EP2897213B1 - Broadband signal splitting with sum signal absorption - Google Patents

Broadband signal splitting with sum signal absorption Download PDF

Info

Publication number
EP2897213B1
EP2897213B1 EP15000068.5A EP15000068A EP2897213B1 EP 2897213 B1 EP2897213 B1 EP 2897213B1 EP 15000068 A EP15000068 A EP 15000068A EP 2897213 B1 EP2897213 B1 EP 2897213B1
Authority
EP
European Patent Office
Prior art keywords
side arm
junction
waveguide
sum signal
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15000068.5A
Other languages
German (de)
French (fr)
Other versions
EP2897213A1 (en
Inventor
Philipp Dr. Kohl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Airbus Defence and Space GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Defence and Space GmbH filed Critical Airbus Defence and Space GmbH
Publication of EP2897213A1 publication Critical patent/EP2897213A1/en
Application granted granted Critical
Publication of EP2897213B1 publication Critical patent/EP2897213B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/19Conjugate devices, i.e. devices having at least one port decoupled from one other port of the junction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • H01P1/161Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion sustaining two independent orthogonal modes, e.g. orthomode transducer

Definitions

  • the invention relates to a (BSmS) for transmitting signals over a predetermined bandwidth, which corresponds to the maximum bandwidth of a conventional T-branch.
  • Such a comprises a common waveguide having a first predetermined cross section and four Thisarmhohlleiter with a predetermined second cross section.
  • Two first, opposite side arm waveguides extend along a first axis.
  • Two second, opposite side arm waveguides extend along a second axis, the first and second axes being orthogonal to each other.
  • the common plane is orthogonal to a major axis of the common waveguide.
  • An orthomode transducer is a passive component of microwave technology. It is used for the separation or combination of orthogonally polarized electromagnetic waves.
  • Current communication systems consist of a satellite receiver and transmitter with antennas for satellite communication. There, the Orthomodenkoppler takes over the task of a diplexer or circulator when receive and transmit signals are polarized orthogonally, and passes both signals together via an antenna.
  • a conventional T-junction (a so-called tee junction) as signal branching, as in Fig. 4 is shown, caused by the manufacturing tolerance such sum signals.
  • the sum signals resonate due to the high quality of the Orthomodenkopplers inside an antenna feed network and can not be absorbed due to a missing sum signal waveguide (ports). This creates unwanted resonance peaks in the scattering parameters.
  • An advantage of conventional T-junction, as in Fig. 4 is shown to cover the maximum waveguide bandwidth of transmissible frequencies. If a signal is fed to the so-called delta port of the symmetrical T-branch, denoted by 1, it is divided into the two collinear side arms 2, 3 for each -3 dB of the power with a phase offset of ideally 180 °, the phase offset as above described, may deviate unfavorably from 180 °, depending on the manufacturing tolerance.
  • a so-called magic T-branch is used instead of the conventional T-branching as signal branching for coupling a signal.
  • the sum signals which result from a relative phase shift, are absorbed in this material in the Orthormenkoppler material of the waveguide absorber.
  • Hybrid Tee As a magic T-branching, Hybrid Tee is called in hybrid technology a hybrid or 3dB coupler. In practice, this component finds application in microwave components. It is a more power-stable alternative to a rat-race coupler used in microstrip line technology.
  • Magic tea (so-called magic tea) is a combination of an E-plane and an H-plane T-branch. In order to be able to guarantee correct functioning, a so-called matching structure (matching structure) is provided inside the magic T-branch.
  • the magic T-junction only works in one certain frequency range and the transmission behavior varies very much with the geometry of the matching structure.
  • the name magic T-branch is derived from the electrical power flow inside the junction.
  • An exemplary magic T-branch is in Fig. 5 shown.
  • a signal which is fed to the difference gate 5 of the magic T-branch is split to the same amplitude but with a phase shift of 180 ° to the side arms 6, 7.
  • the electric field of the dominant field wave type in each gate is perpendicular to the broad side of the waveguide.
  • the signals 5S, 8S in the E-plane gate (difference gate 5) and in the H-plane gate (Summentor 8) are polarized orthogonal to each other.
  • this variant is disadvantageously limited in bandwidth to about 40% over the bandwidth of the conventional T-branch.
  • US 2005/0200430 A1 discloses a waveguide orthomodic coupler for use in VHF, UHF, microwave band, and micrometer waveband.
  • a coupler is also off MA Meyer, et al, Applications of the Turnstile Junction, IRE Transactions on Microwave Theoy and Techniques, IEEE, 1955 known.
  • a waveguide signal branch for transmitting signals which comprises a common waveguide with a first predetermined cross section and four side arm waveguides with a predetermined cross section.
  • the cross sections of the Thearmhohleiter may also be different.
  • Two first, opposite side arm waveguides of the four side arm waveguides extend along a first axis.
  • Two second, opposite side arm waveguides extend along a second axis. The first and second axes are orthogonal to each other.
  • the (BSmS) is characterized in that the two first side arm waveguides are terminated with a waveguide absorber.
  • the (BSmS) Orthomodenkoppler can be designed, which allow an increase in bandwidth and a strong damping of manufacturing tolerances resulting resonance peaks in the scattering parameters.
  • the invention (BSmS) is able to operate with a bandwidth that corresponds to the bandwidth of a conventional T-branch, as exemplified in US Pat Fig. 4 is shown.
  • the energy of the sum signals is decoupled into the side arm waveguides terminated with the waveguide absorber and absorbed in the waveguide absorbers.
  • the first predetermined cross section of the common waveguide may be rectangular.
  • the first predetermined cross section of the common waveguide may be square.
  • the first predetermined cross section of the common waveguide may be elliptical.
  • the first predetermined cross section of the common waveguide may be round.
  • the first predetermined cross section of the common waveguide may in principle have any cross section.
  • the second predetermined cross section of the four side arm waveguides may be rectangular.
  • the second predetermined cross section of the four side arm waveguides may be square.
  • the second predetermined cross section of the four side arm waveguides may be elliptical.
  • the second predetermined cross section of the four side arm waveguides may be round.
  • the second predetermined cross section of the four side arm waveguides may in principle have any desired cross section.
  • the two second side arm waveguides can be arranged collinearly and / or formed.
  • the four side arm waveguides are arranged offset and / or formed out of the common plane, so that e.g. each two of the soarmhohlleiter are arranged in a respective common plane, wherein the two planes are different. These two levels may or may not be parallel to one another.
  • a matching structure in the interior of the (BSmS), in particular in the interior of the common waveguide, a matching structure is provided, whose geometry is adapted to a desired transmission behavior.
  • the matching structure is analogous to a magic T-branch.
  • the inventive (BSmS) is characterized in a further embodiment in that signals over a total bandwidth with a phase offset of 180 ° can be split or coupled.
  • the antenna design of today's standard telecommunications payload of a satellite is being developed as a function of electromagnetic, thermomechanical, technological and design constraints.
  • the main objective in designing the antennas of a telecommunications payload is to maximize the amplification of electromagnetic waves over a complex shaped geographic area. Furthermore, a high usable bandwidth is desired. For this purpose, a multiple utilization of frequency and polarization known to those skilled in the art is used. Another requirement is high performance.
  • Feed Horn To drive horn antennas available today (so-called Feed Horn) with Doppelpolarisationsausfar an antenna feed network (so-called. Feedchain) is used, which allows the merging or separating of two linearly or circularly polarized orthogonal signals that the satellite receives and transmits.
  • Fig. 1 shows a block diagram of a typical signal chain of a telecommunications satellite.
  • the system can process signals with orthogonal polarization both in the transmit (Tx) and in the receive band (Rx).
  • a vertically polarized transmission signal is designated VTx and shown by a vertical arrow with a solid line.
  • a horizontally polarized transmission signal is designated HTx and represented by a horizontal arrow with a broken line.
  • a vertically polarized received signal is denoted by VRx and shown by a vertical arrow with a solid line.
  • a horizontally polarized receive signal is shown with HRx and a horizontal arrow with a broken line.
  • the transmission signals VTx, HTx are also provided with hatching.
  • the interface between an antenna ANT and the payload, ie the antenna feed network, is formed by an orthomode transducer (OMT).
  • OMT orthomode transducer
  • the Orthomodenkoppler OMT separates in the case of reception, the antenna signals VRx, HRx broadband according to their polarization (vertical (V) or horizontal (H)) in the orthogonal components, before these in an associated transmit / receive diplexer DV, DH in terms of frequency in the transmit (Tx) and receive (Rx) bands are separated.
  • the orthomode coupler OMT merges the vertically and horizontally polarized signals VTx, HTx supplied to it by the diplexers DV, DH and supplies them to the antenna ANT for transmission. In this way, the satellite is able to process four independent signals.
  • the known division of a frequency range f into a frequency band for transmission signals (Tx band) and reception signals (Rx band) is schematically shown in FIG Fig. 2 shown.
  • the core of the antenna feed network is thus the orthomode coupler OMT, which divides the antenna signals according to their polarization into the orthogonal components.
  • OMT orthomode coupler
  • a conventional orthomode coupler OMT comprises a waveguide 1 with a circular or square cross-section, which is connected to the antenna ANT (cf. Fig. 1 ) connected is.
  • a rectangular waveguide 2, 3 is connected to the diplexer DV for vertically polarized signals and the diplexer DH for horizontally polarized signals.
  • such a Orthomodenkoppler can be formed by a conventional or a magic T-branch, the conventional T-branch due to unavoidable manufacturing tolerances undesirable resonance peaks in the scattering parameters and the magic T-branch has the disadvantage of a smaller compared bandwidth ,
  • the proposed (BSmS) included in the Fig. 6 to 8 is shown, avoids these disadvantages and at the same time allows an increase in bandwidth and a strong damping of the manufacturing tolerances resulting resonance peaks in the scattering parameters.
  • the BSMS fitted over the entire rectangular waveguide bandwidth comprises four side arm waveguides (side gates) 21, 22, 23, 24 of rectangular, elliptic or any other arbitrary cross section, the side arm waveguides 21, 22, 23, 24 being symmetrically arranged in a plane ,
  • the opposite toarmhohlleiter 21, 23 along a first axis 27 and the opposite Toarmhohlleiter 22, 24 extend along a second axis 28.
  • the first and the second axis 27, 28 are arranged orthogonal to each other and lie in a common plane.
  • the common plane is orthogonal to a major axis (longitudinal axis) 30 of a common waveguide 11.
  • the common waveguide 11 may be a square, elliptical, circular waveguide or waveguide of any other shape. In the present description, it is designed as a circular waveguide.
  • the opposite side arm waveguides 21, 23 are symmetrically terminated with a waveguide absorber 25, 26.
  • the waveguide absorbers 25, 26 are slid over the sidearm waveguides 21, 23 in the manner of a cap, or are located inside the sidearm waveguides.
  • the waveguide absorbers 25, 26 consist of an electrically and or magnetically lossy material (for example ECCOSORB).
  • a matching structure In the interior of the waveguide arrangement, a matching structure, not shown in greater detail, whose geometry is adapted to a desired transmission behavior.
  • the (BSmS) comprises four symmetrically arranged rectangular waveguides 21, 22, 23, 24 (or waveguide of any other shape) with a common waveguide 11 together.
  • This mechanical 5-port combines the function of a conventional T-branch with the function of a magic T-branch in an antenna feed network. Transmit and receive signals can thus be divided or coupled over the entire waveguide bandwidth with a phase shift of 180 ° as in a conventional T-branch.
  • Fig. 9 A comparison of the return-loss parameter between a magic T-branch and a broadband branch is shown Fig. 9 , This shows the frequency range normalized. Typical values for the required return loss parameters are usually about -30 dB (curve K1). The curve K2 shows the course of the return-loss parameters for the magic T-branch. The curve of the return loss parameter for the inventive (BSmS) is marked with K3. In Fig. 9 It is easy to see that with the symmetric (BSmS) the so-called return loss parameters over a relative frequency range 60% better than -30dB. In contrast, the magical T-branching only reaches about 40%.
  • BmS symmetric

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Description

Die Erfindung betrifft eine (BSmS) zur Übertragung von Signalen über eine vorgegebene Bandbreite, die der maximalen Bandbreite einer konventionellen T-Verzweigung entspricht.The invention relates to a (BSmS) for transmitting signals over a predetermined bandwidth, which corresponds to the maximum bandwidth of a conventional T-branch.

Eine solche (BSmS), umfasst einen gemeinsamen Hohlleiter mit einem ersten vorgegebenen Querschnitt und vier Seitenarmhohlleiter mit vorgegebenem zweiten Querschnitt. Zwei erste, gegenüberliegende Seitenarmhohlleiter erstrecken sich entlang einer ersten Achse. Zwei zweite, gegenüberliegende Seitenarmhohlleiter erstrecken sich entlang einer zweiten Achse, wobei die erste und zweite Achse orthogonal zueinander angeordnet liegen. Die gemeinsame Ebene verläuft orthogonal zu einer Hauptachse des gemeinsamen Hohlleiters.Such a (BSmS) comprises a common waveguide having a first predetermined cross section and four Seitenarmhohlleiter with a predetermined second cross section. Two first, opposite side arm waveguides extend along a first axis. Two second, opposite side arm waveguides extend along a second axis, the first and second axes being orthogonal to each other. The common plane is orthogonal to a major axis of the common waveguide.

Ein Orthomodenkoppler (Orthomode Transducer, OMT) ist ein passives Bauelement der Mikrowellentechnik. Er findet Verwendung zur Trennung bzw. Zusammenführung orthogonal polarisierter elektromagnetischer Wellen. Derzeitig aktuelle Kommunikationssysteme bestehen aus einem Satellitenempfänger und -sender mit Antennen für satellitengestützte Kommunikation. Dort übernimmt der Orthomodenkoppler die Aufgabe eines Diplexers bzw. Zirkulators, wenn Empfangs- und Sendesignale orthogonal polarisiert sind, und leitet beide Signale gemeinsam über eine Antenne.An orthomode transducer (OMT) is a passive component of microwave technology. It is used for the separation or combination of orthogonally polarized electromagnetic waves. Current communication systems consist of a satellite receiver and transmitter with antennas for satellite communication. There, the Orthomodenkoppler takes over the task of a diplexer or circulator when receive and transmit signals are polarized orthogonally, and passes both signals together via an antenna.

Auf Grund von Fertigungsungenauigkeiten können minimale unsymmetrische Diskontinuitäten auftreten. Dadurch kommt es zu Phasendifferenzen der verschiedenen elektromagnetischen Wellen und letztendlich beim Zusammenführen der individuellen Wellen zu unerwünschten Störsignalen. Beim Zusammenführen der Signale, weicht die relative Phasenverschiebung in den einzelnen Ausbreitungswegen der elektromagnetischen Wellen geringfügig von einem Sollwert von 180° ab. Subtrahiert man nun zwei Signale voneinander, verbleibt ein gewisser Summenanteil, dessen Amplitude von der Abweichung der Phase vom Sollwert abhängt.Due to manufacturing inaccuracies, minimal unbalanced discontinuities may occur. This results in phase differences of the various electromagnetic waves and ultimately in the merging of the individual waves to unwanted interference signals. When the signals are combined, the relative phase shift in the individual propagation paths of the electromagnetic waves deviates slightly from a desired value of 180 °. If one subtracts two signals from each other, a certain amount of sums remains, the amplitude of which depends on the deviation of the phase from the nominal value.

Durch das Verwenden einer konventionellen T-Verzweigung (eine sog. Tee Junction) als Signalverzweigung, wie diese in Fig. 4 dargestellt ist, entstehen durch die Fertigungstoleranz solche Summensignale. Die Summensignale resonieren aufgrund der hohen Güte des Orthomodenkopplers im Inneren eines Antennenspeisenetzwerkes und können aufgrund eines fehlenden Summensignal-Hohlleiters (Ports) nicht absorbiert werden. Dadurch entstehen unerwünschte Resonanzspitzen in den Streuparametern.By using a conventional T-junction (a so-called tee junction) as signal branching, as in Fig. 4 is shown, caused by the manufacturing tolerance such sum signals. The sum signals resonate due to the high quality of the Orthomodenkopplers inside an antenna feed network and can not be absorbed due to a missing sum signal waveguide (ports). This creates unwanted resonance peaks in the scattering parameters.

Ein Vorteil der konventionellen T-Verzweigung, wie in Fig. 4 gezeigt, ist, dass diese die maximale Hohlleiterbandbreite übertragbarer Frequenzen abdeckt. Wird ein Signal am mit 1 bezeichneten sog. Delta Port der symmetrischen T-Verzweigung eingespeist, teilt es sich zu jeweils -3dB der Leistung mit einem Phasenversatz von idealerweise 180° auf die beiden kollinearen Seitenarme 2, 3 auf, wobei der Phasenversatz, wie oben beschrieben, in Abhängigkeit von der Fertigungstoleranz in ungünstiger Weise von 180° abweichen kann.An advantage of conventional T-junction, as in Fig. 4 is shown to cover the maximum waveguide bandwidth of transmissible frequencies. If a signal is fed to the so-called delta port of the symmetrical T-branch, denoted by 1, it is divided into the two collinear side arms 2, 3 for each -3 dB of the power with a phase offset of ideally 180 °, the phase offset as above described, may deviate unfavorably from 180 °, depending on the manufacturing tolerance.

Zur Dämpfung der Resonanz-Spitzen wird statt der konventionellen T-Verzweigung üblicherweise eine sog. magische T-Verzweigung als Signalverzweigung zum Koppeln eines Signales verwendet. Die Summensignale, die durch eine relative Phasenverschiebung entstehen, werden bei diesem Orthomodenkoppler im Material des Hohlleiterabsorbers absorbiert.To dampen the resonance peaks, a so-called magic T-branch is used instead of the conventional T-branching as signal branching for coupling a signal. The sum signals, which result from a relative phase shift, are absorbed in this material in the Orthormenkoppler material of the waveguide absorber.

Als magische T-Verzweigung, Hybrid Tee bezeichnet man in der Hochfrequenztechnik einen Hybrid- oder 3dB-Koppler. In der Praxis findet dieses Bauteil Anwendung in Mikrowellenkomponenten. Es ist eine leistungsfestere Alternative zu einem, in Mikrostreifenleitungstechnik verwendeten, Rat-Race-Koppler. Das magische Tee (sog. Magic Tee) ist eine Kombination aus einer E-Ebenen- und einer H-Ebenen-T-Verzweigung. Um eine korrekte Funktionsweise garantieren zu können, ist im Inneren der magischen T-Verzweigung eine sogenannte Anpass-Struktur (Matching-Struktur) vorgesehen. Die magische T-Verzweigung arbeitet nur in einem bestimmten Frequenzbereich und das Übertragungsverhalten variiert sehr stark mit der Geometrie der Anpass-Struktur.As a magic T-branching, Hybrid Tee is called in hybrid technology a hybrid or 3dB coupler. In practice, this component finds application in microwave components. It is a more power-stable alternative to a rat-race coupler used in microstrip line technology. Magic tea (so-called magic tea) is a combination of an E-plane and an H-plane T-branch. In order to be able to guarantee correct functioning, a so-called matching structure (matching structure) is provided inside the magic T-branch. The magic T-junction only works in one certain frequency range and the transmission behavior varies very much with the geometry of the matching structure.

Der Name magische T-Verzweigung ist aus dem elektrischen Leistungsfluss im Inneren der Verzweigung abgeleitet. Eine beispielhafte magische T-Verzweigung ist in Fig. 5 dargestellt. Ein Signal, das am Summentor 8 eingespeist wird, teilt sich zu gleicher Amplitude und Phasenlage auf die kollinearen Seitenarme 6, 7 auf.The name magic T-branch is derived from the electrical power flow inside the junction. An exemplary magic T-branch is in Fig. 5 shown. A signal which is fed to the Summentor 8, divided to the same amplitude and phase position on the collinear side arms 6, 7.

Im Gegensatz dazu wird ein Signal, welches am Differenztor 5 der magischen T-Verzweigung eingespeist wird, zu gleicher Amplitude, aber mit einem Phasenversatz von 180° auf die Seitenarme 6, 7 aufgeteilt. Das elektrische Feld des dominanten Feldwellentyps in jedem Tor ist lotrecht zur Breitseite des Hohlleiters. So-mit sind die Signale 5S, 8S im E-Ebenen-Tor (Differenztor 5) und im H-Ebenen-Tor (Summentor 8) orthogonal zueinander polarisiert. Wie beschrieben, ist diese Variante in nachteiliger Weise in der Bandbreite auf ca. 40% gegenüber der Bandbreite der konventionellen T-Verzweigung beschränkt.In contrast, a signal which is fed to the difference gate 5 of the magic T-branch is split to the same amplitude but with a phase shift of 180 ° to the side arms 6, 7. The electric field of the dominant field wave type in each gate is perpendicular to the broad side of the waveguide. Thus, the signals 5S, 8S in the E-plane gate (difference gate 5) and in the H-plane gate (Summentor 8) are polarized orthogonal to each other. As described, this variant is disadvantageously limited in bandwidth to about 40% over the bandwidth of the conventional T-branch.

US 2005/0200430 A1 offenbart einen Wellenleiterorthomodenkoppler zur Verwendung in VHF, UHF, Mikrowellenband und Mikrometerwellenband. Ein Koppler ist auch aus M.A. Meyer, et al, "Applications of the Turnstile Junction", IRE Transactions on Microwave Theoy and Techniques, IEEE, 1955 bekannt. US 2005/0200430 A1 discloses a waveguide orthomodic coupler for use in VHF, UHF, microwave band, and micrometer waveband. A coupler is also off MA Meyer, et al, Applications of the Turnstile Junction, IRE Transactions on Microwave Theoy and Techniques, IEEE, 1955 known.

Es ist daher Aufgabe der vorliegenden Erfindung, eine Wellenleiter-Signalverzweigung anzugeben, der bei großer Bandbreite, insbesondere einer Bandbreite die der Bandbreite einer konventionellen T-Verzweigung entspricht, unerwünschte Resonanzspitzen in den Streuparametern unterdrückt.It is therefore an object of the present invention to provide a waveguide signal branching, which suppresses unwanted resonance peaks in the scattering parameters at high bandwidth, in particular a bandwidth corresponding to the bandwidth of a conventional T-branch.

Diese Aufgabe wird durch eine Wellenleiter-Signalverzweigung gemäß den Merkmalen des Anspruches 1 gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den abhängigen Ansprüchen.This object is achieved by a waveguide signal branch according to the features of claim 1. Advantageous embodiments emerge from the dependent claims.

Es wird eine Wellenleiter-Signalverzweigung zur Übertragung von Signalen vorgeschlagen, die einen gemeinsamen Hohlleiter mit einem ersten vorgegebenen Querschnitt und vier Seitenarmhohlleiter mit vorgegebenem Querschnitt umfasst. Die Querschnitte der Seitenarmhohleiter können auch unterschiedlich sein. Zwei erste, gegenüberliegende Seitenarmhohlleiter der vier Seitenarmhohlleiter erstrecken sich entlang einer ersten Achse. Zwei zweite, gegenüberliegende Seitenarmhohlleiter erstrecken sich entlang einer zweiten Achse. Die erste und die zweite Achse sind orthogonal zueinander angeordnet. Die (BSmS) zeichnet sich dadurch aus, dass die zwei ersten Seitenarmhohlleiter mit einem Hohlleiterabsorber abgeschlossen sind.A waveguide signal branch for transmitting signals is proposed which comprises a common waveguide with a first predetermined cross section and four side arm waveguides with a predetermined cross section. The cross sections of the Seitenarmhohleiter may also be different. Two first, opposite side arm waveguides of the four side arm waveguides extend along a first axis. Two second, opposite side arm waveguides extend along a second axis. The first and second axes are orthogonal to each other. The (BSmS) is characterized in that the two first side arm waveguides are terminated with a waveguide absorber.

Mit der (BSmS) lassen sich Orthomodenkoppler entwerfen, die eine Steigerung der Bandbreite und eine starke Bedämpfung der durch Fertigungstoleranzen entstehenden Resonanz-Spitzen in den Streuparametern ermöglichen. Insbesondere ist die erfindungsgemäße (BSmS) in der Lage mit einer Bandbreite betrieben zu werden, die der Bandbreite einer konventionellen T-Verzweigung entspricht, wie diese beispielhaft in Fig. 4 dargestellt ist. Die Energie der Summensignale wird in die Seitenarmhohlleiter, die mit dem Hohlleiterabsorber abgeschlossen sind, ausgekoppelt und in den Hohlleiterabsorbern absorbiert.With the (BSmS) Orthomodenkoppler can be designed, which allow an increase in bandwidth and a strong damping of manufacturing tolerances resulting resonance peaks in the scattering parameters. In particular, the invention (BSmS) is able to operate with a bandwidth that corresponds to the bandwidth of a conventional T-branch, as exemplified in US Pat Fig. 4 is shown. The energy of the sum signals is decoupled into the side arm waveguides terminated with the waveguide absorber and absorbed in the waveguide absorbers.

Der erste vorgegebene Querschnitt des gemeinsamen Hohlleiters kann rechteckig sein. Der erste vorgegebene Querschnitt des gemeinsamen Hohlleiters kann quadratisch sein. Der erste vorgegebene Querschnitt des gemeinsamen Hohlleiters kann elliptisch sein. Der erste vorgegebene Querschnitt des gemeinsamen Hohlleiters kann rund sein. Der erste vorgegebene Querschnitt des gemeinsamen Hohlleiters kann grundsätzlich einen beliebigen Querschnitt aufweisen.The first predetermined cross section of the common waveguide may be rectangular. The first predetermined cross section of the common waveguide may be square. The first predetermined cross section of the common waveguide may be elliptical. The first predetermined cross section of the common waveguide may be round. The first predetermined cross section of the common waveguide may in principle have any cross section.

Der zweite vorgegebene Querschnitt der vier Seitenarmhohlleiter kann rechteckig sein. Der zweite vorgegebene Querschnitt der vier Seitenarmhohlleiter kann quadratisch sein. Der zweite vorgegebene Querschnitt der vier Seitenarmhohlleiter kann elliptisch sein. Der zweite vorgegebene Querschnitt der vier Seitenarmhohlleiter kann rund sein. Der zweite vorgegebene Querschnitt der vier Seitenarmhohlleiter kann grundsätzlich einen beliebigen Querschnitt aufweisen.The second predetermined cross section of the four side arm waveguides may be rectangular. The second predetermined cross section of the four side arm waveguides may be square. The second predetermined cross section of the four side arm waveguides may be elliptical. The second predetermined cross section of the four side arm waveguides may be round. The second predetermined cross section of the four side arm waveguides may in principle have any desired cross section.

Gemäß einer weiteren Ausgestaltung können die zwei zweiten Seitenarmhohlleiter kollinear angeordnet und/oder ausgebildet sein.According to a further embodiment, the two second side arm waveguides can be arranged collinearly and / or formed.

In einer weiteren Ausgestaltung kann vorgesehen sein, dass die vier Seitenarmhohlleiter aus der gemeinsamen Ebene heraus versetzt angeordnet und/oder ausgebildet sind, so dass z.B. jeweils zwei der Seitenarmhohlleiter in einer jeweiligen gemeinsamen Ebene angeordnet sind, wobei die beiden Ebenen unterschiedlich sind. Diese beiden Ebenen können parallel zueinander angeordnet sein oder auch nicht.In a further embodiment it can be provided that the four side arm waveguides are arranged offset and / or formed out of the common plane, so that e.g. each two of the Seitenarmhohlleiter are arranged in a respective common plane, wherein the two planes are different. These two levels may or may not be parallel to one another.

Es kann weiterhin vorgesehen sein, dass im Inneren der (BSmS), insbesondere im Inneren des gemeinsamen Hohlleiters, eine Anpass-Struktur vorgesehen ist, deren Geometrie an ein gewünschtes Übertragungsverhalten angepasst ist. Beispielsweise ist die Anpass-Struktur analog zu einer magischen T-Verzweigung ausgebildet.It may further be provided that in the interior of the (BSmS), in particular in the interior of the common waveguide, a matching structure is provided, whose geometry is adapted to a desired transmission behavior. For example, the matching structure is analogous to a magic T-branch.

Die erfindungsgemäße (BSmS) zeichnet sich in einer weiteren Ausgestaltung dadurch aus, dass Signale über eine Gesamtbandbreite mit einem Phasenversatz von 180° aufteilbar oder koppelbar sind.The inventive (BSmS) is characterized in a further embodiment in that signals over a total bandwidth with a phase offset of 180 ° can be split or coupled.

Die Erfindung wird nachfolgend näher anhand von Ausführungsbeispielen in der Zeichnung beschrieben. Es zeigen:

Fig. 1
eine bekannte Signalkette mit für einen Telekommunikationssatelliten typischen Komponenten;
Fig. 2
eine schematische Darstellung der Nutzung von benachbarten Frequenzbändern für die Übertragung von Sende- und Empfangssignalen:
Fig. 3
eine schematische Darstellung eines typischen Orthomodenkopplers;
Fig. 4
eine bekannte konventionelle T-Verzweigung;
Fig. 5
eine bekannte magische T-Verzweigung;
Fig. 6
eine perspektivische Darstellung der erfindungsgemäßen Breitband Signalverzweigung mit Summensignalabsorption;
Fig. 7
eine Seitenansicht der erfindungsgemäßen Breitband Signalverzweigung mit Summensignalabsorption aus Fig. 6;
Fig. 8
eine Aufsicht der erfindungsgemäßen Breitband Signalverzweigung mit Summensignalabsorption aus Fig. 6; und
Fig. 9
einen Vergleich von Rückflussdämpfungsparametern (Return-Loss-Parameter) der erfindungsgemäßen Breitband Signalverzweigung mit Summensignalabsorption und einer magischen T-Verzweigung.
The invention will be described in more detail below with reference to embodiments in the drawing. Show it:
Fig. 1
a known signal chain with components typical for a telecommunications satellite;
Fig. 2
a schematic representation of the use of adjacent frequency bands for the transmission of transmit and receive signals:
Fig. 3
a schematic representation of a typical Orthomodenkopplers;
Fig. 4
a known conventional T-junction;
Fig. 5
a known magic T branch;
Fig. 6
a perspective view of the broadband signal branching according to the invention with sum signal absorption;
Fig. 7
a side view of the broadband signal branching according to the invention with sum signal absorption Fig. 6 ;
Fig. 8
a plan view of the broadband signal branching according to the invention with sum signal absorption Fig. 6 ; and
Fig. 9
a comparison of return loss parameters (return loss parameter) of the broadband signal branching invention with sum signal absorption and a magic T-branch.

Das Antennen-Design einer heutzutage üblichen Telekommunikationsnutzlast eines Satelliten wird in Abhängigkeit von elektromagnetischen, thermomechanischen, technologischen sowie designtechnischen Randbedingungen entwickelt. Das Hauptziel beim Design der Antennen einer Telekommunikationsnutzlast ist die Verstärkung der elektromagnetischen Wellen über einer komplex geformten geografischen Zone zu maximieren. Weiter wird eine hohe nutzbare Bandbreite angestrebt. Hierzu wird eine den Fachmann bekannte Mehrfachausnutzung von Frequenz und Polarisation genutzt. Ein weiteres Erfordernis ist eine hohe Leistungsfestigkeit.The antenna design of today's standard telecommunications payload of a satellite is being developed as a function of electromagnetic, thermomechanical, technological and design constraints. The main objective in designing the antennas of a telecommunications payload is to maximize the amplification of electromagnetic waves over a complex shaped geographic area. Furthermore, a high usable bandwidth is desired. For this purpose, a multiple utilization of frequency and polarization known to those skilled in the art is used. Another requirement is high performance.

Zur Ansteuerung von heute verfügbaren Hornantennen (sog. Feed Horn) mit Zweifachpolarisationsausnutzung wird ein Antennenspeisenetzwerk (sog. Feedchain) eingesetzt, die das Zusammenführen bzw. das Trennen von je zwei linear oder zirkular polarisierten orthogonalen Signalen, die der Satellit empfängt und sendet, erlaubt.To drive horn antennas available today (so-called Feed Horn) with Doppelpolarisationsausnutzung an antenna feed network (so-called. Feedchain) is used, which allows the merging or separating of two linearly or circularly polarized orthogonal signals that the satellite receives and transmits.

Fig. 1 zeigt ein Blockdiagramm einer typischen Signalkette eines Telekommunikations-Satelliten. Das System kann sowohl im Sende- (Tx) als auch im Empfangsband (Rx) Signale mit orthogonaler Polarisation verarbeiten. Ein vertikal polarisiertes Sendesignal ist mit VTx bezeichnet und mit einem vertikalen Pfeil mit durchgezogener Linie dargestellt. Ein horizontal polarisiertes Sendesignal ist mit HTx bezeichnet und mit einem horizontalen Pfeil mit durchbrochener Linie dargestellt. Ein vertikal polarisiertes Empfangssignal ist mit VRx bezeichnet und mit einem vertikalen Pfeil mit durchgezogener Linie dargestellt. Ein horizontal polarisiertes Empfangssignal ist mit HRx und mit einem horizontalen Pfeil mit durchbrochener Linie dargestellt. Die Sendesignale VTx, HTx sind darüber hinaus mit einer Schraffur versehen. Fig. 1 shows a block diagram of a typical signal chain of a telecommunications satellite. The system can process signals with orthogonal polarization both in the transmit (Tx) and in the receive band (Rx). A vertically polarized transmission signal is designated VTx and shown by a vertical arrow with a solid line. A horizontally polarized transmission signal is designated HTx and represented by a horizontal arrow with a broken line. A vertically polarized received signal is denoted by VRx and shown by a vertical arrow with a solid line. A horizontally polarized receive signal is shown with HRx and a horizontal arrow with a broken line. The transmission signals VTx, HTx are also provided with hatching.

Die Schnittstelle zwischen einer Antenne ANT und der Nutzlast (Payload), d.h. dem Antennenspeisenetzwerk, wird von einem Orthomodenkoppler (Orthomode Transducer) OMT gebildet. Der Orthomodenkoppler OMT trennt im Empfangsfall die Antennen-Signale VRx, HRx breitbandig gemäß ihrer Polarisation (vertikal (V) oder horizontal (H)) in die orthogonalen Anteile auf, bevor diese in einem zugeordneten Sende-/Empfangs-Diplexer DV, DH frequenzmäßig in das Sende- (Tx) und Empfangsband (Rx) getrennt werden. Umgekehrt führt der Orthomodenkoppler OMT im Sendefall die von den Diplexern DV, DH ihm zugeführten vertikal und horizontal polarisierten Signale VTx, HTx zusammen und führt diese der Antenne ANT zum Aussenden zu. Auf diese Weise ist der Satellit in der Lage vier voneinander unabhängige Signale zu verarbeiten. Die bekannte Aufteilung eines Frequenzbereichs f in ein Frequenzband für Sendesignale (Tx-Band) und Empfangssignale (Rx-Band) ist schematisch in Fig. 2 dargestellt.The interface between an antenna ANT and the payload, ie the antenna feed network, is formed by an orthomode transducer (OMT). The Orthomodenkoppler OMT separates in the case of reception, the antenna signals VRx, HRx broadband according to their polarization (vertical (V) or horizontal (H)) in the orthogonal components, before these in an associated transmit / receive diplexer DV, DH in terms of frequency in the transmit (Tx) and receive (Rx) bands are separated. Conversely, in the transmission case, the orthomode coupler OMT merges the vertically and horizontally polarized signals VTx, HTx supplied to it by the diplexers DV, DH and supplies them to the antenna ANT for transmission. In this way, the satellite is able to process four independent signals. The known division of a frequency range f into a frequency band for transmission signals (Tx band) and reception signals (Rx band) is schematically shown in FIG Fig. 2 shown.

Das Kernstück des Antennenspeisenetzwerks ist somit der Orthomodenkoppler OMT, der die Antennensignale gemäß ihrer Polarisation in die orthogonalen Komponenten aufteilt. Um die Übertragungskapazität weiterhin zu maximieren, nutzt man breitbandig angepasste Strukturen, mit denen eine größere bzw. größtmögliche Frequenzbereichsnutzung realisiert werden kann.The core of the antenna feed network is thus the orthomode coupler OMT, which divides the antenna signals according to their polarization into the orthogonal components. In order to further maximize the transmission capacity, one uses broadband adapted structures, with which a larger or largest possible frequency range use can be realized.

Wie in Fig. 3 schematisch dargestellt, umfasst ein herkömmlicher Orthomodenkoppler OMT, einen Hohlleiter 1 mit kreisförmigem oder quadratischem Querschnitt, der mit der Antenne ANT (vgl. Fig. 1) verbunden ist. Jeweils ein rechteckförmiger Hohlleiter 2, 3 ist mit dem Diplexer DV für vertikal polarisierte Signale und dem Diplexer DH für horizontal polarisierte Signale verbunden. Wie einleitend in Verbindung mit den Fig. 4 und 5 beschrieben, kann ein solcher Orthomodenkoppler durch eine konventionelle oder eine magische T-Verzweigung gebildet werden, wobei die konventionelle T-Verzweigung aufgrund von nicht zu vermeidenden Fertigungstoleranzen unerwünschte Resonanzspitzen in den Streuparametern aufweist und die magische T-Verzweigung den Nachteil einer im Vergleich kleineren Bandbreite aufweist.As in Fig. 3 schematically, a conventional orthomode coupler OMT comprises a waveguide 1 with a circular or square cross-section, which is connected to the antenna ANT (cf. Fig. 1 ) connected is. In each case a rectangular waveguide 2, 3 is connected to the diplexer DV for vertically polarized signals and the diplexer DH for horizontally polarized signals. As in the introduction with the 4 and 5 described, such a Orthomodenkoppler can be formed by a conventional or a magic T-branch, the conventional T-branch due to unavoidable manufacturing tolerances undesirable resonance peaks in the scattering parameters and the magic T-branch has the disadvantage of a smaller compared bandwidth ,

Die vorgeschlagene (BSmS), der in den Fig. 6 bis 8 dargestellt ist, vermeidet diese Nachteile und ermöglicht gleichzeitig eine Steigerung der Bandbreite sowie eine starke Bedämpfung der durch Fertigungstoleranzen entstehenden Resonanz-Spitzen in den Streuparametern.The proposed (BSmS) included in the Fig. 6 to 8 is shown, avoids these disadvantages and at the same time allows an increase in bandwidth and a strong damping of the manufacturing tolerances resulting resonance peaks in the scattering parameters.

Die über die gesamte Rechteckhohlleiter-Bandbreite angepasste (BSmS) umfasst vier Seitenarmhohlleiter (Seitentore) 21, 22, 23, 24 mit rechteckigem, elliptischem oder irgendeinem anderen beliebigen Querschnitt, wobei die Seitenarmhohlleiter 21, 22, 23, 24 symmetrisch angeordnet in einer Ebene liegen. Dabei erstrecken sich die gegenüberliegenden Seitenarmhohlleiter 21, 23 entlang einer ersten Achse 27 und die gegenüberliegenden Seitenarmhohlleiter 22, 24 entlang einer zweiten Achse 28. Die erste und die zweite Achse 27, 28 sind orthogonal zueinander angeordnet und liegen in einer gemeinsamen Ebene. Die gemeinsame Ebene verläuft orthogonal zu einer Hauptachse (longitudinale Achse) 30 eines gemeinsamen Hohlleiters 11. Der gemeinsame Hohlleiter 11 kann ein quadratischer, elliptischer, ein Rundhohlleiter oder ein Hohlleiter einer beliebigen anderen Form sein. In der vorliegenden Beschreibung ist er als Rundhohlleiter ausgeführt.The BSMS fitted over the entire rectangular waveguide bandwidth comprises four side arm waveguides (side gates) 21, 22, 23, 24 of rectangular, elliptic or any other arbitrary cross section, the side arm waveguides 21, 22, 23, 24 being symmetrically arranged in a plane , In this case, the opposite Seitenarmhohlleiter 21, 23 along a first axis 27 and the opposite Seitenarmhohlleiter 22, 24 extend along a second axis 28. The first and the second axis 27, 28 are arranged orthogonal to each other and lie in a common plane. The common plane is orthogonal to a major axis (longitudinal axis) 30 of a common waveguide 11. The common waveguide 11 may be a square, elliptical, circular waveguide or waveguide of any other shape. In the present description, it is designed as a circular waveguide.

Die gegenüberliegenden Seitenarmhohlleiter 21, 23 sind symmetrisch mit einem Hohlleiterabsorber 25, 26 abgeschlossen. Die Hohlleiterabsorber 25, 26 sind nach Art einer Kappe über die Seitenarmhohlleiter 21, 23 geschoben oder befinden sich im inneren der Seitenarmhohlleiter. Die Hohlleiterabsorber 25, 26 bestehen aus einem elektrisch und oder magnetisch verlustbehafteten Material (z.B ECCOSORB).The opposite side arm waveguides 21, 23 are symmetrically terminated with a waveguide absorber 25, 26. The waveguide absorbers 25, 26 are slid over the sidearm waveguides 21, 23 in the manner of a cap, or are located inside the sidearm waveguides. The waveguide absorbers 25, 26 consist of an electrically and or magnetically lossy material (for example ECCOSORB).

Im Inneren der Hohlleiteranordnung kann eine nicht näher dargestellte Anpass-Struktur vorgesehen sein, deren Geometrie an ein gewünschtes Übertragungsverhalten angepasst ist.In the interior of the waveguide arrangement, a matching structure, not shown in greater detail, whose geometry is adapted to a desired transmission behavior.

Die (BSmS) fasst vier symmetrisch angeordnete Rechteckhohlleiter 21, 22, 23, 24 (oder Hohlleiter einer beliebigen anderen Form) mit einem gemeinsamen Hohlleiter 11 zusammen. Dieses mechanische 5-Tor verbindet die Funktion einer konventionellen T-Verzweigung mit der Funktion einer magischen T-Verzweigung in einem Antennenspeisenetzwerk. Sende- und Empfangssignale können somit wie bei einer konventionellen T-Verzweigung über die gesamte Hohlleiterbandbreite mit einem Phasenversatz von 180° aufgeteilt bzw. gekoppelt werden.The (BSmS) comprises four symmetrically arranged rectangular waveguides 21, 22, 23, 24 (or waveguide of any other shape) with a common waveguide 11 together. This mechanical 5-port combines the function of a conventional T-branch with the function of a magic T-branch in an antenna feed network. Transmit and receive signals can thus be divided or coupled over the entire waveguide bandwidth with a phase shift of 180 ° as in a conventional T-branch.

Die durch die Fertigungsungenauigkeit entstehenden Summensignale, welche im Inneren des Orthomodenkopplers resonieren, werden in den beiden Hohlleiterabsorbern 25, 26 des Orthomodenkopplers absorbiert.The resulting due to the manufacturing inaccuracy sum signals which resonate inside the Orthomodenkopplers be absorbed in the two waveguide absorbers 25, 26 of the Orthomodenkopplers.

Einen Vergleich der Rückflussdämpfungs (Return-Loss)-Parameter zwischen einer magischen T-Verzweigung und einer Breitbandverzweigung zeigt Fig. 9. In dieser ist der Frequenzbereich normiert dargestellt. Typische Werte für die geforderten Return-Loss-Parameter sind üblicherweise bei etwa -30dB (Kurve K1). Die Kurve K2 zeigt den Verlauf der Return-Loss-Parameter für die magische T-Verzweigung. Die Kurve der Return-Loss Parameter für die erfindungsgemäße (BSmS) ist mit K3 gekennzeichnet. In Fig. 9 ist gut zu erkennen, dass mit der symmetrischen (BSmS) die sog. Return-Loss-Parameter über einen relativen Frequenzbereich von ca. 60% besser als -30dB sind. Im Gegensatz dazu erreicht man mit der magischen T-Verzweigung lediglich ca. 40%.A comparison of the return-loss parameter between a magic T-branch and a broadband branch is shown Fig. 9 , This shows the frequency range normalized. Typical values for the required return loss parameters are usually about -30 dB (curve K1). The curve K2 shows the course of the return-loss parameters for the magic T-branch. The curve of the return loss parameter for the inventive (BSmS) is marked with K3. In Fig. 9 It is easy to see that with the symmetric (BSmS) the so-called return loss parameters over a relative frequency range 60% better than -30dB. In contrast, the magical T-branching only reaches about 40%.

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

11
gemeinsamer Hohlleiter, kreisförmig oder quadratischcommon waveguide, circular or square
22
Seitenarmhohlleiter, rechteckförmigSide arm waveguide, rectangular
33
Seitenarmhohlleiter, rechteckförmigSide arm waveguide, rectangular
55
Summentor einer magischen T-VerzweigungSummentor of a magic T-junction
66
Seitenarm einer magischen T-VerzweigungSide arm of a magic T-branch
77
Seitenarm einer magischen T-VerzweigungSide arm of a magic T-branch
88th
Differenztor einer magischen T-VerzweigungDifference gate of a magic T-branch
1010
Wellenleiter-OrthomodenkopplerWaveguide Orthomodenkoppler
1111
gemeinsamer Hohlleitercommon waveguide
2121
SeitenarmhohlleiterSeitenarmhohlleiter
2222
SeitenarmhohlleiterSeitenarmhohlleiter
2323
SeitenarmhohlleiterSeitenarmhohlleiter
2424
SeitenarmhohlleiterSeitenarmhohlleiter
2525
HohlleiterabsorberWaveguide absorber
2626
HohlleiterabsorberWaveguide absorber
2727
erste Achsefirst axis
2828
zweite Achsesecond axis
3030
Hauptachse (longitudinale Achse)Main axis (longitudinal axis)
OMTOMT
OrthomodenkopplerOrthomodenkoppler
ANTANT
Antenneantenna
DHDH
Diplexerdiplexer
DVDV
Diplexerdiplexer
VRxVRx
vertikal polarisiertes Empfangssignalvertically polarized received signal
HRxHRx
horizontal polarisiertes Empfangssignalhorizontally polarized received signal
VTxVTx
vertikal polarisiertes Sendesignalvertically polarized transmission signal
HTxHTx
horizontal polarisiertes Sendesignalhorizontally polarized transmission signal

Claims (7)

  1. A broadband signal junction with sum signal absorption (10) for transmitting signals, comprising:
    - a common hollow conductor (11) with a first predefined cross-section; and
    - four side arm hollow conductors (21, 22, 23, 24) disposed in a common plane, the four side arm hollow conductors having a predefined cross-section, wherein two first opposing side arm hollow conductors (21, 23) extend along a first axis and two second opposing side arm hollow conductors (22,24) extend along a second axis, wherein the first and the second axis are disposed orthogonal to one another lying in the common plane, and wherein the common plane runs orthogonally to a main axis of the common hollow conductor,
    characterized in that
    the two first side arm hollow conductors (21, 23) end with a respective hollow conductor absorber (25, 26).
  2. The broadband signal junction with sum signal absorption of claim 1, wherein the first predefined cross-section of the common hollow conductor is rectangular, square, elliptical, or round.
  3. The broadband signal junction with sum signal absorption of claim 1 or 2, wherein the predefined cross-section of the four side arm hollow conductors (21, 22, 23, 24) is rectangular, square, elliptical, or round.
  4. The broadband signal junction with sum signal absorption according to any one of the foregoing claims, wherein the two second side arm hollow conductors (22, 24) are disposed and/or designed collinear.
  5. The broadband signal junction with sum signal absorption according to any one of the foregoing claims, wherein the four side arm hollow conductors (21, 22, 23, 24) are disposed and/or designed offset from the common plane.
  6. The broadband signal junction with sum signal absorption according to any one of the foregoing claims, including a matching structure disposed inside of the junction, wherein the matching structure has a geometry matched to a desired transmission behavior and can have any arbitrary shape.
  7. The broadband signal junction with sum signal absorption according to any one of the foregoing claims, wherein the signals are split or coupled over an entire bandwidth with a phase shift of 180°.
EP15000068.5A 2014-01-17 2015-01-14 Broadband signal splitting with sum signal absorption Active EP2897213B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014000438.4A DE102014000438B4 (en) 2014-01-17 2014-01-17 Broadband Signal Branching with Sum Signal Absorption (BSmS)

Publications (2)

Publication Number Publication Date
EP2897213A1 EP2897213A1 (en) 2015-07-22
EP2897213B1 true EP2897213B1 (en) 2019-05-01

Family

ID=52354742

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15000068.5A Active EP2897213B1 (en) 2014-01-17 2015-01-14 Broadband signal splitting with sum signal absorption

Country Status (5)

Country Link
US (1) US9559403B2 (en)
EP (1) EP2897213B1 (en)
CA (1) CA2877154C (en)
DE (1) DE102014000438B4 (en)
ES (1) ES2731354T3 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10700405B2 (en) * 2017-07-04 2020-06-30 Optisys, LLC Integrated waveguide monopulse comparator assembly
US11228116B1 (en) * 2018-11-06 2022-01-18 Lockhead Martin Corporation Multi-band circularly polarized waveguide feed network
US11239535B2 (en) 2018-11-19 2022-02-01 Optisys, LLC Waveguide switch rotor with improved isolation
JP7106039B2 (en) * 2020-05-11 2022-07-25 三菱電機株式会社 polarization separation circuit
CN111509344B (en) * 2020-05-12 2021-08-20 西安电子科技大学 OMT duplexer based on high-isolation cross-junction coupler
DE102022100853A1 (en) 2022-01-14 2023-07-20 Imst Gmbh DUAL BAND ORTHOMODE TRANSDUCER

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3581245A (en) 1968-09-27 1971-05-25 Hitachi Electronics Microwave absorber for waveguide termination
US5329285A (en) * 1991-07-18 1994-07-12 The Boeing Company Dually polarized monopulse feed using an orthogonal polarization coupler in a multimode waveguide
DE19859028A1 (en) * 1998-12-21 2000-06-29 Bosch Gmbh Robert Frequency-stabilized waveguide arrangement
US6642905B2 (en) * 2001-12-21 2003-11-04 The Boeing Company Thermal-locate 5W(V) and 5W(H) SSPA's on back of reflector(s)
JP3879548B2 (en) * 2002-03-20 2007-02-14 三菱電機株式会社 Waveguide type demultiplexer
JP3908071B2 (en) * 2002-04-02 2007-04-25 三菱電機株式会社 Rotary joint
JP4011511B2 (en) * 2003-04-04 2007-11-21 三菱電機株式会社 Antenna device
JP4060228B2 (en) * 2003-04-04 2008-03-12 三菱電機株式会社 Waveguide type demultiplexer
US7397323B2 (en) * 2006-07-12 2008-07-08 Wide Sky Technology, Inc. Orthomode transducer
US7868714B1 (en) * 2008-03-28 2011-01-11 L-3 Communications Corp. Compact waveguide load
US9059682B2 (en) * 2008-07-14 2015-06-16 Macdonald, Dettwilwe And Associates Corporation Orthomode junction assembly with associated filters for use in an antenna feed system
ES2379756T3 (en) * 2009-02-02 2012-05-03 Centre National D'etudes Spatiales Orthodontic waveguide transducer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102014000438B4 (en) 2018-08-09
EP2897213A1 (en) 2015-07-22
CA2877154A1 (en) 2015-07-17
CA2877154C (en) 2022-05-31
DE102014000438A1 (en) 2015-07-23
US9559403B2 (en) 2017-01-31
US20150207201A1 (en) 2015-07-23
ES2731354T3 (en) 2019-11-15

Similar Documents

Publication Publication Date Title
EP2897213B1 (en) Broadband signal splitting with sum signal absorption
DE2517383C3 (en) System crossover for dual use of frequencies
EP0059927B1 (en) Microwave receiving arrangement
DE69531655T2 (en) Broadband monopole antenna in uniplanar printed circuit technology and transmitting and / or receiving device with such an antenna
DE2443166C3 (en) System switch for separating two signals, each consisting of two double polarized frequency bands
DE102010010299B4 (en) Diplexer for a reflector antenna
DE3246317A1 (en) WAVE GUIDE FOR DOUBLE POLARIZED TWO FREQUENCY SIGNALS AND METHOD FOR WAVE GUIDING SUCH SIGNALS
DE1591196A1 (en) Waveguide connection
DE102011106590B4 (en) Orthomodine coupler for an antenna system
DE102014112467B4 (en) FOOD NETWORK FOR ANTENNA SYSTEMS
EP0041077B1 (en) Antenna-feeding system for a tracking antenna
DE69121632T2 (en) Polarization switch between a circular waveguide and a coaxial cable
DE68917373T2 (en) Magnetically tunable bandpass filter.
DE2459045C3 (en) Coupling device
DE2322549A1 (en) ANTENNA SWITCH FOR A HIGH FREQUENCY ANTENNA
WO2012084443A1 (en) Diplexer for homodyne fmcw radar device
EP0633621B1 (en) Antenna-filter-combiner
DE102010014864B4 (en) Waveguide connection for an antenna system and antenna system
DE69018313T2 (en) Transceiver diplexer for circular polarization.
DE102015006622B3 (en) Differential phase shifter assembly
DE102017002230A1 (en) Spring-loaded waveguide coupling
DE19532470B4 (en) Selective multikopter
DE1257304B (en) Crossover for electromagnetic waves
DE1929975A1 (en) Waveguide transmission system
DE2135611B1 (en) Mode coupler for direction finding systems

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150114

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160122

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIRBUS DEFENCE AND SPACE GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180530

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181129

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1128161

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015008825

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190501

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190901

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190801

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190801

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190802

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015008825

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

26N No opposition filed

Effective date: 20200204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200114

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1128161

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240223

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 10

Ref country code: GB

Payment date: 20240123

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240119

Year of fee payment: 10

Ref country code: IT

Payment date: 20240129

Year of fee payment: 10

Ref country code: FR

Payment date: 20240124

Year of fee payment: 10