EP0033229A2 - Appareil d'échange de chaleur - Google Patents

Appareil d'échange de chaleur Download PDF

Info

Publication number
EP0033229A2
EP0033229A2 EP81300296A EP81300296A EP0033229A2 EP 0033229 A2 EP0033229 A2 EP 0033229A2 EP 81300296 A EP81300296 A EP 81300296A EP 81300296 A EP81300296 A EP 81300296A EP 0033229 A2 EP0033229 A2 EP 0033229A2
Authority
EP
European Patent Office
Prior art keywords
heat exchange
flue gas
casing
fluid medium
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81300296A
Other languages
German (de)
English (en)
Other versions
EP0033229A3 (en
EP0033229B1 (fr
Inventor
Archibald Watson Kidd
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT81300296T priority Critical patent/ATE10787T1/de
Publication of EP0033229A2 publication Critical patent/EP0033229A2/fr
Publication of EP0033229A3 publication Critical patent/EP0033229A3/en
Application granted granted Critical
Publication of EP0033229B1 publication Critical patent/EP0033229B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • F28D21/0005Recuperative heat exchangers the heat being recuperated from exhaust gases for domestic or space-heating systems
    • F28D21/0007Water heaters

Definitions

  • This invention relates to heat exchange apparatus, also known as an "economiser", serving to withdraw heat from flue gases. It is primarily concerned with apparatus which would receive the flue gas from domestic or small commercial heating apparatus used to heat a fluid medium, especially water. Such heating apparatus would typically have a heat output in the range 60,000 to 300,000.Th.U/h (approximately 16 to 84 kilowatts) and heat a fluid medium such as water for central heating or air for a ducted warm air central heating system. It may be oil or gas fired apparatus in accordance with my co-pending United States Application Serial No. 177919, Canadian Patent Serial No. 358404 and European Patent Application No. 80.302818.2, intended to be published under No. 0024376.
  • the apparatus of the present invention serves to transfer heat from the flue gas to a fluid medium and this fluid medium will generally be the same as that which is heated in the main heating apparatus; if so the heated fluid medium which flows out from the heat exchange apparatus of this invention passes on to the main heating apparatus where it is heated further.
  • One object of this invention is to provide heat exchange apparatus for withdrawing heat from flue gases which will enable an improvement in overall efficiency, for example to 90-95%, to be obtained without undue difficulty being caused by condensation.
  • the invention achieves this by providing for drainage of condensation out of the heat exchange apparatus in an acceptable manner. Preferably condensation forming on any cooled part of the apparatus, or dripping back from the chimney, is intercepted and drained out, so that none of the condensation returns to the boiler.
  • fly ash particles i.e. particles of solid material entrained in the flue gas
  • fly ash particles can accumulate and tend to block the chimney, particularly at its base or at a point in the chimney at which there is a change in the direction of flow.
  • Such fly ash can cake into hard material in the presence of the condensation referred to above.
  • the present invention seeks to overcome this problem by inducing the deposition of entrained solid particles within the heat exchange apparatus'and moreover at a place where this deposition can be tolerated and from which the deposited particles can reasonably easily be removed.
  • Deposition is induced by constraining the flue gas to reverse its direction from downwardly to upwardly, preferably accompanied by an increase in the cross sectional area available for flow.
  • a further object of this invention is to provide heat exchange apparatus of the type specified which will be resistant to the corrosive effects of sulphur acids contained in any condensation.
  • the invention provides heat exchange apparatus having surfaces which are to be exposed to flue gases coated with a thermosetting synthetic resin resistant to the heat of the flue gas.
  • a thermosetting synthetic resin resistant to the heat of the flue gas Preferably the resin is applied by a dip coating process and more preferably it is an epoxy resin paint applied by dip coating and cured by heating.
  • the economiser can be mounted, for example on a wall, above an existing boiler or other fuel burning heating apparatus.
  • the economiser and fuel burning apparatus are being designed to go together, they can be made to form a single unit with the economiser mounted above and supported by the fuel-burning apparatus.
  • the economiser .8 broadly comprises a casing 10 through which flue gas passes and within which there are heat exchange vessels 12,14,16 which in use are filled with water to be heated and which are exposed to the flue gas. If desired these vessels 12,14,16 could be provided with metal fins or could be corrugated to enhance their heat exchange efficiency.
  • the casing 10 is contained within an outer casing 18, whose front face is designated 19.
  • the space between the two casings is packed with thermal insulation such as glass wool 20.
  • the economiser 8 is mounted above an oil-fired water-heating boiler 22 which is generally as described in my co-pending applications referred to previously.
  • the two pieces of apparatus are constructed as a single unit with the weight of the economiser taken by the boiler 22 beneath. It will be seen that the sides of the outer casing 18 of the economiser lie flush with the sides 26 of the outer casing of the boiler.
  • a duct 36 which also extends across substantially the full width of the boiler, carries the flue gas up to the inlet 38 to the casing 10.
  • the duct 36 is formed by an extension of the casing 10 and it is contained within an outer casing 39 integral with the casing 18. Heat insulation 20 is provided between the duct 36 and this outer casing at the front and rear (as shown by Fig. 2) and also at each side.
  • the inlet 38 to the casing 10 extends across the full width of that casing.
  • spiral metal retarders (not shown). The spacing of the economiser 8 above the boiler 22, together with a forward tilt to the rearmost tubes 30 allows these retarders to be pulled out for cleaning.
  • the flue gases are constrained by baffles 40, 42 to flow first upwardly over the rear surface 44 of the heat exchange vessel 12 then downwardly over the facing surfaces of the vessels 12 and 14 and thereafter round and up over the front surface 46 of the vessel 14 and both surfaces of the vessel 16.
  • the flue gases finally flow out of the casing 10 through an upper outlet 48.
  • Both the main boiler 22 and the economiser 8 are employed to heat water, for a central heating system for instance.
  • This water flows first through the vessels in the economiser 8 generally in countercurrent to the flue gas and then into the tank 34 of the boiler 22.
  • the cold return of water from the central heating system is connected so as to flow into the heat exchange vessel 16 through its inlet 50 (Fig. 1). Water leaves this vessel through an upper outlet hole 52 and is carried by duct 66 to an inlet hole 54 of the vessel 14.
  • the water flows out of vessel 14 through a hole 56 into duct 68 leading to an upper inlet hole 58 of the vessel 12 which has a lower, outlet hole 60 connected by a pipe 62 to an inlet 64 of the tank 34.
  • An outlet, not shown, from the tank 34 provides the hot flow to the central heating system.
  • the ducts 66, 68 are cuboidal boxes welded to the side wall of the casing 10. Each of these boxes is open on its side welded against the wall of the casing, which thus closes the boxes to form ducts between the holes 54 and 56 and between the holes 58 and 60.
  • a small tube 70 is provided connecting the ducts 66 and 68 and on the outer side of the duct 66 a small bleed valve, of the type used for central heating radiators, is provided through which air trapped in the apparatus can be vented.
  • Each of the vessels, 12,14,16 is constructed from two pieces of sheet steel which are bent into an L shape (see Fig. 2) and the two pieces then joined by welds 74 to form a hollow box section. This box section is then welded at each end to a plate 76 forming a part of a sidewall of the casing 10.
  • the economiser is assembled the three plates 76 at each side butt edge to edge and are welded together at the butt joins 78. Sufficient gas-tightness is achieved without welding down the full length of each butt join 78 but welding must be provided where the ducts 66,68 cross butt joins, in order to achieve water-tightness.
  • the hot flue gases coming into the economiser 8 from the boiler 22 yield up a large proportion of their heat to the incoming return water flowing through the vessels 12,14,16 and which is consequently warmed by 7-10 F ( 4 -6 0 c) before returning to the boiler 22 itself.
  • the unit formed by the boiler 22 and the economiser 8 can achieve an overall water heating efficiency of around 90-95%. This cools the flue gases sufficiently that condensation can occur within the economiser (where it initially forms on the vessels 12,14,16) and also within the chimney into which the flue gas from the outlet 48 passes. Any condensation which forms on the front surface of the rearmost heat exchange vessel 12, or on the vessels 14 or 16, or any which drips back into the casing 10 from the chimney will fall onto the bottom surface 80 of the casing 10.
  • baffle 42 is shaped so that any condensation running down the rear surface of the heat exchange vessel 12 will be diverted through the small gap 82 between the vessel 12 and the baffle, rather than dripping back into the boiler.
  • the reduction in efficiency caused by gas leakage through this aperture 82 is sufficiently small as to be acceptable.
  • the bottom surface 80 of the casing 10 is inclined so that condensation falling onto it drains rearwardly, and flows out through an outlet aperture 84 from which a duct 86 leads first downwardly and then sideways (backwards from the plane of the paper as seen in Fig. 2) leading out through the side of the economiser.
  • a flexible plastic tube 88 is connected onto the duct 86 and this is used to carry any condensation away to some convenient drain.
  • the position of the economiser 8 above the boiler 22 gives some hydrostatic head, and enables the tube 88 to be run along a wall for some distance if this is required in order to reach a drain.
  • a guard 89 partially surrounds the outlet 84.
  • the economiser 8 also has provision for causing the deposition of fly ash at a point from which it can be removed reasonably easily.
  • the vessels 12 and 14 together with the baffles 40,42 constrain the flue gas to reverse its direction, as indicated by arrow 90, from downwardly to upwardly beneath the vessels 14,16.
  • the reversal of direction induces deposition of any fly ash from the flue gas stream.
  • the large void space at this point means that the cross section available for flow of the flue gas increases rapidly as the gas debouches from the passage between the vessels 12 and 14, so causing the speed of flow to reduce. This slowing further induces deposition of any entrained fly ash.
  • an access door 92 is provided enabling removal of any fly ash which has accumulated in the void space beneath the vessels 14,16 (where the space available is such that some build up of ash is tolerable. Provision for promoting deposition of fly ash at a place from which it can be removed obviates the formation of blockages elsewhere. When the ash is removed the surfaces of the vessels 12,14,16 can be lightly brushed to maintain their heat exchange efficiency.
  • a guard 89 is placed around this. It consists of a small metal strip bent into a U-shape and positioned around the outlet 84 so that the opening between the arms of the U is at the rear. One arm only of the U-shape can be seen in Fig. 2. Alternatively the guard could completely encircle the outlet 84, but have a serrated bottom edge standing on the bottom surface of the casing 10. Condensate would pass between the serrations but these would act as a coarse filter, holding back the fly ash.
  • the parts of the economiser are made of mild steel plate.
  • a thermosetting synthetic resin coating is applied to all of the interior surfaces which in use are exposed to flue gas
  • the coating is provided by applying a fairly thick film of a phenolic epoxy resin paint curable by heating, and then baking to effect the curing and provide a hard impermeable coating.
  • the paint is applied by dip coating to the whole of the inner casing 10, with the vessels 12,14,16 and the ducts 66,68 in place and with the inlet 50 and outlet 60 temporarily blocked to close off the system of spaces which in use are filled with water.
  • the assembled casing 10 is submerged in a suitably shaped tank filled with the paint, so that (inter alia) all interior surfaces of the casing and the exterior surfaces of the heat exchanger vessels (which are the surfaces exposed to flue gas, in use) are coated by the paint.
  • the casing is then lifted out and surplus paint allowed to drain back into the tank. After it has drained the casing is stoved to cure the coating.
  • the paint can be a stoving modified epoxy paint containing pigment, paint extenders (finely ground powders such as barytes and talc) liquid synthetic resins such as epoxy alkyd and melamine-formaldehyde, hydrocarbon and other solvent liquids such as ethyl cellosolve (2-ethoxyethan-l-ol)
  • An epoxy phenolic enamel paint has been successfully used. It was a paint supplied by Pinchin Johnson Paints Packaging and Coil Coating Division, London, England under their designation PJ 2088. This paint has hitherto been used for coating steel drums, an application where it is not, of course, subject to heat in use. As supplied it contained 40-44% solids by weight. For application it was diluted by adding thinner from the same manufacturer, supplied under their designation number 0000 5 1059. The thinner comprises ethyl cellosolve blended with low boiling naptha. About 4 to 5 litres of this were added to 100 litres of the paint. This dilution gave a creamy consistency slightly more viscous than domestic gloss paint.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
EP81300296A 1980-01-29 1981-01-22 Appareil d'échange de chaleur Expired EP0033229B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81300296T ATE10787T1 (de) 1980-01-29 1981-01-22 Waermetauschvorrichtung.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB8002879 1980-01-29
GB8002879 1980-01-29
GB8017672 1980-05-20
GB8017672 1980-05-20

Publications (3)

Publication Number Publication Date
EP0033229A2 true EP0033229A2 (fr) 1981-08-05
EP0033229A3 EP0033229A3 (en) 1981-08-12
EP0033229B1 EP0033229B1 (fr) 1984-12-12

Family

ID=26274320

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81300296A Expired EP0033229B1 (fr) 1980-01-29 1981-01-22 Appareil d'échange de chaleur

Country Status (2)

Country Link
EP (1) EP0033229B1 (fr)
DE (1) DE3167669D1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0057095A2 (fr) * 1981-01-22 1982-08-04 Archibald Watson Kidd Protection des éléments exposés aux gaz usés
GB2134233A (en) * 1983-01-25 1984-08-08 Kidd Archibald W Heat exchange apparatus
GB2149484A (en) * 1983-11-07 1985-06-12 Leblanc Sa E L M Condensation boiler

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE738121C (de) * 1936-02-02 1943-08-04 Ferdinand Killewald Verfahren und Einrichtung zum Korrosionsschutz bei Dampfheizungsanlagen
FR1440745A (fr) * 1961-07-06 1966-06-03 Pneumatiques, Caoutchouc Manufacture Et Plastiques Kleber Colombes Pneumatique à sommet renforcé
FR2293674A1 (fr) * 1974-12-06 1976-07-02 Forissier Bouilhol Germain Dispositif de recuperation de la chaleur evacuee dans les conduits de fumees par les appareils de chauffage notamment ceux agissant par l'intermediaire d'un fluide en circulation
FR2321094A1 (fr) * 1975-08-12 1977-03-11 Rheem Bv Installation de chauffage central et boite a fumee pour chaudiere d'une telle installation
NL7612508A (en) * 1976-11-10 1978-05-12 Veg Gasinstituut Nv Gas heating operating system - uses heat exchanger cooling combustion gases below dew point and has reheating layout
DE2720397A1 (de) * 1977-05-06 1978-11-09 Helmut Ing Grad Junkers Kesselanlage einer zentralheizung
DE2758181A1 (de) * 1977-12-27 1979-07-05 Schako Metallwarenfabrik Vorrichtung zur rueckgewinnung der abgaswaerme von heizungsfeuerungen
FR2426233A1 (fr) * 1978-05-20 1979-12-14 Vaillant Sarl Source de chaleur a combustible comportant un echangeur de chaleur chauffe par les gaz de combustion

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE738121C (de) * 1936-02-02 1943-08-04 Ferdinand Killewald Verfahren und Einrichtung zum Korrosionsschutz bei Dampfheizungsanlagen
FR1440745A (fr) * 1961-07-06 1966-06-03 Pneumatiques, Caoutchouc Manufacture Et Plastiques Kleber Colombes Pneumatique à sommet renforcé
FR2293674A1 (fr) * 1974-12-06 1976-07-02 Forissier Bouilhol Germain Dispositif de recuperation de la chaleur evacuee dans les conduits de fumees par les appareils de chauffage notamment ceux agissant par l'intermediaire d'un fluide en circulation
FR2321094A1 (fr) * 1975-08-12 1977-03-11 Rheem Bv Installation de chauffage central et boite a fumee pour chaudiere d'une telle installation
NL7612508A (en) * 1976-11-10 1978-05-12 Veg Gasinstituut Nv Gas heating operating system - uses heat exchanger cooling combustion gases below dew point and has reheating layout
DE2720397A1 (de) * 1977-05-06 1978-11-09 Helmut Ing Grad Junkers Kesselanlage einer zentralheizung
DE2758181A1 (de) * 1977-12-27 1979-07-05 Schako Metallwarenfabrik Vorrichtung zur rueckgewinnung der abgaswaerme von heizungsfeuerungen
FR2426233A1 (fr) * 1978-05-20 1979-12-14 Vaillant Sarl Source de chaleur a combustible comportant un echangeur de chaleur chauffe par les gaz de combustion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0057095A2 (fr) * 1981-01-22 1982-08-04 Archibald Watson Kidd Protection des éléments exposés aux gaz usés
EP0057095A3 (en) * 1981-01-22 1983-02-16 Archibald Watson Kidd Protection of parts exposed to flue gas
GB2134233A (en) * 1983-01-25 1984-08-08 Kidd Archibald W Heat exchange apparatus
GB2149484A (en) * 1983-11-07 1985-06-12 Leblanc Sa E L M Condensation boiler

Also Published As

Publication number Publication date
EP0033229A3 (en) 1981-08-12
DE3167669D1 (en) 1985-01-24
EP0033229B1 (fr) 1984-12-12

Similar Documents

Publication Publication Date Title
EP0073560B1 (fr) Installation de chauffage de fluides chauffée par combustible
EP0033229A2 (fr) Appareil d'échange de chaleur
RU2333430C1 (ru) Конденсационная водогрейная установка наружного размещения
GB2025599A (en) Waste-heat recovery method and apparatus
US4351276A (en) Heat recovery device for boilers
CA1262221A (fr) Bloc chaudiere fonctionnant au gaz
US4653434A (en) Automatic water heater systems
CN109163365A (zh) 一种高能效集成灶
GB2103351A (en) Flue arrangements for boilers
FR2570173A1 (fr) Echangeur thermique, notamment pour chaudiere a condensation
SU987355A1 (ru) Теплообменник
GB2096288A (en) Heating system
EP0057095B1 (fr) Protection des éléments exposés aux gaz usés
RU2482400C1 (ru) Конденсационный водогрейный котел
JPS6142020Y2 (fr)
GB2134233A (en) Heat exchange apparatus
JPS5827209Y2 (ja) 給水加熱器
JPH0449511Y2 (fr)
SU1368578A1 (ru) Воздухоподогреватель
RU2125203C1 (ru) Способ сухой консервации труб поверхностей нагрева водогрейных котлов при сезонных простоях
JPS609524Y2 (ja) 排ガスエコノマイザの煤煙付着防止装置
GB2552523A (en) Condensing boiler
CA1146030A (fr) Chaudiere a eau chaude
CN109323316A (zh) 一种燃气高效利用集成灶
RU2137052C1 (ru) Теплогенератор "рязань-3"

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL SE

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19811019

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE FR GB IT LI SE

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI SE

REF Corresponds to:

Ref document number: 10787

Country of ref document: AT

Date of ref document: 19841215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3167669

Country of ref document: DE

Date of ref document: 19850124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19850209

Year of fee payment: 5

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19860121

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19860131

Ref country code: CH

Effective date: 19860131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19870122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19870123

BERE Be: lapsed

Owner name: KIDD ARCHIBALD WATSON

Effective date: 19870131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19870930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19871001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950113

Year of fee payment: 15

EUG Se: european patent has lapsed

Ref document number: 81300296.1

Effective date: 19870923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960122

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960122