EP0035922A1 - Abstimmungsvorrichtung mit veränderbarer Kapazität und abstimmbares Mikrowellenfilter mit wenigstens einer solchen Vorrichtung - Google Patents

Abstimmungsvorrichtung mit veränderbarer Kapazität und abstimmbares Mikrowellenfilter mit wenigstens einer solchen Vorrichtung Download PDF

Info

Publication number
EP0035922A1
EP0035922A1 EP81400240A EP81400240A EP0035922A1 EP 0035922 A1 EP0035922 A1 EP 0035922A1 EP 81400240 A EP81400240 A EP 81400240A EP 81400240 A EP81400240 A EP 81400240A EP 0035922 A1 EP0035922 A1 EP 0035922A1
Authority
EP
European Patent Office
Prior art keywords
finger
plunger
hollow
tuning device
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81400240A
Other languages
English (en)
French (fr)
Other versions
EP0035922B1 (de
Inventor
Jea-Claude Curtinot
Xavier Delestre
Jean Fouillet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0035922A1 publication Critical patent/EP0035922A1/de
Application granted granted Critical
Publication of EP0035922B1 publication Critical patent/EP0035922B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/219Evanescent mode filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/04Coaxial resonators

Definitions

  • the invention relates to the field of frequency tunable microwave filters and more particularly to a variable capacity tuning device for such filters.
  • the transmission systems and in particular the telecommunication systems are designed to operate in a given frequency band, possibly comprising several channels and the system's microwave filters must be tuned to the desired channel.
  • the filters can be adjusted at the factory or when they are permanently installed; when the system is intended to operate successively on several frequency channels, the filters, then called “frequency agile", must be able to pass quickly and simply from one channel to another.
  • it is necessary to provide means for tuning the microwave filters used and this tuning will be easier if the number of elements to be varied will be small and their adjustment will have little influence on the characteristics. of the filter other than the tuning frequency.
  • the microwave filters commonly used are of several types: there are filters whose resonator elements are line sections, others for which these elements are in waveguide.
  • the most commonly used TEM inline resonator filters are the quarter wave resonator filters and comb resonator filters, charged by localized capacitive elements forming obstacles.
  • waveguide resonator filters they differ according to their mode of operation: when they work in propagation mode, i.e.
  • the the most used type is the half-wave resonator filter of the series type coupled by inductive susceptance; when they work in evanescent mode, that is to say at a frequency lower than the natural cut-off frequency of the guide, their structure is of the type with parallel resonators coupled by admittance inverters and they then comprise capacitive obstacles located.
  • the agreement of the filters is obtained by varying the form of localized inductive or capacitive obstacles associated with the TEM lines or the waveguides to form the filter.
  • the invention relates precisely to obstacles of the capacitive type and more particularly relates to a capacitive tuning device, usable in all filters comprising localized capacitive obstacles.
  • the capacitive tuning devices currently used are most often made using metal plungers penetrating into the guide or the line, and the adjustment of the capacity is obtained by varying the depression of this plunger; the variation of the. susceptance of the capacitive element (linked to the variation of the tuning frequency) thus obtained, as a function of the frequency, depends on the physical configuration of this element and on the section of the guide or of the line; but generally the law of variation of the tuning frequency, as a function of the displacement of the plunger is not at all linear.
  • the dimensions of the guide in the plane orthogonal to the axis of propagation are less than the wavelength corresponding to the natural cut-off frequency of the guide; consequently the localized capacity necessary to obtain the agreement, which is all the greater the lower the working frequency, must be housed in a smaller space.
  • the increase in the value of the capacity achieved by means of two opposite plungers is obtained by decreasing the interval separating them. Beyond a certain limit, this interval is too small to be adjusted with precision, all the more since the variations in temperature can, by the expansion of the metals which they entail, create very significant relative variations in this interval. .
  • variable capacity tuning devices comprising two coaxial fingers, one hollow, and the other comprising a movable plunger inside the hollow finger, make it possible to perform a capacity variation.
  • Different embodiments of such tuning devices have been described for example in French patents 1,046,593 or 880,808, in English patent 1,163,896, in American patent 3,273,083 or in German patent application 2,412 759. These devices always have only a variable component of the capacity determining the tuning frequency, its variation being determined by the greater or lesser penetration of the plunger.
  • the subject of the invention is a tuning device with double capacity component, which makes it possible to produce such filters.
  • a tuning device with variable capacity, for tunable microwave filter comprising two coaxial fingers, a first finger being hollow and the second comprising a plunger movable relative to the hollow finger, between a minimum insertion position where the plunger and hollow finger have no facing surfaces and a maximum insertion position where the plunger and hollow finger have maximum facing surfaces, in order to determine a variation in capacity, is characterized in that the plunger has a diameter much smaller than the outside diameter of the hollow finger and in that the second finger further comprises a body comprising at least one cylindrical part of the same diameter as a cylindrical part of the first finger, intended to face it, these two parts being movable one with respect to the other, the variable distance between the corresponding facing flat surfaces determining a second fraction of the variable capacity.
  • the invention also relates to a tunable microwave filter comprising at least one such tuning device with variable capacity.
  • FIG. 1 represents the simplest embodiment of the tuning device according to the invention.
  • This device is shown in section, in place in a guide 1, l '.
  • This guide can be a wave guide in evanescent mode with a square, rectangular, round or even ellipsoidal section.
  • 1 - 1 ' can also represent the walls of a TEM line.
  • the capacitive device mainly comprises a metal finger, 10, fixed in the wall l 'and a threaded movable finger, 20, the wall 1 being tapped.
  • a nut 21 keeps the movable finger 20 in place.
  • the fixed finger 10 and the movable finger 20 are interpenetrating, the end of the finger 20 forming a tuning plunger. To obtain tuning in a given frequency range, F.
  • the minimum facing surfaces are chosen so that, when the end of the movable finger 20 forming a plunger is at the minimum penetration e min corresponding to the capacity minimum C min , this capacity C min is the tuning capacity for the highest frequency in the range, F max .
  • This capacity essentially depends on the distance d between the facing surfaces for this minimum penetration e min and the facing finger surfaces.
  • the stroke of the end of the movable finger forming a plunger 20 and the corresponding height of the cavity formed in the fixed finger 10, as well as their respective diameters, are chosen so that the maximum capacity C max corresponds to the minimum frequency F min of the desired frequency range of tuning, the opposite surfaces of the two plungers then being maximum.
  • the external shape of the tuning device thus produced varies a little and that the minimum capacity C min for the highest frequency of the range is not retained, the capacity produced evolving in its whole with the sinking of the diver.
  • a movable finger comprising a movable body allowing tuning at the high frequency of the tuning range and a small central plunger, also movable, introducing a variable additional capacity which is added to the minimum capacity C min corresponding to the minimum insertion of the small plunger but which does not modify the external shape of the tuning device.
  • the tuning device shown in FIG. 2 comprises a hollow fixed finger 10 and a movable finger comprising a body, 22, movable in the wall 1, the movable body being held in position by a nut 21.
  • This body 22 penetrates slightly into the cavity of the fixed finger 10.
  • this hollow mobile body is associated a small mobile plunger 23 screwed into the body 22, the depression of which is likely to vary between a minimum depression e min , the end of the small mobile plunger then flush with the end of the mobile body 22 and the capacity thus produced being a capacity C min corresponding to the highest frequency of the tuning range F max ,, and a maximum depression e max , the small plunger then coming into abutment inside the body 22 and the capacity thus produced being the maximum capacity C max corresponding to the minimum frequency of the tuning range.
  • the displacement of the small plunger can be of the order of 5 mm to 1 cm to cover the tuning range; the distance d between the flat surfaces of the two opposite fingers for the minimum insertion of the plunger, of the order of 5 tenths of a millimeter, is definitively adjusted for the highest frequency of the range, and only the small plunger is moved to get the variations of the tuning frequency.
  • the variation in capacitance obtained is such that the tuning frequency varies almost linearly with the depression.
  • the small plunger 23 is fixed in position by means of a nut 24 while bearing on the head of the mobile body 22.
  • FIG. 3 represents an analogous embodiment but for which the external dimensions of the fingers are. large in relation to the dimensions of the cylinders used to achieve the minimum capacity and the additional variable capacity added thereto.
  • the fixed finger 10 and the body 22 of the movable finger have their ends thinned so that the facing surfaces to achieve the minimum capacity C. are quite weak.
  • the movable body 22 does not enter the cavity of the fixed finger 10.
  • the hollow of the fixed finger 10 and the hollow of the body 22 of the mobile finger have the same diameter, adapted to the diameter of the small mobile plunger 23.
  • the minimum capacity C . is adjusted when the plunger 23 is placed in the high position at the minimum penetration e min and as in the embodiment of FIG.
  • the variation in capacity generated by the displacement of the plunger is such that the variation in tuning frequency is linear as a function of the displacement of the plunger.
  • the respective diameters of the hollow of the finger 10 and of the plunger are such that the displacement of the plunger makes it possible to cover the desired frequency range.
  • Such an embodiment of the capacitive tuning device has made it possible to cover the range of tuning frequencies 1.7 GHz to 2.1 GHz in a filter with evanescent mode, that is to say relatively high frequencies, the initial capacity for the 2.1 GHz frequency being relatively low.
  • the embodiment shown in Figure 4 allows to cover a relatively lower frequency range, the capacitance C. produced for the highest frequency of the range being higher than in the embodiment of FIG. 3.
  • the hollow body 22 has its end cut so as to penetrate into a hollow of corresponding diameter provided in the hollow fixed finger 10.
  • the flat surfaces and the cylindrical surfaces opposite the fixed finger 10 and the body 22 of the movable finger make it possible to achieve this capacity Cmin for the highest frequency in the range.
  • the body 22 is then fixed by means of the nut 21.
  • the external shape presented by the variable capacity tuning device in the guide does not vary in the tuning frequency range. The variation in additional capacity is obtained, as in the embodiments of FIGS.
  • the tuning frequency varies linearly with the sinking of the tuning plunger.
  • FIG. 5 represents an embodiment of a variable capacity tuning device particularly intended for so-called "frequency agile" filters, that is to say capable of passing rapidly from one tuning frequency to another within a determined range.
  • the fixed finger 10, the body 22 of the movable finger and the nut 21 which is linked to it are the same as those of the embodiment of FIG. 2, except that the interior of the body 22 is smooth and not threaded.
  • the mobile plunger 25 has the shape of a smooth piston capable of sliding in the hollow body 22.
  • the electrical contact between the piston 25 and the body of the microwave filter is obtained by means of the body 22 by means of a tip 26 forming clamps and extending the intermediate part of the piston 25.
  • variable capacity tuning device is invariable regardless of the tuning frequency. Consequently, throughout the tuning frequency range, the coupling of the resonator to the neighboring resonator or to the ports of the filter does not vary as a function of the tuning frequency. Similarly, the bandwidth is almost independent of the frequency this okay.
  • variable capacity tuning device leads to filters which are very easy to compensate for in temperature.
  • the variation of the tuning frequency being a linear function of the depression of the tuning plunger, and the elongations of the different mechanical elements constituting the capacitive elements also following linear laws
  • the materials and the dimensions of the elements relative to each other can be chosen in a fairly simple manner so that the temperature filter compensation can be achieved throughout the entire tuning range.
  • the overvoltage coefficient remains high throughout the frequency range of the filter.
  • the small plunger has a small diameter compared to the outside diameter of the two fingers, the stroke of the plunger is large compared to the previous embodiments and the adjustment of the filter is greatly facilitated. The resolution is also greatly improved.
  • the invention is not limited to the embodiments described and shown.
  • the external shapes of the fixed finger and of the movable finger are not limited to the shapes described by way of nonlimiting example with reference to FIGS. 1, 2, 3 and 4 (FIG. 5 taking up the form shown in the figure 2).
  • the shapes are determined from the minimum capacity to be produced, in particular in relation to the diameter of the fingers and the dimensions of the guides in which the tuning devices are placed to produce the filters.
  • the fixed finger was, in all the embodiments described, chosen as being the hollow finger, the movable finger in the body of the filter being the finger comprising the tuning plunger. It is of course possible to do the opposite, the finger movable relative to the body of the filter then being the hollow finger and the fixed finger then being the finger comprising the chord plunger, the chord plunger then being movable in a finger fixed.
  • the invention also relates to a tunable microwave filter comprising at least one such tuning device with variable capacity, this filter can be a filter of the waveguide type in evanescent mode or a filter of the TEM line type comprising Localized capacitive elements.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
EP81400240A 1980-03-04 1981-02-17 Abstimmungsvorrichtung mit veränderbarer Kapazität und abstimmbares Mikrowellenfilter mit wenigstens einer solchen Vorrichtung Expired EP0035922B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8004833A FR2477783A1 (fr) 1980-03-04 1980-03-04 Dispositif d'accord a capacite variable et filtre hyperfrequences accordable comportant au moins un tel dispositif
FR8004833 1980-03-04

Publications (2)

Publication Number Publication Date
EP0035922A1 true EP0035922A1 (de) 1981-09-16
EP0035922B1 EP0035922B1 (de) 1984-06-20

Family

ID=9239297

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81400240A Expired EP0035922B1 (de) 1980-03-04 1981-02-17 Abstimmungsvorrichtung mit veränderbarer Kapazität und abstimmbares Mikrowellenfilter mit wenigstens einer solchen Vorrichtung

Country Status (5)

Country Link
US (1) US4380747A (de)
EP (1) EP0035922B1 (de)
JP (1) JPS56136001A (de)
DE (1) DE3164252D1 (de)
FR (1) FR2477783A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0068919A1 (de) * 1981-06-02 1983-01-05 Thomson-Csf Mikrowellenresonator vom Typ eines mit Dielektrikum versehenen veränderbaren Kondensators
EP0125450A2 (de) * 1983-05-16 1984-11-21 Northern Telecom Limited Abstimmelement für einen Mikrowellenhohlraumresonator
EP0346806A1 (de) * 1988-06-17 1989-12-20 Alcatel Telspace Bandpassfilter mit dielektrischen Resonatoren
EP0392372A2 (de) * 1989-04-10 1990-10-17 Alcatel N.V. TEM-Koaxialresonator
EP2833473A1 (de) * 2012-04-28 2015-02-04 Huawei Technologies Co., Ltd. Abstimmbares filter und duplexer mit dem abstimmbaren filter
ES2688214A1 (es) * 2018-05-30 2018-10-31 Universitat Politècnica De València Dispositivo de filtrado y conmutación de microondas

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4568895A (en) * 1983-02-17 1986-02-04 International Telephone And Telegraph Corporation Capacitor arrangements, especially for an electronically tunable band pass filter
JPS643302U (de) * 1987-06-24 1989-01-10
FR2655199B1 (fr) * 1989-11-30 1992-10-02 Alcatel Transmission Filtre eliminateur de bande pour guide d'ondes hyperfrequences.
US5808528A (en) * 1996-09-05 1998-09-15 Digital Microwave Corporation Broad-band tunable waveguide filter using etched septum discontinuities
US5959512A (en) * 1997-09-19 1999-09-28 Raytheon Company Electronically tuned voltage controlled evanescent mode waveguide filter
US6016122A (en) * 1998-06-01 2000-01-18 Motorola, Inc. Phased array antenna using piezoelectric actuators in variable capacitors to control phase shifters and method of manufacture thereof
US6281766B1 (en) 1998-06-01 2001-08-28 Motorola, Inc. Stacked piezoelectric actuators to control waveguide phase shifters and method of manufacture thereof
US6088214A (en) * 1998-06-01 2000-07-11 Motorola, Inc. Voltage variable capacitor array and method of manufacture thereof
SE514247C2 (sv) * 1999-06-04 2001-01-29 Allgon Ab Temperaturkompenserad stavresonator
SE516862C2 (sv) * 2000-07-14 2002-03-12 Allgon Ab Avstämningsskruvanordning samt metod och resonator
US6559656B2 (en) * 2000-12-28 2003-05-06 Honeywell Advanced Circuits, Inc. Permittivity measurement of thin films
US20040263289A1 (en) * 2003-03-31 2004-12-30 Cobb Gary R Resonator structures
TWM294103U (en) * 2006-01-18 2006-07-11 Prime Electronics & Satellitics Inc LNB high frequency filter
US8324989B2 (en) * 2006-09-20 2012-12-04 Alcatel Lucent Re-entrant resonant cavities and method of manufacturing such cavities
US8008994B2 (en) * 2009-05-01 2011-08-30 Alcatel Lucent Tunable capacitive input coupling
US8269582B2 (en) * 2009-10-30 2012-09-18 Alcatel Lucent Tuning element assembly and method for RF components
CN202025836U (zh) * 2009-11-13 2011-11-02 鸿富锦精密工业(深圳)有限公司 空腔滤波器
DE102010056048A1 (de) * 2010-12-23 2012-06-28 Kathrein-Werke Kg Abstimmbares Hochfrequenzfilter
US9325052B2 (en) * 2012-06-01 2016-04-26 Purdue Research Foundation Regents of the University of California Tunable cavity resonator having a post and variable capacitive coupling
DE102012020979A1 (de) 2012-10-25 2014-04-30 Kathrein-Werke Kg Abstimmbares Hochfrequenzfilter
EP3331093A1 (de) * 2016-12-01 2018-06-06 Nokia Technologies Oy Resonator und filter damit
IT202100012983A1 (it) * 2021-05-19 2022-11-19 Commscope Italy Srl Elemento di fissaggio per il risonatore di un filtro a radiofrequenza

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1163896A (en) * 1965-11-19 1969-09-10 Plessey Co Ltd Improvements in or relating to Transmission Line Band-Pass Filters

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2085223A (en) * 1932-10-12 1937-06-29 Fed Telegraph Co High frequency circuits
FR880808A (fr) * 1941-04-04 1943-04-06 Telefunken Gmbh Résonateur à enceinte creuse pour ondes ultra-courtes
US2645679A (en) * 1947-11-29 1953-07-14 Standard Telephones Cables Ltd Method of controlling susceptance of a post type obstacle
FR1046593A (fr) * 1951-05-11 1953-12-08 Centre Nat Rech Scient Résonateur électromagnétique accordable sur ondes métriques et décimétriques et dispositifs utilisant ce résonateur
US3273083A (en) * 1964-04-14 1966-09-13 Motorola Inc Frequency responsive device
US3336542A (en) * 1965-09-03 1967-08-15 Marconi Co Canada Tunable coaxial cavity resonator
CH440395A (de) * 1966-07-25 1967-07-31 Patelhold Patentverwertung Hohlraumresonator
US3444485A (en) * 1967-03-17 1969-05-13 Bell Telephone Labor Inc Single adjustment,variable selectivity-constant frequency coaxial transmission line filter
US3618135A (en) * 1970-02-06 1971-11-02 Avco Corp Variable capacitor of the locking type
DE2045560C3 (de) * 1970-09-15 1978-03-09 Standard Elektrik Lorenz Ag, 7000 Stuttgart Mikrowellenfilter aus quaderförmigen Hohlraumresonatoren
US3733567A (en) * 1971-04-13 1973-05-15 Secr Aviation Coaxial cavity resonator with separate controls for frequency tuning and for temperature coefficient of resonant frequency adjustment
DE2236955A1 (de) * 1971-07-30 1973-02-08 Cossor Ltd A C Hohlraumfilter
DE2412759C3 (de) * 1974-03-16 1978-08-10 Richard Hirschmann Radiotechnisches Werk, 7300 Esslingen Hochfrequenzfilter mit gemeinsam kapazitiv abstimmbaren Resonanzkreisen
US4001737A (en) * 1975-10-24 1977-01-04 The United States Of America As Represented By The Field Operations Bureau Of The Federal Communications Commission Cavity tuning assembly having coarse and fine tuning means
GB2006539A (en) * 1977-05-25 1979-05-02 Marconi Co Ltd Dual Evanescent Mode Waveguide Filter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1163896A (en) * 1965-11-19 1969-09-10 Plessey Co Ltd Improvements in or relating to Transmission Line Band-Pass Filters

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0068919A1 (de) * 1981-06-02 1983-01-05 Thomson-Csf Mikrowellenresonator vom Typ eines mit Dielektrikum versehenen veränderbaren Kondensators
EP0125450A2 (de) * 1983-05-16 1984-11-21 Northern Telecom Limited Abstimmelement für einen Mikrowellenhohlraumresonator
EP0125450A3 (en) * 1983-05-16 1985-11-13 Northern Telecom Limited Microwave cavity tuner
EP0346806A1 (de) * 1988-06-17 1989-12-20 Alcatel Telspace Bandpassfilter mit dielektrischen Resonatoren
FR2633118A1 (fr) * 1988-06-17 1989-12-22 Alcatel Thomson Faisceaux Filtre passe-bande a resonateurs dielectriques
EP0392372A2 (de) * 1989-04-10 1990-10-17 Alcatel N.V. TEM-Koaxialresonator
EP0392372A3 (de) * 1989-04-10 1992-01-15 Alcatel N.V. TEM-Koaxialresonator
EP2833473A1 (de) * 2012-04-28 2015-02-04 Huawei Technologies Co., Ltd. Abstimmbares filter und duplexer mit dem abstimmbaren filter
EP2833473A4 (de) * 2012-04-28 2015-04-15 Huawei Tech Co Ltd Abstimmbares filter und duplexer mit dem abstimmbaren filter
US9647307B2 (en) 2012-04-28 2017-05-09 Huawei Technologies Co., Ltd. Tunable filter and duplexer including filter
ES2688214A1 (es) * 2018-05-30 2018-10-31 Universitat Politècnica De València Dispositivo de filtrado y conmutación de microondas
WO2019229282A1 (es) * 2018-05-30 2019-12-05 Universitat Politècnica De València Dispositivo de filtrado y conmutación de microondas

Also Published As

Publication number Publication date
JPS56136001A (en) 1981-10-23
FR2477783B1 (de) 1984-09-21
EP0035922B1 (de) 1984-06-20
DE3164252D1 (en) 1984-07-26
JPS6151442B2 (de) 1986-11-08
FR2477783A1 (fr) 1981-09-11
US4380747A (en) 1983-04-19

Similar Documents

Publication Publication Date Title
EP0035922B1 (de) Abstimmungsvorrichtung mit veränderbarer Kapazität und abstimmbares Mikrowellenfilter mit wenigstens einer solchen Vorrichtung
EP2264832B1 (de) Subreflektor einer Doppelreflektorantenne
FR2489605A1 (fr) Filtre hyperfrequence a resonateur dielectrique, accordable dans une grande largeur de bande, et circuit comportant un tel filtre
FR2605146A1 (fr) Filtre a bande ajustable
EP0114140A1 (de) Abstimmbarer Mikrowellenfilter mit dielektrischen Resonatoren im TM010 Modus
CA2014514C (fr) Filtre a resonateur dielectrique
EP1576696A1 (de) Antenne mit kleinem volumen insbesonderefür tragbare telefone
EP2517299B1 (de) Frequenz-verstellbarer mikrowellenbandpassfilter
EP2797161B1 (de) Hyperfrequenzfilter mit dielektrischem Element
EP3113286B1 (de) Quasioptischer strahlformer mit linse, und flachantenne, die einen solchen strahlformer umfasst
EP3154128A1 (de) Kompakter multifrequenz-speisehornstrahler, strahlungsquelle und antenne, die einen solchen speisehornstrahler umfasst
EP0189712B1 (de) Rillenhohlleiter mit einem wasser- und gasdichten Fenster
EP0046098B2 (de) Abstimmbarer Resonator und Mikrowellenschaltung mit wenigstens einem solchen Resonator
FR2889358A1 (fr) Filtre a elimination de bande a micro-ondes pour multiplexeur de sortie
CA1306022C (fr) Filtre a resonateur dielectrique
EP0153541B1 (de) Rundes Fernster für einen Mikrowellenhohlleiter
EP0068919B1 (de) Mikrowellenresonator vom Typ eines mit Dielektrikum versehenen veränderbaren Kondensators
EP0160594A1 (de) Piezoelektrischer Resonator
EP0937310A1 (de) Filtereinrichtung mit von dielektrischen einsätzen versehenen hohlräumen
CA1121473A (fr) Coupleur a guides d'ondes ramifies
EP0274950B1 (de) Breitbandige Kopplungsvorrichtung zwischen der Verzögerungsleitung einer Wanderfeldröhre und der energieübertragenden Aussenschaltung und Wanderfeldröhre mit einer solchen Vorrichtung
EP0286464B1 (de) Mikrowellenvorrichtung mit Dioden in Streifenleitungsausführung
EP0022401A1 (de) Breitbandpolarisator mit niedrigem Elliptizitätsgrad und Mikrowellengerät mit einem solchen Polarisator
CA2753795A1 (fr) Filtre hyperfrequence a resonateur dielectrique
EP1067617B1 (de) Bandpassfilter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19820203

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE GB IT

REF Corresponds to:

Ref document number: 3164252

Country of ref document: DE

Date of ref document: 19840726

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19891231

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900222

Year of fee payment: 10

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910217

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19911101