EP0028245B1 - Festkörpergebläse - Google Patents

Festkörpergebläse Download PDF

Info

Publication number
EP0028245B1
EP0028245B1 EP80901052A EP80901052A EP0028245B1 EP 0028245 B1 EP0028245 B1 EP 0028245B1 EP 80901052 A EP80901052 A EP 80901052A EP 80901052 A EP80901052 A EP 80901052A EP 0028245 B1 EP0028245 B1 EP 0028245B1
Authority
EP
European Patent Office
Prior art keywords
impeller
housing
pumping device
blade
piezo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80901052A
Other languages
English (en)
French (fr)
Other versions
EP0028245A1 (de
EP0028245A4 (de
Inventor
Eric A. Kolm
Henry H. Kolm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Piezo Electric Products Inc
Original Assignee
Piezo Electric Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Piezo Electric Products Inc filed Critical Piezo Electric Products Inc
Publication of EP0028245A1 publication Critical patent/EP0028245A1/de
Publication of EP0028245A4 publication Critical patent/EP0028245A4/de
Application granted granted Critical
Publication of EP0028245B1 publication Critical patent/EP0028245B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D33/00Non-positive-displacement pumps with other than pure rotation, e.g. of oscillating type

Definitions

  • the invention relates to pumping devices for air or liquids and specifically to a blower utilizing an undulating blade.
  • Electronic equipment is customarily cooled using rotary fans or blowers, which circulate air through the entire housing to maintain a constant operating temperature. Steady state temperature maintenance of the electronic components is important not only to prevent overheating, but also to assure reliable operation.
  • blowers of these types are susceptible of miniaturization; as a practical matter however, they are generally so inefficient that they are better suited for producing heat than for generating cooling air movement, with the result that none has found any significant commercial acceptance.
  • a blower or pump device of this same general type that is to say comprising a housing, a generally planar resilient impeller and means for oscillating the impeller perpendicularly to its plane to propagate a travelling wave along the impeller to pump fluid
  • the oscillating means comprises an elongate piezo- electric element mounted in the region of one end to the housing and connected at its other end to the impeller and means applying voltage to cause the end of the piezoelectric element remote from the housing to oscillate.
  • the piezoelectric element or so-called “bilaminate” is a strip consisting of two layers of piezo-electric ceramic, polarized in opposite directions, which on their facing sides are separated by a conducting layer and which on their outside faces are surrounded by conducting layers.
  • the two outside conducting layers are connected as electrodes to a controlled alternating current supply. Since the piezo-electric layers have opposite polarity, voltage applied across the bilaminate strip induces bending of the element. Accordingly, alternating voltage across the piezo-electric element will drive the impeller back and forth at the point of attachment.
  • the impeller is preferably disposed in a duct in the housing and its characteristics are such that its resonant frequency approximates to that of the piezo-electric element so that it is driven in quadrature.
  • the device operates without any substantial mechanical friction to permit high operating speed, a consequently high throughput relative .to size, a virtually unlimited service life, and may be miniaturized and still produce a significant flow of air to cool miniature components.
  • the device may be mounted directly on printed circuit boards, alongside the individual components which require cooling, and due to its high efficiency will provide sufficient cooling air.
  • the device preferably is constructed with a pair of counter-oscillating blades in parallel pumping channels so that it is dynamically balanced and vibration free. Pumping efficiency of the device may be improved by providing venturi intake ports along the output half of the duct to increase the air flow through the ducts.
  • a solid state blower according to the present invention has a housing 10, outer walls 12 and an inner divider 14 forming a pair of air channels 16 between the bottom 17a and top 17b (lifted out of the way for clarity).
  • a pair of resilient blades 18 are mounted in the channels 16 for driving air through the device.
  • the blades 18 are generally tapered from their inlet ends 24 toward the outlet ends 22 and have whip portions 20 at their outlet ends 22 to improve the air throughput pumping capacity.
  • the whip portions 20 are preferably made of Mylar-lk'.
  • a piezo-electric bilaminate 28 is attached at one end 40, for example by a plastic holder and screws 41, to each of the housing walls 12 and at the other end 42, by cementing or any other suitable means to a point on each blade 18 to support the blade in the channel 10 in a manner such that open lateral movement of the bilaminates the blades 18 are free to undergo simultaneous lateral deflection.
  • This mounting arrangement permits free lateral movement of the blade 18 along the entire length with corresponding lateral movement of the end 42 of the piezo-electric element 28.
  • a piezo-electric element suitable for use in the present invention is marketed by Gulton Industries, Inc., Piezo Products Division, Metu- chen, N.J., under the name "Piezo Ceramic Bender Element", No. G1195.
  • Each bilaminate strip 28 (Fig. 2) has two layers of piezo-electric ceramic 29 separated by a layer of conducting material 30, e.g. brass.
  • the outside layers 32, 34 are silver, and connected to the leads 36, 38 of a controlled alternating current supply 39.
  • the two ceramic layers 29 are polarized in opposite directions, so that voltage across the bilaminate induces a bending motion in the strip.
  • bilaminate strip 28 Since the bilaminate strip 28 is fixed on the housing at 41, controlled alternating voltage, therefore, causes the free end 42 of the piezo-electric element 28 to move back and forth at the voltage frequency. The bending movement of the bilaminates 28, in turn, drives the blades 18 back and forth at the point of attachment 42 at a controlled rate.
  • connections from the piezeo-electric elements 28 to the power supply 39 are conveniently made at the end 40, beneath the holder 41.
  • the blade 18 When driven back and forth, the blade 18 represents a beam subjected to combined bending and shearing loads varying so rapidly that inertial effects dominate to propagate a traveling flexure wave along the impeller or blade from the inlet end of the duct toward the outlet end of the duct.
  • a voltage oscillating in the range of 60-400 hz is applied.
  • the most efficient pumping action results when the driving force is applied in quadrature, that is, to produce a 90 degree (°) phase lag in the oscillation cycle between two points along the blade, for example near the inlet end of the duct and near the outlet end, as illustrated schematically in Figs. 3a-3f.
  • the driving force (F) is applied at a single point, and with a selected frequency range depending, e.g., upon the blade material, taper, and resiliency and thus the blade resonant frequency, such that the blade undergoes both lateral displacement and bending at the point of applied force.
  • the driving force F on the blade produces the successive blade shapes shown in Figs. 3a-3f and directions of air motion (A) indicated by arrows, as described below.
  • Optimum pumping efficiency results when the blade resonance frequency is at or near the driving frequency of the piezo-electric bilaminate assembly 28, since this maintains a quadrature relation between the leading (rear) and lagging (forward end) portions of the blade 18, and provides inlet and outlet valving as illustrated in Figs. 3b-3f.
  • the blade may be operated either in a free medium or in a duct, e.g. 16.
  • the duct 16 has a width such that the ends 24, 22 of the blades 18 contact, or almost contact, the duct walls, during the back and forth lateral movement, the downstream contact lagging the upstream point of contact by 90° of the oscillation cycle.
  • the two contact points will have a quadrature relation with respect to each other so that the blade tips perform the functions of intake and outlet valves. See Figs. 3b-3f.
  • Air throughput is also improved if venturi air louvers 56 are provided in the duct walls in the output half of the blower.
  • the blower contains two counter-oscillating blades 18 to operate 180° out of phase with each other.
  • the complementary back and forth motion of the two blades 18 provides dynamic balancing and prevents vibration of the device.
  • a miniaturized form of blower constructed in accordance with Fig. 1, having an overall length of about 44,5 mm (1.075 inches) a width of 19,0mm (0.75 inches) and a height of 12,7 mm (0.5 inches), and operated at a frequency of 60 hz by the piezo-electric bilaminates, produces a sufficient throughput of air and a sufficient output pressure to be capable of blowing out a wind- proof lighter.
  • the device is very efficient, and in tests, operation has been very stable, with efficiency so high that rises in temperature of the bilaminates have been virtually undetectable.
  • FIG. 4 A modified embodiment of the solid state blower illustrated in Fig. 1 is shown in Fig. 4, where in place of the side mounted piezo- electric element 28, a pair of end-mounted bilaminate piezo-electric elements 128 drive respective ones of a pair of flat resilient blades 118.
  • the free ends of the blades are terminated in whip portions 122, preferably made of Mylar, (Reg.TM).
  • the blower assembly includes a housing 110, side walls 112 and a bottom plate 117a.
  • a top cover may be added if desired, similar to cover 17b shown in Fig. 1.
  • the blades 118 are not disposed in separate pumping ducts, yet efficient pumping action is achieved without the enhanced valving action produced by the ducts due to the quadrature travelling wave induced in the blades 118.
  • the piezo-electric bilaminates 128 are mounted at one end 140 to a cross member 141 bridging the walls 112 of the housing 110.
  • the member 141 is provided with a pair of vertical slots 142, each of which is sized to snugly receive the end of the bilaminate 128 and a pair of electrically conductive contact leaves 144, one on either side of the bilaminate. Conductors, not shown, are connected to the leaves for coupling to the alternating voltage supply.
  • the free ends of the bilaminates 128 are attached to coupler weights 150, which in turn support the resilient blades 118.
  • the weights 150 have vertical slots along their narrow edges for snugly engaging the bilaminates and blades, respectively. As shown in Fig. 4, the blades preferably are substantially wider than the bilaminates, to maximize air flow.
  • the blade 118 is not fixed at any point relative to the housing and is free to move laterally (i.e., perpendicular to the flat surface of the blade 118) back and forth along its entire length when driven by the free end of the piezo- electric element 128.
  • the blower works every efficiently in pumping fluids, especially air, without the need for blade valving action.
  • the two bilaminates are driven to opposing phase .relationship, as in the Figure 1 embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Claims (12)

1. Pumpvorrichtung mit einem Gehäuse (10), einem im Gehäuse angeordneten, im allgemeinen ebenen, nachgiebigen Flügelrad (18) und einem Mittel (28) zum Oszillieren des Flügelrades senkrecht zu seiner Ebene, um eine sich entlang des Flügelrades zur Pumpströmung durch das Gehäuse fortbewegende Welle fortzupflanzen, dadurch gekennzeichnet, daß das Oszillierungsmittel ein längliches piezo= elektrisches Element (28) umfaßt, das im Bereich seines einen Endes (41) mit dem Gehäuse (10) und mit seinem anderen Ende (42) am Flügelrad (18) verbunden ist, und daß Mittel (36, 38) Spannung anbringen, damit das eine Ende des piezo-elektrischen Elementes entfernt von seinem Verbindungspunkt am Gehäuse oszilliert.
2. Pumpvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das Flügelrad (18),. in einem Leitungskanal (16) im Gehäuse angeordnet ist.
3. Pumpvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Eigenschaften des Flügelrades (18) derart sind, daß seine Resonanzfrequenz der des piezo-elek.- trischen Elementes (28) angenähert ist, so daß er um 90° phasenverschoben angetrieben wird.
4. Pumpvorrichtung nach irgendeinem der vorstehenden Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Flügelrad (18) und das Oszillierungsmittel (28) doppelt vorliegen.
5. Pumpvorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die beiden Flügelräder (18) gegenphasig zueinander angetrieben werden.
6. Pumpvorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß jedes Flügelrad (18) in einem getrennten Leitungskanal (16) im Gehäuse (10) angeordnet ist.
7. Pumpvorrichtung nach Anspruch 2 oder 6, dadurch gekennzeichnet, daß der oder jeder Leitungskanal (16) eine Einlaßöffnung, eine Auslaßöffnung und Venturieinlaßöffnungen (56) in der Auslaßhälfte des Leitungskanals umfaßt.
8. Pumpvorrichtung nach irgendeinem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das oder jedes Flügelrad (18) derart gestaltet ist bzw. sich verjüngt, daß es eine abnehmende Dicke mit zunehmender Entfernung von seinem Verbindungspunkt mit dem entsprechenden piezo-elektrischen Element (28) besitzt.
9. Pumpvorrichtung nach irgendeinem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das oder jedes piezo-elektrische Element (28) ein Bilaminat ist.
10. Pumpvorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das kombinierte Gewicht des oder jedes Flügelrades (18) und der Zwischenverbindung zum entsprechenden elektrischen Element (28) eine Resonanz liefert mit der Oszillationsfrequenz der angelegten Spannung.
11. Pumpvorrichtung nach irgendeinem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das oder jedes Flügelrad (18) im Inneren des Gehäuses und parallel zum entsprechenden piezo-elektrischen Element (28) befestigt ist.
12. Pumpvorrichtung nach irgendeinem der vorstehenden Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das oder jedes Flügelrad (18) im Inneren des Gehäuses und koplanar zum entsprechenden piezo-elektrischen Element befestigt ist.
EP80901052A 1979-05-07 1980-11-17 Festkörpergebläse Expired EP0028245B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US3681279A 1979-05-07 1979-05-07
US36812 1979-05-07
US14234880A 1980-05-02 1980-05-02
US142348 1980-05-02

Publications (3)

Publication Number Publication Date
EP0028245A1 EP0028245A1 (de) 1981-05-13
EP0028245A4 EP0028245A4 (de) 1981-08-27
EP0028245B1 true EP0028245B1 (de) 1984-03-21

Family

ID=26713528

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80901052A Expired EP0028245B1 (de) 1979-05-07 1980-11-17 Festkörpergebläse

Country Status (4)

Country Link
EP (1) EP0028245B1 (de)
JP (1) JPS6315480B2 (de)
DE (1) DE3067101D1 (de)
WO (1) WO1980002445A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2528500A1 (fr) * 1982-06-11 1983-12-16 Agronomique Inst Nat Rech Ventilateur silencieux et ventilo-convecteur muni d'un tel ventilateur
US4595338A (en) * 1983-11-17 1986-06-17 Piezo Electric Products, Inc. Non-vibrational oscillating blade piezoelectric blower
US4512933A (en) * 1983-12-09 1985-04-23 Takasago Usa, Inc. Apparatus for dispensing volatile substances
US4684328A (en) * 1984-06-28 1987-08-04 Piezo Electric Products, Inc. Acoustic pump
US4753579A (en) * 1986-01-22 1988-06-28 Piezo Electric Products, Inc. Ultrasonic resonant device
JP2754581B2 (ja) * 1988-07-30 1998-05-20 株式会社島津製作所 熱交換器
CN1151703A (zh) * 1994-05-27 1997-06-11 美国3M公司 对消毒器进行参数测量的电子测试装置
FR2744769B1 (fr) * 1996-02-12 1999-02-12 Drevet Jean Baptiste Circulateur de fluide a membrane vibrante
EP0995908A1 (de) 1998-10-20 2000-04-26 vanden Brande, Pierre Molekularpumpe
US7061161B2 (en) 2002-02-15 2006-06-13 Siemens Technology-To-Business Center Llc Small piezoelectric air pumps with unobstructed airflow
CN100335779C (zh) * 2005-07-15 2007-09-05 清华大学 可实现正反向流体流动的行波驱动压电陶瓷泵
FR2893991B1 (fr) * 2005-11-30 2013-10-11 Jean Baptiste Drevet Circulateur a membrane
EP2743513B1 (de) * 2012-12-13 2019-02-06 Goodrich Lighting Systems GmbH Vorrichtung zur Erzeugung eines Luftstroms zur Kühlung eines elektronischen Wärmeableitungselements wie einer LED
EP2743512B1 (de) * 2012-12-13 2019-02-13 Goodrich Lighting Systems GmbH Verfahren zur Steuerung eines mechanischen vibrierenden Elements
US10280945B2 (en) * 2013-02-01 2019-05-07 Alcatel Lucent Device for moving air
JP6542872B2 (ja) * 2014-08-25 2019-07-10 ジーイー・アビエイション・システムズ・エルエルシー 気流発生装置および気流発生装置の配列
WO2016032473A1 (en) * 2014-08-28 2016-03-03 Ge Aviation Systems Llc Air-cooling system and airflow generator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2033309A1 (de) * 1969-02-07 1970-12-04 Int Combustion Ltd

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2152243A (en) * 1935-05-17 1939-03-28 Hoover Co Fluid circulation in absorption refrigerators
DE836006C (de) * 1950-04-04 1952-04-07 Dr Rudolf Blunck Antriebsvorrichtung, insbesondere fuer Wasser- und Luftfahrzeuge
US3264998A (en) * 1963-09-20 1966-08-09 Martin Marietta Corp Traveling wave high frequency vacuum pump
US3657930A (en) * 1969-06-24 1972-04-25 Bendix Corp Piezoelectric crystal operated pump to supply fluid pressure to hydrostatically support inner bearings of a gyroscope
JPS5019840B1 (de) * 1970-12-30 1975-07-10
DE2522309C3 (de) * 1975-05-20 1979-10-11 Waldemar 4500 Osnabrueck Riepe Flüssigkeitspumpe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2033309A1 (de) * 1969-02-07 1970-12-04 Int Combustion Ltd

Also Published As

Publication number Publication date
JPS56500576A (de) 1981-04-30
WO1980002445A1 (en) 1980-11-13
JPS6315480B2 (de) 1988-04-05
DE3067101D1 (en) 1984-04-26
EP0028245A1 (de) 1981-05-13
EP0028245A4 (de) 1981-08-27

Similar Documents

Publication Publication Date Title
EP0028245B1 (de) Festkörpergebläse
US4498851A (en) Solid state blower
EP3073114B1 (de) Piezoelektrisches mikrogebläse
US4834619A (en) Ducted oscillatory blade fan
JP6585741B2 (ja) 流体制御装置
US20090148320A1 (en) Fluidic Energy Transfer Devices
JP2018042453A (ja) 圧電アクチュエータ及びこれを使用した小型流体制御装置
EP0985237A1 (de) Piezoelektrisches einschaufellüfter mit nideriger bouhöhe
TWI689664B (zh) 致動氣體導流裝置
JPWO2005012729A1 (ja) ダイヤフラムポンプおよび該ダイヤフラムポンプを備えた冷却システム
CN107614875B (zh)
US20020175596A1 (en) Thin profile piezoelectric jet device
US4858717A (en) Acoustic convective system
US7083398B2 (en) Vibrating pumping stage for molecular vacuum pumps, and molecular vacuum pump with vibrating pumping stages
WO1999027636A1 (en) Acoustic resonator power delivery
US4399385A (en) Rotative motor using a triangular piezoelectric element
JPH10242678A (ja) 熱交換フィンの構造
JPH05137359A (ja) 超音波振動子および超音波駆動装置
JPH018718Y2 (de)
JPH018719Y2 (de)
CA1244807A (en) Solid state blower
JPH1165569A (ja) 振動型報知装置
IT8048612A1 (it) Dispositivo a stato solido per il pompaggio di liquidi o gas, in particolare per la ventilazione di apparecchiature elettroniche.
SU1614148A1 (ru) Устройство дл охлаждени микроэлектронных узлов
JPH07337046A (ja) 超音波モータ駆動装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19810109

AK Designated contracting states

Designated state(s): DE FR GB NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PIEZO ELECTRIC PRODUCTS, INC.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 3067101

Country of ref document: DE

Date of ref document: 19840426

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900501

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900510

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900531

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900629

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19911201

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920303

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST