EP0030619B1 - Rotor compressor, especially screw rotor compressor, with lubricant supply to and drainage thereof from the bearings - Google Patents

Rotor compressor, especially screw rotor compressor, with lubricant supply to and drainage thereof from the bearings Download PDF

Info

Publication number
EP0030619B1
EP0030619B1 EP80106829A EP80106829A EP0030619B1 EP 0030619 B1 EP0030619 B1 EP 0030619B1 EP 80106829 A EP80106829 A EP 80106829A EP 80106829 A EP80106829 A EP 80106829A EP 0030619 B1 EP0030619 B1 EP 0030619B1
Authority
EP
European Patent Office
Prior art keywords
compressor
oil
lubricating
bearing
drainage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80106829A
Other languages
German (de)
French (fr)
Other versions
EP0030619A1 (en
Inventor
Karl Prof. Dr.-Ing. Bammert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cessione man Gutehoffnungshutte GmbH
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0030619A1 publication Critical patent/EP0030619A1/en
Application granted granted Critical
Publication of EP0030619B1 publication Critical patent/EP0030619B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/008Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids for other than working fluid, i.e. the sealing arrangements are not between working chambers of the machine
    • F04C27/009Shaft sealings specially adapted for pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the invention relates to a rotary compressor, in particular a screw rotor compressor, in which each end of the shaft of the or each rotor is mounted in the housing by means of a radial sliding bearing and is surrounded by a shaft seal between the latter and the working space of the compressor, and a lubricating oil circuit is provided for bearing lubrication, with a lubricating oil container from which from which the lubricating oil is fed to the bearings via an oil pump and lines and into which the lubricating oil that flows from each bearing into a storage space on the side of the bearing facing away from the working space flows back via oil return channels.
  • a compressor of this type is known from DE-OS 2 441 520, in which the annular drainage space is part of an elaborate sealing arrangement of great length, which has the purpose of sucking unfiltered outside air into the working space of the compressor and the leakage of lubricant. and to avoid coolant from the compressor working space along the shaft.
  • the sealing arrangement has, in addition to the drainage space, further annular spaces, one of which is acted upon as a barrier pressure space by a compressed gas source, in particular by the compressor outlet.
  • the annular drainage space opens up to the outside, and this means that the quantities of gas entering the drainage space from the barrier pressure space are lost.
  • a length-increasing seal with sealing oil supply is arranged between the outer chamber and the bearing. Part of the sealing oil gets into the outer chamber, is drawn off together with the leak gas and must be separated from the leak gas by a cyclone separator. If a refrigerant is compressed, parts of it will dissolve in the sealing oil so that it is lost for reuse.
  • the invention has for its object to provide a rotary compressor of the type mentioned, in particular for refrigerant compression, in which a very simple, cheap and space-saving seal arrangement between the work space and the bearing can be used and still both a leakage gas loss and an impairment of the lubricating oil circuit by under Pressure dissolving gas is avoided.
  • a pressure compensation connection is provided between the lubricating oil circuit and the suction side of the compressor, through which the entire lubricating oil circuit on the suction side of the oil pump is essentially under the suction pressure of the compressor, and that between the The shaft seal and the bearing are arranged in a drainage space surrounding the shaft in a ring shape to collect lubricating oil escaping from the bearing on this side and any leakage gas that passes through the shaft seal, which is connected to the associated storage space via a drainage channel and thereby also under the suction pressure of the compressor stands.
  • a second circuit for a coolant and sealant can be provided, which is fed to the working space of the compressor and is separated from the compressed gas stream by a separator connected to the pressure side of the compressor.
  • a connecting line with a valve can be provided between the separator and the separating container of the lubricant circuit, which valve can be controlled by a level switch on the separating container.
  • the compressor has a housing 10, in the working space 12 of which two rotors 14 are mounted next to one another, which engage in one another with helically arranged ribs and grooves. Only one of these rotors 14 is visible in the drawing.
  • the shaft 16 of the rotor is supported at both ends by means of radial sliding bearings 18 and also at the end on the pressure side by means of an axial roller bearing 20.
  • the shaft of one rotor, the main rotor is driven by a drive (not shown), and the main rotor drives the secondary rotor by direct meshing engagement or also by means of a synchronous gear (not shown).
  • the gas to be compressed in particular a refrigerant such as difluoromonochloromethane, which in this case is under the evaporator pressure, is sucked in via the suction line 22 and the suction nozzle 24, compressed in the working chamber 12 by the rotors 14 and via the pressure nozzle 26 and the pressure line 28 as
  • the separator and storage container serving pressure container 30 is supplied, from where it passes through the separating filter 32 and the pipeline 34 to the consumer and, in the case of refrigerants, to the condenser.
  • oil or another liquid suitable as a coolant, sealant and lubricant which is supplied to the working space 12 by means of the line 36 via a cooler 38, a throttle element 40 and the housing bore 42 in order to close the rotors cool, seal against each other and against the housing and lubricate on their meshing flanks.
  • This oil is discharged together with the compressed gas stream via the pressure port 26 and the pressure line 28 and separated from the gas stream in the container 30 and returned to the sump 44.
  • oil is removed from a closed reservoir 46 via a pump 48 and a cooler 50 and fed to the lubricant bores of the bearings 18 via the line 52 and the housing channels 54. From these lubricant holes, the oil enters the bearing gap in both axial directions. A portion of the oil passes directly from the bearing gap into the oil collecting spaces 56, 58, which are connected to one another by a longitudinal channel 60 in the housing 10. The portion of the oil which occurs in the direction of the working space passes from the respective bearing 18 into an annular oil collecting groove 62 which is arranged as a drainage space between each bearing 18 and a sealing element 64 and is connected to the associated oil collecting space 56 and 58 by a channel 66 in each case is.
  • the oil collecting space 56 is connected to the reservoir 46 via an outlet channel 68.
  • the gas space of the reservoir 46 is also connected to the suction line 22 via a compensating line 70.
  • the oil collecting groove 62 which is under low pressure and is arranged between each bearing 18 and the working space 12, effectively leaks oil from the bearing 18 to the working space 12 or vice versa, leaks gas from the working space 12 to the bearing 18 largely prevented.
  • the additional sealing elements 64 are therefore not particularly demanding, it can be simple and very short elements such. B. act short labyrinths or swim rings. These can also be supplied with oil and lubricant pressure through appropriate housing bores, as shown for the pressure-side sealing element.
  • the oil therein can only contain relatively small amounts of a soluble gas, e.g. B. refrigerant, dissolved.
  • a soluble gas e.g. B. refrigerant
  • the corresponding proportion in the reservoir 46 at a pressure of z. B. 5 bar and a temperature of 70 ° C significantly less than 5%, which practically does not affect the viscosity of the oil.
  • a level switch 74 with lower and upper limit contact controls on the one hand a solenoid valve 76, which connects the line 36 to the reservoir 46, and also a solenoid valve 78, which connects the line 52 to the suction line 22 of the compressor.
  • the solenoid valve 76 is opened and oil can get into the container 46 from the pressure container 30. If the oil level in the container 46 rises excessively, the valve 78 opens and excess oil from the container 46 enters the suction line and from there with the gas through the compressor into the reservoir pressure container 30.
  • FIG. 2 shows a simplified embodiment for those applications in which there is no risk of the viscosity of the oil being reduced by dissolved gas because of low working pressures or with gases which are not soluble in oil.
  • the same compressor design as in Fig. 1 can be used without structural changes.
  • Is omitted and the outlet opening 68 of the oil collecting space 56, which is no longer required, is closed with a stopper 80.
  • one of two bores 82, 84 is optionally opened, which connect the longitudinal channel 60 to the intake port 24 or the working chamber 12 of the compressor and of which the other bore or, when used according to FIG. 1, both bores with suitable ones Stopper 86 are closed.
  • the resulting differential pressure between the pressure container 30 and the lubrication or injection points on the compressor is sufficient to the compressor to supply with oil without fear of gas breakthrough to the bearings due to the relatively low lubricant pressure in the bearing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary-Type Compressors (AREA)

Description

Die Erfindung betrifft einen Rotationsverdichter, insbesondere Schraubenrotorverdichter, bei dem jedes Ende der Welle des oder jedes Rotors im Gehäuse mittels Radialgleitlagers gelagert und zwischen diesem und dem Arbeitsraum des Verdichters von einer Wellenabdichtung umgeben ist und zur Lagerschmierung ein Schmierölkreislauf vorgesehen ist mit einem Schmierölbehälter, von dem aus das Schmieröl über eine Ölpumpe und Leitungen den Lagern zugeführt wird und in den das Schmieröl, das aus jedem Lager in einen Lagerraum auf der vom Arbeitsraum abgewandten Seite des Lagers abfließt, über Ölrückführkanäle zurückfließt.The invention relates to a rotary compressor, in particular a screw rotor compressor, in which each end of the shaft of the or each rotor is mounted in the housing by means of a radial sliding bearing and is surrounded by a shaft seal between the latter and the working space of the compressor, and a lubricating oil circuit is provided for bearing lubrication, with a lubricating oil container from which from which the lubricating oil is fed to the bearings via an oil pump and lines and into which the lubricating oil that flows from each bearing into a storage space on the side of the bearing facing away from the working space flows back via oil return channels.

Aus der DE-OS 2 441 520 ist ein Verdichter dieser Art bekannt, bei dem der ringförmige Drainageraum Teil einer aufwendigen Dichtungsanordnung von großer Baulänge ist, die den Zweck hat, das Ansaugen von ungefilterter Außenluft in den Arbeitsraum des Verdichters und das Austreten von Schmier- und Kühlflüssigkeit aus dem Arbeitsraum des Verdichters entlang der Welle zu vermeiden. Zu diesem Zweck weist die Dichtungsanordnung außer dem Drainageraum noch weitere Ringräume auf, von denen einer als Sperrdruckraum von einer Druckgasquelle, insbesondere vom Verdichterauslaß beaufschlagt ist. Der ringförmige Drainageraum öffnet sich ins Freie, und dies bedeutet, daß die aus dem Sperrdruckraum in den Drainageraum gelangenden Gasmengen verloren sind. Damit ist eine solche Dichtungsanordnung aber nur dann verwendbar, wenn der Verdichter Luft verdichtet oder eine Druckluftquelle verfügbar ist, denn entsprechende Verluste eines anderen, vom Verdichter verdichteten Gases, z. B. eines Kältemittels, wäre nicht tragbar. Aber auch bei Verdichtung von Luft müssen die Verluste über die Sperrdruckkammer möglichst gering sein, um den Wirkungsgrad des Verdichters nicht zu sehr zu beeinträchtigen. Die Dichtungsanordnung muß daher hohen Dichtigkeitsanforderungen genügen. Dies bedeutet insbesondere bei höheren Arbeitsdrücken des Verdichters eine große Baulänge der Dichtungsanordnung. Dichtungen mit großer Baulänge bedeuten aber größere Lagerabstände, wodurch sich schon bei relativ kleinen Belastungen unzulässig hohe Durchbiegungen und Biegespannungen im Rotor ergeben können.A compressor of this type is known from DE-OS 2 441 520, in which the annular drainage space is part of an elaborate sealing arrangement of great length, which has the purpose of sucking unfiltered outside air into the working space of the compressor and the leakage of lubricant. and to avoid coolant from the compressor working space along the shaft. For this purpose, the sealing arrangement has, in addition to the drainage space, further annular spaces, one of which is acted upon as a barrier pressure space by a compressed gas source, in particular by the compressor outlet. The annular drainage space opens up to the outside, and this means that the quantities of gas entering the drainage space from the barrier pressure space are lost. This means that such a sealing arrangement can only be used if the compressor compresses air or a compressed air source is available, because corresponding losses of another gas compressed by the compressor, e.g. B. a refrigerant would not be portable. But even when compressing air, the losses via the barrier pressure chamber must be as low as possible so as not to impair the efficiency of the compressor too much. The seal arrangement must therefore meet high tightness requirements. This means a large overall length of the sealing arrangement, particularly at higher working pressures of the compressor. Seals with a large overall length mean larger bearing distances, which can result in impermissibly high deflections and bending stresses in the rotor even at relatively low loads.

Ein besonderes Problem besteht bei Verdichtern, die Kältemittel verdichten. Einerseits muß das Kältemittel unter allen Umständen im geschlossenen Prozeßkreislauf verbleiben und darf auch nicht in kleinen Mengen entweichen. Andererseits löst sich das Kältemittel bei höherem Druck im Schmieröl und setzt dessen Schmierfähigkeit in unzulässiger Weise herab. In der Zeitschrift Betriebstechnik, 1969, Heft 12, S.303, Bild 3, sind Wellenabdichtungen für einen Schraubenverdichter dargestellt, mit denen jeglicher Kontakt zwischen dem verdichteten Gas und dem Schmierölkreislauf verhindert werden soll. Aufgrund dieser Zielsetzung ergeben sich Dichtungen von unerwünscht großer axialer Baulänge, da mehrere, möglichst gut abdichtende Dichtstellen in Form von Kohleringen od. dgl. hintereinander angeordnet werden müssen. Bei der linken Ausführungsform in Bild 3 sind zum Auffangen von etwaigem Leckgas drei ringförmige Kammern vorgesehen, von denen die erste oder innere Kammer an die Saugseite eines anderen Verdichterprozesses angeschlossen, während die mittlere Kammer an einen Ejektor angeschlossen und die äußere Kammerfrei zur Atmosphäre ist. Sämtliches Leckgas geht somit aus dem den Schraubenverdichter enthaltenden Kreislauf verloren und belastet entweder einen anderen Verdichterkreislauf oder das Treibgas, mit dem der Ejektor betrieben wird, oder die Atmosphäre. Für die Verdichtung von Kältemitteln ist diese Lösung völlig ungeeignet. In der rechten Ausführungsform von Bild 3 sind die innere und mittlere Kammer geschlossen, und die äußere Kammer ist an die Saugleitung der ersten Verdichterstufe angeschlossen. Sämtliches Leckgas bleibt somit im Verdichterkreislauf und geht nicht verloren. Hier ist jedoch zur Verhinderung jeglichen Kontaktes zwischen Leckgas und dem Schmierölkreislauf eine die Baulänge zusätzlich vergrößernde Dichtung mit Sperrölzuführung zwischen der äußeren Kammer und dem Lager angeordnet. Ein Teil des Sperröls gelangt in die äußere Kammer, wird zusammen mit dem Leckgas abgezogen und muß durch einen Zyklonabscheider vom Leckgas getrennt werden. Falls ein Kältemittel verdichtet ist, werden sich Anteile davon im Sperröl lösen, so daß dieses für die Wiederverwendung verloren ist.There is a particular problem with compressors that compress refrigerants. On the one hand, the refrigerant must remain in the closed process cycle under all circumstances and must not escape in small quantities. On the other hand, the refrigerant dissolves in the lubricating oil at higher pressure and impermissibly reduces its lubricating ability. In the magazine Betriebsstechnik, 1969, Issue 12, p.303, Figure 3, shaft seals for a screw compressor are shown, with which any contact between the compressed gas and the lubricating oil circuit is to be prevented. This objective results in seals of undesirably large axial length, since several sealing points in the form of carbon rings or the like, which seal as well as possible, must be arranged one behind the other. In the left embodiment in Figure 3, three annular chambers are provided to collect any leakage gas, of which the first or inner chamber is connected to the suction side of another compressor process, while the middle chamber is connected to an ejector and the outer chamber is free of the atmosphere. All leakage gas is thus lost from the circuit containing the screw compressor and either loads another compressor circuit or the propellant gas with which the ejector is operated, or the atmosphere. This solution is completely unsuitable for compressing refrigerants. In the right embodiment of Figure 3, the inner and middle chamber are closed and the outer chamber is connected to the suction line of the first compressor stage. All leakage gas therefore remains in the compressor circuit and is not lost. However, in order to prevent any contact between the leakage gas and the lubricating oil circuit, a length-increasing seal with sealing oil supply is arranged between the outer chamber and the bearing. Part of the sealing oil gets into the outer chamber, is drawn off together with the leak gas and must be separated from the leak gas by a cyclone separator. If a refrigerant is compressed, parts of it will dissolve in the sealing oil so that it is lost for reuse.

Der Erfindung liegt die Aufgabe zugrunde, einen Rotationsverdichter der genannten Art, insbesondere für die Kältemittelverdichtung zu schaffen, bei dem eine sehr einfache, billige und platzsparende Dichtungsanordnung zwischen Arbeitsraum und Lager verwendet werden kann und trotzdem sowohl ein Leckgasverlust als auch eine Beeinträchtigung des Schmierölkreislaufs durch unter Druck sich darin lösendes Gas vermieden wird.The invention has for its object to provide a rotary compressor of the type mentioned, in particular for refrigerant compression, in which a very simple, cheap and space-saving seal arrangement between the work space and the bearing can be used and still both a leakage gas loss and an impairment of the lubricating oil circuit by under Pressure dissolving gas is avoided.

Dies wird erfindungsgemäß bei einem Verdichter der eingangs genannten Art dadurch erreicht, daß zwischen dem Schmierölkreislauf und der Ansaugseite des Verdichters eine Druckausgleichsverbindung vorgesehen ist, durch die der gesamte Schmierölkreislauf auf der Saugseite der Ölpumpe im wesentlichen unter dem Ansaugdruck des Verdichters steht, und daß zwischen der Wellenabdichtung und dem Lager ein die Welle ringförmig umgebender Drainageraum zum Auffangen von aus dem Lager nach diser Seite austretendem Schmieröl sowie von eventuellem durch die Wellenabdichtung tretendem Leckgas angeordnet ist, der über einen Drainagekanal mit dem zugehörigen Lagerraum verbunden ist und dadurch ebenfalls unter dem Ansaugdruck des Verdichters steht.This is achieved according to the invention in a compressor of the type mentioned above in that a pressure compensation connection is provided between the lubricating oil circuit and the suction side of the compressor, through which the entire lubricating oil circuit on the suction side of the oil pump is essentially under the suction pressure of the compressor, and that between the The shaft seal and the bearing are arranged in a drainage space surrounding the shaft in a ring shape to collect lubricating oil escaping from the bearing on this side and any leakage gas that passes through the shaft seal, which is connected to the associated storage space via a drainage channel and thereby also under the suction pressure of the compressor stands.

Hierdurch wird der Vorteil erreicht, daß die Drainageräume sowohl den Übertritt von Leckgas zum Lager als auch den Übertritt von Lagerschmiermittel in den Arbeitsraum des Verdichters verhindern, wobei aber andererseits die Schmiermittel- und Gasleckagen in den Drainageraum hinein unproblematisch sind, weil diese Gas- und Flüssigkeitsmengen wieder in den Verdichter bzw. den Schmiermittelkreislauf zurückgeführt werden. Es können daher verhältnismäßig große Leckagen von verdichtetem Gas und gegebenenfalls auch eingespritzter Kühl- und Schmierflüssigkeit aus dem Arbeitsraum in den ringförmigen Drainageraum toleriert werden, und darauf folgt, daß zwischen dem Arbeitsraum und dem Drainageraum nur eine verhältnismäßig sehr einfache, kurze und billige Dichtung, die im wesentlichen nur Drosselwirkung auszuüben braucht, angeordnet werden muß.This has the advantage that the Drainage spaces prevent both the passage of leakage gas to the bearing and the passage of bearing lubricant into the working space of the compressor, but on the other hand the lubricant and gas leaks into the drainage space are unproblematic because these gas and liquid quantities are returned to the compressor or the lubricant circuit to be led back. It can therefore be tolerated relatively large leaks of compressed gas and possibly also injected coolant and lubricant from the work space into the annular drainage space, and it follows that only a relatively very simple, short and cheap seal between the work space and the drainage space essentially only needs to exert throttling action, must be arranged.

Der Kontakt zwischen Leckgas und den im Kreislauf geführten Schmiermittel wird daher, im Gegensatz zum Stand der Technik, in den Drainageräumen bewußt in Kauf genommen. Da jedoch diese Drainageräume, auch auf der Druckseite des Verdichters, unter dem Verdichteransaugdruck stehen, ist auch bei der Verdichtung von Kältemitteln ein in Lösunggehen des Kältemittels im Schmiermittel nicht zu befürchten, da dies nur bei höherem Druck auftritt. Erfindungsgemäß ist jedoch der gesamte Schmiermittelkreislauf völlig von dem verdichteten Gasstrom getrennt, und das Leckgas kommt mit dem Schmiermittel nur unter niedrigem Druck in Berührung. Die geringen Anteile an Leckgas, die bei diesem niedrigen Druck im Schmiermittel in Lösung gehen, haben im Schmierölbehälter Gelegenheit, wieder zu entweichen.In contrast to the prior art, the contact between leakage gas and the lubricants in the circuit is therefore consciously accepted in the drainage rooms. However, since these drainage spaces, also on the pressure side of the compressor, are under the compressor suction pressure, there is no fear of the refrigerant dissolving in the lubricant even when compressing refrigerants, since this only occurs at higher pressures. According to the invention, however, the entire lubricant circuit is completely separated from the compressed gas stream, and the leakage gas only comes into contact with the lubricant under low pressure. The small proportions of leakage gas that dissolve in the lubricant at this low pressure have the opportunity in the lubricating oil tank to escape again.

Es kann ein zweiter Kreislauf für ein Kühl- und Dichtmittel vorgesehen sein, das dem Arbeitsraum des Verdichters zugeführt wird und aus dem verdichteten Gastrom durch einen an die Druckseite des Verdichters angeschlossenen Abscheider wieder abgetrennt wird. Zwischen dem Abscheider und dem Abscheidebehälter des Schmiermittelkreislaufs kann eine Verbindungsleitung mit einem Ventil vorgesehen sein, das durch einen Niveauschalter am Abscheidebehälter steuerbar ist.A second circuit for a coolant and sealant can be provided, which is fed to the working space of the compressor and is separated from the compressed gas stream by a separator connected to the pressure side of the compressor. A connecting line with a valve can be provided between the separator and the separating container of the lubricant circuit, which valve can be controlled by a level switch on the separating container.

Ausführungsformen der Erfindung werden anhand der Zeichnungen näher erläutert.

  • Fig. 1 zeigt einen Längsschnitt durch einen Schraubenverdichter sowie das Fließschema des zugehörigen Ölkreislaufs gemäß einer Ausführungsform der Erfindung.
  • Fig. 2 zeigt in ähnlicher Darstellung wie Fig. 1 eine zweite Ausführungsform mit vereinfachtem Ölkreislauf.
Embodiments of the invention are explained in more detail with reference to the drawings.
  • Fig. 1 shows a longitudinal section through a screw compressor and the flow diagram of the associated oil circuit according to an embodiment of the invention.
  • Fig. 2 shows in a similar representation as Fig. 1, a second embodiment with a simplified oil circuit.

Der Verdichter hat gemäß Fig. 1 ein Gehäuse 10, in dessen Arbeitsraum 12 nebeneinander zwei Rotoren 14 gelagert sind, die mit schraubenförmig angeordneten Rippen und Nuten ineinandergreifen. In der Zeichnung ist nur der eine dieser Rotoren 14 sichtbar. Die Welle 16 des Rotors ist an beiden Enden mittels Radialgleitlagern 18 und außerdem am druckseitigen Ende mittels eines Axialwälzlagers 20 gelagert. Die Welle des einen Rotors, des Hauptläufers, wird durch einen (nicht dargestellten) Antrieb angetrieben, und der Hauptläufer treibt durch direkten Kämmeingriff oder auch über ein (nicht dargestelltes) Gleichlaufgetriebe den Nebenläufer an. Das zu verdichtende Gas, insbesondere ein Kältemittel wie Difluormonochlormethan, das in diesem Fall unter dem Verdampferdruck steht, wird über die Saugleitung 22 und dem Saugstutzen 24 angesaugt, im Arbeitsraum 12 von den Rotoren 14 verdichtet und über den Druckstutzen 26 und die Druckleitung 28 dem als Abscheider und Vorratsbehälter dienenden Druckbehälter 30 zugeführt, von wo es über das Abscheidefilter 32 und die Rohrleitung 34 zum Verbraucher, bei Kältemitteln zum Kondensator gelangt.According to FIG. 1, the compressor has a housing 10, in the working space 12 of which two rotors 14 are mounted next to one another, which engage in one another with helically arranged ribs and grooves. Only one of these rotors 14 is visible in the drawing. The shaft 16 of the rotor is supported at both ends by means of radial sliding bearings 18 and also at the end on the pressure side by means of an axial roller bearing 20. The shaft of one rotor, the main rotor, is driven by a drive (not shown), and the main rotor drives the secondary rotor by direct meshing engagement or also by means of a synchronous gear (not shown). The gas to be compressed, in particular a refrigerant such as difluoromonochloromethane, which in this case is under the evaporator pressure, is sucked in via the suction line 22 and the suction nozzle 24, compressed in the working chamber 12 by the rotors 14 and via the pressure nozzle 26 and the pressure line 28 as The separator and storage container serving pressure container 30 is supplied, from where it passes through the separating filter 32 and the pipeline 34 to the consumer and, in the case of refrigerants, to the condenser.

Im unteren Teil des Druckbehälters 30 befindet sich Öl oder eine andere als Kühl-, Dicht- und Schmiermittel geeignete Flüssigkeit, die mittels der Leitung 36 über einen Kühler 38, ein Drosselorgan 40 und die Gehäusebohrung 42 dem Arbeitsraum 12 zugeführt wird, um die Rotoren zu kühlen, gegeneinander und gegenüber dem Gehäuse abzudichten und an ihren im Kämmeingriff stehenden Flanken zu schmieren. Dieses Öl wird zusammen mit dem verdichteten Gasstrom über den Druckstutzen 26 und die Druckleitung 28 ausgetragen und im Behälter 30 vom Gasstrom abgeschieden und in den Sumpf 44 zurückgeführt.In the lower part of the pressure vessel 30 there is oil or another liquid suitable as a coolant, sealant and lubricant, which is supplied to the working space 12 by means of the line 36 via a cooler 38, a throttle element 40 and the housing bore 42 in order to close the rotors cool, seal against each other and against the housing and lubricate on their meshing flanks. This oil is discharged together with the compressed gas stream via the pressure port 26 and the pressure line 28 and separated from the gas stream in the container 30 and returned to the sump 44.

Zur Schmierung der Lager 18 wird Öl aus einem geschlossenen Vorratsbehälter 46 über eine Pumpe 48 und einem Kühler 50 entnommen und über die Leitung 52 und die Gehäusekanäle 54 den Schmiermittelbohrungen der Lager 18 zugeführt. Aus diesen Schmiermittelbohrungen tritt das Öl nach beiden Axialrichtungen in die Lagerspalte. Ein Teil des Öls gelangt aus dem Lagerspalt unmittelbar in die Ölauffangräume 56, 58, die durch einen Längskanal 60 im Gehäuse 10 miteinander verbunden sind. Der in Richtung auf den Arbeitsraum hin auftretende Anteil des Öls gelangt aus dem jeweiligen Lager 18 in eine ringförmige Ölsammelnut 62, die als Drainageraum zwischen jedem Lager 18 und einem Abdichtelement 64 angeordnet und durch jeweils einen Kanal 66 mit dem zugehörigen Ölsammelraum 56 bzw. 58 verbunden ist. Der Ölauffangraum 56 ist über einen Ablaufkanal 68 mit dem Vorratsbehälter 46 verbunden. Der Gasraum des Vorratsbehälters 46 ist außerdem über eine Ausgleichsleitung 70 mit der Ansaugleitung 22 verbunden. Dadurch stehen der Vorratsbehälter 46, die Räume 56,58 und die Ölsammelnuten 62 unter dem niedrigen Ansaugdruck des Verdichters. Durch die zwischen jedem Lager 18 und dem Arbeitsraum 12 angeordnete Ölsammelnut 62, die unter niedrigem Druck steht, wird in wirksamer Weise eine Leckage von Öl aus dem Lager 18 zum Arbeitsraum 12 bzw. umgekehrt eine Leckage von Gas aus dem Arbeitsraum 12 bis zum Lager 18 weitgehend verhindert. An die zusätzlichen Abdichtelemente 64 werden daher keine besonders hohen Anforderungen gestellt, es kann sich um einfache und sehr kurze Elemente wie z. B. kurze Labyrinthe oder Schwimmringe handeln. Diese können durch entsprechende Gehäusebohrungen zusätzlich mit Öl und Schmiermitteldruck versorgt werden, wie dies für das druckseitige Abdichtelement gezeigt wird.To lubricate the bearings 18, oil is removed from a closed reservoir 46 via a pump 48 and a cooler 50 and fed to the lubricant bores of the bearings 18 via the line 52 and the housing channels 54. From these lubricant holes, the oil enters the bearing gap in both axial directions. A portion of the oil passes directly from the bearing gap into the oil collecting spaces 56, 58, which are connected to one another by a longitudinal channel 60 in the housing 10. The portion of the oil which occurs in the direction of the working space passes from the respective bearing 18 into an annular oil collecting groove 62 which is arranged as a drainage space between each bearing 18 and a sealing element 64 and is connected to the associated oil collecting space 56 and 58 by a channel 66 in each case is. The oil collecting space 56 is connected to the reservoir 46 via an outlet channel 68. The gas space of the reservoir 46 is also connected to the suction line 22 via a compensating line 70. As a result, the reservoir 46, the spaces 56, 58 and the oil collecting grooves 62 are under the low suction pressure of the compressor. The oil collecting groove 62, which is under low pressure and is arranged between each bearing 18 and the working space 12, effectively leaks oil from the bearing 18 to the working space 12 or vice versa, leaks gas from the working space 12 to the bearing 18 largely prevented. The additional sealing elements 64 are therefore not particularly demanding, it can be simple and very short elements such. B. act short labyrinths or swim rings. These can also be supplied with oil and lubricant pressure through appropriate housing bores, as shown for the pressure-side sealing element.

Da der Vorratsbehälter 46 unter dem niedrigen Ansaugdruck des Verdichters steht, kann das darin befindliche Öl nur relativ geringe Mengen eines löslichen Gases, z. B. Kältemittels, gelöst enthalten. Während z. B. in dem Vorratsdruckbehälter 30 unter dem hohen Ausgleichsdruck des Verdichters von z. B. 20 bar und einer Temperatur von z. B. 70° C bis zu 30% Kältemittel gelöst sein können, beträgt der entsprechende Anteil im Vorratsbehälter 46 bei einem Druck von z. B. 5 bar und einer Temperatur von 70°C erheblich weniger als 5%, wodurch praktisch keine Beeinträchtigung der Viskosität des Öls eintritt.Since the reservoir 46 is under the low suction pressure of the compressor, the oil therein can only contain relatively small amounts of a soluble gas, e.g. B. refrigerant, dissolved. During e.g. B. in the reservoir pressure container 30 under the high compensation pressure of the compressor of z. B. 20 bar and a temperature of z. B. 70 ° C up to 30% refrigerant can be solved, the corresponding proportion in the reservoir 46 at a pressure of z. B. 5 bar and a temperature of 70 ° C significantly less than 5%, which practically does not affect the viscosity of the oil.

Da bei dem beschriebenen Verdichter über die Lager und den Arbeitsraum des Verdichters Ölleckagen aus dem Schmiermittelkreislauf in den Kühl- und Dichtmittelkreislauf und umgekehrt auftreten können, ist eine automatische Konstanthaltung der Ölmenge im Vorratsbehälter 46 vorgesehen. Ein Niveauschalter 74 mit unterem und oberem Grenzkontakt steuert einerseits ein Magnetventil 76, das die Leitung 36 mit dem Vorratsbehälter 46 verbindet, und außerdem ein Magnetventil 78, das die Leitung 52 mit der Ansaugleitung 22 des Verdichters verbindet. Sobald der Ölspiegel im Behälter 46 zu stark abgesunken, d. h. zu viel Öl vom Niederdruck- zum Hochdruckkreislauf gelangt ist, wird das Magnetventil 76 geöffnet und es kann Öl vom Druckbehälter 30 in den Behälter 46 gelangen. Steigt der Ölspiegel im Behälter 46 übermäßig an, so öffnet das Ventil 78 und es gelangt überschüssiges Öl aus dem Behälter 46 in die Ansaugleitung und von dort mit dem Gas durch den Verdichter in den Vorratsdruckbehälter 30.Since oil leaks from the lubricant circuit into the coolant and sealant circuit and vice versa can occur in the described compressor via the bearings and the working space of the compressor, the oil quantity in the reservoir 46 is automatically kept constant. A level switch 74 with lower and upper limit contact controls on the one hand a solenoid valve 76, which connects the line 36 to the reservoir 46, and also a solenoid valve 78, which connects the line 52 to the suction line 22 of the compressor. As soon as the oil level in the container 46 has dropped too much, i. H. If too much oil has come from the low-pressure to the high-pressure circuit, the solenoid valve 76 is opened and oil can get into the container 46 from the pressure container 30. If the oil level in the container 46 rises excessively, the valve 78 opens and excess oil from the container 46 enters the suction line and from there with the gas through the compressor into the reservoir pressure container 30.

Fig. 2 zeigt eine vereinfachte Ausführungsform für solche Anwendungsfälle, bei denen wegen niedriger Arbeitsdrücke oder bei nicht in Öl löslichen Gasen die Gefahr einer Viskositätsverminderung des Öls durch gelöstes Gas nicht besteht. Für diesen Fall kann die gleiche Verdichterkonstruktion wie in Fig. 1 ohne bauliche Änderungen verwendet werden. Der Vorratsbehälter 46 von Fig. 1 und die zugehörigen Leitungen u. dgl. wird weggelassen und die nicht mehr benötigte Auslaßöffnung 68 des Ölsammelraums 56 mit einem Stopfen 80 verschlossen. Statt dessen wird wahlweise eine von zwei Bohrungen 82, 84 geöffnet, die den Längskanal 60 mit dem Ansaugstutzen 24 bzw. dem Arbeitsraum 12 des Verdichters verbinden und von denen die jeweils andere Bohrung bzw. bei der Verwendung gemäß Fig. 1 auch beide Bohrungen mit geeigneten Stopfen 86 verschlossen sind. Das gesamte Schmieröl von den Lagern 18 gelangt nun über die jeweils geöffnete Bohrung 82 oder 84 in den Verdichtungsraum, von wo es mit dem verdichteten Gas über die Druckleitung 28 zum Vorratsdruckbehälter 30 gelangt und abgetrennt wird. Aus dessen Ölsumpf 44 wird das Öl dann als Schmiermittel über die Leitungen 90, 92 den Lagern 18 und ferner über die Leitung 94 in den Arbeitsraum des Verdichters zur Schmierung und Kühlung der Rotorflanken geleitet. Ein wesentlicher, auch durch die Ölsammelnuten bzw. Drainageräume 62 bewirkter Vorteil bei dieser Ausführungsform besteht darin, daß eine gesonderte Ölpumpe zur Schmiermittelzuführung nicht erforderlich ist. Da dafür gesorgt ist, daß die den Lagern 18 benachbarten Räume 62,56,58 immer unter dem Druck der Saugseite des Verdichters stehen, reicht der sich ergebende Differenzdruck zwischen dem Druckbehälter 30 und den Schmier- bzw. Einspritzstellen am Verdichter aus, um den Verdichter mit Öl zu versorgen, ohne wegen des relativ geringen Schmiermitteldruckes im Lager einen Gasdurchschlag zu den Lagern befürchten zu müssen.2 shows a simplified embodiment for those applications in which there is no risk of the viscosity of the oil being reduced by dissolved gas because of low working pressures or with gases which are not soluble in oil. In this case, the same compressor design as in Fig. 1 can be used without structural changes. The reservoir 46 of FIG. 1 and the associated lines u. The like. Is omitted and the outlet opening 68 of the oil collecting space 56, which is no longer required, is closed with a stopper 80. Instead, one of two bores 82, 84 is optionally opened, which connect the longitudinal channel 60 to the intake port 24 or the working chamber 12 of the compressor and of which the other bore or, when used according to FIG. 1, both bores with suitable ones Stopper 86 are closed. All of the lubricating oil from the bearings 18 now passes through the respectively opened bore 82 or 84 into the compression space, from where it reaches the supply pressure container 30 with the compressed gas via the pressure line 28 and is separated off. From its oil sump 44, the oil is then passed as a lubricant via lines 90, 92 to bearings 18 and further via line 94 into the working space of the compressor for lubricating and cooling the rotor flanks. A significant advantage in this embodiment, which is also brought about by the oil collecting grooves or drainage spaces 62, is that a separate oil pump for the supply of lubricant is not required. Since it is ensured that the spaces 62, 56, 58 adjacent to the bearings 18 are always under the pressure of the suction side of the compressor, the resulting differential pressure between the pressure container 30 and the lubrication or injection points on the compressor is sufficient to the compressor to supply with oil without fear of gas breakthrough to the bearings due to the relatively low lubricant pressure in the bearing.

Claims (4)

1. A rotary compressor, in particular a screw compressor, wherein each end of the shaft (16) of the or each rotor (14) is mounted in the housing (10) by means of a radial plane bearing (18) and between the latter and the working chamber (12) of the compressor each end of the shaft is surrounded by a shaft seal (64) and for bearing lubrication a lubricating-oil circuit is provided, having a lubricating-oil reservoir (46) from which the lubricating oil is fed to the bearings (18) via an oil pump (48) and pipes (52) and into which the lubricating oil that drains from each bearing into a storage space (56, 58) on the side of the bearing remote from the working chamber (12) flows back via oil return passages (60, 68), characterised in that between the lubricating-oil circuit (46, 52, 56, 58, 60, 68) and the intake side of the compressor there is provided a presure-balancing connection (70), as a result of which the entire lubricating-oil circuit on the inlet side of the oil pump (48) is substantially under the intake pressure of the compressor, and in that between each shaft seal (64) and bearing (18) there is disposed a drainage space (62) annularly surrounding the shaft and serving to collect lubricating oil escaping from the bearing (18) at that end as well as any gas which may have leaked through the shaft seal (64), which drainage space is connected via a drainage duct (66) with the associated storage space (56, 58) and thereby is likewise under the intake pressure of the compressor.
2. A compressor according to Claim 1, characterised in that the pressure-balancing connection from each drainage space (62) extends via the drainage duct (66), the associated storage space (56, 58), the lubricating-oil return passage (60) and also the closed gas chamber of the lubricating-oil reservoir (46) which is connected via a balancing duct (70) with the intake duct (22) of the compressor.
3. A compressor according to Claim 1 or 2, characterised in that, for optional return of oil and any gas which may have leaked, either into the gas chamber of the lubricating-oil reservoir (46) or, by-passing the lubricating-oil reservoir, directly into the intake connection (24) or the working chamber (12) of the compressor, selectively closable openings (68, 82, 84) are provided between, on the one hand, the lubricating-oil return passage (60) or a respective storage space (56) and, on the other hand, the lubricating-oil reservoir (46), or the intake connection (24) or the working chamber (12) of the compressor.
4. A compressor according to one of Claims 1 to 3, with a further oil circuit for feeding coolant and sealing agent into the working chamber of the compressor, which further circuit has a separating vessel (30) connected to the compressor outlet (28) for lubricant entrained by the gas flow and an oil pipe (36, 42) leading from the separating vessel (30) into the working chamber (12) of the compressor, characterised in that the separating vessel (30) is connected with the lubricating-oil reservoir (46) via a connecting pipe (36) with a valve (76) which is controllable by means of a level switch (74) in the lubricating-oil reservoir (46).
EP80106829A 1979-12-05 1980-11-06 Rotor compressor, especially screw rotor compressor, with lubricant supply to and drainage thereof from the bearings Expired EP0030619B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19792948992 DE2948992A1 (en) 1979-12-05 1979-12-05 ROTOR COMPRESSORS, ESPECIALLY SCREW ROTOR COMPRESSORS, WITH LUBRICANT SUPPLY TO AND LUBRICANT DRAINAGE FROM THE BEARINGS
DE2948992 1979-12-05

Publications (2)

Publication Number Publication Date
EP0030619A1 EP0030619A1 (en) 1981-06-24
EP0030619B1 true EP0030619B1 (en) 1985-01-02

Family

ID=6087686

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80106829A Expired EP0030619B1 (en) 1979-12-05 1980-11-06 Rotor compressor, especially screw rotor compressor, with lubricant supply to and drainage thereof from the bearings

Country Status (9)

Country Link
US (1) US4394113A (en)
EP (1) EP0030619B1 (en)
JP (1) JPS5688986A (en)
AR (1) AR222589A1 (en)
AU (1) AU537335B2 (en)
BR (1) BR8007894A (en)
CA (1) CA1156627A (en)
DE (2) DE2948992A1 (en)
IN (1) IN154526B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109458343A (en) * 2017-09-06 2019-03-12 株式会社神户制钢所 Compression set
WO2021259656A1 (en) 2020-06-25 2021-12-30 Nidec Gpm Gmbh Shaft sealing ring, in particular 2-stage shaft sealing ring

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5870336A (en) * 1981-10-21 1983-04-26 Nec Corp Oscillating device
DE3150000A1 (en) * 1981-12-17 1983-07-14 Leybold-Heraeus GmbH, 5000 Köln OIL-SEALED VACUUM PUMP
SE450150B (en) * 1982-04-13 1987-06-09 Stal Refrigeration Ab HERMETIC TYPE COMPRESSOR
AT378036B (en) * 1983-04-11 1985-06-10 Voest Alpine Ag METHOD FOR SPRAYING THE CHISELS AND / OR LOCAL CHEST WITH PRESSURE LIQUID AND DEVICE FOR CARRYING OUT THIS METHOD
US4478054A (en) * 1983-07-12 1984-10-23 Dunham-Bush, Inc. Helical screw rotary compressor for air conditioning system having improved oil management
JPS6117191U (en) * 1984-07-04 1986-01-31 株式会社神戸製鋼所 Screw compressor
SE8501440L (en) * 1985-03-22 1986-06-02 Svenska Rotor Maskiner Ab DEVICE FOR SCREW COMPRESSORS FOR LUBRICATION OF A ROTOR BEARING
US5028220A (en) * 1990-08-13 1991-07-02 Sullair Corpoation Cooling and lubrication system for a vacuum pump
JP2530765B2 (en) * 1990-08-31 1996-09-04 株式会社神戸製鋼所 Operating method of oil-cooled compressor
CA2114454A1 (en) * 1994-01-28 1995-07-29 Heinz Bauer Compressor unit
SE503871C2 (en) * 1994-06-21 1996-09-23 Svenska Rotor Maskiner Ab Rotary displacement compressor with liquid circulation system
EP0758054B1 (en) * 1995-08-09 2001-03-07 SULZER-ESCHER WYSS GmbH Oil circulation system for screw compressors
US5642989A (en) * 1995-10-13 1997-07-01 National Compressed Air Canada Limited Booster compressor system
SE510066C2 (en) * 1997-08-25 1999-04-12 Svenska Rotor Maskiner Ab Oil-free screw rotor machine, the bearings of which are lubricated with an aqueous liquid
US6139280A (en) * 1998-01-21 2000-10-31 Compressor Systems, Inc. Electric switch gauge for screw compressors
US6318959B1 (en) * 1998-12-22 2001-11-20 Unozawa-Gumi Iron Works, Ltd. Multi-stage rotary vacuum pump used for high temperature gas
US6520758B1 (en) 2001-10-24 2003-02-18 Ingersoll-Rand Company Screw compressor assembly and method including a rotor having a thrust piston
BE1014461A3 (en) * 2001-11-08 2003-10-07 Atlas Copco Airpower Nv Oil injected screw compressor, has separate oil supply system with cooler for lubricating rotor bearings
ITVI20020083A1 (en) * 2002-05-03 2003-11-03 Virgilio Mietto AIR / OIL SEPARATOR TANK GROUP - THERMOSTATIC VALVE - MINIMUM PRESSURE VALVE - OIL COOLING RADIATOR - RADIAT
US6672102B1 (en) * 2002-11-27 2004-01-06 Carrier Corporation Oil recovery and lubrication system for screw compressor refrigeration machine
US7165949B2 (en) * 2004-06-03 2007-01-23 Hamilton Sundstrand Corporation Cavitation noise reduction system for a rotary screw vacuum pump
BE1016581A3 (en) * 2005-02-22 2007-02-06 Atlas Copco Airpower Nv IMPROVED WATER INJECTED SCREW COMPRESSOR ELEMENT.
JP2006291745A (en) * 2005-04-06 2006-10-26 Hitachi Industrial Equipment Systems Co Ltd Oil cooled screw compressor
CN101218433B (en) * 2005-06-29 2012-11-07 株式会社前川制作所 Oil supply method and device for two-stage screw compressor, and method of operating refrigeration device
KR101210400B1 (en) * 2005-08-25 2012-12-10 아뜰리에 부쉬 에스.아. Pump casing and pump with the pump casing
US20090129956A1 (en) * 2007-11-21 2009-05-21 Jean-Louis Picouet Compressor System and Method of Lubricating the Compressor System
JP5103246B2 (en) * 2008-01-24 2012-12-19 株式会社神戸製鋼所 Screw compressor
JP4431184B2 (en) * 2008-06-13 2010-03-10 株式会社神戸製鋼所 Screw compressor
JP4365443B1 (en) * 2008-07-29 2009-11-18 株式会社神戸製鋼所 Oil-free screw compressor
US8544453B2 (en) * 2009-09-25 2013-10-01 James E. Bell Supercharger cooling
US8752531B2 (en) * 2009-09-25 2014-06-17 James E. Bell Supercharger cooling
RU2445513C1 (en) * 2010-09-20 2012-03-20 Закрытое акционерное общество "Научно-исследовательский и конструкторский институт центробежных и роторных компрессоров им. В.Б. Шнеппа" Screw-type oil-filled compressor unit
US9568001B2 (en) * 2012-09-14 2017-02-14 Mayekawa Mfg. Co., Ltd. Oil-cooled screw compressor system and oil-cooled screw compressor
WO2014183204A1 (en) * 2013-05-17 2014-11-20 Victor Juchymenko Methods and systems for sealing rotating equipment such as expanders or compressors
US9951761B2 (en) 2014-01-16 2018-04-24 Ingersoll-Rand Company Aerodynamic pressure pulsation dampener
DE102014101113A1 (en) * 2014-01-30 2015-07-30 Pfeiffer Vacuum Gmbh vacuum pump
US10436104B2 (en) * 2014-05-23 2019-10-08 Eaton Intelligent Power Limited Supercharger
DE202014010816U1 (en) * 2014-08-11 2016-09-21 Jung & Co. Gerätebau GmbH Screw pump with vapor barrier
US9828995B2 (en) * 2014-10-23 2017-11-28 Ghh Rand Schraubenkompressoren Gmbh Compressor and oil drain system
CN107208636B (en) * 2015-02-12 2019-05-07 株式会社前川制作所 Oil-cooled type screw compressor system and its remodeling method
JP6763953B2 (en) * 2015-12-11 2020-09-30 アトラス コプコ エアーパワー, ナームローゼ フェンノートシャップATLAS COPCO AIRPOWER, naamloze vennootschap Control method of liquid injection of compressor or expander device, liquid injection compressor or expander device, and liquid injection compressor or expander element
US10746305B2 (en) * 2016-03-03 2020-08-18 Mitsubishi Heavy Industries Compressor Corporation Compressor system
CA3016521A1 (en) * 2017-09-06 2019-03-06 Joy Global Surface Mining Inc Lubrication system for a compressor
JP6836492B2 (en) * 2017-11-09 2021-03-03 株式会社神戸製鋼所 Liquid-cooled screw compressor
JP7146478B2 (en) 2018-06-22 2022-10-04 株式会社神戸製鋼所 Screw compressor and gas compression system
CN108757453A (en) * 2018-08-23 2018-11-06 中山市捷科能机电科技有限公司 A kind of water spray double-screw compressor
AU2021202410A1 (en) 2020-04-21 2021-11-11 Joy Global Surface Mining Inc Lubrication system for a compressor
CN116097002A (en) * 2020-09-18 2023-05-09 株式会社日立产机系统 Liquid supply type gas compressor
CN112594184A (en) * 2020-12-16 2021-04-02 衢州市智能制造技术与装备研究院 Main unit of aluminum alloy rotor oil-free screw compressor (Single stage)
DE102021210221A1 (en) * 2021-09-15 2023-03-16 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Compressor oil receiver and compressor system with such a compressor oil receiver
CN114352530B (en) * 2022-03-21 2022-06-07 天津捷盛东辉保鲜科技有限公司 High-efficiency low-noise type refrigeration compressor rotor
JP2024025321A (en) * 2022-08-12 2024-02-26 株式会社日立産機システム oil-cooled screw compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE733959C (en) * 1937-10-09 1943-04-06 Klein Schanzlin & Becker Ag Device for sealing rotating shafts for compressors, especially for rotary piston compressors of the multi-cell design
US2721747A (en) * 1951-12-21 1955-10-25 Read Standard Corp Hydraulic shaft seal
FR1564294A (en) * 1967-05-03 1969-04-18
DD105868A1 (en) * 1973-08-30 1974-05-12
GB2020362A (en) * 1978-03-13 1979-11-14 Imi Fluidair Ltd Rotary compressor

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE471012C (en) * 1925-06-06 1929-03-19 Der Maschinenfabriken Escher A Device for sealing machines with rotating shafts, in particular intended for conveying gases and steams
FR862570A (en) * 1939-01-11 1941-03-10 Escher Wyss Ag Rotary piston compressor
US2410172A (en) * 1941-05-31 1946-10-29 Jarvis C Marble Rotary screw wheel apparatus
GB846390A (en) * 1956-11-14 1960-08-31 Howden James & Co Ltd Improvements in or relating to rotary compressors
GB959831A (en) * 1959-06-04 1964-06-03 Svenska Rotor Maskiner Ab Improvements in or relating to screw rotor machines
US3073513A (en) * 1960-04-26 1963-01-15 Svenska Rotor Maskiner Ab Rotary compressor
US3556697A (en) * 1969-04-10 1971-01-19 Ingersoll Rand Co Sealing arrangement for vacuum pump
DE1939717B2 (en) * 1969-08-05 1978-03-23 Leybold-Heraeus Gmbh & Co Kg, 5000 Koeln Meshing gear type air blower - has bearing lubrication permitting alternative mounting for horizontal or vertical air flow
US4076468A (en) * 1970-07-09 1978-02-28 Svenska Rotor Maskiner Aktiebolag Multi-stage screw compressor interconnected via communication channel in common end plate
GB1484994A (en) * 1973-09-03 1977-09-08 Svenska Rotor Maskiner Ab Shaft seal system for screw compressors
US4080119A (en) * 1974-06-24 1978-03-21 Sven Evald Eriksson Method and device for draining oil from the gear case of a compressor
CA1074750A (en) * 1975-03-31 1980-04-01 Sullair Corporation Rotary screw compressor and method of operation
JPS5334558Y2 (en) * 1975-07-17 1978-08-24
SE422349B (en) * 1977-11-28 1982-03-01 Stal Refrigeration Ab OIL SEPARATION AT A PLANT TO COMPRESS A GAS
DD137132B1 (en) * 1978-06-13 1986-04-23 Kuehlautomat Veb DEVICE ON OIL-REFLECTED SCREW COMPRESSOR

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE733959C (en) * 1937-10-09 1943-04-06 Klein Schanzlin & Becker Ag Device for sealing rotating shafts for compressors, especially for rotary piston compressors of the multi-cell design
US2721747A (en) * 1951-12-21 1955-10-25 Read Standard Corp Hydraulic shaft seal
FR1564294A (en) * 1967-05-03 1969-04-18
DD105868A1 (en) * 1973-08-30 1974-05-12
GB2020362A (en) * 1978-03-13 1979-11-14 Imi Fluidair Ltd Rotary compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109458343A (en) * 2017-09-06 2019-03-12 株式会社神户制钢所 Compression set
CN109458343B (en) * 2017-09-06 2020-06-26 株式会社神户制钢所 Compression device
WO2021259656A1 (en) 2020-06-25 2021-12-30 Nidec Gpm Gmbh Shaft sealing ring, in particular 2-stage shaft sealing ring
DE102020116771A1 (en) 2020-06-25 2021-12-30 Nidec Gpm Gmbh Shaft sealing ring, especially 2-stage shaft sealing ring

Also Published As

Publication number Publication date
AU6468580A (en) 1981-06-11
EP0030619A1 (en) 1981-06-24
US4394113A (en) 1983-07-19
JPS5688986A (en) 1981-07-18
DE2948992A1 (en) 1981-06-11
AR222589A1 (en) 1981-05-29
DE3069916D1 (en) 1985-02-14
CA1156627A (en) 1983-11-08
AU537335B2 (en) 1984-06-21
IN154526B (en) 1984-11-03
JPH0116350B2 (en) 1989-03-23
BR8007894A (en) 1981-06-16

Similar Documents

Publication Publication Date Title
EP0030619B1 (en) Rotor compressor, especially screw rotor compressor, with lubricant supply to and drainage thereof from the bearings
DE3438262C2 (en)
DE112015004113B4 (en) Compressor with oil return unit
DE3822401C2 (en)
DE69725522T2 (en) scroll compressor
DE60318522T2 (en) Refrigeration system with main compressor and expander screw compressor
DE3686464T2 (en) SPIRAL COMPRESSOR.
DE3127323A1 (en) SCREW COMPRESSOR WITH CLOSED GAS SYSTEM WITH OIL MIST LUBRICATION
DE68924425T2 (en) ROTATING SCREW COMPRESSOR WITH OIL DRAIN.
CH699438B1 (en) Screw compressors for large driving power.
EP0030275A1 (en) Compressor, especially screw compressor with lubrication circuit
WO2014202611A1 (en) Refrigerant condenser
DE102015004991B3 (en) transmission
DE7527262U (en) ROTARY COMPRESSOR
DE102015007552A1 (en) Screw machine and method of operating the same
DE3617889C2 (en)
DE2849837A1 (en) SYSTEM FOR COMPRESSING A GAS
DE2318400C3 (en) Method for operating a cooling system
DE2329799A1 (en) METHOD AND DEVICE FOR LUBRICATING THE BEARINGS OF THE ROTORS OF SCREW COMPRESSORS
EP2473739B1 (en) Dry screw pump having inner compression
DE102006028291A1 (en) Oil-overflow screw compressor, has oil pump with functional units that are connected with free shaft end of shaft extension of respective rotor, and has housing that is arranged in intermediate housing limited at cylindrical form of lane
DE1243816B (en) Multi-stage rotary lobe vacuum pump of the Roots type
DE3536618A1 (en) Lifting-piston compressor, in particular booster compressor for compressed gas installations
DE10221396A1 (en) Carbon dioxide axial piston compressor for vehicle air conditioning system, has further separator near cylinder block in bypass line leading from drive mechanism chamber to suction side of compressor
WO2023174888A1 (en) Oil pump for a motor vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT

ITCL It: translation for ep claims filed

Representative=s name: BARZANO' E ZANARDO MILANO S.P.A.

17P Request for examination filed

Effective date: 19810715

ITF It: translation for a ep patent filed

Owner name: UFFICIO TECNICO ING. A. MANNUCCI

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 3069916

Country of ref document: DE

Date of ref document: 19850214

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BECA Be: change of holder's address

Free format text: 850102 *MAN GUTEHOFFNUNGSHUTTE G.M.B.H.OBERHAUSEN D-4200

BECH Be: change of holder

Free format text: 850102 *MAN GUTEHOFFNUNGSHUTTE G.M.B.H.

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: MAN GUTEHOFFNUNGSHUETTE GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;MAN GUTEHOFFNUNGSHUTTE GMBH

ITTA It: last paid annual fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: MAN GUTEHOFFNUNGSHUETTE AKTIENGESELLSCHAFT -DANN A

Ref country code: CH

Ref legal event code: PFA

Free format text: MAN GUTEHOFFNUNGSHUETTE GMBH TRANSFER- MAN GUTEHOFFNUNGSHUETTE AKTIENGESELLSCHAFT

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19981012

Year of fee payment: 19

Ref country code: FR

Payment date: 19981012

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19981022

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19981023

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19981030

Year of fee payment: 19

BECA Be: change of holder's address

Free format text: 980630 *GHH-RAND SCHRAUBENKOMPRESSOREN G.M.B.H. & CO. KG:STEINBRINKSTRASSE 1, D-46145 OBERHAUSEN

BECH Be: change of holder

Free format text: 980630 *GHH-RAND SCHRAUBENKOMPRESSOREN G.M.B.H. & CO. KG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991130

BERE Be: lapsed

Owner name: GHH-RAND SCHRAUBENKOMPRESSOREN G.M.B.H. & CO. KG

Effective date: 19991130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19991106

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST