EP0030212B1 - Système de support d'anodes pour une cuve d'électrolyse ignée - Google Patents

Système de support d'anodes pour une cuve d'électrolyse ignée Download PDF

Info

Publication number
EP0030212B1
EP0030212B1 EP80810361A EP80810361A EP0030212B1 EP 0030212 B1 EP0030212 B1 EP 0030212B1 EP 80810361 A EP80810361 A EP 80810361A EP 80810361 A EP80810361 A EP 80810361A EP 0030212 B1 EP0030212 B1 EP 0030212B1
Authority
EP
European Patent Office
Prior art keywords
anode
electrically insulating
supporting system
cell
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80810361A
Other languages
German (de)
English (en)
Other versions
EP0030212A1 (fr
Inventor
Wolfgang Schmidt-Hatting
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcan Holdings Switzerland AG
Original Assignee
Schweizerische Aluminium AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CH686580A external-priority patent/CH651594A5/de
Application filed by Schweizerische Aluminium AG filed Critical Schweizerische Aluminium AG
Priority to AT80810361T priority Critical patent/ATE2445T1/de
Publication of EP0030212A1 publication Critical patent/EP0030212A1/fr
Application granted granted Critical
Publication of EP0030212B1 publication Critical patent/EP0030212B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/16Electric current supply devices, e.g. bus bars

Definitions

  • the present invention relates to an anode support system for the current supply to a melt flow electrolysis cell, in particular for the production of aluminum.
  • the electrolysis furnace In normal operation, the electrolysis furnace is usually operated periodically, even if there is no anode effect by cracking the crust and adding alumina.
  • the two magnetic effects mentioned must be differentiated from a further magnetic effect, the rotating metal wave.
  • This metal wave runs, depending on the general direction of current in the hall, clockwise or counterclockwise, along the board of the electrolytic cell.
  • the metal wave When the metal wave is currently located in the cell, it temporarily reduces the interpolar distance to the anode or overlays.
  • the electrolyte resistance to be overcome by the direct current becomes smaller, as a result of which the instantaneous current strength is increased at the location of the wave crest. Because the sum of the instantaneous values of the currents of all the anodes at any moment corresponds to the direct current value of the cell, the current intensity of the anodes located outside the area of the metal wave will be reduced in accordance with the larger interpolar distance until the metal wave has moved on.
  • the revolving metal shaft leads in a single anode rod to a temporal change in the current intensity similar to the sinusoidal form, but the direct current value of the anode rod is retained.
  • the round trip time of a metal wave along the circumference of the electrolytic cell i.e. H. the time until the metal values return to the same anode bar is usually between 30 and 80 seconds.
  • the interpolar distance of all anodes can be increased, whereby the metal waves can usually be reduced, often even made to disappear.
  • the ohmic voltage drop in the electrolyte is also increased and consequently the expenditure of electrical energy is increased.
  • the additional electrical energy consumed is converted into heat instead of being used to manufacture aluminum.
  • the height of the metal waves is a few millimeters to a few centimeters. In extreme In some cases, it can lead to the momentary short circuit between cathode and anode, since the interpolar distance is itself of the same order of magnitude; it is usually between 4 and 6 cm.
  • both the amplitude of the metal wave and that of the alternating current in the anode rod current decrease. From numerous measurements and observations it was deduced that the resulting alternating current is only a consequence of the metal wave. Once the wave is formed, however, the alternating current is responsible for the maintenance and propagation of the metal wave.
  • the inventor has set himself the task of creating a melt flow electrolysis cell, in particular for the production of aluminum, in which the metal shaft is greatly reduced or suppressed without increasing the interpolar distance.
  • the circuit for the alternating current can be determined as follows. This flows downwards in one or a few anode rods, crosses the corresponding anodes, leaves them on their undersides, crosses the electrolyte approximately perpendicularly and penetrates the reduced metal. In the metal, the alternating current flows in a horizontal direction to the anodes, which are approximately diametrically opposite at the cell edge, leaves the metal there, flows through the electrolyte almost vertically upwards, penetrates the anodes above, crosses them, flows through the associated anode rods into the anode bar and returns back to the anode rods mentioned at the beginning.
  • the current loop defined in this way rotates, depending on the position of the return line in the hall, left or right, around a vertical axis which is approximately in the cell center, while the metal shaft and with it the alternating current maximum circulate around the cell circumference.
  • the isolating separations are therefore arranged in parallel bridging switches.
  • This bridging of the permanent separations in the crossmember means that, if the cathodic current distribution is disturbed, the equalizing currents in the anode support system of the subsequent cell can flow not only over sections but over the entire crossbar. This largely eliminates harmful interference in the form of magnetic movements or surface deformation.
  • the compensating currents are direct currents and are not identical to the alternating currents which are responsible for maintaining the rotating metal shaft.
  • the conductor cross-section of the switch is relatively small, for example it is 1-10% of the rail cross-section.
  • the switches that are to bridge the isolating separation points are expediently attached to the crossbar itself.
  • the switches are controlled automatically, in particular by means of EDP, and closed and opened by an electromagnetically operating actuator.
  • the bridges When the electrolysis cell is operating normally, the bridges are closed, so the compensating currents can flow over the entire crossbar. If revolving metal shafts are formed, the bridges are opened, as a result of which the parts of the traverse lying between the electrically insulating separations are separated from one another. After the revolving metal shaft has subsided, the bridges are closed again.
  • the occurrence of a metal vibration or surface deformation is determined by known methods, e.g. B. by registering the streams in the anode rods, and when an automated system is used, the necessary control impulse is triggered by a computer system.
  • FIGS. 1-4 The anode support system with six anodes shown in FIGS. 1-4 is only intended to illustrate the principle; of course, in the case of electrolytic cells used for industrial production, significantly more anodes are arranged.
  • the anode support system consists of two anode rails 10 arranged in parallel and two printed circuit boards 12 arranged on the end faces of these rails. Both anode rails and printed circuit boards are preferably made of aluminum, the end faces of the anode rails 10 are expediently welded to the printed circuit boards 12.
  • the power supply lines are connected to the circuit boards.
  • these power supply lines can be connected not only at the end with respect to the anode rails, but also at any location on the longitudinal side of the rail which is advantageous for good furnace operation.
  • an anode rail can also be separated and insulated into the same or different sections at more than one location.
  • Six anodes 14 are suspended from the anode rails 10 by means of anode rods 16, which also consist of aluminum in the upper region.
  • the alternating current could result as a result of a metal wave between any anodes diametrically opposed to the cell circumference, i. H. 1 and 4, 2 and 5 and 3 and 6 (Fig. 2), close via anode rails 10 and circuit boards 12.
  • the AC circuit for anodes 1 and 4 and 3 and 6 is interrupted.
  • the uninterrupted AC circuit for anodes 2 and 5 is not sufficient to maintain a rotating metal shaft, since if it had reached the corner points, it would no longer find the AC current driving it.
  • the distribution factor ⁇ is 0.5, i. H. the same amount of current is supplied from the left and right, the separation C does not have to take place in the anode rails 10, but in the printed circuit boards 12. Otherwise it would not be possible to supply all anodes with their nominal current. With an even number of anodes per rail, the separation can of course also take place at C.
  • 0.5, i. H. the same amount of current is fed into the anode bar on the left and right.
  • the electrically insulating connecting pieces 11 shown in FIGS. 2-4 connect the anode rails 10 or the printed circuit boards 12 in a mechanically stable manner on the section lines A, B or C.
  • These materials can consist of one of the insulating materials used in electrical engineering, preferably wood or asbestos.
  • the isolating separations A, B and C are preferably bridged in parallel with switches (not shown).
  • the AC circuits diametrically opposite anodes can only be prevented if the profile, analogously as shown in FIGS. 1 and 2, is completely cut through at least once in the transverse direction and mechanically stably connected with an electrically insulating material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Fuel Cell (AREA)

Claims (7)

1. Système de support d'anodes pour l'amenée du courant électrique à une cuve d'électrolyse ignée, en particulier pour la production d'aluminium, caractérisé en ce qu'il est constitué d'au moins deux barres horizontales (10) de support et d'amenée du courant, reliées entre elles aux extrémités par deux plaques conductrices (12), et qu'il est électriquement divisé complètement mais assemblé mécaniquement de façon stable par des intercalaires en matériau isolateur électrique (11), à au moins deux endroits (A, B, C), de telle manière que:
- les parties d'une même barre du système de support d'anodes ne sont en liaison galvanique l'une avec l'autre qu'à travers la cuve précédente,
- les intercalaires d'assemblage isolants (A, B, C) sont placés, suivant la disposition des barres omnibus entre les cuves, pour que les portions du courant continu total des cuves envoyées dans les parties du système de support d'anodes (10, 12) correspondent chaque fois à la somme des courants nominaux des barres porte-anodes (16) fixées à la partie concernée du système de support et prélevant leurs courants respectifs de celle-ci, et
- les barres horizontales (10) ou les plaques conductrices (12) du système de support présentent chacune tout au plus un intercalaire isolant (A, B, C) en cas d'amenée du courant aux extrémités du système de support.
2. Système de support d'anodes selon la revendication 1, caractérisé en ce que les plaques conductrices (12) sont divisées et que leurs parties sont assemblées de façon électriquement isolante.
3. Système de support d'anodes selon la revendication 1 ou 2, caracterisé en ce que le matériau isolant (11) d'où sont réalisés les intercalaires est un matériau isolant utilisé dans l'électrotechnique, de préférence du bois ou de l'asbestite.
4. Système de support d'anodes selon au moins l'une des revendications 1 à 3, caractérisé en ce que des interrupteurs sont montés parallèlement aux intercalaires isolants (A, B, C).
5. Système de support d'anodes pour l'amenée du courant 'electrique à une cuve d'électrolyse ignée, en particulier pour la production d'aluminium, caractérisé en ce qu'il est constitué d'une poutre porte-anodes en une seule pièce qui est électriquement divisée complètement mais dont les parties sont assemblées mécaniquement de façon stable par au moins un intercalaire en matériau isolateur électrique, de telle manière que:
- les parties de la poutre porte-anodes ne sont en liaison galvanique l'une avec l'autre qu'à travers la cuve précédente,
- l'intercalaire ou les intercalaires d'assemblage isolant(s) est ou sont placé(s), suivant la disposition des barres omnibus entre les cuves, pour que les portions du courant continu total des cuves envoyées dans les parties de la poutre porte-anodes correspondent chaque fois à la somme des courants nominaux des barres porte-anodes fixées à la partie concernée de la poutre et prélevant leurs courants respectifs de celle-ci, et
- la poutre porte-anodes présente seulement un intercalaire d'assemblage isolant en cas d'amenée du courant aux extrémités de la poutre.
6. Système de support d'anodes selon la revendication 5, caractérisé en ce que des interrupteurs sont montés parallèlement aux intercalaires isolants.
7. Système de support d'anodes selon la revendication 5 ou 6, caractérisé en ce que des interrupteurs sont montés parallèlement aux intercalaires isolants.
EP80810361A 1979-12-03 1980-11-24 Système de support d'anodes pour une cuve d'électrolyse ignée Expired EP0030212B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80810361T ATE2445T1 (de) 1979-12-03 1980-11-24 Anodentraegersystem fuer eine schmelzflusselektrolysezelle.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH10704/79 1979-12-03
CH1070479 1979-12-03
CH686580A CH651594A5 (en) 1980-09-12 1980-09-12 Anodic structure for molten-salt electrolysis
CH6865/80 1980-09-12

Publications (2)

Publication Number Publication Date
EP0030212A1 EP0030212A1 (fr) 1981-06-10
EP0030212B1 true EP0030212B1 (fr) 1983-02-09

Family

ID=25700305

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80810361A Expired EP0030212B1 (fr) 1979-12-03 1980-11-24 Système de support d'anodes pour une cuve d'électrolyse ignée

Country Status (8)

Country Link
US (1) US4326939A (fr)
EP (1) EP0030212B1 (fr)
AU (1) AU536947B2 (fr)
CA (1) CA1167800A (fr)
DE (1) DE3061925D1 (fr)
IS (1) IS1147B6 (fr)
NO (1) NO154310C (fr)
YU (1) YU304380A (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA824256B (en) * 1981-06-25 1983-05-25 Alcan Int Ltd Electrolytic reduction cells
US4431492A (en) * 1982-04-20 1984-02-14 Mitsubishi Keikinzoku Kogyo Kabushiki Kaisha Aluminum electrolytic cell arrays and method of supplying electric power to the same
US20070276686A1 (en) * 2006-01-20 2007-11-29 Count & Crush, Llc Techniques for processing recyclable containers
JP5850935B2 (ja) * 2010-08-11 2016-02-03 オウトテック オサケイティオ ユルキネンOutotec Oyj 電解精錬および電解採取用装置
FR3009564A1 (fr) * 2013-08-09 2015-02-13 Rio Tinto Alcan Int Ltd Aluminerie comprenant un circuit electrique de compensation
AU2014305612B2 (en) * 2013-08-09 2017-12-21 Rio Tinto Alcan International Limited Electrolytic cell intended for the production of aluminium and electrolytic smelter comprising this cell
CN115398040A (zh) * 2020-02-10 2022-11-25 罗切斯特大学 用于高能效电解池的系统和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1265551A (en) * 1917-04-07 1918-05-07 Charles Harrison Thomson Electrolytic apparatus.
US3417008A (en) * 1965-01-15 1968-12-17 Udylite Corp Switch for electrochemical processes
NO124039B (fr) * 1968-06-07 1972-02-21 Montedison Spa
US4194959A (en) * 1977-11-23 1980-03-25 Alcan Research And Development Limited Electrolytic reduction cells

Also Published As

Publication number Publication date
AU6413980A (en) 1981-06-11
NO803619L (no) 1981-06-04
DE3061925D1 (en) 1983-03-17
US4326939A (en) 1982-04-27
CA1167800A (fr) 1984-05-22
NO154310B (no) 1986-05-20
IS1147B6 (is) 1984-03-05
EP0030212A1 (fr) 1981-06-10
NO154310C (no) 1986-08-27
IS2600A7 (is) 1981-06-04
YU304380A (en) 1983-02-28
AU536947B2 (en) 1984-05-31

Similar Documents

Publication Publication Date Title
DE3245070C2 (de) Vorrichtung zur genauen Einstellung der Anodenebene einer Zelle zur Herstellung von Aluminium durch Schmelzflußelektrolyse
EP0030212B1 (fr) Système de support d'anodes pour une cuve d'électrolyse ignée
EP0787833B1 (fr) Disposition d'amenées de courant pour cellules d'électrolyse
DE3436442C2 (fr)
CH649317A5 (de) Elektrolysezelle mit kompensierten magnetfeldkomponenten.
DE19717489B4 (de) Anordnung zur elektrogalvanischen Metallbeschichtung eines Bandes
EP0031307B1 (fr) Dispositif pour la conduction du courant entre des fours à électrolyse
CH641209A5 (de) Elektrolysezelle.
DE2143602C3 (de) Zelle für die Gewinnung von Aluminium durch Elektrolyse von Aluminiumoxid im Schmelzfluß
DE2143603C3 (de) Zelle für die Gewinnung von Aluminium durch Elektrolyse von Aluminiumoxid im Schmelzfluß
DE19942556C2 (de) Elektrotauchlackiervorrichtung
DE3618588C2 (fr)
DE3012697A1 (de) Verfahren zur stabilisierung einer aluminiummetallschicht in einer aluminium- elektrolytzelle
DE3009096A1 (de) Asymmetrische schienenanordnung fuer elektrolysezellen
DE3009158A1 (de) Schienenanordnung fuer elektrolysezellen
DE3035017C1 (de) Anodentraegersystem fuer eine Schmelzflusselektrolysezelle
DE4205660C1 (fr)
DE2408392C3 (de) Anoden für eine Elektrolysezelle
DE3024696C2 (de) Elektrolysezelle zur Durchführung einer Raffinationselektrolyse
CH651594A5 (en) Anodic structure for molten-salt electrolysis
DE2709821C2 (fr)
DE3731510C1 (en) Anode and cell for electrolytic production of non-ferrous metals
DE2109949C3 (de) Elektrolyseeinrichtung mit vom Elektrolyten durchströmten, diaphragmalosen Zellenräumen
DE2935765C2 (de) Halterung für die Stromschiene und die Elektroden an Elektrolyseeinheiten mit mehreren nebeneinander angeordneten Elektrolysezellen
DE382254T1 (de) Flachanode.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19801126

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT NL SE

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 2445

Country of ref document: AT

Date of ref document: 19830315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3061925

Country of ref document: DE

Date of ref document: 19830317

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19841008

Year of fee payment: 5

Ref country code: DE

Payment date: 19841008

Year of fee payment: 5

Ref country code: CH

Payment date: 19841008

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19841231

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19861008

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19861130

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19871124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19871125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19871130

Ref country code: CH

Effective date: 19871130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880729

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19880802

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

EUG Se: european patent has lapsed

Ref document number: 80810361.8

Effective date: 19880913

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT