensignal wird dabei ein linear polarisiertes Signal benutzt. Im folgenden soll aber ein Antennenspeisesystem mit einer Einrichtung zur Ankopplung höherer Wellentypen als Ablagesignale angegeben werden für zirkular polarisierte Signale, wobei der Erreger auch eine nur zu einer Hauptachse der Aperturfläche symmetrische Form besitzen kann, um etwa ein elliptisches Strahlungsfeld auf der Erde zu erzeugen. Als weitere Bedingung muß bei vorliegendem System berücksichtigt werden, daß die Frequenz des Empfangssignals, das sich aus dem Baken- und einem evtl. zusätzlich übertragenen Nachrichtensignal zusammensetzt, sehr viel größer ist als die des Sendesignals (fF = 17,3 ./. 18,1 GHz, f s = 11,7 ./. 12,5 GHz). Wegen der Bedingung fE » f ist es nur schwer möglich, die höheren Wellentypen schon im Erreger anzukoppeln, da der Erregerschlund nicht so klein dimensioniert werden kann, daß die höheren Wellentypen zur Totalreflexion gezwungen werden, was Voraussetzung für eine selektive Ankopplung der höheren Wellentypen ist. Andernfalls ist eine sehr aufwendige und platzraubende Koppeleinrichtung nötig. Eine solche Koppeleinrichtung ist z.B. in der DE-AS 26 08 092 beschrieben.In order to prevent the radiation field emitted by a satellite antenna from migrating to neighboring areas, an alignment stabilization of the transmitting antenna must be carried out. be made. For example, from G. Mörz: Analysis and synthesis of electromagnetic wave fields in reflector antennas with the help of multi-type waveguides, Diss. D82, TH-Aa chen (1978), p. 46 ff., a transmitting antenna known that works as a monopulse sensor. Here, in fact, the transmitting antenna also serves as a receiving antenna for a beacon signal which is emitted by a beacon station arranged in the center of the prescribed illumination area. Depending on the main axis deviation of the exciter of the satellite transmission antenna from the received beacon signal, the higher. Wave types excited, which are coupled via a mode coupler located directly behind the exciter and used as storage signals. A linearly polarized signal is used as the beacon signal. In the following, however, an antenna feed system with a device for coupling higher wave types as storage signals for circularly polarized signals is to be specified, whereby the exciter can also have a shape symmetrical only with respect to a main axis of the aperture surface in order to generate an elliptical radiation field on the earth. As a further condition, it must be taken into account in the present system that the frequency of the received signal, which is composed of the beacon signal and a possibly additionally transmitted message signal, is very much higher than that of the transmitted signal (f F = 17.3 ./. 18 , 1 GHz, f s = 11.7 ./. 12.5 GHz). Because of the condition fE » f, it is difficult to couple the higher wave types already in the exciter, since the path of the exciter cannot be dimensioned so small that the higher wave types are forced to total reflection, which is a prerequisite for a selective coupling of the higher wave types. Otherwise, a very complex and space-consuming coupling device is necessary. Such a coupling device is described for example in DE-AS 26 08 092.

Der Erfindung liegt nun die Aufgabe zugrunde, ein Antennenspeisesystem für zirkular polarisierte Signale mit einem Erreger, dessen Aperturquerschnitt zu wenigstens einer Hauptachse symmetrisch ist, zu schaffen, das zwei voneinander unabhängige Ablagesignale für die Lagestabilisierung nach dem Mehrmoden-Monopulsprinzip erzeugt, wobei es eine hohe Polarisationsreinheit der übertragenen Nachrichtensignale aufweist und die geforderte minimale Dämpfung der Nachrichtensignale möglichst wenig beeinträchtigt.The invention is based on the object of an antenna feed system for circularly polarized signals with an exciter whose aperture cross section is at least one Main axis is symmetrical, to create two independent storage signals for position stabilization according to the multi-mode monopulse principle, it has a high polarization purity of the transmitted message signals and the minimum required attenuation of the message signals as little as possible.

Erfindungsgemäß wird die Aufgabe dadurch gelöst, daß zwischen dem Erreger und der Einrichtung zur Ankopplung höherer Wellentypen ein Polarisationswandler, der Amplituden-und Phasenausgleichsvorrichtungen enthält, angeordnet ist, daß die Ankopplung der höheren Wellentypen in einer an den Polarisationswandler angeschlossenen Polarisationsweiche zum Trennen zweier orthogonal polarisierter Signale geschieht, wobei diese der einen Polarisationsrichtung zugeordnet einen Nachrichtensignaleingang oder -ausgang und einen Ausgang für ein erstes Ablagesignal und der anderen Polarisationsrichtung zugeordnet einen weiteren Nachrichtensignaleingang oder -ausgang und einen Ausgang für ein zweites Ablagesignal besitzt und daß an die Ausgänge für die Ablagesignale der Polarisationsweiche, sofern die Ablagesignale für die beiden Ablagerichtungen x, y an den Ausgängen miteinander verkoppelt vorliegen, ein Korrekturnetzwerk angeschlossen ist, das die verkoppelten Ablagesignale entkoppelt.According to the invention, the object is achieved in that a polarization converter, which contains amplitude and phase compensation devices, is arranged between the exciter and the device for coupling higher wave types, in that the coupling of the higher wave types in a polarization switch connected to the polarization converter for separating two orthogonally polarized signals happens, which has a message signal input or output assigned to one polarization direction and an output for a first storage signal and assigned another message signal input or output and an output for a second storage signal to the other polarization direction and to the outputs for the storage signals of the polarization switch, if the storage signals for the two storage directions x, y are coupled to one another at the outputs, a correction network is connected which decouples the coupled storage signals.

Zweckmäßige Ausführungsformen der obigen Anordnung sind in den Unteransprüchen zu entnehmen.Appropriate embodiments of the above arrangement can be found in the subclaims.

Dadurch, daß erfindungsgemäß die Koppelstruktur für die Ankopplung der höheren Wellentypen nicht im Erreger angeordnet ist, sondern dahinter, wird nicht die Anregung der vorteilhafterweise genutzten Hybridmoden von Rillenerregern (s. DE-PS 26 16 125) gestört. Sie finden bevorzugt Anwendung, weil sie am besten die hohen Anforderungen hinsichtlich Flächenwirkungsgrad und Kreuzpolarisationsfreiheit sowie des Angleichs der Keulenformen in den E- und H-Schnitten der Str'ahlungsdiagramme erfüllen. Einen weiteren Vorteil dieses Antennenspeisesystems stellt die Anordnung des Polarisationswandlers zwischen dem Erreger und der Koppelstruktur dar. Zum einen stört er dort nicht die Anregung der Hybridmoden und zum anderen hat man die Möglichkeit, ihn mit Mitteln zu versehen, die Störeinflüsse des Erregers auf die beiden Ablagesignale und auf die Polarisationsreinheit der übertragenen Nachrichtensignale kompensieren.The fact that, according to the invention, the coupling structure for coupling the higher wave types is not arranged in the exciter, but behind it, does not interfere with the excitation of the hybrid modes advantageously used by grooved exciters (see DE-PS 26 16 125). You will find before application because they best meet the high requirements in terms of area efficiency and freedom from cross-polarization as well as the adjustment of the lobe shapes in the E and H sections of the radiation diagrams. A further advantage of this antenna feed system is the arrangement of the polarization converter between the exciter and the coupling structure. On the one hand, it does not interfere with the excitation of the hybrid modes and, on the other hand, it is possible to provide it with means for the interference effects of the exciter on the two storage signals and compensate for the polarization purity of the transmitted message signals.

Anhand des in der Zeichnung dargestellten Ausführungsbeispiels wird nun die Erfindung näher erläutert. Es zeigen

  • Figur 1a, b, c die Bildung unabhängiger Ablagesignale bei rechteckiger und elliptischer Erregerapertur,
  • Figur 2 das Blockschaltbild des Antennenspeisesystems,
  • Figur 3a, b den Polarisationswandler,
  • Figur 4 die Polarisationsweiche mit Modenkoppler und
  • Figur 5a, b, c das realisierte Antennenspeisesystem in verschiedenen Ansichten.
Based on the embodiment shown in the drawing, the invention will now be explained in more detail. Show it
  • 1a, b, c the formation of independent filing signals with a rectangular and elliptical excitation aperture,
  • FIG. 2 shows the block diagram of the antenna feed system,
  • 3a, b the polarization converter,
  • Figure 4 shows the polarization switch with mode coupler and
  • Figure 5a, b, c the realized antenna feed system in different views.

Zunächst soll die Entstehung der unabhängigen Ablagesignale im Antennenspeisesystem erläutert werden, und zwar für einen Erreger mit rechteckiger und einen mit elliptischer Apertur. Figur 1a stellt die Feldtypen dar, die im Erregerhorn mit rechteckigem bzw. elliptischem Querschnitt und glatter Wandung angeregt werden. Beim Rechteckquerschnitt sind es die beiden Wellentypen H11 und E11 und beim elliptischen Querschnitt die Wellentypen H21 und E01 (angelehnt an die Bezeichnungsweise der Wellentypen im Rundhohlleiter). Je nach Ablage des zirkular polarisierten Bakensignals B gegenüber den Hauptachsen der Antenne, die durch das Speisesystem adsgeleuchtet wird, werden die Wellentypen H11 und E11 bzw. H21 und E01 in bestimmter Weise superponiert. Bei nicht rechteckigem Querschnitt (z.B. elliptisch) des Erregerhornschlundes wandelt der notwendige Übergang vom Schlundquerschnitt auf den Querschnitt der Polarisationsweiche die höheren, die Ablageinformation enthaltenden Wellentypen in die entsprechenden Wellentypen des Eingangshohlleiters der Polarisationsweiche um (z.B. in die H11- und E11-Wellen). Im Idealfall werden, wie die Figur 1b zeigt, bei einer Ablage Δx des Bakensignals B die beiden Wellentypen in der Polarisationsweiche mit Modenkoppler gegenphasig überlagert, woraus ein Feld in x-Richtung resultiert. Bei einer Ablage Δy des Bakensignals werden die beiden Wellentypen gleichphasig superponiert, wodurch sich, wie aus Figur 1c hervorgeht, ein resultierendes Feld in y-Richtung einstellt. Nur dann, wenn also die beiden höheren Wellentypen in oben beschriebener Weise phasenrichtig superponiert werden, sind die angekoppelten Signale in ihrer Ablageinformation voneinander unabhängig.First of all, the creation of the independent filing signals in the antenna feed system will be explained, namely for an exciter with a rectangular and one with an elliptical aperture. Figure 1a shows the field types that are excited in the excitation horn with a rectangular or elliptical cross section and smooth wall. With the rectangular cross section, there are the two shaft types H 11 and E 11 and with the elliptical cross section, the shaft types H 21 and E 01 (based on the designation of the shaft types in the circular waveguide). Depending on the storage of the circularly polarized beacon signal B with respect to the main axes of the antenna, which is illuminated by the feed system, the wave types H 11 and E 11 or H 21 and E 01 are superposed in a certain way. In the case of a non-rectangular cross section (eg elliptical) of the exciter horn throat, the necessary transition from the throat cross section to the cross section of the polarization switch converts the higher wave types containing the storage information into the corresponding wave types of the input waveguide of the polarization switch (e.g. into the H 11 and E 11 waves) . Ideally, as shown in FIG. 1b, when the beacon signal B is deposited Δx, the two wave types in the polarization switch are superimposed in phase opposition with mode couplers, resulting in a field in the x direction. When the beacon signal is deposited Δy, the two wave types are superposed in phase, which, as can be seen from FIG. 1c, results in a resulting field in the y direction. Only when the two higher wave types are superpositioned in the correct manner as described above, are the coupled signals independent of one another in their storage information.

Besitzt beispielsweise das rechteckige Erregerhorn eine Rillenstruktur, so werden nicht mehr zwei Wellentypen angeregt, die zur Gewinnung unabhängiger Ablagesignale einander überlagert werden, sondern man erhält bei x-Ablage den Hybridwel- lentyp HE21 und bei y-Ablage den Hybridwellentyp HE12 mit jeweils eindeutigen Ablageinformationen. Auf diesen Fall soll aber nicht näher eingegangen werden, da hierbei an dem Speisesystem keine wesentlichen Änderungen vorzunehmen sind. Beim erforderlichen Übergang vom Rillenerreger auf einen Hohlleiter mit glatter Berandung zerfällt nämlich jeder Hybridwellentyp wiederum in die oben beschriebenen Wellentypen H11 und E11.For example, has the rectangular feedhorn a groove structure, so no longer two types of waves are excited that independent for obtaining deviation signals are superimposed but obtained at x-filing the Hybridwel- len type HE21 and unique at y-storage hybrid wave type HE 12 each Filing information. This case should not be dealt with in any more detail, since no major changes need to be made to the feed system. When the transition from the grooved exciter to a waveguide with a smooth edge is required, each type of hybrid shaft in turn breaks down into the shaft types H 11 and E 11 described above.

Die Figur 2 zeigt das Blockschaltbild eines Antennenspeisesystems'für zirkular-polarisierte Signale, dessen Erreger 1 nur zu einer Hauptachse der Aperturfläche symmetrisch, in diesem Ausführungsbeispiel rechteckig ist. Hinter dem Erreger ist unter Zwischenschaltung eines Übergangs zur Querschnittsanpässung ein Polarisationswandler 2 angeordnet, an den sich eine Polarisationsweiche 3 mit Modenankopplung anschließt. In den Eingang a der Polarisationsweiche 3 wird das Sendesignal S eingespeist. An den Ausgängen b und c liegen die Ablagesignale Δ1 und A2 an, die im allgemeinen nicht eindeutige, sondern vermischte Ablageinformationen enthalten. Die Vermischung der Ablageinformationen kommt durch unterschiedliche Transmissionseigenschaften der höheren Wellentypen in den Hohlleitern zustande, was zur Folge hat, daß die phasenrichtige Superposition der Wellentypen und damit auch die Unabhängigkeit der Ablagesignale verlorengeht. Ein Störeinfluß, der zur Verkopplung der Ablagesignale beiträgt, ist durch die unterschiedlichen Ausbreitungskonstanten des Erregerhorns für die beiden höheren Wellentypen gegeben.FIG. 2 shows the block diagram of an antenna feed system for circularly polarized signals, the exciter 1 of which is symmetrical only to a main axis of the aperture area, in this exemplary embodiment rectangular. Behind the he A polarization converter 2, to which a polarization switch 3 with mode coupling is connected, is more frequently arranged with the interposition of a transition to cross-sectional adaptation. The transmission signal S is fed into the input a of the polarization switch 3. The storage signals Δ1 and A2 are present at the outputs b and c, which generally contain mixed storage information, which is not unique, but mixed. The mixing of the storage information is due to different transmission properties of the higher wave types in the waveguides, which means that the phase-correct superposition of the wave types and thus also the independence of the storage signals is lost. A disturbing influence, which contributes to the coupling of the storage signals, is given by the different propagation constants of the excitation horn for the two higher wave types.

Störend auf die zu übertragenden zirkular polarisierten Nachrichtensignale wirken sich die unterschiedlichen Phasendrehungen des Erregerhorns-in seinen beiden Hauptebenen aus. Das ankommende zirkular polarisierte Feld wird durch die unterschiedlichen Phasendrehungen elliptisch verzerrt. Ein weiterer Störeinfluß ergibt sich möglicherweise durch einen unterschiedlichen Antennengewinn in den beiden Hauptebenen des Horns. Auch hier wird die zirkulare Polarisation zu einer elliptischen verschlechtert. Gewinn-und Phasenunterschiede können auch durch das Reflektormaterial der Antenne hervorgerufen werden.The different phase rotations of the excitation horn - in its two main planes - have a disruptive effect on the circularly polarized message signals to be transmitted. The incoming circularly polarized field is elliptically distorted by the different phase rotations. Another interference may result from a different antenna gain in the two main planes of the horn. Here, too, the circular polarization deteriorates to an elliptical one. Gain and phase differences can also be caused by the reflector material of the antenna.

Der hinter dem Erreger 1, in dem diese Störungen auftreten, sich befindende Polarisationswandler 2 enthält Mittel zur Kompensation des geschilderten Amplituden- und Phasenfehlers. Eine konkrete Ausführungsform eines solch speziellen Polarisationswandlers ist weiter unten beschrieben. Dieser Polarisationswandler und die anschließende Polarisationsweiche 3 bewirken ebenso durch unterschiedliche Beeinflussung der H11- und E11-Welle eine Verkopplung der Ablagesignale. Aber unabhängig von den einzelnen Verkopplungsursachen werden die Signale Δ1 und Δ2 an den Ausgängen b und c der Polarisationsweiche mit Modenkoppler mittels eines nachgeschalteten Korrekturkopplers 4, z.B. in Form eines üblicherweise verwendeten Richtkopplers, wieder entkoppelt. An den Ausgängen des Korrekturkopplers liegen dann die unvermischten Ablagesignale Δx und Ay. Auf den Korrekturkoppler kann man verzichten, wenn der Erreger bestimmte Phasenbedingungen für die höheren Wellentypen erfüllt. Zum Beispiel kann beim elliptischen Erreger die gewünschte überlagerung der höheren Wellentypen H21 und E01, die dann direkt an den Ausgängen der Polarisationsweiche 3 die entkoppelten Ablagesignale Δx und Δy erscheinen läßt, durch die Länge des Erregerhorns vorgegeben werden. Es ist also möglich, durch eine gezielte Längenvorgabe des Erregerhorns eine Feldkonfiguration zu erzeugen, die eine Kompensation der Störeinflüsse von Erreger, Polarisationswandler und Polarisationsweiche bewirkt. Die Länge des Horns muß so gewählt werden, daß die zu überlagernden Einzelfelder H21 und E01 für die entsprechenden Wellen an den Modenankopplungen eine gegenseitige Phasenlage von 0° oder ein Vielfaches von 180° bewirken. Diese Phasenbeziehung läßt sich auch durch Längenvorgabe des Erregerhornschlundes einstellen, der nicht unbedingt die gleiche Querschnittsform wie die Erregerapertur haben muß. So hat vorteilhafterweise bei einem Erreger mit einem Horn elliptischer Apertur der Hornschlund einen kreisrunden Querschnitt (s. dazu Patentanmeldung P 29 39 562.8). Hierbei muß dann der Querschnitt des Hornschlundes zu dem Querschnitt des Polarisationswandlers mit einem Hohlleiterübergang adaptiert werden.The polarization converter 2 located behind the exciter 1 in which these disturbances occur contains means for compensating for the described amplitude and phase errors. A specific embodiment of such a special polarization converter is described below. This polarization converter and the subsequent polarization turnouts 3 also cause the storage signals to be coupled by differently influencing the H 11 and E 11 waves. But irrespective of the individual causes of coupling, the signals Δ1 and Δ2 at the outputs b and c of the polarization switch are decoupled again with a mode coupler by means of a downstream correction coupler 4, for example in the form of a directional coupler normally used. The unmixed storage signals Δx and Ay are then present at the outputs of the correction coupler. The correction coupler can be dispensed with if the exciter fulfills certain phase conditions for the higher wave types. For example, in the case of the elliptical exciter, the desired superimposition of the higher wave types H 21 and E 01 , which then causes the decoupled storage signals Δx and Δy to appear directly at the outputs of the polarization switch 3, can be predetermined by the length of the exciter horn. It is therefore possible to generate a field configuration by means of a specific length specification of the excitation horn, which compensates for the interference from the exciter, polarization converter and polarization switch. The length of the horn must be selected so that the individual fields H 21 and E 01 to be overlaid cause a mutual phase angle of 0 ° or a multiple of 180 ° for the corresponding waves at the mode couplings. This phase relationship can also be set by specifying the length of the exciter horn throat, which does not necessarily have to have the same cross-sectional shape as the exciter aperture. In the case of an exciter with an elliptical aperture horn, the horn throat advantageously has a circular cross-section (see patent application P 29 39 562.8). The cross section of the horn throat must then be adapted to the cross section of the polarization converter with a waveguide transition.

Am Ausgang d der Polarisationsweiche 3 liegt das Empfangssignal E, das in einer nachgeschalteten Frequenzweiche 5 in das von dem Bakensignal stammende Referenzsignal t und ein eventuell noch zusätzlich übertragenes Nachrichtensignal N zerlegt wird. Aus dem Vergleich zwischen Referenzsignal Σ und den aus dem Bakensignal abgeleiteten Ablagesignalen Δx und Ay läßt sich eine Regelgröße für die Nachführung der Antenne ableiten.The reception is at the output d of the polarization switch 3 signal E, which is broken down in a downstream crossover 5 into the reference signal t originating from the beacon signal and a possibly additionally transmitted message signal N. A control variable for tracking the antenna can be derived from the comparison between the reference signal Σ and the storage signals Δx and Ay derived from the beacon signal.

Neben dem Referenzsignal Σ und dem Nachrichtensignal N am Tor d der Polarisationsweiche 3 erscheint ein Störsignal S1, das sich aus unerwünschten, im Erreger oder am Antennenreflektor b reflektierten Anteilen des Sendesignals S zusammensetzt. Dieses reflektierte Störsignal S1, das ohne besondere Kompensationsmaßnahmen die Polarisationsreinheit des Strahlungsfeldes verschlechtern würde, wird durch die Frequenzweiche 5 vom Empfangssignal abgetrennt und von einem Absorber 7 aufgenommen.In addition to the reference signal Σ and the message signal N at the gate d of the polarization switch 3, an interference signal S 1 appears , which is composed of undesired portions of the transmission signal S reflected in the exciter or on the antenna reflector b. This reflected interference signal S 1 , which would deteriorate the polarization purity of the radiation field without special compensation measures, is separated by the crossover 5 from the received signal and received by an absorber 7.

Die Figuren 3a, b zeigen die Realisierung eines Polarisationswandlers mit Mitteln zur Polarisationswandlung zum Amplituden- und Phasenausgleich. In Figur 3a ist die Frontansicht und in Figur 3b der Längsschnitt A-A des Polarisationswandlers dargestellt. Im Falle von Erregern mit identischen Ausbreitungs- und Strahlungseigenschaften für die orthogonalen Haupttypen, wie es bei Erregern, die zu zwei Hauptachsen der Aperturfläche symmetrisch sind (z.B. runde oder quadratische Erreger), der Fall ist, werden im Polarisationswandler die Koppelmittel in ihrer Kombination so eingestellt, daß eine eingespeiste, linear polarisierte Welle am Ausgang des Polarisationswandlers in zwei orthogonale Wellen (Ex, Ey) mit gleicher Amplitude und 90° Phasendifferenz breitbandig aufgespalten wird (3,01 dB Kopplung). Diese Wellen bilden dann die Komponenten einer zirkular polarisierten Welle. Erreger mit ungleichen Ausbreitungs- und Strahlungseigenschaften für die orthogonalen Haupttypen, nämlich solche, die nur zu einer Hauptachse der Aperturfläche symmetrisch sind (z.B. rechteckige oder elliptische), haben nur dann identische Ausbreitungs- und Strahlungseigenschaften in den beiden Hauptebenen, wenn das Strahlungsdiagramm des ersten Haupttyps in der E-Ebene identisch mit dem des zweiten Haupttyps in der H-Ebene ist und umgekehrt (E-H-Angleich). In der Praxis'ist diese Bedingung meist nicht ausreichend erfüllt, so daß die Gewinnunterschiede insbesondere in Hauptstrahlrichtung zu einem Amplitudenunterschied (Ex f Ey) führen, was einer Degradation des zirkularen zu einem elliptischen Feld gleichzusetzen ist. Die Mittel für die Polarisationswandlung und den Amplitudenausgleich bestehen beim vorliegenden Ausführungsbeispiel aus zwei Abschrägungen 8 und 9 mit Nuten 8' und 9', die in zwei diagonal gegenüberliegenden Ecken des quadratischen Polarisationswandlers angeordnet sind, und einer in die Nuten 8' und 9' eingreifenden, diagonal verlaufenden, dielektrischen Platte 10. Die Abschrägungen wirken induktiv und die diagonal verlaufende, dielektrische Platte hat kapazitiven Charakter. Diese beiden kapazitiv und induktiv wirkenden Koppelmittel weisen zusammen ein nahezu frequenzunabhängiges Koppelverhalten auf. In der Praxis kann es vorkommen, daß der antennenbedingte Gewinnunterschied frequenzabhängig ist, so daß der Amplitudenausgleich ebenfalls frequenzabhängig gestaltet werden muß. Dies kann bei Zunahme der Kopplung mit der Frequenz mit Hilfe einer überwiegend kapazitiven Kopplung und bei Abnahme mit einer überwiegend induktiven Kopplung geschehen. Für eine geringere induktive Kopplung wird eine dickere oder längere dielektrische Platte in Verbindung mit verkleinerten Abschrägungen in den Ecken verwendet, wogegen für eine verstärkte induktive Kopplung eine kürzere oder dünnere Platte in Verbindung mit vergrößerten Abschrägungen eingesetzt wird. Bei sehr starker Frequenzabhängigkeit kann auch eines der beiden Koppelmittel (Abschrägungen oder dielektrische Platte) fortfallen oder die dielektrische Platte in einer anderen Diagonalen als die Abschrägungen angeordnet werden. Zur Verminderung der Eigenreflexion der induktiven und kapazitiven Koppelmittel können die Abschrägungen 8, 9 und-die Platte 10 über die Länge gestuft aufgebaut sein (λ/4-Transformatoren).Figures 3a, b show the implementation of a polarization converter with means for polarization conversion for amplitude and phase compensation. The front view is shown in FIG. 3a and the longitudinal section AA of the polarization converter is shown in FIG. 3b. In the case of pathogens with identical propagation and radiation properties for the main orthogonal types, as is the case with pathogens that are symmetrical to two main axes of the aperture surface (e.g. round or square pathogens), the coupling means are adjusted in their combination in the polarization converter that a fed-in, linearly polarized wave at the output of the polarization converter is split into broadband into two orthogonal waves (Ex, Ey) with the same amplitude and 90 ° phase difference (3.01 dB coupling). These waves then form the components of a circularly polarized wave. Pathogen with unequal propagation and radiation properties for the orthogo nalen main types, namely those that are only symmetrical to a main axis of the aperture surface (e.g. rectangular or elliptical), have identical propagation and radiation properties in the two main planes only if the radiation diagram of the first main type in the E plane is identical to that of the second main type is in the H level and vice versa (EH adjustment). In practice, this condition is usually not sufficiently met, so that the gain differences, in particular in the main beam direction, lead to an amplitude difference (Ex f Ey), which is equivalent to a degradation of the circular to an elliptical field. In the present exemplary embodiment, the means for polarization conversion and amplitude compensation consist of two bevels 8 and 9 with grooves 8 'and 9', which are arranged in two diagonally opposite corners of the square polarization converter, and one which engages in grooves 8 'and 9'. diagonal dielectric plate 10. The bevels have an inductive effect and the diagonal dielectric plate has a capacitive character. These two capacitive and inductive coupling means together have an almost frequency-independent coupling behavior. In practice, it can happen that the antenna-related gain difference is frequency-dependent, so that the amplitude compensation must also be made frequency-dependent. This can take place with an increase in the coupling with the frequency with the aid of a mainly capacitive coupling and with a decrease with a predominantly inductive coupling. For a lower inductive coupling, a thicker or longer dielectric plate is used in connection with smaller bevels in the corners, whereas for a stronger inductive coupling a shorter or thinner plate is used in connection with enlarged bevels. If the frequency dependence is very strong, one of the the coupling means (bevels or dielectric plate) are eliminated or the dielectric plate is arranged on a diagonal other than the bevels. In order to reduce the self-reflection of the inductive and capacitive coupling means, the bevels 8, 9 and the plate 10 can be constructed in steps over the length (λ / 4 transformers).

Der Amplitudenausgleich kommt dadurch zustande, daß die oben beschriebenen, in Diagonalebenen liegenden Koppelmittel so dimensioniert werden, daß eine ungleiche Aufspaltung einer eingespeisten Welle in die beiden Hauptebenen des quadratischen Polarisationswandlers erreicht wird. Dadurch ist die Ausgangswelle nicht zirkular, sondern elliptisch polarisiert, wobei die Hauptachsen der Polarisationsellipse parallel zu den Mittelachsen des quadratischen Ausgangsquerschnitts des Polarisationswandlers liegen. Die Wellenkomponenten Ex und Ey der elliptisch polarisierten Welle sind zwar untereinander um 90° phasenverschoben, aber nicht mehr dem Betrag nach gleich. Die Beträge der Wellenkomponenten Ex und Ey können also so beeinflußt werden, daß ein Betragsunterschied zwischen Ex und Ey, z.B. hervorgerufen durch unterschiedliche Antennengewinne in der x- und y-Ebene, wieder ausgeglichen werden kann; d.h. die elliptisch polarisierte Ausgangswelle des Polarisationswandlers erzeugt im Strahlungsfeld des Erregers in Hauptstrahlrichtung wiederum ein zirkular polarisiertes Feld.The amplitude compensation is achieved by dimensioning the coupling means described above in the diagonal planes in such a way that an uneven splitting of a wave fed into the two main planes of the quadratic polarization converter is achieved. As a result, the output wave is not circularly polarized but rather elliptically polarized, the main axes of the polarization ellipse lying parallel to the central axes of the square output cross section of the polarization converter. The wave components Ex and Ey of the elliptically polarized wave are 90 ° out of phase with each other, but are no longer the same amount. The amounts of the wave components Ex and Ey can thus be influenced so that a difference in amount between Ex and Ey, e.g. caused by different antenna gains in the x and y planes, can be compensated again; i.e. the elliptically polarized output wave of the polarization converter in turn generates a circularly polarized field in the radiation field of the exciter in the main beam direction.

Neben dem Amplitudenausgleich ist im Polarisationswandler ein Phasenausgleich vorgesehen, der durch etwa einen rechteckigen oder elliptischen Erreger verursachte Phasendrehungen zwischen Ex und Ey kompensiert.In addition to the amplitude compensation, a phase compensation is provided in the polarization converter, which compensates for phase shifts between Ex and Ey caused by a rectangular or elliptical exciter.

Den Phasenausgleich besorgt eine weitere dielektrische Platte 11, die entweder horizontal oder vertikal, je nachdem, ob Ex gegenüber Ey oder Ey gegenüber Ex in der Phase beeinflußt werden soll, vor der diagonal verlaufenden Platte 10 angeordnet ist. Abweichend hiervon kann z.B. die Phasenkor-rektur auch mit einem an den erregerseitigen Anfang des vor den quadratischen Polarisationswandler gesetzten rechteckigen Hohlleiterabschnitt vorgenommen werden, bei dem eine Seitenlänge gegenüber der des Polarisationswandlers reduziert ist (nicht zeichnerisch dargestellt). Beide Mittel - dielektrische Platte und rechteckiger Hohlleiterabschnitt - können zusammen zur Kompensation des Frequenzganges des Phasenfehlers eingesetzt werden. Je nach Betrag und Richtung des Frequenzganges muß das eine oder andere Kompensationsmittel überwiegen.Another dielectric ensures phase compensation Plate 11, which is arranged either horizontally or vertically in front of the diagonally running plate 10, depending on whether Ex in relation to Ey or Ey in relation to Ex is to be influenced in phase. Deviating from this, for example, the phase correction can also be carried out with a rectangular waveguide section placed at the start of the excitation side in front of the square polarization converter, in which a side length is reduced compared to that of the polarization converter (not shown in the drawing). Both means - dielectric plate and rectangular waveguide section - can be used together to compensate for the frequency response of the phase error. Depending on the amount and direction of the frequency response, one or the other compensation means must predominate.

Als Polarisationsweiche mit Modenankopplung wird die für den vorliegenden Anwendungsfall abgeänderte, in der DE-OS 26 51 935 beschriebene, Weiche eingesetzt.The switch used for the present application and described in DE-OS 26 51 935 is used as the polarization switch with mode coupling.

Diese aus der Figur 3 hervorgehende Polarisationsweiche mit Modenankopplung beginnt mit einem Quadrathohlleiter 12, in dem die beiden orthogonal polarisierten Wellen vom H 10-und H01-Typ existent sind. Hieran ist der Polarisationswandler anzuschließen. In dem Quadrathohlleiter 12 sind zwei Koppelfenster 13 und 14 angeordnet, die in der E-Lage quer zum Quadrathohlleiter eingelassen sind. Die Breite der Koppelfenster ist etwa halb so groß wie die Seitenlänge des Quadrathohlleiterquerschnitts. Die an den Koppelfenstern ausgekoppelte Energie der H10-Welle wird über je einen Rechteckhohlleier 15, 16 weitergeleitet. Beide Rechteckhohlleiter 15 und 16 münden in eine Hohlleiterverzweigung (Doppel-T-Verzweigung), die entsprechend der Bezeichnung im Blockschaltbild der Figur 2 den Eingang a für das Sendesignal S und ein Hohlleitertor b für Energieanteile der höheren Wellentypen H11 und E11 bildet. Das am Hohlleiter b angekoppelte Signal ist in Figur 2 mit Δ1 bzeichnet worden.This polarization switch with mode coupling, which is shown in FIG. 3, begins with a square waveguide 12 in which the two orthogonally polarized waves of the H 10 and H 01 type exist. The polarization converter must be connected to this. In the square waveguide 12, two coupling windows 13 and 14 are arranged, which are embedded in the E position transversely to the square waveguide. The width of the coupling window is about half as large as the side length of the square waveguide cross section. The energy of the H 10 shaft that is coupled out at the coupling windows is passed on via a rectangular hollow body 15, 16. Both rectangular waveguides 15 and 16 open into a waveguide branch (double-T branching) which, according to the designation in the block diagram in FIG. 2, has the input a for the transmission signal S and a waveguide gate b for energy components of the higher wave types H 11 and E 11 . The signal coupled to the waveguide b has been designated Δ 1 in FIG.

Die Koppelfenster 13 und 14 sind mit je einem elektrisch leitenden Stab 17 und 18, der in die Seitenwände des Quadrathohlleiters 12 eingefügt ist, versehen. Sie sind eine Gegenmaßnahme, um die durch die Vergrößerung des Hohlleiterraumes in Höhe der Koppelfenster in der Regel entstehenden Resonanzen höherer Schwingungsformen zu unterdrücken.The coupling window 13 and 14 are each provided with an electrically conductive rod 17 and 18, which is inserted into the side walls of the square waveguide 12. They are a countermeasure in order to suppress the resonances of higher waveforms that usually occur due to the enlargement of the waveguide space at the level of the coupling window.

Das Signal vom H01-Typ wird durch eine Trennstruktur 19 im Quadrathohlleiter 12 zum Ausgang d geführt, an dem das Empfangssignal erscheint. Die Trennstruktur 19 besteht aus einem zwischen die oberen und unteren Wände des Quadrathohlleiters angeordneten Blech, das, in Ausbreitungsrichtung gesehen, nahe den hinteren Kanten der Koppelfenster beginnt. Nach vorn ist das Trennblech 19 beidseitig angenähert kreisförmig verjüngt ausgebildet und verläuft in eine Spitze 20. Hierdurch gelingt es, die vom Quadrathohlleiter 12 ankommende Welle vom H10-Typ widerstandsrichtig und reflexionsarm in die Rechteckhohlleiter 15 und 16 umzulenken. Über die Länge der Spitze 20 läßt sich die Richtdämpfung der Koppelanordnung für die H11- und E11-Welle beeinflussen. Ihre Länge wird auf höchste Richtdämpfung eingestellt.The signal of the H 01 type is passed through a separating structure 19 in the square waveguide 12 to the output d, at which the received signal appears. The separating structure 19 consists of a plate arranged between the upper and lower walls of the square waveguide, which, viewed in the direction of propagation, begins near the rear edges of the coupling window. Towards the front, the dividing plate 19 is approximately circularly tapered on both sides and extends into a tip 20. In this way, it is possible to deflect the H 10 -type wave arriving from the square waveguide 12 into the rectangular waveguides 15 and 16 with low resistance and reflection. The directional attenuation of the coupling arrangement for the H 11 and E 11 shaft can be influenced over the length of the tip 20. Their length is set to the highest directional damping.

Am Ende des Trennblechs befindet sich eine weitere Hohlleiterauskopplung c, ebenfalls für Energieanteile der höheren Wellentypen H11 und E11. Das hier angekoppelte Signal'ist in Figur 2, dem Blockschaltbild des gesamten Antennenspeisesystems, mit 2Δ bezeichnet worden. Die Hohlleiterausgänge c und d stellen zusammen mit den durch die Trennstruktur 19 gebildeten Teilhohlleitern eine gefaltete Doppel-T-Verzweigung dar.At the end of the separating plate there is a further waveguide coupling c, also for energy components of the higher shaft types H 11 and E 11 . The signal 'coupled here has been designated 2Δ in FIG. 2, the block diagram of the entire antenna feed system. The waveguide outputs c and d, together with the partial waveguides formed by the separating structure 19, represent a folded double-T branch.

Zum Schluß soll anhand der Figuren 5a, b unc c ein möglicher konstruktiver Aufbau des Antennenspeisesystems beschrieben werden. Die Bezeichnungen der einzelnen Elemente des Antennenspeisesystems stimmen mit denen des Blockschaltbildes der Figur 2 überein.Finally, a possible structural design of the antenna feed system will be described with reference to FIGS. 5a, b and c. The names of the individual elements of the antenna feed system correspond to those of the block diagram in FIG. 2.

An den Erreger 1 ist der Polarisationswandler mit Amplituden- und Phasenausgleich 2 angeschlossen. Diesem ist die Polarisationsweiche 3 mit Modenauskopplung nachgeschaltet mit dem Eingang a für das Sendesignal S, den Ausgängen b und c für die im allgemeinen noch verkoppelten Ablagesignale Δ1 und Δ2, welche mit Hilfe des Korrekturkopplers 4 in die unverkoppelten Ablagesignale Δx und Δy zerlegt werden, und dem Ausgang d für das Empfangssignal E. Vom Empfangssignal wird mit der Frequenzweiche 5 das Referenzsignal E abgespalten. Am Tor d' der Frequenzweiche 5 liegt das Störsignal S1 und ein evtl. zusätzlich übertragenes Nachrichtensignal N, das, was hier nicht eingezeichnet ist, über eine weitere Frequenzweiche vom Störsignal noch zu trennen wäre. Das Störsignal S1 wird schließlich einem in die Zeichnung nicht mit aufgenommenen Absorber zugeführt.The polarization converter with amplitude and phase compensation 2 is connected to the exciter 1. This is followed by the polarization switch 3 with mode coupling with the input a for the transmission signal S, the outputs b and c for the storage signals Δ1 and Δ2, which are generally still coupled and which are broken down into the uncoupled storage signals Δx and Δy with the aid of the correction coupler 4, and the output d for the received signal E. The reference signal E is split off from the received signal with the crossover 5. At the gate d 'of the crossover 5 is the interference signal S 1 and a possibly additionally transmitted message signal N, which, which is not shown here, would still have to be separated from the interference signal via a further crossover. The interference signal S 1 is finally supplied to an absorber not included in the drawing.

Der Korrekturkoppler 4 kann seine Funktion nur dann erfüllen, wenn seine Koppeldämpfung der Verkopplung der Ablagesignale Δ1 und Δ2 angepaßt ist und eine definierte Phasenbeziehung von 90° an seinem Eingang eingestellt ist. Diese Phasenbeziehung wird z.B. durch Längenwahl des vom Hohlleiterausgang b zum Korrekturkoppler 4 führenden Hohlleiter eingestellt.The correction coupler 4 can only fulfill its function if its coupling damping is adapted to the coupling of the storage signals Δ1 and Δ2 and a defined phase relationship of 90 ° is set at its input. This phase relationship is e.g. by selecting the length of the waveguide leading from the waveguide output b to the correction coupler 4.

Es sei darauf hingewiesen, daß die Komponenten das Antennenspeisesystem, wie Polarisationswandler, Polarisationsweiche mit Modenankopplungen in ihren zentralen Hohlleiterabschnitt auch aus einem Rundhohlleiter gebildet werden können.It should be pointed out that the components of the antenna feed system, such as polarization converters, polarization switches with mode couplings in their central waveguide section, can also be formed from a circular waveguide.

Die erfindungsgemäße Anordnung des Antennenspeisesystems funktioniert selbstverständlich auch mit einem runden Erreger als Grenzfall des elliptischen Erregers; in diesem Falle erübrigt sich der Amplituden- und Phasenausgleich im Polarisationswandler.The arrangement of the antenna feed system according to the invention naturally also works with a round exciter as the limit case of the elliptical exciter; in this case there is no need for amplitude and phase compensation in the polarization converter.

Weitere Möglichkeiten der Modifikation ergeben sich in der Beschaltung der Ein- und Ausgänge für die Nachrichtensignale. So kann beispielsweise mit Hilfe zusätzlicher Weichenschaltungen auch dem Sendeeingang a ein Empfangssignal entnommen werden oder in den Ausgang N ein Sendesignal eingespeist werden.Further options for modification result from the wiring of the inputs and outputs for the message signals. For example, with the aid of additional switch circuits, a receive signal can also be obtained from the transmit input a or a transmit signal can be fed into the output N.

Claims (7)

1. Antennenspeisesystem für zirkular polarisierte Signale mit einem Erreger, dessen Aperturquerschnitt zu wenigstens einer Hauptachse symmetrisch ist, und einer Einrichtung zur Ankopplung höherer Wellentypen als Ablagesignale zum Nachführen der Antenne, deren Anregung proportional zur Abweichung der Antennenhauptachsen von einem empfangenen zirkular polarisierten Bakensignal erfolgt, dadurch gekennzeichnet, daß zwischen dem Erreger (1) und der Einrichtung (3) zur Ankopplung höherer Wellentypen ein Polarisationswandler (2), der Amplituden- und Phasenausgleichsvorrichtungen (8, 8', 9, 9', 10, 11) enthält, angeordnet ist, daß die Ankopplung der höheren Wellentypen in einer an den Polarisationswandler (2) angeschlossenen Polarisationsweiche (3) zum Trennen zweier orthogonal polarisierter Signale geschieht, wobei diese der einen Polarisationsrichtung zugeordnet einen Nachrichtensignaleingang oder -ausgang (a) und einen Ausgang (b) für ein erstes Ablagesignal (Δ1) und der anderen Polarisationsrichtung zugeordnet einen weiteren Nachrichtensignaleingang oder ausgang (d) und einen Ausgang (c) für ein zweites Ablagesignal (A2) besitzt und daß an die Ausgänge (b, c) für die Ablagesignale (Δ1, Δ2) der Polarisationsweiche (3), sofern die Ablagesignale für die beiden Ablagerichtungen-(x, y) an den Ausgängen miteinander verkoppelt vorliegen, ein Korrekturnetzwerk (4) angeschlossen ist, das die verkoppelten Ablagesignale (Δ1, A2) in die entkoppelten Ablagesignale (Δx, Δy) zerlegt.1. Antenna feed system for circularly polarized signals with an exciter whose aperture cross-section is symmetrical to at least one main axis, and a device for coupling higher wave types as storage signals for tracking the antenna, the excitation of which is proportional to the deviation of the antenna main axes from a received circularly polarized beacon signal characterized in that a polarization converter (2) which contains amplitude and phase compensation devices (8, 8 ', 9, 9', 10, 11) is arranged between the exciter (1) and the device (3) for coupling higher wave types, that the coupling of the higher wave types takes place in a polarization switch (3) connected to the polarization converter (2) for separating two orthogonally polarized signals, these being assigned to the one polarization direction, a message signal input or output (a) and an output (b) for a first Filing signal (Δ1) and the other polarization direction associated with another message signal input or has output (d) and an output (c) for a second storage signal (A2) and that to the outputs (b, c) for the storage signals (Δ1, Δ2) of the polarization switch (3), provided that the storage signals for the two storage directions (x, y) are coupled to each other at the outputs, a correction network (4) is connected, which decomposes the coupled storage signals (Δ1, A2) into the decoupled storage signals (Δx, Δy). 2. Antennenspeisesystem nach Anspruch 1, dadurch gekennzeichnet, daß der Polarisationswandler (2) aus einem Quadrathohlleiter besteht, daß er zum Amplitudenausgleich eine von 3,01 dB verschiedene Koppeldämpfung besitzt, wobei als Koppelmittel in zwei diagonal gegenüberliegenden Kanten des Hohlleiters Abschrägungen (8, 9) und zwischen zwei diagonal gegenüberliegenden Ecken eine in Nuten (8', 9') eingreifende, dielektrische Platte (10) angeordnet sind, und daß zum Phasenausgleich im Hohlleiter eine weitere dielektrische Platte (11) horizontal oder vertikal zwischen den Hohlleiterwänden angeordnet ist.2. Antenna feed system according to claim 1, characterized in that the polarization converter (2) consists of a square waveguide, that it has a coupling attenuation of 3.01 dB different for amplitude compensation, with bevels as coupling means in two diagonally opposite edges of the waveguide (8, 9 ) and between two diagonally opposite corners, a dielectric plate (10) engaging in grooves (8 ', 9') are arranged, and that a further dielectric plate (11) is arranged horizontally or vertically between the waveguide walls for phase compensation in the waveguide. 3. Antennenspeisesystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zum Phasenausgleich im Polarisationswandler (2) mit ansonsten quadratischem Querschnitt am erregerseitigen Ende ein Abschnitt mit rechteckigem Querschnitt vorgesehen ist.3. Antenna feed system according to claim 1 or 2, characterized in that a section with a rectangular cross-section is provided for phase compensation in the polarization converter (2) with an otherwise square cross-section at the exciter end. 4. Antennenspeisesystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Koppelmittel im Polarisations wandler (2) so dimensioniert sind, daß sie der durch den Erreger bedingten Frequenzabhängigkeit des Gewinnunterschiedes und des Phasenunterschiedes der Wellen in beiden Hauptebenen entgegenwirken.4. Antenna feed system according to claim 1 or 2, characterized in that the coupling means in the polarization converter (2) are dimensioned such that they counteract the frequency dependence of the gain difference and the phase difference of the waves in both main planes caused by the exciter. 5. Antennenspeisesystem nach Anspruch 1, dadurch gekennzeichnet, daß an dem Ausgang (d) der Polarisationsweiche (3) eine Frequenzweiche (5) angeschlossen ist, die das von der empfangenen Bake stammende Referenzsignal (E), ein zusätzliches Nachrichtensignal (N) und ein Störsignal (S1), das durch Reflexion von Sendesignalanteilen an der Antenne zustandekommt, voneinander trennt und daß der Ausgang der Frequenzweiche, an dem das Störsignal (S1) erscheint, mit einem Absorber (7) abgeschlossen ist.5. Antenna feed system according to claim 1, characterized is characterized in that a crossover (5) is connected to the output (d) of the polarization filter (3), which contains the reference signal (E) originating from the received beacon, an additional message signal (N) and an interference signal (S 1 ), which by Reflection of transmission signal components on the antenna occurs, separates them and that the output of the crossover, at which the interference signal (S 1 ) appears, is completed with an absorber (7). 6. Antennenspeisesystem nach Anspruch 1, dadurch gekennzeichnet, daß als Korrekturnetzwerk (4) ein Richtkoppler verwendet wird.6. Antenna feed system according to claim 1, characterized in that a directional coupler is used as the correction network (4). 7. Antennenspeisesystem nach Anspruch 1, dadurch gekennzeichnet, daß die Länge des Erregerhornschlundes so dimensioniert ist, daß die zur Gewinnung der Ablageinformation verwendeten Hohlleiterwellentypen in ihrer Phasenlage so zueinander eingestellt sind, daß direkt an den Ausgängen (b, c) der Polarisationsweiche (3) - ohne Einsatz eines Korrekturkopplers - die voneinander unabhängigen Ablagesignale anliegen.7. Antenna feed system according to claim 1, characterized in that the length of the excitation horn throat is dimensioned so that the waveguide wave types used for obtaining the storage information are adjusted in their phase relationship to one another in such a way that directly at the outputs (b, c) of the polarization switch (3) - without using a correction coupler - the independent filing signals are present.
EP80108118A 1980-05-30 1980-12-22 Antenna-feeding system for a tracking antenna Expired EP0041077B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19803020514 DE3020514A1 (en) 1980-05-30 1980-05-30 AERIAL FEEDING SYSTEM FOR A TRACKABLE AERIAL
DE3020514 1980-05-30

Publications (3)

Publication Number Publication Date
EP0041077A2 true EP0041077A2 (en) 1981-12-09
EP0041077A3 EP0041077A3 (en) 1981-12-16
EP0041077B1 EP0041077B1 (en) 1985-02-20

Family

ID=6103553

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80108118A Expired EP0041077B1 (en) 1980-05-30 1980-12-22 Antenna-feeding system for a tracking antenna

Country Status (5)

Country Link
US (1) US4365253A (en)
EP (1) EP0041077B1 (en)
JP (1) JPS5724105A (en)
CA (1) CA1164088A (en)
DE (2) DE3020514A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0096461A2 (en) * 1982-06-04 1983-12-21 Andrew A.G. Microwave systems
EP0116418A2 (en) * 1983-01-28 1984-08-22 Andrew A.G. Multi-port, multi-frequency microwave combiner
EP0128970A1 (en) * 1983-06-18 1984-12-27 ANT Nachrichtentechnik GmbH Four-port network for a monopulse-tracking microwave antenna
EP0374720A2 (en) * 1988-12-22 1990-06-27 ANT Nachrichtentechnik GmbH Mode converter
US5066959A (en) * 1988-12-01 1991-11-19 Telefunken Systemtechnik Gmbh Mode coupler for monopulse applications having h01 mode extracting means
WO1998010479A1 (en) * 1996-09-09 1998-03-12 Cambridge Industries Limited Improved waveguide for use in dual polarisation probe system
EP0880193A1 (en) * 1997-05-21 1998-11-25 Alcatel Antenna source for the transmission and reception of microwaves
US7304552B2 (en) 1996-09-09 2007-12-04 Andrew Corporation Waveguide for use in dual polarisation probe system having a signal reflector and rotator provide differential phase shift
DE102008044895B4 (en) * 2008-08-29 2018-02-22 Astrium Gmbh Signal branching for use in a communication system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1286142C (en) * 1985-09-26 1991-07-16 Noboru Kato Process for producing fish-paste products
DE3604432C2 (en) * 1986-02-13 1995-02-16 Deutsche Aerospace Mode coupler for monopulse applications
US5175562A (en) * 1989-06-23 1992-12-29 Northeastern University High aperture-efficient, wide-angle scanning offset reflector antenna
US5109232A (en) * 1990-02-20 1992-04-28 Andrew Corporation Dual frequency antenna feed with apertured channel
JP4060228B2 (en) 2003-04-04 2008-03-12 三菱電機株式会社 Waveguide type demultiplexer
DE102013011651A1 (en) * 2013-07-11 2015-01-15 ESA-microwave service GmbH Antenna feed system in the microwave range for reflector antennas
CN106207379A (en) * 2016-07-20 2016-12-07 周丹 It is provided with the RFID electronic antenna label of encapsulation part

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1115046A (en) * 1954-11-23 1956-04-18 Csf Development of devices producing circular polarization in ultra-high frequency waves
US3758882A (en) * 1970-11-11 1973-09-11 Licentia Gmbh Polarization converter for microwaves
DE2212996A1 (en) * 1972-03-17 1973-09-27 Licentia Gmbh ARRANGEMENT OF A SELF-TRAILING SYSTEM FOR MICROWAVE ANTENNAS
DE2651935A1 (en) * 1976-11-13 1978-05-18 Licentia Gmbh BROADBAND POLARIZATION SOFT

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2302601A1 (en) * 1975-02-28 1976-09-24 Thomson Csf EXTR DEVICE
US4030048A (en) * 1976-07-06 1977-06-14 Rca Corporation Multimode coupling system including a funnel-shaped multimode coupler
US4077039A (en) * 1976-12-20 1978-02-28 Bell Telephone Laboratories, Incorporated Launching and/or receiving network for an antenna feedhorn
US4258366A (en) * 1979-01-31 1981-03-24 Nasa Multifrequency broadband polarized horn antenna

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1115046A (en) * 1954-11-23 1956-04-18 Csf Development of devices producing circular polarization in ultra-high frequency waves
US3758882A (en) * 1970-11-11 1973-09-11 Licentia Gmbh Polarization converter for microwaves
DE2212996A1 (en) * 1972-03-17 1973-09-27 Licentia Gmbh ARRANGEMENT OF A SELF-TRAILING SYSTEM FOR MICROWAVE ANTENNAS
DE2651935A1 (en) * 1976-11-13 1978-05-18 Licentia Gmbh BROADBAND POLARIZATION SOFT

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Nachtrichtentechnische Zeitschrift Ntz, Band 26, Heft 10, Oktober 1973; Berlin (DE) G. MORZ: "Ein Breitbandiges Speise und Leitungssystem mit Eigennachfuhrung fur Satellitenbodenstationen", seiten 441-447 *
Technische Mitteilungen Aegtelefunken, Band 67, Heft 2, 1977, Berlin (DE) G. MORZ et al.: "Antenne fur Erdefunkstellen mit Frequenzdoppelausnutzung im 11-und 14-GHz Bereich", seiten 88, 89 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0096461A3 (en) * 1982-06-04 1986-03-12 Andrew Corporation Microwave systems
EP0096461A2 (en) * 1982-06-04 1983-12-21 Andrew A.G. Microwave systems
EP0116418A2 (en) * 1983-01-28 1984-08-22 Andrew A.G. Multi-port, multi-frequency microwave combiner
EP0116418A3 (en) * 1983-01-28 1986-03-19 Andrew Corporation Multi-port, multi-frequency microwave combiner
EP0128970A1 (en) * 1983-06-18 1984-12-27 ANT Nachrichtentechnik GmbH Four-port network for a monopulse-tracking microwave antenna
US4630059A (en) * 1983-06-18 1986-12-16 Ant Nachrichtentechnik Gmbh Four-port network coupling arrangement for microwave antennas employing monopulse tracking
US5066959A (en) * 1988-12-01 1991-11-19 Telefunken Systemtechnik Gmbh Mode coupler for monopulse applications having h01 mode extracting means
EP0374720A2 (en) * 1988-12-22 1990-06-27 ANT Nachrichtentechnik GmbH Mode converter
EP0374720A3 (en) * 1988-12-22 1991-03-27 ANT Nachrichtentechnik GmbH Mode converter
WO1998010479A1 (en) * 1996-09-09 1998-03-12 Cambridge Industries Limited Improved waveguide for use in dual polarisation probe system
US7304552B2 (en) 1996-09-09 2007-12-04 Andrew Corporation Waveguide for use in dual polarisation probe system having a signal reflector and rotator provide differential phase shift
EP0880193A1 (en) * 1997-05-21 1998-11-25 Alcatel Antenna source for the transmission and reception of microwaves
FR2763749A1 (en) * 1997-05-21 1998-11-27 Alsthom Cge Alcatel ANTENNA SOURCE FOR THE TRANSMISSION AND RECEPTION OF POLARIZED MICROWAVE WAVES
US6166699A (en) * 1997-05-21 2000-12-26 Alcatel Antenna source for transmitting and receiving microwaves
DE102008044895B4 (en) * 2008-08-29 2018-02-22 Astrium Gmbh Signal branching for use in a communication system

Also Published As

Publication number Publication date
EP0041077A3 (en) 1981-12-16
DE3070235D1 (en) 1985-03-28
CA1164088A (en) 1984-03-20
JPS5724105A (en) 1982-02-08
EP0041077B1 (en) 1985-02-20
JPH0369201B2 (en) 1991-10-31
DE3020514A1 (en) 1981-12-10
US4365253A (en) 1982-12-21

Similar Documents

Publication Publication Date Title
EP0041077B1 (en) Antenna-feeding system for a tracking antenna
EP0061576B1 (en) Microwave communication transmission apparatus with multimode diversity combining reception
EP0059927B1 (en) Microwave receiving arrangement
DE60310481T2 (en) Multiband horn
DE3246317A1 (en) WAVE GUIDE FOR DOUBLE POLARIZED TWO FREQUENCY SIGNALS AND METHOD FOR WAVE GUIDING SUCH SIGNALS
DE3201454A1 (en) DEVICE FOR COUPLING LINEAR POLARIZED ELECTROMAGNETIC WAVES
EP2897213B1 (en) Broadband signal splitting with sum signal absorption
DE1942678C3 (en) Feed arrangement for an antenna working with several wave types
DE3702362A1 (en) FLAT AERIAL
DE3602515A1 (en) FOUR-BEAM ANTENNA SYSTEM WITH SPACE-DUPLICATED TRANSMITTER AND RECEIVER ANTENNAS
DE2459045C3 (en) Coupling device
DE1107736B (en) Horn antenna with rectangular cross-section for microwaves
EP2159870B1 (en) Signal branching for use in a communication system
DE2322549A1 (en) ANTENNA SWITCH FOR A HIGH FREQUENCY ANTENNA
DE2932626C2 (en) Four-port network for separating two signals consisting of double polarized frequency bands
DE2719283A1 (en) ANTENNA FEEDING SYSTEM FOR DOUBLE POLARIZATION
DE2626926C2 (en) Waveguide primary radiator with rectangular cross-section for a reflector antenna with beam swivel
DE4039898C2 (en) High-frequency radar antenna feed arrangement - includes optical axis between antenna interface and MIC with focussing unit coupling IC antenna patches and interface
DE2828047B1 (en) Frequency-dependent coupling system
EP0422431B1 (en) Angular-diversity device
DE102010014864B4 (en) Waveguide connection for an antenna system and antenna system
DE3615502A1 (en) Decoupling arrangement for continuous-wave radars
EP0224917B1 (en) Arrangement for the transmission of directional radio-signals in two or more frequency bands
DE3241889A1 (en) POLARIZING SWITCH FOR ELECTROMAGNETIC SEMICONDUCTORS
DE2935136C2 (en) Device for automatic self-tracking of a microwave antenna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE FR GB NL SE

AK Designated contracting states

Designated state(s): DE FR GB NL SE

17P Request for examination filed

Effective date: 19820120

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AEG - TELEFUNKEN NACHRICHTENTECHNIK GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ANT NACHRICHTENTECHNIK GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB NL SE

REF Corresponds to:

Ref document number: 3070235

Country of ref document: DE

Date of ref document: 19850328

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: MESSERSCHMIDT - BOELKOW - BLOHM GMBH, OTTOBRUNN

Effective date: 19851121

NLR1 Nl: opposition has been filed with the epo

Opponent name: MESSERSCHMIDT-BOELKOW-BLOHM GMBH, OTTOBRUNN

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19870904

NLR2 Nl: decision of opposition
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19931206

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19931216

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19931228

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19931231

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940215

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941223

EAL Se: european patent in force in sweden

Ref document number: 80108118.3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950831

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19950701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950901

EUG Se: european patent has lapsed

Ref document number: 80108118.3

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST