EP0033229B1 - Appareil d'échange de chaleur - Google Patents
Appareil d'échange de chaleur Download PDFInfo
- Publication number
- EP0033229B1 EP0033229B1 EP81300296A EP81300296A EP0033229B1 EP 0033229 B1 EP0033229 B1 EP 0033229B1 EP 81300296 A EP81300296 A EP 81300296A EP 81300296 A EP81300296 A EP 81300296A EP 0033229 B1 EP0033229 B1 EP 0033229B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- casing
- heat exchange
- flue gas
- flow
- fluid medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003546 flue gas Substances 0.000 claims description 56
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 42
- 238000009833 condensation Methods 0.000 claims description 22
- 230000005494 condensation Effects 0.000 claims description 22
- 239000003973 paint Substances 0.000 claims description 19
- 239000012530 fluid Substances 0.000 claims description 15
- 230000008021 deposition Effects 0.000 claims description 11
- 239000011248 coating agent Substances 0.000 claims description 9
- 238000000576 coating method Methods 0.000 claims description 9
- 239000000446 fuel Substances 0.000 claims description 9
- 239000007789 gas Substances 0.000 claims description 8
- 239000004593 Epoxy Substances 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 5
- 229910000831 Steel Inorganic materials 0.000 claims description 4
- 238000003618 dip coating Methods 0.000 claims description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 4
- 239000010959 steel Substances 0.000 claims description 4
- 229920003002 synthetic resin Polymers 0.000 claims description 4
- 239000000057 synthetic resin Substances 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 3
- 239000011343 solid material Substances 0.000 claims description 3
- 229910001209 Low-carbon steel Inorganic materials 0.000 claims description 2
- 230000001939 inductive effect Effects 0.000 claims description 2
- 239000003960 organic solvent Substances 0.000 claims description 2
- 229920001187 thermosetting polymer Polymers 0.000 claims description 2
- 229920005989 resin Polymers 0.000 claims 2
- 239000011347 resin Substances 0.000 claims 2
- 230000000737 periodic effect Effects 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 239000010881 fly ash Substances 0.000 description 12
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 7
- 239000005864 Sulphur Substances 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000002956 ash Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000008236 heating water Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000254 damaging effect Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000002320 enamel (paints) Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 208000013409 limited attention Diseases 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D21/0001—Recuperative heat exchangers
- F28D21/0003—Recuperative heat exchangers the heat being recuperated from exhaust gases
- F28D21/0005—Recuperative heat exchangers the heat being recuperated from exhaust gases for domestic or space-heating systems
- F28D21/0007—Water heaters
Definitions
- This invention relates to heat exchange apparatus, also known as an "economiser", serving to withdraw heat from flue gases. It is primarily concerned with apparatus which would receive the flue_ gas from domestic or small commercial heating apparatus used to heat a fluid medium, especially water. Such heating apparatus would typically have a heat output in the range of approximately 17 to 87 kilowatts (60 000 to 300 000 BTU/h) and heat a fluid medium such as water for central heating or air for a ducted warm air central heating system. It may be oil or gas fired apparatus.
- the apparatus of the present invention serves to transfer heat from the flue gas to a fluid medium and this fluid medium will generally be the same as that which is heated in the main heating apparatus; if so the heated fluid medium which flows out from the heat exchange apparatus of this invention passes on to the main heating apparatus where it is heated further.
- FR-A-2321094 and equivalent GB-A-1502746 propose a heat exchanger arrangement mounted above a central heating boiler, in which the flue gases are caused to pass upwardly around finned tubes through which the central heating water passes. Provision is made for the drainage of condensation dripping off these tubes.
- the tubes extend between manifolds set slightly inwardly from the side walls of a casing through which the flue gas passes and the tubes are provided with fins which increase the heat exchange area but make it possible for dirt to accumulate on and between the fins.
- This prior proposal indicates that the condensation may contain "aggressive substances" and recommends construction from a resistant material.
- the material particularly suggested is stainless steel which is not in fact resistant to sulphur oxy- acids.
- DE-A-2720397 also proposes a heat exchanger for recovering additional heat from flue gas.
- a finned structure is disposed in the path of the flue gases and some of the central heating water is made to pass through a pipe which coils around this finned structure. Again provision is made for the drainage of condensation forming within the heat exchanger unit.
- DE-A-2758181 also provides an enclosure through which pass hot gases from a central heating burner.
- guide panels to remove heat from the flue gas. They project from and are supported by the top or bottom of the enclosure.
- the guide panels are not illustrated in detail but are said to be constructed as registers or panels of tubes comprising a closed area of tube convolutions abutting on one another. Presumably dirt could become lodged in the interstices between adjoining tubes.
- the casing is provided with a cleaning flap in its bottom and this flap is provided with a drain orifice.
- FR-A-2293674 shows two different forms of heat exchanger for removing heat from flue gas.
- the flue gas is guided to flow over a convoluted water filled tube.
- the flue gas is made to flow around vessels each of which is formed from two pressed sheets (so as to be hollow over part of its surface area). These vessels rest on the bottom of the casing.
- the specification suggests that the parts in contact with the flue gas can be provided with a coating of heat resisting paint, but no details are given as to how this might be applied. The nature of the corrosion is possibly not understood, or alternatively it is intended only that the corrosion should be slowed down, because galvanising is also put forward as an alternative protective coating.
- fly ash particles i.e. particles of solid material entrained in the flue gas
- fly ash particles can accumulate and tend to block the chimney, particularly at its base or at a point in the chimney at which there is a change in the direction of flow.
- Such fly ash can cake into hard material. in the presence of the condensation referred to above.
- DE-A-2758181 makes any mention of dealing with dirt such as fly ash.
- This specification provides a cleaning flap as mentioned above but this seems to be provided for removing dirt from where it may happen to lodge without any attempt to control the point of deposition.
- the present invention employs reversal of the flue gas flow direction to encourage deposition of fly ash.
- DE-A-2758181 there is indeed reversal of flow from a downward to an upward direction but this is accompanied by an apparent narrowing of the cross-section available for flow which would tend to increase the speed of flow and offset the effect of the flow reversal.
- One aspect of this invention is concerned with providing a simple and advantageous form of heat exchange apparatus for withdrawing heat from flue gases to enable an improvement in overall efficiency as compared to heating apparatus where further heat is not withdrawn from flue gases without undue difficulty being caused by condensation.
- the overall efficiency may for example reach 90-95%.
- the invention provides that hollow vessels within the heat exchange apparatus extend fully across a casing between its side walls, and are supported by those side walls, while also providing a drainage outlet from the lower part of the casing, this lower part of the casing being shaped so that moisture will drain through the drainage outlet(s).
- condensation forming on any cooled part of the apparatus, or dripping back from the chimney is intercepted and drained out, so that none of the condensation returns to the boiler.
- the present invention seeks to overcome the problem of fly ash deposition mentioned above by inducing the deposition of entrained solid particles within the heat exchange apparatus and moreover at a place where this deposition can be tolerated and from which the deposited particles can reasonably easily be removed.
- Deposition is induced by constraining the flue gas to reverse its direction from downwardly to upwardly, accompanied by an increase in the cross sectional area available for flow, and with provision of a closable aperture for removing deposited solid material.
- surfaces of the casing and of the heat exchange means which are exposed to the flue gas have a coating of a thermosetting synthetic resin, applied by dip coating the casing with the heat exchange means already fixed therein, with an organic solvent-based heat curable paint.
- a thermosetting synthetic resin applied by dip coating the casing with the heat exchange means already fixed therein, with an organic solvent-based heat curable paint.
- an organic solvent-based heat curable paint Preferably it is an epoxy phenolic paint.
- the economiser can be mounted, for example on a wall, above an existing boiler or other fuel burning heating apparatus.
- the economiser and fuel burning apparatus are being designed to go together, they can be made to form a single unit with the economiser mounted above and supported by the fuel-burning apparatus.
- the economiser 8 i.e. heat exchange apparatus
- the economiser 8 broadly comprises a casing 10 through which flue gas passes and within which there are heat exchange vessels 12, 14, 16 which in use are filled with water to be heated and which are exposed to the flue gas. If desired these vessels 12, 14, 16 could be corrugated to enhance their heat exchange efficiency, although as shown they have simple plane surfaces.
- the casing 10 is contained within an outer casing 18, whose front face is designated 19.
- the space between the two casings is packed with thermal insulation such as glass wool 20.
- the economiser 8 is mounted above an oil-fired water-heating boiler 22.
- the two pieces of apparatus are constructed as a single unit with the weight of the economiser taken by the boiler 22 beneath. It will be seen that the sides 24 of the outer casing 18 of the economiser lie flush with the sides 26 of the outer casing of the boiler.
- a duct 36 which also extends across substantially the full width of the boiler, carries the flue gas up to the inlet 38 to the casing 10.
- the duct 36 is formed by an extension of the casing 10 and it is contained within an outer casing 39 integral with the casing 18. Heat insulation 20 is provided between the duct 36 and this outer casing at the front and rear (as shown by Fig. 2) and also at each side.
- the inlet 38 to the casing 10 extends across the full width of that casing.
- spiral metal retarders (not shown). The spacing of the economiser 8 above the boiler 22, together with a forward tilt to the rearmost tubes 30 allows these retarders to be pulled out for cleaning.
- the flue gases are constrained by baffles 40, 42 to flow first upwardly over the rear surface 44 of the heat exchange vessel 12 then downwardly over the facing surfaces of the vessels 12 and 14 and thereafter round and up over the front surface 46 of the vessel 14 and both surfaces of the vessel 16.
- the flue gases finally flow out of the casing 10 through an upper outlet 48.
- Both the main boiler 22 and the economiser 8 are employed to heat water, for a central heating system for instance.
- This water flows first through the vessels in the economiser 8 generally in countercurrent to the flue gas and then into the tank 34 of the boiler 22.
- the cold return of water from the central heating system is connected so as to flow into the heat exchange vessel 16 through its inlet 50 (Fig. 1).
- Water leaves this vessel through an upper outlet hole 52 and is carried by duct 66 to an inlet hole 54 of the vessel 14.
- the water flows out of vessel 14 through a hole 56 into duct 68 leading to an upper inlet hole 58 of the vessel 12 which has a lower, outlet hole 60 connected by a pipe 62 to an inlet 64 of the tank 34.
- An outlet, not shown, from the tank 34 provides the hot flow to the central heating system.
- the ducts 66, 68 are cuboidal boxes welded to the side wall of the casing 10. Each of these boxes is open on its side welded against the wall of the casing, which thus closes the boxes to form ducts between the holes 54 and 56 and between the holes 58 and 60.
- a small tube 70 is provided connecting the ducts 66 and 68 and on the outer side of the duct 66 a small bleed valve, of the type used for central heating radiators, is provided through which air trapped in the apparatus can be vented.
- Each of the vessels, 12, 14, 16 is constructed from two pieces of sheet steel which are bent into an L shape (see Fig. 2) and the two pieces then joined by welds 74 to form a hollow box section. This box section is then welded at each end to a plate 76 forming a part of a sidewall of the casing 10.
- the economiser is assembled the three plates 76 at each side butt edge to edge and are welded together at the butt joins 78. Sufficient gas-tightness is achieved without welding down the full length of each butt join 78 but welding must be provided where the ducts 66, 68 cross butt joins, in order to achieve water-tightness.
- the hot flue gases coming into the economiser 8 from the boiler 22 yield up a large proportion of their heat to the incoming return water flowing through the vessels 12, 14, 16 and which is consequently warmed by 4-6°C (7-10°F) before returning to the boiler 22 itself.
- the unit formed by the boiler 22 and the economiser 8 can achieve an overall water heating efficiency of around 90-95%. This cools the flue gases sufficiently that condensation can occur within the economiser (where it initially forms on the vessels 12, 14 16) and also within the chimney into which the flue gas from the outlet 48 passes. Any condensation which forms on the front surface of the rearmost heat exchange vessel 12, or on the vessels 14 or 16, or any which drops back into the casing 10 from the chimney will fall onto the bottom surface 80 of the casing 10.
- baffle 42 is shaped so that any condensation running down the rear surface of the heat exchange vessel 12 will be diverted through the small gap 82 between the vessel 12 and the baffle, rather than dripping back into the boiler.
- the reduction in efficiency caused by gas leakage through this aperture 82 is sufficiently small as to be acceptable.
- the bottom surface 80 of the casing 10 is inclined so that condensation falling onto it drains rearwardly, and flows out through an outlet aperture 84 from which a duct 86 leads first downwardly and then sideways (backwards from the plane of the paper as seen in Fig. 2) leading out through the side of the economiser.
- a flexible plastic tube 88 is connected onto the duct 86 and this is used to carry any condensation away to some convenient drain.
- the position of the economiser 8 above the boiler 22 gives some hydrostatic head, and enables the tube 88 to be run along a wall for some distance if this is required in order to reach a drain.
- a guard 89 partially surrounds the outlet 84.
- the economiser 8 also has provision for causing the deposition of fly ash at a point from which it can be removed reasonably easily.
- the vessels 12 and 14 together with the baffles 40, 42 constrain the flue gas to reverse its direction, as indicated by arrow 90, from downwardly to upwardly beneath the vessels 14, 16.
- the reversal of direction induces deposition of any fly ash from the flue gas stream.
- the large void space at this point means that the cross section available for flow of the flue gas increases rapidly as the gas debouches from the passage between the vessels 12 and 14, so causing the speed of flow to reduce. This slowing further induces deposition of any entrained fly ash.
- an access door 92 is provided enabling removal of any fly ash which as accumulated in the void space beneath the vessels 14, 16 (where the space available is such that some build up of ash is tolerable. Provision for promoting deposition of fly ash at a place from which it can be removed obviates the formation of blockages elsewhere. When the ash is removed the surfaces of the vessels 12, 14, 16 can be lightly brushed to maintain their heat exchange efficiency.
- a guard 89 is placed around this. It consists of a small metal strip bent into a U-shape and positioned around the outlet 84 so that the opening between the arms of the U is at the rear. One arm only of the U-shape can be seen in Fig. 2. Alternatively the guard could completely encircle the outlet 84, but have a serrated bottom edge standing on the bottom surface of the casing 10. Condensate would pass between the serrations but these would act as a coarse filter, holding back the fly ash.
- the parts of the economiser are made of mild steel plate.
- a theremset- ting synthetic resin coating is applied to all of the interior surfaces which in use are exposed to flue gas.
- the coating is provided by applying a fairly thick film of a phenolic epoxy resin paint curable by heating, and then baking to effect the curing and provide a hard impermeable coating.
- the paint is applied by dip coating to the whole of the inner casing 10, with the vessels 12, 14, 16 and the ducts 66, 68 in place and with the inlet 50 and outlet 60 temporarily blocked to close off the system of spaces which in use are filled with water.
- the assembled casing 10 is submerged in a suitably shaped tank filled with the paint, so that (inter alia) all interior surfaces of the casing and the exterior surfaces of the heat exchanger vessels (which are the surfaces exposed to flue gas, in use) are coated by the paint.
- the casing is then lifted out and surplus paint allowed to drain back into the tank. After it has drained the casing is stoved to cure the coating.
- the paint can be a stoving modified epoxy paint containing pigment, paint extenders (finely ground powders such as barytes and talc) liquid synthetic resins such as epoxy alkyd and melamine-formaldehye, hydrocarbon and other solvent liquids such as ethyl cellosolve (2-ethoxy- ethan-1- 0 1).
- paint extenders finely ground powders such as barytes and talc
- liquid synthetic resins such as epoxy alkyd and melamine-formaldehye
- hydrocarbon and other solvent liquids such as ethyl cellosolve (2-ethoxy- ethan-1- 0 1).
- the paint film which remained after the casing had been allowed to drain was rather thick and gave an eventual baked coat about 50 ,um (0.002 inch) thick. Only a single coat would normally be applied but if appropriate to meet extremely difficult conditions a further coat could be applied. This would be put on after the first coat had been baked and the casing allowed to cool back to room temperature. It would be applied by dip coating as above, with stoving at the same temperature but for 15 minutes.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT81300296T ATE10787T1 (de) | 1980-01-29 | 1981-01-22 | Waermetauschvorrichtung. |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB8002879 | 1980-01-29 | ||
GB8002879 | 1980-01-29 | ||
GB8017672 | 1980-05-20 | ||
GB8017672 | 1980-05-20 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0033229A2 EP0033229A2 (fr) | 1981-08-05 |
EP0033229A3 EP0033229A3 (en) | 1981-08-12 |
EP0033229B1 true EP0033229B1 (fr) | 1984-12-12 |
Family
ID=26274320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81300296A Expired EP0033229B1 (fr) | 1980-01-29 | 1981-01-22 | Appareil d'échange de chaleur |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0033229B1 (fr) |
DE (1) | DE3167669D1 (fr) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0057095B1 (fr) * | 1981-01-22 | 1988-05-25 | Archibald Watson Kidd | Protection des éléments exposés aux gaz usés |
GB2134233B (en) * | 1983-01-25 | 1986-07-09 | Kidd Archibald W | Heat exchange apparatus |
FR2554565B1 (fr) * | 1983-11-07 | 1988-12-09 | Leblanc Sa E L M | Chaudiere a condensation |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE738121C (de) * | 1936-02-02 | 1943-08-04 | Ferdinand Killewald | Verfahren und Einrichtung zum Korrosionsschutz bei Dampfheizungsanlagen |
FR1440745A (fr) * | 1961-07-06 | 1966-06-03 | Pneumatiques, Caoutchouc Manufacture Et Plastiques Kleber Colombes | Pneumatique à sommet renforcé |
FR2293674A1 (fr) * | 1974-12-06 | 1976-07-02 | Forissier Bouilhol Germain | Dispositif de recuperation de la chaleur evacuee dans les conduits de fumees par les appareils de chauffage notamment ceux agissant par l'intermediaire d'un fluide en circulation |
FR2321094A1 (fr) * | 1975-08-12 | 1977-03-11 | Rheem Bv | Installation de chauffage central et boite a fumee pour chaudiere d'une telle installation |
NL7612508A (en) * | 1976-11-10 | 1978-05-12 | Veg Gasinstituut Nv | Gas heating operating system - uses heat exchanger cooling combustion gases below dew point and has reheating layout |
DE2758181A1 (de) * | 1977-12-27 | 1979-07-05 | Schako Metallwarenfabrik | Vorrichtung zur rueckgewinnung der abgaswaerme von heizungsfeuerungen |
FR2426233A1 (fr) * | 1978-05-20 | 1979-12-14 | Vaillant Sarl | Source de chaleur a combustible comportant un echangeur de chaleur chauffe par les gaz de combustion |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2720397A1 (de) * | 1977-05-06 | 1978-11-09 | Helmut Ing Grad Junkers | Kesselanlage einer zentralheizung |
-
1981
- 1981-01-22 EP EP81300296A patent/EP0033229B1/fr not_active Expired
- 1981-01-22 DE DE8181300296T patent/DE3167669D1/de not_active Expired
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE738121C (de) * | 1936-02-02 | 1943-08-04 | Ferdinand Killewald | Verfahren und Einrichtung zum Korrosionsschutz bei Dampfheizungsanlagen |
FR1440745A (fr) * | 1961-07-06 | 1966-06-03 | Pneumatiques, Caoutchouc Manufacture Et Plastiques Kleber Colombes | Pneumatique à sommet renforcé |
FR2293674A1 (fr) * | 1974-12-06 | 1976-07-02 | Forissier Bouilhol Germain | Dispositif de recuperation de la chaleur evacuee dans les conduits de fumees par les appareils de chauffage notamment ceux agissant par l'intermediaire d'un fluide en circulation |
FR2321094A1 (fr) * | 1975-08-12 | 1977-03-11 | Rheem Bv | Installation de chauffage central et boite a fumee pour chaudiere d'une telle installation |
NL7612508A (en) * | 1976-11-10 | 1978-05-12 | Veg Gasinstituut Nv | Gas heating operating system - uses heat exchanger cooling combustion gases below dew point and has reheating layout |
DE2758181A1 (de) * | 1977-12-27 | 1979-07-05 | Schako Metallwarenfabrik | Vorrichtung zur rueckgewinnung der abgaswaerme von heizungsfeuerungen |
FR2426233A1 (fr) * | 1978-05-20 | 1979-12-14 | Vaillant Sarl | Source de chaleur a combustible comportant un echangeur de chaleur chauffe par les gaz de combustion |
Also Published As
Publication number | Publication date |
---|---|
DE3167669D1 (en) | 1985-01-24 |
EP0033229A3 (en) | 1981-08-12 |
EP0033229A2 (fr) | 1981-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100451526C (zh) | 用于锅炉和热水供应系统的通用热交换器 | |
EP0073560B1 (fr) | Installation de chauffage de fluides chauffée par combustible | |
US4419942A (en) | Stove | |
EP0033229B1 (fr) | Appareil d'échange de chaleur | |
GB2066432A (en) | Boiler for a heating system | |
US4351276A (en) | Heat recovery device for boilers | |
DE102009050507B4 (de) | Feststoff-Brennvorrichtung mit Wärmetauscher zur Wärmeübertragung an einen Flüssigkeits-Kreislauf | |
IE20040322A1 (en) | A condensing unit | |
CN109163365A (zh) | 一种高能效集成灶 | |
GB2103351A (en) | Flue arrangements for boilers | |
SU987355A1 (ru) | Теплообменник | |
US9631877B2 (en) | Furnace heat exchanger coupling | |
US10760820B2 (en) | Condensing boiler | |
EP0057095B1 (fr) | Protection des éléments exposés aux gaz usés | |
GB2134233A (en) | Heat exchange apparatus | |
JPS5827209Y2 (ja) | 給水加熱器 | |
EP0062573B1 (fr) | Chaudière à combustible solide | |
CA1146030A (fr) | Chaudiere a eau chaude | |
CN220602253U (zh) | 一种换热装置 | |
CN208431942U (zh) | 防冷凝水腐蚀的冷凝锅炉 | |
SU1368578A1 (ru) | Воздухоподогреватель | |
JPH0449511Y2 (fr) | ||
RU2482400C1 (ru) | Конденсационный водогрейный котел | |
US1595746A (en) | Heat-exchange device | |
JPS6142020Y2 (fr) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT NL SE |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19811019 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE CH DE FR GB IT LI SE |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI SE |
|
REF | Corresponds to: |
Ref document number: 10787 Country of ref document: AT Date of ref document: 19841215 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3167669 Country of ref document: DE Date of ref document: 19850124 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19850209 Year of fee payment: 5 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19860121 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19860131 Ref country code: CH Effective date: 19860131 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19870122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19870123 |
|
BERE | Be: lapsed |
Owner name: KIDD ARCHIBALD WATSON Effective date: 19870131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19870930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19871001 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19890131 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19950113 Year of fee payment: 15 |
|
EUG | Se: european patent has lapsed |
Ref document number: 81300296.1 Effective date: 19870923 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19960122 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19960122 |