EP0037339B1 - Elektroden zur Reduzierung elektrischer Beanspruchungen zum Verbinden von Energiekabeln mit Abschirmung - Google Patents

Elektroden zur Reduzierung elektrischer Beanspruchungen zum Verbinden von Energiekabeln mit Abschirmung Download PDF

Info

Publication number
EP0037339B1
EP0037339B1 EP81400500A EP81400500A EP0037339B1 EP 0037339 B1 EP0037339 B1 EP 0037339B1 EP 81400500 A EP81400500 A EP 81400500A EP 81400500 A EP81400500 A EP 81400500A EP 0037339 B1 EP0037339 B1 EP 0037339B1
Authority
EP
European Patent Office
Prior art keywords
electrode
conductor
recited
regions
particulates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81400500A
Other languages
English (en)
French (fr)
Other versions
EP0037339A1 (de
Inventor
Elie Chazelas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe Industrielle de Liaisons Electriques SA
Original Assignee
Societe Industrielle de Liaisons Electriques SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Industrielle de Liaisons Electriques SA filed Critical Societe Industrielle de Liaisons Electriques SA
Publication of EP0037339A1 publication Critical patent/EP0037339A1/de
Application granted granted Critical
Publication of EP0037339B1 publication Critical patent/EP0037339B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/02Cable terminations
    • H02G15/06Cable terminating boxes, frames or other structures
    • H02G15/064Cable terminating boxes, frames or other structures with devices for relieving electrical stress
    • H02G15/068Cable terminating boxes, frames or other structures with devices for relieving electrical stress connected to the cable shield only

Definitions

  • the present invention relates to equipment for connecting electrical energy transport installations, and more particularly the electrodes for reducing electrical stresses for the junction zones where discontinuities of the main elements are caused, in particular the electric cables.
  • the object of the present invention is precisely to propose an electrode structure for reducing electrical stresses having remarkable electrical characteristics for medium and high voltage, allowing accessories prefabricated in the factory and allowing a perfectly linear distribution of the electrical voltage along the parts. visible from the insulation of an electric conductor of energy transport.
  • the electrode for reducing electrical stresses for junction ends of shielded electrical conductor intended to be arranged around the periphery of the insulator of the conductor at the level of the stop. screen of the shielded conductor, and comprising at least one sheathing element comprising at least two successive zones contiguous to each other in the axial direction of the conductor, characterized in that each of these zones consists of a mixture support in plastic material charged with particles of active products with non-linear electrical resistance and in that these particles have a different granulation from one zone to another.
  • the electrical stress reduction electrode for shielded electrical conductor junction ends intended to be arranged around the periphery of the conductor insulation at the conductor screen stop shielded, and comprising at least one sheathing element comprising at least two successive zones contiguous to each other in the axial direction of the conductor, characterized in that each of the zones consists of a support mixture of plastic material charged with particles of active products with non-linear electrical resistance, in that the particles have a substantially constant average granulation and in that the concentration of the particles is different from one zone to another.
  • FIG. 2 the end of the conductive core of the cable is connected to a terminal 2 ensuring the connection to the high voltage, this conductive core being disposed inside an insulating sheath 3 itself normally surrounded by the conductive screen 4 of the cable. It is precisely at the stopping of this conductive screen 4 that the problems of electric potential gradients arise along the surface made apparent of the insulator 3 of the conductive core.
  • the prefabricated cable end typically comprises a series of insulator skirts 5, for example molded in crosslinked EPDM, threaded onto the insulation 3 following an insulating sleeve 6, made for example also in crosslinked EPDM, this sleeve 6 extending beyond the stop of the screen 4 while being closed, in the vicinity of the stop zone, by an adapter 7 made of a conductive elastomer ensuring contact with the conductive screen 4 of the cable.
  • the stress reduction electrode disposed between the sleeve 6 and the insulator 3, comprises four contiguous zones pressed against the insulator 3, the zones A, B , C, D successive being contiguous to each other in the axial direction of the electrode.
  • the end electrode A is in welded contact with the adapter 7.
  • the four zones A to D each have, for a given voltage, a non-linear electrical resistance different from the resistances of the adjacent zones so that, from A to D , the resistances gradually increase towards the high voltage side of the cable end.
  • the resistance variations of the elements of the electrode 10 are obtained by gradually decreasing the density of the particles of the variable resistance material embedded in the insulating material towards the parts remote from the conductive parts, so that this variation in density of the divided product gives the electrode element a decreasing resistance towards the parts to be protected, or progressive resistance towards high voltage parts.
  • Density variations can be obtained by gradually dosing the concentrations of particles with constant particle size of the non-linear variable resistance product, or alternatively, density variations can be obtained with a constant concentration but a variable and progressive particle size of the product divided at non-linear electrical resistance, taking into account that the effect of the particulate active product is greater the larger the grains for the same volume of finished product.
  • stress electrodes will be described which consist of an end-to-end sequence of individual elements placed side by side, but it will be understood that the variations in resistance can be obtained by continuously varying the axial direction.
  • concentration of particles with constant particle size in a common support the concentrations in the binder of the support can vary from 30 to 70%.
  • the binder or support mixture for the various stress electrode elements can be chosen from plastics such as polyethylene, PVC, crosslinkable synthetic or thermoplastic elastomers, for example EPDM , EPR, polyurethane, polyester, elastomers with several flowable components and hardening cold or hot, for example chosen from silicones, polyurethanes, polybutadienes, - resins with several components hardening cold or hot, for example polyesters, polyurethanes, epoxy resins or phenolic resins.
  • plastics such as polyethylene, PVC, crosslinkable synthetic or thermoplastic elastomers, for example EPDM , EPR, polyurethane, polyester, elastomers with several flowable components and hardening cold or hot, for example chosen from silicones, polyurethanes, polybutadienes, - resins with several components hardening cold or hot, for example polyesters, polyurethanes, epoxy resins or phenolic resins.
  • the support mixtures must be chosen in order to be able to incorporate therein in a controlled manner, the divided active products with variable electrical resistance such as silicon carbide, oxides metals such as natural or precipitated silica, titanium oxide, zinc oxide, magnesia, alumina, asbestos, or barium titanate.
  • the elements of the stress electrode will be obtained by incorporating into the support mixture from 30 to 85% of a mixture of said divided active products.
  • the active product is chosen for each zone as a function of the position of the zone and as a function of the screens defining an average particle size.
  • a product can be used divided from an 8-wire sieve, corresponding to 2380 microns of average particle size, to the 1200-wire sieve corresponding to 3 microns of average particle size.
  • the size of the grains of silicon carbide will thus decrease zone A towards zone D, so as to distribute the equipotential lines in a perfectly linear manner, the choice of the starting particle size for zone A being a function of the cable tension.
  • ends of 20 kV polyethylene insulated cables, 1 x 150 mm 2 were made with zone A consisting of a sealant of the type mentioned above loaded at 70 % of screened silicon carbide 90, zone B consisting of a putty loaded with 70% screened silicon carbide 180, zone C constituted of a putty charged with 70% of screened silicon carbide 280, and zone D consisting of a mastic loaded with 70% silicon carbide sieve 500.
  • the choice of particle sizes is not limited to the values mentioned above, the dimensions of the active zones (length, thickness) do not not being critical but being determined according to the space available, the thicknesses increasing however with the operating voltage and being greater than 5/10 e mm for 20 kV and 5/8 e mm for 200 kV. Improved electrical characteristics would be obtained by continuously varying the particle size of the largest sieve to the finest sieve along a continuous support mixture.
  • the zones A to D are obtained by loading the putty with respectively 70%, 60%, 50% and 40% of silicon carbide particles having an average particle size of 37 ⁇ .
  • each zone A to D has a length of 7 cm and a thickness of 3 cm, which leads to a stress control electrode having 28 cm long for a total length of the cable end of 45 cm.
  • the results obtained are: or 65% gain compared to the performance of existing equipment.
  • FIG. 1 also illustrates the perfect linearity of the distribution of the equipotential lines with such an electrode according to the present invention (curve II) with respect to a stress control electrode with constant particle size (curve I), the linearity of which the distribution of the equipotential lines is much less good.
  • curve II the perfect linearity of the distribution of the equipotential lines with such an electrode according to the present invention
  • curve I a stress control electrode with constant particle size
  • FIG. 2 shows another embodiment corresponding to an insulated cable end for a service voltage of 90 kV with the interposition, between the electrode 10 and the insulator 3, of an underlying insulating layer 8 of thickness close to that of the electrode and having a specific inducing power or relative permittivity ⁇ greater than or equal to that of the insulator 3 of the cable.
  • underlying layers 8 can be provided, the permittivity s gradually increasing up to the value of ⁇ i corresponding to the most conductive part (A) of the stress control electrode. These underlying layers move the stress control electrode away from the conductive core of the cable to maintain a maximum gradient at the electrode always below 4000 V / mm, as mentioned above, in combination with a deflector cone on the side. screen potential.
  • the different zones of the electrode 10 of the embodiment of FIG. 3 are produced by loading with silicon carbide an EPDM mixture with the following values, from A to D: 60% of sieve particles 90, 60% of 180 screen, 80% 280 screen and 60% 500 screen. The performances obtained are:
  • the underlying layer 8 can be made of any suitable solid material, gas under pressure, such as for example nitrogen, sulfur hexafluoride, oil or confined insulating grease.
  • FIG. 4 shows an embodiment comprising three identical stress electrodes 10 "10 2 and 10 3 , each consisting of four successive zones A to D, spaced radially from one another and of the insulator 3 by insulating sublayers 80 having a higher relative permittivity than that of the insulator 3 of the cable.
  • the electrode 10 is embedded in the sleeve 61 which comprises, in addition to its usual peripheral part, an internal tubular extension 8 ′ ensuring the role of the underlying layer and fulfilling the same conditions as above.
  • the zones A 'to D' of the electrode 10 have a decreasing cross section from the cable screen 4, the end zone A 'comprising an extension A i forming a skirt covering the adapter 7.
  • the last zone D of the electrode 10 extends beyond the underlying layer 8, so as to be brought back pressed against the insulator 3 of the cable, thereby separating the upper end of the sleeve 6 from this insulator.
  • the dimensions and the number of the zones of the electrode 10 can thus be modulated as a function of the number of skirts 5 of the prefabricated cable end.
  • FIGS. 8 and 9 show two embodiments of a prefabricated one-piece junction using a stress reduction electrode according to the present invention.
  • the outer insulating sleeve 6 ' extending this time to come into bearing contact at its two ends on the screens 4 of the two cable ends abutted and also made of a conductive plastic material.
  • the zones A to D of the electrode 10 are this time organized from the junction zone where the bare conductive core 1 of the cables appears, the end zone D not extending to the level of the screens 4 of the cable ends.
  • the middle region A the most loaded, is in contact (welded) with the adapter 7 in conductive mixture surrounding the conductive core 1.
  • the electrode extends symmetrically towards the other screen at the other end of the cable.
  • FIG. 9 also represents a prefabricated one-piece junction but with a stress electrode 10 ′ with zones in opposition to activity.
  • the central zone A is only in contact with the adapter 7, the zone B being omitted so as to present, towards the screen 4 of the cable end, a succession of zones C, D then C "symmetrical and analogous to C, and A, analogous to A, this latter zone being in contact, via the sleeve 6 ', with the screen 4 of the cable end.
  • FIG. 10 shows a prefabricated one-piece junction with adapter for cable diameters comprising, as in the previous embodiment, a stress control electrode 10 ′ whose active zones are in opposition.
  • the electrode 10 ' is here arranged with interposition, between it and the insulator 3 of the cable, of an underlying layer 8 of the type described above, the electrode itself being covered with an insulator 9, the specific inductive power is also higher than that of the cable insulator 3.
  • the electrode 10 ' is symmetrical with respect to a middle zone D with low density of silicon carbide, the end zones A and A, being, as in the embodiments of FIGS.
  • FIG. 10 shows the effectiveness of the 'strain control electrode according to the present invention.
  • FIG. 11 shows a prefabricated one-piece derivation in which the conductive core of a first cable identifiable by its screen 4, is connected to a connector block 11, arranged in an insulating housing 12, and from which two lines start, main and derivative, having their conductive cores 1 connected to the connector block 11, each line being equipped with a stress control electrode 10 ′ whose active zones are in opposition in a similar arrangement for each cable to that described in relation to the FIG. 10.
  • the adapters 7 are common to the two output lines and that, in addition to the underlying sublayer 8 and the insulating sheath 9 on either side of the electrodes 10 ′, a insulating material 13 completely fills the casing sleeve 6 with the bypass.
  • FIG. 12 a plug-in end head, comprising a bent connection part 15, and an adapter part equipped with a stress control electrode 10 ′, with active zones in completely identical opposition to those described in relation to Figure 10.
  • FIG. 13 thus shows a cable end insulator similar to that of FIG. 3, but with a block of skirts 5 ′ made of porcelain, the stress control electrode 10, similar to that of FIGS. 2 at 6, being mounted on the inner wall of the skirt body 5 ′, at a distance from the insulation 3 of the conductor, the space defined between the latter and the skirt body 5 ′, closed by a frustoconical adapter 7, being filled an insulating fluid medium 14 consisting of a pressurized gas, for example air or nitrogen, a grease or an insulating oil.
  • a pressurized gas for example air or nitrogen, a grease or an insulating oil.

Landscapes

  • Cable Accessories (AREA)
  • Thermistors And Varistors (AREA)
  • Communication Cables (AREA)
  • Insulated Conductors (AREA)

Claims (10)

1. Elektrode zur Reduzierung elektrischer Beanspruchungen für Verbindungsenden abgeschirmter elektrischer Leiter, dazu bestimmt, entlang des Umfangs des Isolators des Leiters in Höhe des Endes der Abschirmung des abgeschirmten Leiters angeordnet zu werden, und wenigstens ein Hüllelement aufweisend, mit wenigstens zwei aufeinanderfolgenden, in Axialrichtung des Leiters (3, 4) aneinandergrenzenden Bereichen A-D, dadurch gekennzeichnet, daß jeder der Bereiche aus einem Gemisch eines Kunststoffs mit Teilchen von wirksamen Stoffen elektrisch nichtlinearen Widerstands besteht, und daß diese Teilchen in den einzelnen Bereichen unterschiedliche Granulation aufweisen.
2. Elektrode zur Reduzierung elektrischer Beanspruchungen für Verbindungsenden abgeschirmter elektrischer Leiter, dazu bestimmt, entlang des Umfangs des Isolators des Leiters in Höhe des Endes der Abschirmung des abgeschirmten Leiters angeordnet zu werden, und wenigstens ein Hüllelement aufweisend, mit wenigstens zwei aufeinanderfolgenden, in Axialrichtung des Leiters (3, 4) aneinandergrenzenden Bereichen A-D, dadurch gekennzeichnet, daß jeder der Bereiche aus einem Gemisch eines Kunststoffs mit Teilchen von wirksamen Stoffen elektrisch nichtlinearen Widerstands besteht, daß die Teilchen eine mittlere im wesentlichen konstante Granulation aufweisen und daß die Konzentration der Teilchen in den einzelnen Bereichen unterschiedlich ist.
3. Elektrode nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die aufeinanderfolgenden Bereiche A-D einen in Transversalrichtung in Richtung der Stellen unter Hochspannung des Verbindungsendes abnehmenden Querschnitt aufweisen.
4. Elektrode nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß ein zusätzlicher isolierender Stoff (8, 8', 14) mit einer höheren relativen Dielektrizitätskonstanten (E) als diejenige des Isolators (3) des Leiters zwischen diesem und der die Beanspruchung steuernden Elektrode (10, 10') angeordnet ist.
5. Elektrode nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie wenigstens zwei Hüllelemente (101, 102, 103) aufweist, deren jedes eine Folge von Bereichen mit zunehmenden Widerständen A-D aufweist, die im radialen Abstand voneinander angeordnet sind, und von einem isolierenden Stoff (80) mit einer höheren relativen Dielektrizitätskonstanten (ε) als diejenige des Isolators (3) des Leiters voneinander getrennt sind.
6. Elektrode nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß sie einen ersten Elektrodenteil aufweist, mit wenigstens zwei aufeinanderfolgenden Bereichen A, B mit in einer axialen Richtung des Leiters (3, 4) zunehmendem Widerstand und einen zweiten, an den ersten Teil angrenzenden Elektrodenteil aufweist, mit wenigstens zwei Bereichen Bi, A1 abnehmenden Widerstands, wobei die einzelnen Bereiche der beiden Teile symmetrisch bezüglich eines mittleren Bereichs D sind.
7. Elektrode nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Bereich A kleinsten Widerstands mit einem Adapter (7) zur Verbindung der Abschirmung (4) des Leiters aus leitendem Gemisch verbunden ist.
8. Elektrode nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die aufeinanderfolgenden Bereiche A-D mit Siliziumcarbid-Teilchen einer Granulation zwischen 3 µ und 2 380 µ versetzt sind.
9. Elektrode nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die aufeinanderfolgenden Bereiche A-D mit Zinkoxid-Teilchen einer Granulation zwischen 3 µ und 2 380 µ versetzt sind.
10. Kabelverbindungsende, dadurch gekennzeichnet, daß es mit wenigstens einer Elektrode (10, 10') zur Beanspruchungsreduzierung nach einem der vorhergehenden Ansprüche versehen ist.
EP81400500A 1980-04-02 1981-03-27 Elektroden zur Reduzierung elektrischer Beanspruchungen zum Verbinden von Energiekabeln mit Abschirmung Expired EP0037339B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8007487 1980-04-02
FR8007487A FR2480039A1 (fr) 1980-04-02 1980-04-02 Electrodes de reduction de contraintes electriques pour materiels de raccordement de cables d'energie sous ecran

Publications (2)

Publication Number Publication Date
EP0037339A1 EP0037339A1 (de) 1981-10-07
EP0037339B1 true EP0037339B1 (de) 1984-07-25

Family

ID=9240480

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81400500A Expired EP0037339B1 (de) 1980-04-02 1981-03-27 Elektroden zur Reduzierung elektrischer Beanspruchungen zum Verbinden von Energiekabeln mit Abschirmung

Country Status (6)

Country Link
US (1) US4418240A (de)
EP (1) EP0037339B1 (de)
JP (1) JPS56150915A (de)
DE (1) DE3164977D1 (de)
FR (1) FR2480039A1 (de)
NO (1) NO811116L (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4446331A (en) * 1981-07-17 1984-05-01 The Fujikura Cable Works, Limited Power cable joint structure including a reinforcement insulator containing electrode spherical bodies
FR2518837B1 (fr) * 1981-12-18 1985-08-09 Fabrication Cables Elect Cie G Procede de preparation d'extremites de cables electriques a champ radial haute tension et cables electriques ainsi obtenus
GB8303462D0 (en) * 1983-02-08 1983-03-16 Raychem Gmbh Electrical stress control
US4577339A (en) * 1983-10-28 1986-03-18 Klostermann Heinrich F Cable termination for x-ray tubes
FR2656962B1 (fr) * 1990-01-05 1995-04-07 Silec Liaisons Elec Extremite de cable electrique.
US5280136A (en) * 1991-09-16 1994-01-18 Amerace Corporation Method and apparatus for terminating a shielded high voltage cable
US5493072A (en) * 1994-06-15 1996-02-20 Amerace Corporation High voltage cable termination
GB9600819D0 (en) * 1996-01-16 1996-03-20 Raychem Gmbh Electrical stress control
DE19621710A1 (de) * 1996-05-30 1997-12-04 Abb Research Ltd Isolator
US6501024B1 (en) 1999-01-07 2002-12-31 Pirelli Cables (2000) Limited Termination for electrical cable
ATE236469T1 (de) * 1999-01-07 2003-04-15 Pirelli Cables 2000 Ltd Endverschluss für ein elektrisches kabel
EP1337022A1 (de) * 2002-02-18 2003-08-20 ABB Schweiz AG Hüllkörper für ein Hochspannungskabel und Kabelelement, welches mit einem solchen Hüllkörper versehen ist
FR2883425B1 (fr) 2005-03-21 2007-05-04 Nexans Sa Extremite synthetique de cable electrique pour tension continue
EP1736998A1 (de) * 2005-06-21 2006-12-27 Abb Research Ltd. Band mit Varistor-Verhalten zur Steuerung eines elektischen Feldes
US11367542B2 (en) * 2019-11-01 2022-06-21 Hamilton Sundstrand Corporation Field grading members, power cables having field grading members, and methods of regulating electric fields

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1576621A (en) * 1923-03-22 1926-03-16 Trollhattans Elektrothermiska Electric rotating resistance furnace
US1992529A (en) * 1932-08-17 1935-02-26 Henrite Products Corp Variable resistor
US1992410A (en) * 1932-12-23 1935-02-26 Continental Carbon Inc Electrical control unit and method of making same
US2835725A (en) * 1954-02-01 1958-05-20 G & W Electric Speciality Co High voltage electric terminator
US3210460A (en) * 1963-07-15 1965-10-05 Westinghouse Electric Corp Terminating means for shielded electrical conductors
DE2053896A1 (en) * 1970-10-23 1972-04-27 Siemens Ag Cable termination - with electric field control system to prevent flash over
US3644662A (en) * 1971-01-11 1972-02-22 Gen Electric Stress cascade-graded cable termination
FR2134236A1 (de) * 1971-04-28 1972-12-08 Minnesota Mining & Mfg
GB1526397A (en) * 1974-10-08 1978-09-27 Raychem Ltd Heat-recoverable article suitable for high voltage use
GB1534003A (en) * 1975-04-11 1978-11-29 Sola Basic Ind Inc Electrical stress-relieving elastomeric material devices made therewith and method of making shielded electrical conductor terminations
DE2739600A1 (de) * 1977-08-31 1979-03-15 Aeg Telefunken Kabelwerke Kabelendverschluss
FR2423036A1 (fr) * 1978-04-11 1979-11-09 Silec Liaisons Elec Mastic a resistance electrique non lineaire

Also Published As

Publication number Publication date
NO811116L (no) 1981-10-05
FR2480039B1 (de) 1983-01-07
EP0037339A1 (de) 1981-10-07
DE3164977D1 (en) 1984-08-30
FR2480039A1 (fr) 1981-10-09
US4418240A (en) 1983-11-29
JPS56150915A (en) 1981-11-21

Similar Documents

Publication Publication Date Title
EP0037339B1 (de) Elektroden zur Reduzierung elektrischer Beanspruchungen zum Verbinden von Energiekabeln mit Abschirmung
EP0068308B1 (de) Gegen Hochtemperatur und Druck widerstandsfähiges elektromechanisches Kabel und sein Herstellungsverfahren
CA2047346C (fr) Cable sous-marin de telecommunications a fibres optiques
FR2776432A1 (fr) Dispositif combine forme d'un dispositif de terminaison sur pylone et d'un dispositif d'arret des surtensions
EP1128395B1 (de) Hoch und Höchstspannungsgleichstromenergiekabel
EP0264315A1 (de) Wellenfortpflanzungsstrukturen für die Überspannungsunterdrückung und die Absorbierung von vorübergehenden Wellen
EP2765581B1 (de) Elektrisches Kabel, das resistent gegen Teilentladungen ist
FR2883425A1 (fr) Extremite synthetique de cable electrique pour tension continue
EP2136376A1 (de) Hochspannungsstromkabel
LU83652A1 (fr) Electrodes de reduction de contraintes electriques pour materiels de raccordement de cables d'energie sous ecran
FR2518837A1 (fr) Procede de preparation d'extremites de cables electriques a champ radial haute tension et cables electriques ainsi obtenus
EP0833421B1 (de) Garnitur für Kabelendverschluss und Material für die Bildung der Garnitur
BE890519A (fr) Electrodes de reduction de contraintes electriques pour materiels de raccordement de cables d'energie sous ecran
EP3961835A1 (de) Elektrische kabelverbindung und entsprechendes installationsverfahren
WO2023247851A1 (fr) Harnais électrique de puissance pour aéronef
EP0539905B1 (de) Elektrisches Kabel
FR2656962A1 (fr) Extremite de cable electrique.
FR3123138A1 (fr) Câble électrique limitant les décharges partielles
EP0991090B1 (de) Multifunktionelle einstückige elektrische Verbindung, mit einer Durchführung und einer Anschlusseinrichtung an eine Sicherung und Schutzvorrichtung mit einer solchen elektrischen Verbindung
EP0707322A1 (de) Energiekabel
EP0988674B1 (de) Von einer mit schirmen versehenen isolierhülse überdeckter kabelendverschluss
EP0219494B1 (de) Blitzschutzschaltung für empfindliche elektrische anlagen und solche vorrichtungen
FR2671670A1 (fr) Borne haute tension de raccordement.
EP0991083A1 (de) Multifunktionelle einstückige elektrische Verbindung, mit einer Durchführung und eine flexibelen Leitung
EP4454084A1 (de) Endverschluss für ein hochspannungs- oder höchstspannungsstromübertragungskabel und verfahren zur herstellung eines kabelendverschlusses

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE GB IT LI SE

17P Request for examination filed

Effective date: 19820204

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE GB IT LI SE

REF Corresponds to:

Ref document number: 3164977

Country of ref document: DE

Date of ref document: 19840830

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920213

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920303

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920316

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920529

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930331

Ref country code: CH

Effective date: 19930331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930327

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19931201

EUG Se: european patent has lapsed

Ref document number: 81400500.5

Effective date: 19931008