EP0038318B1 - Regelvorrichtung zur Regelung der Erwärmung von Brauchwasser für einen Speicherbehälter - Google Patents

Regelvorrichtung zur Regelung der Erwärmung von Brauchwasser für einen Speicherbehälter Download PDF

Info

Publication number
EP0038318B1
EP0038318B1 EP81890059A EP81890059A EP0038318B1 EP 0038318 B1 EP0038318 B1 EP 0038318B1 EP 81890059 A EP81890059 A EP 81890059A EP 81890059 A EP81890059 A EP 81890059A EP 0038318 B1 EP0038318 B1 EP 0038318B1
Authority
EP
European Patent Office
Prior art keywords
thermostat
water
temperature
heat exchanger
charging pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81890059A
Other languages
English (en)
French (fr)
Other versions
EP0038318A1 (de
EP0038318B2 (de
Inventor
Ferdinand Hartmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Austria Email-EHT AG
Original Assignee
Austria Email-EHT AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25597256&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0038318(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from AT0195180A external-priority patent/AT368621B/de
Priority claimed from AT0353780A external-priority patent/AT372179B/de
Application filed by Austria Email-EHT AG filed Critical Austria Email-EHT AG
Publication of EP0038318A1 publication Critical patent/EP0038318A1/de
Publication of EP0038318B1 publication Critical patent/EP0038318B1/de
Application granted granted Critical
Publication of EP0038318B2 publication Critical patent/EP0038318B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water

Definitions

  • the invention relates to a temperature control device for the water in a water storage tank, which is heated using a heat exchanger equipped with a primary and a secondary circuit, arranged outside the storage tank and supplied with heat energy on the primary side by a heat source, the water to be heated being in the secondary circuit at the bottom of the storage tank removed and returned by a thermostatically controlled charge pump via the heat exchanger in the heated state on the cover side.
  • US-A-4 141 222 also describes a memory with a heat exchanger through which the coolant flows directly on the primary side.
  • a temperature-dependent three-way valve which forms a bypass to the heat exchanger, is arranged between the circulation pump arranged on the bottom and the entry of the water into the heat exchanger. bridging the latter from a predetermined temperature.
  • a temperature-controlled check valve is provided in the line from the heat exchanger to the cover of the storage tank, which prevents cold water from being fed to the storage tank.
  • FR-A-2 443 029 (published on June 27, 1980) describes a solar-heated storage tank which has an additional heater which is controlled by a thermostat in the upper area of the storage tank.
  • a second thermostat in the area of the bottom of the storage tank and a third thermostat at the solar collector control a circulating pump, which takes the water from the bottom and returns it on the cover side.
  • a complicated ventilation system and an expansion tank complete this solar system.
  • this is achieved in that a first thermostat in the store, preferably in the area of the center of the store, and a second thermostat connected in series with the first thermostat in the area between the cold water zone at the bottom of the store tank and the entry point of the secondary circuit into the Heat exchangers are arranged, wherein the first thermostat switches on the charging pump for the charging process, and the second thermostat switches off the charging pump to end the charging process, the first thermostat being closed at a predetermined lower hot water temperature and the second thermostat being open at a predetermined upper hot water temperature , so that the hot water to be heated is circulated only once, and that an actuator for adjusting or controlling the flow rate is provided in the secondary circuit.
  • the primary circuit is preferably connected to a heat pump, the heat transfer capacity of the heat exchanger being coordinated with the heat pump in such a way that the maximum amount of heat given off is transferred to the domestic water at the highest temperature.
  • the temperature control device in conjunction with the coordinated heat transfer capacity of the heat exchanger and the flow rate of the secondary circuit set by means of the throttle valve, ensures that the temperature of the cold service water drawn at the lowest possible point is increased to the maximum possible final temperature with a maximum of one pass of the service water to be heated.
  • the storage tank is loaded from above and the separating layer between hot and cold process water moves downwards until the storage tank is no longer charged. There is therefore no undesirable mixing of hot and cold water, as is the case with conventional turbulence due to convection.
  • the pressure-resistant storage container is denoted by 1 and preferably has the shape of a standing cylinder with a curved bottom 2 and a likewise curved lid 3.
  • a cold water supply pipe 4 leads into the bottom 2, the inner end of which lies opposite a baffle plate 5.
  • a distributor plate 7 is also located in the upper part of the storage container 1, near the cover 3.
  • the secondary circuit is constructed by the pipe sections 8a, 8b and 8c.
  • the pipe section 8a comes from the heat exchanger, generally designated 9, and opens into the cover 3.
  • the pipe section 8b extends from the base 2 to a charge pump 10, an adjustable throttle valve 11 and a thermal flow preventer 12, which prevents circulation without the charge pump running.
  • the pipe section 8c leads from the thermal flow preventer 12 back to the heat exchanger 9.
  • the thermostats T1 and T2 are provided in the secondary circuit, the thermostat T1 being arranged approximately in the center of the accumulator 1 and the thermostat T2 when the pipe section 8c enters the heat exchanger 9.
  • the primary circuit consists of a heat pump 13, a circulation pump 14, a priority valve (electromagnetically operable three-way valve) 15, which in the application case shown supplies the heater 16 outside the charging time of the water heater. Furthermore, the thermostat T3 is arranged in the primary circuit, specifically at the entry point of the primary circuit medium into the heat exchanger 9.
  • the heat transfer capacity of the heat exchanger 9 and the flow rate of the secondary circuit set by means of a throttle valve 11 now ensure a temperature increase in the cold service water drawn off at the lowest possible point and a temperature increase to the maximum possible final temperature with a single pass of the service water to be heated.
  • the store 1 is loaded from above and the separating layer between hot and cold process water moves downward until the store 1 has finished charging and the thermostat T2 breaks the circuit for the coil 18, so that the contacts 19, 20a and 20b break and thus the priority valve 15 is switched back to heating mode.
  • the heat pump can only be used for domestic water preparation or the primary circuit can be flowed through by an intermediate medium or coolant.
  • the thermostat T3 can be replaced by a time relay, i.e. the charge pump is switched on after the contacts 20a, 20b are closed after a predetermined time interval.
  • a heat pump for energy supply e.g. a central heating boiler or a solar system can also be used.
  • a central heating boiler or a solar system can also be used.
  • these heating systems too, the constant heat transfer performance throughout the entire charging process ensures a consistently high level of system efficiency.
  • An advantageous embodiment of the invention provides that the flow rate of the secondary circuit of the heat exchanger is regulated as a function of the outlet temperature of the water from the heat exchanger.
  • a device for this purpose contains in the secondary circuit an actuator for regulating the flow rate, which is regulated as a function of the outlet temperature of the water from the heat exchanger determined by means of an additional temperature sensor (FIGS. 2 and 3).
  • the flow rate can be controlled continuously or discontinuously, i.e. for example as a two-point control.
  • FIGS. 2 and 3 the elements that are the same as in FIG. 1 are provided with the same reference numerals, so that their description is unnecessary.
  • the pipe section 8b goes from the bottom 2 to a charge pump 10, an adjustable throttle valve 11. Parallel to the throttle valve 11, a solenoid valve 21 is in series with an additional throttle valve 22.
  • the pipe section 8c leads from the throttle valve 11 back to the heat exchanger 9.
  • a thermostat T4 is arranged as an additional temperature sensor when the secondary circuit emerges from the heat exchanger 9.
  • Fig. 3 shows the application of the invention in the combination of a heat pump 13 with a memory 1 for the production of hot water and a memory 1 'for heating water production, the elements associated with the memory 1' having the same reference numerals as for the memory 1, but with Apostrophe (') are provided.
  • a further contact 20c is provided in the relay of the control device 17, which interrupts the circuit for starting the charge pump 10 'as soon as the coil 18 of the relay is energized, so that the circuit for hot water generation is operated primarily.
  • the function of this arrangement is otherwise the same as that of the previous exemplary embodiment, so that its description is unnecessary.
  • the bypassing of the first throttle valve 11, 11 'in the secondary circuit by the solenoid valve 21, 21' or the combination of the solenoid valve 21, 21 'with the second throttle valve 22, 22' causes one Increasing the flow rate of the water through the heat exchangers 9, 9 ', so that an increased supply of heat from the heat pump causes the thermostats T4 or T4' to be switched on and can advantageously be used for faster filling of the store.
  • the actuator for regulating the flow rate can also be designed as a continuously adjustable valve, which e.g. is adjustable by a servomotor and also depending on the water temperature at the exit point of the secondary circuit from the heat exchanger, the z. B. measured by means of a thermocouple, the temperature corresponding voltage (actual value) is amplified and compared with a selectable setpoint, the differential voltage between the setpoint and actual value is supplied to the servomotor via a power amplifier.
  • the drive motor for the charge pump 10, 10 ' can also be controlled, i.e. act as an actuator, the flow rate being adapted to the respective heat supply by changing the number of revolutions depending on the above differential voltage.
  • the drive motor is connected to the output of the power amplifier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

  • Die Erfindung betrifft eine Temperaturregeleinrichtung des Wassers in einem Wasserspeicherbehälter, das unter Verwendung eines mit einem Primär- und einem Sekundärkreislauf ausgestatteten, ausserhalb des Speicherbehälters angeordneten und primärseitig von einer Wärmequelle mit Wärmeenergie belieferten Wärmetauschers erwärmt wird, wobei das zu erwärmende Wasser im Sekundärkreislauf dem Speicherbehälter bodenseitig entnommen und durch eine thermostatgesteuerte Ladepumpe über den Wärmetauscher in erwärmtem Zustand deckelseitig rückgeführt wird.
  • Bei üblichen Brauchwasserbereitern ist innen etwa in der unteren Hälfte eines z.B. zylindrischen, stehenden und mit entsprechender Wärmeisolierung versehenen Speicherbehälters ein Wärmetauscher angebracht, der mit dem Heizkreislauf - meistens einer Zentralheizungsanlage - beaufschlagt wird. Bei derartigen Anlagen gibt das z.B. vom Zentralheizungskessel kommende Heizmedium einen Teil der in ihm enthaltenen Wärmemenge an das im Speicherbehälter befindliche Wasser ab, welches sich, bedingt durch die Konvektion, gleichmässig erwärmt. Je höher aber dabei die Temperatur des Wassers im Behälter ansteigt, desto höher wird auch die Temperatur des vom Wärmetauscher zurückfliessenden Wassers. Das bedeutet aber, dass der Temperaturunterschied zwischen dem Inhalt des Speicherbehälters und dem z.B. vom Heizkessel kommenden Wassers («Vorlauf») geringer wird und demzufolge immer weniger Wärme in das Brauchwasser abgegeben wird; die Leistung bzw. der Wirkungsgrad des Wärmetauschers sinkt daher mit zunehmender Temperatur des Brauchwassers ab.
  • Bei einer Brauchwasserbereitung mittels Sonnenenergie ist die Anordnung im wesentlichen gleich der oben beschriebenen, wobei in diesem Fall der Wärmetauscher mit dem Heizkreislauf der Solaranlage verbunden ist.
  • Dieser oben beschriebene, bei zunehmender Temperatur des Brauchwassers sinkende Wirkungsgrad des Wärmetauschers führt bei Anwendung von Wärmepumpen zur Brauchwasserbereitung zu Problemen, weil die Wärmepumpe nur eine geringe Leistungsbreite hat und bei sinkender Leistungsabgabe abschaltet. Dies hat zur Folge, dass mit zunehmender Temperatur des Brauchwassers die Einschaltdauer der Pumpe abnimmt und diese intermittierend zu arbeiten beginnt. Bedingt durch die notwendigen Abkühlzeiten bis zur Wiedereinschaltung der Wärmepumpe wird der Zeitraum bis zur kompletten Erwärmung des Brauchwasserbereiters entsprechend vergrössert bzw. die maximal mögliche Temperatur erreicht.
  • Andererseits ist aus der DT-A-2 508 135 ein Speicher mit einem getrennten Wärmetauscher bekannt, welcher primärseitig an eine Heizungsanlage angeschlossen ist. Sekundärseitig ist eine thermostatgesteuerte Pumpe vorgesehen, welche das zu erwärmende Wasser dem Speicher unten entnimmt, durch den Wärmetauscher leitet, und dem Speicher oben zurückführt. Als kennzeichnendes Merkmal ist im Wärmetauscher ein elektrisches Heizgerät vorgesehen, welches eine zusätzliche Wärmezufuhr und damit eine gewisse Anpassung an schwankende Betriebsverhältnisse ermöglicht. Eine Kombination eines solchen Wärmetauschers mit einer Wärmepumpe erfordert den Einsatz kostspieliger elektrischer Energie und kann daher aus wirtschaftlichen Erwägungen nicht in Betracht gezogen werden.
  • Es sind auch Einrichtungen zur Temperaturregelung für Warmwasser-Speicherbehälter bekannt, welche an Wärmepumpen oder Solaranlagen angeschlossen sind. So betrifft beispielsweise die DE-B-1 019 792 eine Wärmepumpenanlage mit einem Heisswasserdruckspeicher, wobei der Verflüssiger, bzw. Kondensator der Wärmepumpe als Wärmetauscher ausgebildet ist. Durch die Wärmekonvektion wird das Wasser dem Druckspeicher bodenseitig entnommen, durch den Wärmetauscher geleitet, und im oberen Drittel des Druckspeichers rückgeführt. Das zum Expansionsventil rückfliessende Kältemittel erwärmt in einem weiteren Wärmetauscher das zufliessende Frischwasser. Das kennzeichnende Merkmal ist ein durch das Kühlmitteldruck gesteuertes Ablassventil für das vom Speicher zum Wärmetauscher fliessende Wasser.
  • Die DE-A-2432893 beschreibt ebenfalls eine Wärmepumpenanlage für einen Druckspeicher mit Wärmetauscher, welcher primärseitig ebenfalls direkt an die Wärmepumpe angeschlossen ist. Das heisst, der Wärmetauscher dient als Verflüssiger für die Wärmepumpe. Ein erster Thermostat ist beim Austritt des Kühlmittels aus dem Wärmetauscher angeordnet, welcher ein Thermoventil steuert, das in der Leitung zwischen dem Austritt des Speichers und dem unteren Eintritt zum Wärmetauscher angeordnet ist, und dieses in Abhängigkeit von der Austrittstemperatur des Kältemittels steuert. Ein zweiter Thermostat ist beim Eintritt des Kaltwassers in den Speicher vorgesehen, und schaltet die Wärmepumpe beim Überschreiten einer Grenztemperatur ab. Der Wärmetauscher ist hiebei in zwei Kammern unterteilt, wobei das Wasser dem Speicher mittig entnommen, und boden- und deckelseitig rückgeführt wird.
  • Auch die US-A-4142 379 beschreibt einen Speicher mit einem Wärmetauscher, welcher direkt vom Kühlmittel primärseitig durchströmt wird. Beim Eintritt des Kühlmittels in den Wärmetauscher ist ein Druckschalter vorgesehen, welcher das elektrische Heizelement im Speicher bei einem vorbestimmten Druck des Kühlmittels ausschaltet. Ein Thermostat ist in der Leitung vom Austritt des zu erwärmenden Wassers aus dem Wärmetauscher und dem deckelseitigen Eintritt zum Speicher vorgesehen, welcher eine Umwälzpumpe in Abhängigkeit von der Austrittstemperatur des Wassers aus dem Wärmetauscher steuert, d.h., die Umwälzpumpe wird ab einem vorbestimmten Temperaturwert ausgeschaltet.
  • Auch die US-A-4 141 222 beschreibt einen Speicher mit einem Wärmetauscher, welcher direkt vom Kühlmittel primärseitig durchströmt wird. Zwischen der bodenseitig angeordneten Umwälzpumpe und dem Eintritt des Wassers in den Wärmetauscher ist ein temperaturabhängiges Dreiwegventil angeordnet, welches einen Bypass zum Wärmetauscher ausbildet, d.h. letzteren ab einer vorbestimmten Temperatur überbrückt. Zusätzlich ist ein temperaturgesteuertes Rückschlagventil in der Leitung vom Wärmetauscher zum Deckel des Speichers vorgesehen, welches eine Zufuhr von kaltem Wasser zum Speicher verhindert.
  • Die FR-A-2 443 029 (publiziert am 27.06.80) beschreibt einen mit Solarenergie beheizten Speicher, welcher eine Zusatzheizung aufweist, die von einem Thermostat im oberen Bereich des Speichers gesteuert wird. Ein zweiter Thermostat im Bereich des Bodens des Speichers und ein dritter Thermostat beim Sonnenkollektor steuern eine Umwälzpumpe, welche das Wasser bodenseitig entnimmt, und deckelseitig rückführt. Ein kompliziertes Entlüftungssystem sowie ein Ausgleichsgefäss ergänzen diese Solaranlage.
  • Sämtliche der oben erwähnten Anlagen betreffen zwar gattungsgemäss das Gebiet der Erfindung. Sie unterscheiden sich aber in der Aufgabenstellung und deren Lösung vom Gegenstand der Erfindung, welche Aufgabenstellung im wesentlichen in der Schaffung einer im Aufbau einfachen Temperaturregeleinrichtung der eingangs angegebenen Art liegt, wobei insbesondere bei der Anwendung einer Wärmepumpe als Wärmequelle ein intermittierendes Arbeiten der Wärmepumpe vermieden werden soll.
  • Gemäss der Erfindung wird dies dadurch erreicht, dass ein erster Thermostat im Speicher, vorzugsweise im Bereich der Mitte des Speichers, und ein in Serie mit dem ersten Thermostat geschalteter zweiter Thermostat im Bereich zwischen der Kaltwasserzone am Boden des Speicherbehälters und der Eintrittsstelle des Sekundärkreislaufes in den Wärmetauscher angeordnet sind, wobei der erste Thermostat die Ladepumpe für den Ladevorgang einschaltet, und der zweite Thermostat die Ladepumpe zur Beendigung des Ladevorganges ausschaltet, wobei der erste Thermostat bei einer vorbestimmten unteren Brauchwassertemperatur geschlossen ist, und der zweite Thermostat bei einer vorbestimmten oberen Brauchwassertemperatur geöffnet ist, so dass das zu erwärmende Brauchwasser nur einmal umgewälzt wird, und dass im Sekundärkreislauf ein Stellglied zur Einstellung oder Regelung der Durchflussmenge vorgesehen ist.
  • Nach einem weiteren Merkmal der Erfindung ist vorgesehen, dass ein dritter Thermostat beim Eintritt des Primärkreislaufes in den Wärmetauscher angeordnet ist, welcher in Serie mit dem Stromkreis für die Ladepumpe geschaltet ist und dadurch den Einschaltvorgang für die Ladepumpe durch den ersten Thermostat ermöglicht, wobei der dritte Thermostat bei einer vorbestimmten oberen Temperatur des Primärkreislaufmediums geschlossen ist.
  • Ein zusätzliches Merkmal der Erfindung sieht vor, dass als Stellglied ein einstellbares Drosselventil in Serie mit der Ladepumpe vorgesehen ist, wobei die Durchflussmenge im Sekundärkreislauf in Abhängigkeit von der Wärmeübertragungsleistung des Wärmetauschers durch das Drosselventil so eingestellt bzw. reguliert ist, dass eine maximale mögliche Endtemperatur des zu erwärmenden Wassers bei der einmaligen Umwälzung gewährleistet ist.
  • Der Primärkreislauf ist vorzugsweise an eine Wärmepumpe angeschlossen, wobei der Wärmetauscher in seiner Wärmeübertragungsleistung mit der Wärmepumpe derart abgestimmt ist, dass die maximal abgegebene Wärmemenge mit höchster Temperatur auf das Brauchwasser übertragen wird.
  • Die erfindungsgemässe Temperaturregeleinrichtung gewährleistet nun im Verein mit der abgestimmten Wärmeübertragungsleistung des Wärmetauschers und der mittels des Drosselventils eingestellte Fördermenge des Sekundärkreislaufes eine Temperaturerhöhung des an der tiefstmöglichen Stelle entnommenen kalten Brauchwassers auf die maximal mögliche Endtemperatur bei höchstens einmaligem Durchlauf des zu erwärmenden Brauchwassers. Der Speicher wird von oben geladen und die Trennschicht zwischen warmem und kaltem Brauchwasser wandert nach unten, bis die Ladung des Speichers beendet ist. Es kommt daher zu keiner unerwünschten Vermischung von warmem und kaltem Wasser, wie dies durch die Konvektion bedingte Turbulenz bei herkömmlichen Speichers der Fall ist.
  • Weitere Einzelheiten und Merkmale der Erfindung werden im folgenden anhand der Zeichnung erläutert. Es zeigen
    • Fig. 1 eine schematische Darstellung eines Beispiels der erfindungsgemässen Temperaturregeleinrichtung für einen Speicher mit einem getrennten Wärmetauscher, welcher primärseitig an eine Wärmepumpe angeschlossen ist,
    • Fig. 2 ein weiteres Beispiel einer Variante des Beispiels nach Fig. 1 und
    • Fig. 3 ein Beispiel nach Fig. 2 für zwei Speicher.
  • In Fig. 1 ist der druckfeste Speicherbehälter mit 1 bezeichnet und hat vorzugsweise die Form eines stehenden Zylinders mit gewölbtem Boden 2 und ebenso gewölbtem Deckel 3.
  • In den Boden 2 führt ein Kaltwasser-Zuführrohr 4, dessen innerem Ende ein Prallblech 5 gegenüberliegt. Im Deckel 3 befindet sich die Entnahmeleitung 6 für das Brauchwasser. Auch im Oberteil des Speicherbehälters 1, nahe dem Deckel 3, befindet sich ein Verteilerblech 7. Der Sekundärkreislauf ist durch die Rohrstücke 8a, 8b und 8c aufgebaut. Das Rohrstück 8a kommt von dem allgemein mit 9 bezeichneten Wärmetauscher und mündet in den Deckel 3. Das Rohrstück 8b geht vom Boden 2 aus zu einer Ladepumpe 10, einem einstellbaren Drosselventil 11 und einem Thermoflussverhinderer 12, der eine Zirkulation ohne Lauf der Ladepumpe verhindert. Das Rohrstück 8c führt vom Thermoflussverhinderer 12 zum Wärmeaustauscher 9 zurück. Für die Regelung sind im Sekundärkreislauf die Thermostate T1 und T2 vorgesehen, wobei der Thermostat T1 etwa mittig am Speicher 1 und der Thermostat T2 beim Eintritt des Rohrstückes 8c in den Wärmeaustauscher 9 angeordnet sind.
  • Der Primärkreislauf besteht aus einer Wärmepumpe 13, einer Umwälzpumpe 14, einem Vorrangventil (elektromagnetisch betätigbares Dreiwegventil) 15, welches im dargestellten Anwendungsfalle die Heizung 16 ausserhalb der Ladezeit des Brauchwasserbereiters versorgt. Ferner ist im Primärkreislauf der Thermostat T3 angeordnet, und zwar bei der Eintrittsstelle des Primärkreislaufmediums in den Wärmeaustauscher 9.
  • Die Regelung dieses Systems erfolgt auf folgende Art: Eine Schalteinrichtung ist mit 17 bezeichnet und enthält ein Relais mit einer Spule 18 und mit im Ruhezustand offenen Kontakten 19, 20a und 29b. Die Spule 18 liegt in Serie mit den Kontakten der ebenfalls in Serie liegenden Thermostate T1 und T2 an einer Versorgungsspannung (z. B. Netzspannung). Ist die Temperatur des Brauchwassers im Speicher 1 genügend hoch, so ist der Kontakt des Thermostates T1 offen. Der Kontakt des Thermostates T2 ist geschlossen, da kaltes Brauchwasser im Sekundärkreislauf von der Bodenseite des Speichers her ansteht. Wird warmes Brauchwasser über die Entnahmeleitung 6 entnommen, so fliesst kaltes Wasser über das Zuführrohr 4 zu. Sobald die Temperatur an der Stelle des Thermostates T1 einen vorbestimmten Wert unterschreitet, schliesst der Kontakt des Thermostates T1 und schliesst damit den Stromkreis für die Spule 18, so dass die Kontakte 19, 20a und 20b schliessen. Der Kontakt 19 dient als Selbsthaltekontakt, d. h. er überbrückt den Kontakt des Thermostaten T1. Durch die geschlossenen Kontakte 20a und 20b werden einerseits das elektromagnetisch betätigte Vorrangventil 15 direkt, und andererseits die Ladepumpe 10 über den Kontakt des Thermostaten T3 an die Versorgungsspannung gelegt. Der Kontakt des Thermostaten T3 ist unterhalb einer vorbestimmten Temperatur des Primärkreislaufmediums geöffnet, d. h. die Ladepumpe beginnt erst dann zu arbeiten, bis beim Thermostat T3 die Vorlauftemperatur erreicht ist.
  • Die Wärmeübertragungsleistung des Wärmetauschers 9 und die mittels Drosselventil 11 eingestellte Fördermenge des Sekundärkreislaufes gewährleisten nun eine Temperaturerhöhung des an der tiefstmöglichen Stelle entnommenen kalten Brauchwassers und eine Temperaturerhöhung auf die maximal mögliche Endtemperatur bei einmaligem Durchlauf des zu erwärmenden Brauchwassers. Der Speicher 1 wird von oben geladen und die Trennschicht zwischen warmem und kaltem Brauchwasser wandert nach unten, bis die Ladung des Speichers 1 beendet ist und der Thermostat T2 den Stromkreis für die Spule 18 unterbricht, so dass die Kontakte 19, 20a und 20b unterbrechen und somit das Vorrangventil 15 wieder auf Heizbetrieb umgestellt wird.
  • Ist die Heizung 16 nicht in Betrieb, dann schaltet ausser den oben beschriebenen Schaltvorgängen der Thermostat T1 zusätzlich die Wärmepumpe 13 ein und den Primärkreislauf zu. Nach Erreichung der maximalen Vorlauftemperatur schaltet der Thermostat T3 wieder die Ladepumpe 10 ein, womit sichergestellt ist, dass der Sekundärkreislauf erst bei voller Leistungsabgabe des Primärkreislaufes in Betrieb gesetzt wird. Der Thermostat T1 kann in beliebiger Höhe des Speicherbehälters angeordnet sein, bestimmend für sein Lage ist normalerweise der gewünschte Entladungszustand des Speichers bis zum Einsetzen des Aufheizvorganges.
  • Selbstverständlich sind auch andere Ausführungsformen möglich, z. B. kann die Wärmepumpe nur zur Brauchwasserbereitung eingesetzt sein oder kann der Primärkreislauf von einem Zwischenmedium oder Kühlmittel durchströmt sein. Auch bei der Regelung sind andere Elemente gleicher Wirkung möglich, so kann z.B. der Thermostat T3 durch ein Zeitrelais ersetzt werden, d.h. die Ladepumpe wird nach dem Schliessen der Kontakte 20a, 20b um ein vorbestimmtes Zeitintervall verzögert eingeschaltet.
  • Selbstverständlich kann statt einer Wärmepumpe zur Energiezufuhr z.B. auch ein Zentralheizungskessel oder eine Solaranlage eingesetzt werden. Auch bei diesen Heizsystemen gewährleistet die während des ganzen Ladevorganges konstante Wärmeübertragungsleistung einen gleichbleibenden hohen Wirkungsgrad der Anlage.
  • Eine vorteilhafte Ausgestaltung der Erfindung sieht vor, dass die Durchflussmenge des Sekundärkreislaufes des Wärmetauschers in Abhängigkeit von der Austrittstemperatur des Wassers aus dem Wärmetauscher geregelt wird.
  • Eine Vorrichtung hiefür enthält im Sekundärkreislauf ein Stellglied zur Regelung der Durchflussmenge, welches in Abhängigkeit von der mittels eines zusätzlichen Temperaturfühlers festgestellten Austrittstemperatur des Wassers aus dem Wärmetauscher geregelt ist (Fig. 2 und 3).
  • Die Regelung der Durchflussmenge kann stetig oder unstetig, d.h. beispielsweise als Zweipunktregelung erfolgen.
  • In Fig. 2 und 3 sind die zur Fig. 1 gleichen Elemente mit gleichen Bezugszeichen versehen, so dass sich deren Beschreibung erübrigt. Wie beim Beispiel nach Fig. 1 geht das Rohrstück 8b vom Boden 2 aus zu einer Ladepumpe 10, einem einstellbaren Drosselventil 11. Parallel zum Drosselventil 11 liegt als Stellglied ein Magnetventil 21 in Serie mit einem weiteren Drosselventil 22. Das Rohrstück 8c führt vom Drosselventil 11 zum Wärmeaustauscher 9 zurück.
  • Als zusätzlicher Temperaturfühler ist ein Thermostat T4 beim Austritt des Sekundärkreislaufes aus dem Wärmetauscher 9 angeordnet.
  • Die Regelung gemäss dem Beispiel nach Fig. 2 erfolgt auf folgende Weise:
    • Ist die Temperatur des Brauchwassers in Speicher 1 genügend hoch, so ist der Kontakt des Thermostates T1 offen. Der Kontakt des Thermostates T2 ist geschlossen, da kaltes Brauchwasser von der Bodenseite des Speichers her ansteht. Wird warmes Brauchwasser über die Entnahmeleitung 6 entnommen, so fliesst kaltes Wasser über das Zuführrohr 4 zu. Sobald die Temperatur an der Stelle des Thermostates T1 einen vorbestimmten Wert unterschreitet, schliesst der Kontakt des Thermostates T1 und schliesset damit den Stromkreis für die Spule 18, so dass die Kontakte 19, 20a und 20b schliessen. Der Kontakt 19 dient als Selbsthaltekontakt, d. h. er überbrückt den Kontakt des Thermostaten T1. Durch die geschlossenen Kontakte 20a und 20b werden einerseits das elektromagnetisch betätigte Vorrangventil 15 direkt und anderseits über den Kontakt des Thermostaten T3 die Ladepumpe, sowie das Magnetventil 21 über den Kontakt des Thermostaten T4 an die Versorgungsspannung gelegt. Der Kontakt des Thermostaten T3 ist unterhalb einer vorbestimmten Temperatur des Primärkreislaufmediums geöffnet, d.h. die Ladepumpe beginnt erst dann zu arbeiten, bis beim Thermostat T3 die Vorlauftemperatur erreicht ist. Der Kontakt des Thermostaten T4 ist oberhalb einer vorbestimmten Temperatur von vorzugsweise 50°C geschlossen, so dass das Magnetventil 21 geöffnet ist und die Durchflussmenge ein Maximum ist. Sinkt die Temperatur beim Thermostaten T4, so öffnet der Kontakt des Thermostaten T4 bedingt durch dessen Hysterese bei ca. 45°C und das Magnetventil 21 schliesst, so dass die Durchflussmenge ein Minimum ist. Die maximale bzw. minimale Durchflussmenge wird durch die Drosselventile 11 bzw. 22 festgelegt und gewährleisten nun eine Temperaturerhöhung des an der tiefstmöglichen Stelle entnommenen kalten Brauchwassers und eine Temperaturerhöhung auf die maximale Endtemperatur bei einmaligem Durchlauf des zu erwärmenden Brauchwassers. Der Speicher 1 wird von oben geladen und die Trennschicht zwischen warmem und kaltem Brauchwasser wandert nach unten, bis die Ladung des Speichers 1 beendet ist und der Thermostat T2 den Stromkreis für die Spule 18 unterbricht, so dass die Kontakte 19, 20a, 20b unterbrochen und somit das Vorrangventi) 15 wieder auf Heizbetrieb umgestellt wird.
  • Die Fig. 3 zeigt die Anwendung der Erfindung bei der Kombination einer Wärmepumpe 13 mit einem Speicher 1 für die Brauchwassererzeugung und einem Speicher 1' für die Heizwassererzeugung, wobei die dem Speicher 1' zugeordneten Elemente mit den gleichen Bezugszeichen wie beim Speicher 1, jedoch mit Apostroph (') versehen sind. In diesem Falle ist ein weiterer Kontakt 20c im Relais der Regeleinrichtung 17 vorgesehen, welcher den Stromkreis zur Inbetriebsetzung der Ladepumpe 10' unterbricht, sobald die Spule 18 des Relais erregt wird, so dass der Kreis zur Brauchwassererzeugung vorrangig betrieben wird. Die Funktion dieser Anordnung gleicht ansonsten jener des vorherigen Ausführungsbeispiels, so dass sich deren Beschreibung erübrigt.
  • In beiden beschriebenen Ausführungsbespielen nach Fig. 2 und 3 bewirkt die Überbrückung (Bypass) des im Sekundärkreislauf liegenden ersten Drosselventils 11, 11' durch das Magnetventil 21, 21' oder der Kombination Magnetventil 21, 21' mit dem zweiten Drosselventil 22, 22' eine Erhöhung der Durchflussmenge des Wassers durch die Wärmeaustauscher 9, 9', so dass ein erhöhtes Wärmeangebot der Wärmepumpe ein Einschalten des Thermostaten T4 bzw. T4' bewirkt und in vorteilhafter Weise zur rascheren Füllung des Speichers genützt werden kann.
  • Das Stellglied zur Regelung der Durchflussmenge kann erfindungsgemäss auch als stetig verstellbares Ventil ausgebildet sein, welches z.B. durch einen Stellmotor verstellbar ist und zwar ebenfalls in Abhängigkeit von der Wassertemperatur an der Austrittsstelle des Sekundärkreislaufes aus dem Wärmeaustauscher wobei die z. B. mittels eines Thermoelementes gemessene, der Temperatur entsprechende Spannung (istwert) verstärkt und mit einem wählbaren Sollwert verglichen wird, wobei die Differenzspannung zwischen Soll- und Istwert über einen Endverstärker dem Stellmotor zugeführt wird. Mit einem derartigen Regelkreis kann auch der Antriebsmotor für die Ladepumpe 10, 10' geregelt werden, d.h. als Stellglied wirken, wobei durch Änderung der Umdrehungszahl in Abhängigkeit von der obigen Differenzspannung die Durchflussmenge dem jeweiligen Wärmeangebot angepasst wird. In diesem Fall ist der Antriebsmotor an den Ausgang des Endverstärkers angeschlossen.

Claims (10)

1. Temperaturregeleinrichtung des Wassers in einem Wasserspeicherbehälter (1), das unter Verwendung eines mit einem Primär- und einem Sekundärkreislauf ausgestatteten, ausserhalb des Speicherbehälters angeordneten und primärseitig von einer Wärmequelle mit Wärmeenergie belieferten Wärmetauschers (9) erwärmt wird, wobei das zu erwärmende Wasser im Sekundärkreislauf dem Speicherbehälter bodenseitig entnommen und durch eine thermostatgesteuerte Ladepumpe (10) über den Wärmetauscher in erwärmtem Zustand deckelseitig rückgeführt wird, dadurch gekennzeichnet, dass ein erster Thermostat (T1) im Speicher (1), vorzugsweise im Bereich der Mitte des Speichers und ein in Serie mit dem ersten Thermostat (T1) geschalteter zweiter Thermostat (T2) im Bereich zwischen der Kaltwasserzone am Boden des Speicherbehälters (1) und der Eintrittsstelle des Sekundärkreislaufes in den Wärmetauscher (9) angeordnet sind, wobei der erste Thermostat (T1) die Ladepumpe (10) für den Ladevorgang einschaltet, und der zweite Thermostat (T2) die Ladepumpe zur Beendigung des Ladevorganges ausschaltet, wobei der erste Thermostat (T1) bei einer vorbestimmten unteren Brauchwassertemperatur geschlossen ist, und der zweite Thermostat (T2) bei einer vorbestimmten oberen Brauchwassertemperatur geöffnet ist, so dass das zu erwärmende Brauchwasser nur einmal umgewälzt wird, und dass im Sekundärkreislauf ein Stellglied zur Einstellung oder Regelung der Durchflussmenge vorgesehen ist.
2. Temperaturregeleinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass ein dritter Ther.. mostat (T3) beim Eintritt des Primärkreislaufes in den Wärmetauscher (9) angeordnet ist, welcher in Serie mit dem Stromkreis für die Ladepumpe (10) geschaltet ist und dadurch den Einschaltvorgang für die Ladepumpe (10) durch den ersten Thermostat (T1) ermöglicht, wobei der dritte Thermostat (T3) bei einer vorbestimmten oberen Temperatur des Primärkreislaufmediums geschlossen ist.
3. Temperaturregeleinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass als Stellglied ein einstellbares Drosselventil (11) in Serie mit der Ladepumpe (10) vorgesehen ist, wobei die Durchflussmenge im Sekundärkreislauf in Abhängigkeit von der Wärmeübertragungsleistung des Wärmetauschers (9) durch das Drosselventil so eingestellt bzw. reguliert ist, dass eine maximale mögliche Endtemperatur des zu erwärmenden Wassers bei der einmaligen Umwälzung gewährleistet ist.
4. Temperaturregeleinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Stellglied in Abhängigkeit von der, mittels eines Temperaturfühlers festgestellten Austrittstemperatur des Wassers aus dem Wärmetauscher (9) geregelt ist.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass das Stellglied ein Magnetventil (21) umfasst, welches parallel zu einem ersten Drosselventil (11) im Sekundärkreislauf liegt.
6. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass in Serie mit dem Magnetventil (21) ein zweites Drosselventil (22) liegt.
7. Vorrichtung nach den Ansprüchen 4 und 6, dadurch gekennzeichnet, dass als Temperaturfühler ein Thermostat (T4) an der Austrittsstelle des Sekundärkreislaufes beim Wärmetauscher (9) vorgesehen ist, welcher oberhalb einer vorbestimmten Wassertemperatur von vorzugsweise 50°C geschlossen ist und dadurch das Magnetventil (21) öffnet, wenn die Ladepumpe in Betrieb gesetzt ist.
8. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass das Stellglied als stetig verstellbares Ventil ausgebildet ist.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass das stetig verstellbare Ventil durch einen Stellmotor verstellbar ist, wobei ein Thermoelement als Thermofühler vorgesehen ist, dessen Spannung verstärkt und als Istwert mit einem wählbaren Sollwert verglichen wird, wobei die Differenz zwischen Soll- und Istwert über einen Endverstärker dem Stellmotor für das stetig verstellbare Ventil zugeführt ist.
10. Vorrichtung nach den Ansprüchen 4 und 9, dadurch gekennzeichnet, dass als Stellglied eine Ladepumpe (10, 10') vorgesehen ist, wobei der Antriebsmotor der Ladepumpe an den Ausgang des Endverstärkers angeschlossen ist.
EP81890059A 1980-04-10 1981-04-06 Regelvorrichtung zur Regelung der Erwärmung von Brauchwasser für einen Speicherbehälter Expired - Lifetime EP0038318B2 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AT1951/80 1980-04-10
AT0195180A AT368621B (de) 1980-04-10 1980-04-10 Temperaturregeleinrichtung des wassers in einem wasserspeicherbehaelter
AT3537/80 1980-07-07
AT0353780A AT372179B (de) 1980-07-07 1980-07-07 Temperaturregeleinrichtung des wassers in einem wasserspeicherbehaelter

Publications (3)

Publication Number Publication Date
EP0038318A1 EP0038318A1 (de) 1981-10-21
EP0038318B1 true EP0038318B1 (de) 1985-03-20
EP0038318B2 EP0038318B2 (de) 1990-01-17

Family

ID=25597256

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81890059A Expired - Lifetime EP0038318B2 (de) 1980-04-10 1981-04-06 Regelvorrichtung zur Regelung der Erwärmung von Brauchwasser für einen Speicherbehälter

Country Status (4)

Country Link
EP (1) EP0038318B2 (de)
CA (1) CA1175026A (de)
DE (1) DE3169328D1 (de)
ES (1) ES501206A0 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3608868A1 (de) * 1986-03-17 1987-09-24 Stiebel Eltron Gmbh & Co Kg Aufladesteuerung eines waermepumpenbeheizten warmwasserspeichers
DE19706506B4 (de) * 1996-02-19 2005-07-28 Vaillant Gmbh Schichtenspeicheranordnung

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2521697A1 (fr) * 1982-02-17 1983-08-19 Cuenod Thermotech Sa Dispositif de production d'eau chaude mettant en oeuvre au moins une pompe a chaleur
EP0092864A3 (de) * 1982-04-15 1984-01-18 I.R.E. Industrie Riunite Eurodomestici S.p.A. Wärmepumpensystem für Heisswasserbereitung
DE3377664D1 (en) * 1982-07-02 1988-09-15 Carrier Corp Combined refrigerant circuit and hot water preheater, air conditioning system using same and section of such system including the combination
DE3311127C3 (de) * 1983-03-26 1994-02-24 Meyer Fa Rud Otto Verfahren zur Regelung von im Verbund geschalteten, mit einem Pufferspeicher verbundenen Wärmeerzeugern und Anordnung zur Durchführung des Verfahrens
SE464667B (sv) * 1988-08-22 1991-05-27 Thermia Ab Vaermepumpanlaeggning foer uppvaermning eller kylning av utrymmen samt uppvaermning av tappvarmvatten
AT400894B (de) * 1992-12-17 1996-04-25 Austria Email Waermetech Gmbh Warmwasserbereitungsanlage
DE19904937A1 (de) * 1999-02-06 2000-08-10 Univ Dresden Tech Verfahren und Anordnung zur Regelung der Warmwassertemperatur in Heizungsanlagen
ES2212862B2 (es) * 2000-12-28 2005-06-16 Jose Garcia Perez Medios de produccion instantanea de a.c.s. con estabilidad termica a la salida del intercambiador y para eliminacion de la contaminacion por agentes biologicos.
CN105569119A (zh) * 2016-01-10 2016-05-11 茹朝贵 一种新型热水器
CN105890168B (zh) * 2016-06-15 2018-11-06 新沂市时集建设发展有限公司 一种直热式热泵热水器机组
RU2019114710A (ru) * 2016-10-20 2020-11-20 Херц Арматурен Гез.М.Б.Х. Устройство для регулирования температуры технической воды

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1019792B (de) * 1953-11-27 1957-11-21 Bbc Brown Boveri & Cie Waermepumpenanlage mit Heisswasser-Druckspeicher
NO131902C (de) * 1974-03-01 1975-08-20 Ctc Ab
DE2432893A1 (de) * 1974-07-09 1976-01-29 Robert Lamb Verfahren zum betrieb einer waermepumpenanlage und anlage zur durchfuehrung des verfahrens
US4142379A (en) * 1976-08-16 1979-03-06 Kuklinski Henry W Waste energy recovery system
US4141222A (en) * 1977-04-27 1979-02-27 Weatherking, Inc. Energy recovery system for refrigeration systems
FR2443029A1 (fr) * 1978-06-23 1980-06-27 Technip Cie Procede et installation de chauffage d'eau utilisant un capteur solaire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3608868A1 (de) * 1986-03-17 1987-09-24 Stiebel Eltron Gmbh & Co Kg Aufladesteuerung eines waermepumpenbeheizten warmwasserspeichers
DE19706506B4 (de) * 1996-02-19 2005-07-28 Vaillant Gmbh Schichtenspeicheranordnung

Also Published As

Publication number Publication date
DE3169328D1 (en) 1985-04-25
CA1175026A (en) 1984-09-25
ES8204135A1 (es) 1982-04-01
EP0038318A1 (de) 1981-10-21
EP0038318B2 (de) 1990-01-17
ES501206A0 (es) 1982-04-01

Similar Documents

Publication Publication Date Title
EP0038318B1 (de) Regelvorrichtung zur Regelung der Erwärmung von Brauchwasser für einen Speicherbehälter
DE3235364A1 (de) Warmwasser-heizungsanlage
EP0807790B1 (de) Anordnung und Verfahren zur Bereitstellung von warmem Brauchwasser
DE3917068C2 (de)
DE1299393B (de) Warmwassererzeuger, insbesondere Heizwassererzeuger
DE1903774A1 (de) Vorrichtung zum Erhitzen fluessiger Medien
AT368621B (de) Temperaturregeleinrichtung des wassers in einem wasserspeicherbehaelter
EP0001826B1 (de) Warmwasser-Heizungsanlage
DE1753298A1 (de) Haushalts-Warmwasserbereiter
DE7010442U (de) Heizkessel zur erhitzung von wasser
EP0056100B1 (de) Brauchwasserspeicher
AT373376B (de) Vorrichtung in verbindung mit einer temperaturregeleinrichtung des wassers in einem wasserspeicherbehaelter
AT414272B (de) Schichtenspeicher
DE3138803C2 (de) Aufheizregelung eines stehenden Brauchwasserspeichers und Vorrichtung zur Durchführung der Regelung
DE3938341C1 (de)
CH655376A5 (de) Heizanlage zur warmwasserbereitung.
AT407095B (de) Warmwasserspeicher
AT397144B (de) Steuerung und steuerungsanlage zur erwärmung von brauchwasser
AT404183B (de) Einrichtung zur erzeugung von warmwasser in objekten mit zentraler wärmeversorgung
DE102011014907B4 (de) Verfahren zur Regelung eines Solarkreislaufs
EP0579933A1 (de) Verfahren zur Brauchwassererwärmung sowie Warmwasserbereiter zur Durchführung des Verfahrens
EP0332606B1 (de) Vorrichtung zur Erwärmung von Brauchwasser
DE581637C (de) Warmwasserumlaufheizung mit zwischen Vor- und Ruecklaufleitung eingeschaltetem Verdraengungswaermespeicher und Umlaufpumpe
AT400894B (de) Warmwasserbereitungsanlage
DE3537224A1 (de) Solaranlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19820226

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AUSTRIA EMAIL-EHT AKTIENGESELLSCHAFT

ITF It: translation for a ep patent filed

Owner name: PATRITO BREVETTI

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19850320

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19850320

Ref country code: BE

Effective date: 19850320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19850407

REF Corresponds to:

Ref document number: 3169328

Country of ref document: DE

Date of ref document: 19850425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19850430

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
EN Fr: translation not filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

GBPC Gb: european patent ceased through non-payment of renewal fee
PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: STIEBEL ELTRON GMBH & CO.KG

Effective date: 19851113

26 Opposition filed

Opponent name: EUROHEAT AB

Effective date: 19851220

26 Opposition filed

Opponent name: NOVA APPARATE GMBH

Effective date: 19851219

R26 Opposition filed (corrected)

Opponent name: STIEBEL ELTRON GMBH & CO.KG * 851220 EUROHEAT AB

Effective date: 19851113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19900117

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): BE CH DE FR GB IT LI LU NL SE

EN3 Fr: translation not filed ** decision concerning opposition
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910726

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920430

Ref country code: CH

Effective date: 19920430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 81890059.9

Effective date: 19860702

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980319

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000201

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO