EP0027633A1 - Verfahren zur Herstellung eines Wärmeisolierkörpers - Google Patents

Verfahren zur Herstellung eines Wärmeisolierkörpers Download PDF

Info

Publication number
EP0027633A1
EP0027633A1 EP80106278A EP80106278A EP0027633A1 EP 0027633 A1 EP0027633 A1 EP 0027633A1 EP 80106278 A EP80106278 A EP 80106278A EP 80106278 A EP80106278 A EP 80106278A EP 0027633 A1 EP0027633 A1 EP 0027633A1
Authority
EP
European Patent Office
Prior art keywords
dispersant
premix
fiber mixture
mixed
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80106278A
Other languages
English (en)
French (fr)
Other versions
EP0027633B1 (de
Inventor
Hans Kummermehr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grunzweig und Hartmann und Glasfaser AG
Saint Gobain Isover G+H AG
Original Assignee
Grunzweig und Hartmann und Glasfaser AG
Gruenzweig und Hartmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grunzweig und Hartmann und Glasfaser AG, Gruenzweig und Hartmann AG filed Critical Grunzweig und Hartmann und Glasfaser AG
Priority to AT80106278T priority Critical patent/ATE1497T1/de
Publication of EP0027633A1 publication Critical patent/EP0027633A1/de
Application granted granted Critical
Publication of EP0027633B1 publication Critical patent/EP0027633B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials

Definitions

  • the invention relates to a method for producing a heat insulating body from a highly dispersed insulating material, opacifying agent, reinforcing fiber mixture and possibly a binder, these materials being mixed and solidified.
  • a method for producing a thermal insulation material in which a mixture based on airgel particles and inorganic fibers is deformed.
  • This mixture consists of silicon dioxide - or silica - airgel particles and ceramic aluminum silicate - or carbon fibers or their mixtures.
  • a container in the bottom area of which a rotating wing is arranged. After the container is closed, the material is swirled by turning the rotating wing and thus mixed intimately.
  • a clouding material is added to the airgel and fiber material before mixing. The entire materials are then subjected to the mixing process in the container containing a rotating wing.
  • the silica airgel particles generally have a particle diameter of less than 1 ⁇ m and, due to their large volume structure, have a low density. Since such a thermal insulation material mostly consists of more than 50% of this airgel, almost the entire volume of the body made of the heat insulation material is filled with the airgel particles and the surrounding air, the volume of the fibrous materials and the opacifier hardly being significant.
  • the invention is therefore based on the object of providing a method for producing a heat insulating body which, in the simplest form and with simple aids, creates a homogeneous mixture of insulating agent particles, fiber mixtures and / or opacifying agent particles, even if the proportion of insulating material in these materials exceeds 50% by weight. lies.
  • This object is achieved in that the opacifying agent and / or the reinforcing fiber mixture are mixed with a dispersant to form a premix which is then mixed further with the remaining materials.
  • opacifiers which are added to increase the heat reflectivity
  • either organic or inorganic compounds are suitable, which can scatter, absorb or reflect the thermal radiation, whereby the choice of substances must take into account the use temperature.
  • the particle size of these opacifiers is usually in a range from 0.5 to 20 ⁇ m, preferably 1 to 10 ⁇ m, the maximum of the frequency distribution being between 2.5 and 5 ⁇ m.
  • Opacifiers that can be used include graphite and carbon black, provided the temperature is not too high, inorganic oxides of titanium, which may contain iron (III) oxide (ilmenite), rutile, chromium oxide, manganese oxide, iron oxide and Carbides of silicon, boron, tantalum or tungsten or their mixtures.
  • metallic aluminum, tungsten or silicon, zirconium, titanium dioxide or lead monoxide and other substances that have a high heat reflection or IR refractive index can be used.
  • These opacifiers can be present in the heat insulating body in an amount of up to 60% by weight.
  • the amount of opacifier used is selected according to the heat radiation that occurs, the amount of opacifier used also increasing with increasing temperature.
  • the opacifying agent also has the advantage that, because of its large grain size compared to the insulating agent, it can fill up large intermediate areas so that the thermal conductivity of the end product is thereby reduced and the thermal quality is thus improved.
  • Ilmenite FeTi0 3 is particularly preferred as an opacifier, since this is very cheap and, moreover, easy to grind.
  • This opacifying agent can be contaminated with chemically bound manganese (Mn).
  • All organic or inorganic fibers which improve the mechanical properties of the heat insulating body, in particular the surface adhesive properties, can be used as reinforcing fibers.
  • Such fibers include mineral fibers, for example basalt fibers or glass fibers, asbestos fibers, aluminum silicate fibers, synthetic organic fibers based on polyamides, polyacrylic acid, viscose ...
  • the fiber diameter should be in a range from 1 to 20, in particular 5 to 10 ⁇ m.
  • the length of these fibers is generally a few mm to a few cm.
  • These reinforcing fibers can be added to the mixture in an amount of up to 40% by weight.
  • Hydrophobized substances of an inorganic or organic type can be used as dispersants for example, hydrophobicized silica, pyrogenic silica or polymers such as polytetrafluoroethylene, the silicas being preferred for reasons of cost.
  • This dispersant is intimately mixed with the opacifier in a weight ratio of 2:98 to 30:70, preferably 10:90, to form a premix.
  • This premix is mixed with the other components of the heat insulating body in a mixer until a uniform and extremely fine distribution of these components is ensured.
  • the dispersant serves as a spacer from the toothy components of the heat insulating body, so that the individual binder particles are uniformly distributed in the insulating compound without agglomerating.
  • the dispersant not only serves as a spacer from the individual particles of insulation, but also as a mixing aid.
  • the opacifier is to be ground to the desired particle size, this can be done in the presence of the dispersant, since this effectively prevents the formation of agglomerates. It is intimately mixed with the dispersant before incorporation into the insulating material and then ground to the desired grain size.
  • Powder or fiber particles or mixtures thereof can be used as the particulate insulating material. These can be agglomerates of finely divided particles with a grain size below 0.1 ⁇ m, which have a tubular or porous structure.
  • insulating materials include quartz or glass fibers, aluminum silicate fibers and other ceramic fibers, powdered aluminum or mixtures of fly ash with expanded silica, finely divided aluminum or chromium oxide and aerogels, for example of silica, chromium oxide, thorium oxide, magnesium hydrate, aluminum oxide or mixtures thereof.
  • aerogels can according to the invention not only as an insulating material, but also be used as dispersants, provided they have an ag g regats p alternatede structure or hydrophobic.
  • Such insulating materials also include fumed silica, which arises from the chemical decomposition of silicon tetrachloride.
  • the size of these particles is in a range of 10 ⁇ -2mm, in particular below 1 ⁇ m.
  • the heat insulating body consists of up to 95% of this insulating material, with 30 to 85% insulating material preferably being used.
  • the heat-insulating body obtained after the mixing and solidification of these materials were subjected to normal stress, it would have to be determined that, owing to its unfavorable mechanical properties, it could not be used. As a result, the body must be enclosed in an enclosure, for example a sack, or else hardened with special binders in order to obtain the desired mechanical rigidity and strength.
  • All inorganic or organic binders can be used as binders, which can be converted to a grain size of less than 1 ⁇ m by means of grinding and soften or melt below 700 ° C., as a result of which they can form a connection with the surrounding insulating material particles.
  • the grinding of these binder particles to a grain size in the range of 1 ⁇ m or less gives rise to binder particles which, with a uniform distribution in the insulating body, produce high mechanical resistance.
  • the upper temperature limit of approx. 700 ° C must be observed because the insulation material particles begin to sinter above this temperature limit and the heat-insulating properties of the insulating body are lost.
  • Binders on an inorganic basis include low-melting glasses, glass-forming substances, glass solders, phosphates, sulfates, carbonates, hydroxides or oxides of the alkali or alkaline earth metals, sodium silicates, borates, borax, sodium perborate and mixtures thereof. Soda or sodium sulfate is preferably used, this sodium sulfate being added to reduce somewhat fine-grained soot.
  • organic-based binders are resins of the phenol-formaldehyde type, urea-formaldehyde type, thermally softenable resins, such as PVC resins or copolymers of vinyl chloride and vinyl acetate, granules of polyurethane, polyamides, polyethylene, silicone resins and the like. Finely ground formaldehyde resins or Methyl silicone resins used.
  • the amount of binder used is determined on the basis of the desired stiffness and flexibility of the plate, it being sufficient, as a rule, if the plate becomes abrasion-resistant by the addition of the binder.
  • the binder is therefore usually used in an amount of 2 to 30% by weight, in particular 5 to 10% by weight, based on the insulating agent.
  • the compressed mixture can also be introduced into an envelope, which is described for example in DE-PS 19 54 992.
  • the heat insulation body is under such pressure that it can withstand high mechanical loads and still has good heat insulation properties.
  • the premix is produced by mixing the opacifying agent and / or the reinforcing fiber with the dispersing agent in a conventional mixer. 2-30, in particular 10% by weight of dispersing agent and the corresponding amount of pulp are used funds. The components of this mixture are added individually to the mixer. The mixture is then mixed until a uniform mixture is achieved. Depending on the material used, the mixing time is between 5 seconds and 5 minutes, in particular within a period of 20-50 seconds. The premix produced in this way has a very fine, uniform distribution and no longer has any agglomerates or larger fiber bodies. This premix is added to the remaining mass of insulating agent, which is also mixed for up to 5 minutes, preferably 20-50 seconds. The final mixture obtained can consist, for example, of approximately 60% fumed silica and 40% premix.
  • 10% pyrogenic silica which is also used as an insulating material
  • 90% opacifying agents for example ilmenite
  • This final mixture is pressed into sheets or molded parts in a press and then subjected to a heat treatment if a binder has been used. If the final mixture has been produced without a binder and has therefore been filled into a sack before pressing, this sack is subjected to the pressing treatment, the pressure generally being between 0.07 and 21 kg / cm 2 or above.
  • a release agent can advantageously be provided between the press and the insulating material.
  • the sheet or mold pressed in this way is then subjected to a heat treatment either in an oven or else in an HF or microwave apparatus.
  • the end product obtained has excellent thermal insulation properties and can be used, for example, in storage furnaces and the like.
  • the materials to be processed into a premix are transferred via a line 1 into the premixer 2, the opacifier 3 and the pyrogenic silica 4 being added in one. The order of addition does not matter. Then mix in this premixer for 30-40 seconds if opacifier is used and 3-5 minutes if mineral fiber wool is used.
  • the premix obtained consists of 2-30, preferably 10% by weight of dispersant (fumed silica) if opacifier is to be mixed, and up to 50, preferably 25-30% by weight of dispersant if reinforcing fiber is used.
  • the premix obtained is transferred via line 5 into the main mixer 7, into which further lines, for example line 6 for adding the other materials, can open.
  • the reinforcing fiber 9 and the pyrogenic silica 10 are fed in in accordance with the amount specified above for the fiber mixture.
  • the reinforcing fiber can also be ground in a further premixer with the fumed silica and added to the main mixer as a further premixer. It is also possible to mix opacifiers together with the reinforcing fiber in a premixer with the silica. However, it is always the case that the proportions given above must be observed when opacifiers and / or reinforcing fibers are to be dispersed.
  • the final mixture in the main mixer 7 is mixed again for 30-40 seconds. The The final mixture obtained is then transferred to a filling station and then to a press.
  • the entire process run up to the filling station can be seen from FIG.
  • the opacifier 3 is added to the premixer 2 via the line 1, while the silica 4 is added via a feed hopper 12 which can feed the lines 1 and 6 through a lock 13.
  • the premix components thus reach the premixer 2, where they are subsequently mixed and, after mixing, pass via line 5 into the main mixer 7.
  • the reinforcing fiber 9 is via the line 6 and the amount of silica necessary for mixing the reinforcing fiber is via the.
  • Line 6 is also introduced into the main mixer 7, where the premix 8, the reinforcing fiber 9 and the silica 10 are mixed. Then the remaining silica is again fed via line 6 to the main mixer 7, where the final mixture is then produced.
  • This final mixture is transferred via the discharge line 14 into a silo 15, from where it reaches the filling station 18 via a screw conveyor 16 and a balance 17.
  • This filling station 18 can be provided directly in a press, provided that there is no prior filling in bags, which are then also subjected to pressure treatment in a press.
  • a heating device is also provided behind the press, provided that the heat insulating body is provided with a binder to be hardened.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Insulation (AREA)
  • Moulding By Coating Moulds (AREA)
  • Laminated Bodies (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)

Abstract

Bei einem Verfahren zur Herstellung eines Wärmeisolierkörpers werden hochdisperses Isoliermaterial, Trübungsmittel, verstärkendes Fasergemisch und gegebenenfalls ein Bindemittel gemischt. Dabei wird zunächst das Trübungsmittel und/oder das verstärkende Fasergemisch mit einem Dispergiermittel zu einem Vorgemisch vermischt, welches erst anschließend mit den restlichen Materialien weitervermischt wird, wonach das Material verfestigt wird. Dadurch kann mit einfachen Hilfsmitteln eine homogene Mischung dieser Materialien erreicht werden, auch wenn der Isoliermaterialanteil an diesen Materialien über 50 Gew.-% liegt.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines Wärmeisolierkörpers aus einem hochdispersen Isoliermaterial, Trübungsmittel, verstärkendem Fasergemisch und ggfs. einem Bindemittel, wobei diese Materialien gemischt und verfestigt werden.
  • Aus der DE-AS 16 71 186 ist ein Verfahren zur Herstellung eines Wärmeisoliermaterials bekannt, bei dem ein Gemisch auf der Grundlage von Aerogel-Teilchen und anorganischen Fasern verformt wird. Dieses Gemisch besteht aus Siliciumdioxid - bzw. Kieselerde - Aerogel-Teilchen und keramischen Aluminiumsilikat - oder Kohlenstoff-Fasern oder deren Gemischen. Zur Durchmischung dieser Materialien bringt man diese in einen Behälter ein, in dessen Bodenbereich ein Drehflügel angeordnet ist. Nach dem Schließen des Behälters wird das Material durch Drehen des Drehflügels verwirbelt und somit innig vermischt. Dem Aerogel- und Fasermaterial wird in einer bevorzugten Ausführungsform vor dem Vermischen ein Trübungsmaterial zugesetzt. Anschließend werden die gesamten Materialien dem Mischvorgang in dem einen Drehflügel enthaltenden Behälter unterzogen.
  • Die Kieselsäure-Aerogel-Teilchen besitzen in der Regel einen Teilchendurchmesser unter 1µm und besitzen infolge ihrer großvolumigen Struktur eine geringe Dichte. Da ein derartiges Wärmeisoliermaterial meistens zu mehr als 50% aus diesem Aerogel besteht, ist nahezu das gesamte Raumvolumen des aus dem Wärmeisoliermaterial hergestellten Körpers mit den Aerogel-Teilchen und diese umgebender Luft angefüllt, wobei die Faserstoffe und das Trübungsmittel volumenmaßig kaum ins Gewicht fallen.
  • Bei Mischversuchen hat sich nunmehr gezeigt, daß es äusserst schwierig ist, ein aus mehr als 50 Gew.% Aerogel-teilchen enthaltendes Gemisch herzustellen, das außerdem Verstärkungsfasermaterial und/oder Trübungsmittel enthält. Werden nämlich relativ geringe Mengen Trübungsmittel und/ oder Fasermaterial zu einer großen Menge Aerogel-Material zugesetzt, so ist häufig auch nach einem mehrstündigen Rühren kein einheitliches Gemisch zu erhalten. Der Drehflügel kann nämlich nur eine Durchmischung in einem beschränkten Bereich erzeugen. Dagegen bewegt sich die über dem Drehflügel befindliche Materialmenge nur sehr langsam und zögernd nach unten, um dort durchgemischt zu werden. Es kommt daher häufig vor, daß der bei hoher Drehgeschwindigkeit laufende Drehflügel durch das Durchmischen heiß wird, andererseits jedoch nicht ein zufriedenstellendes Mischungsgergebnis liefern kann. Durch eine derartige inhomogene Durchmischung leidet natürlich die Qualität des Endproduktes, dessen Wärmeleitzahlen und Wärmereflexionsfähigkeit nachteilig beeinflußt werden.
  • Der Erfindung liegt deshalb die Aufgabe zugrunde, ein Verfahren zur Herstellung eines Wärmeisolierkörpers zu schaffen, das in einfachster Form und mit einfachen Hilfsmitteln eine homogene Mischung aus Isoliermittelteilchen, Fasergemischen und/oder Trübungsmittelteilchen schafft, auch wenn der Isoliermaterialanteil an diesen Materialien über 50 Gew.% liegt.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß das Trübungsmittel und/oder das vsrstärkende-Fasergemisch mit einem Dispergiermittel zu einem Vorgemisch vermischt werden, welches anschließend mit den restlichen Materialien weiter vermischt wird.
  • Vermischt man Trübungsmittel und/oder die verstärkenden Fasergemische mit dem Dispergiermittel und bringt das erhaltene Vorgemisch mit den feinen Isoliermittelteilchen, die den überwiegenden Teil der Endmischung darstellen, zusammen, so kann man überraschenderweise feststellen, daß sich das Vorgemisch sehr leicht in der Isoliermittelmasse auflöst. Dies ist wohl darauf zurückzuführen, daß das Dispergiermittel die Agglomerate, die die Trübungsmittel und/ oder die Fasern gebildet haben, auflöst und anschließend auf Abstand hält. Diese AggLomerate sind nur bei sehr sorgfältiger Behandlung aufzulösen, da die zwischen den einzelnen Teilchen wirkenden und die Agglomerate bildenden Kräfte durch dispergierend wirkende Behandlung und/oder Substanzen aufgelöst werden können. Durch Trennung der einzelnen Trübungsmittelteilchen oder Faserbestandteile ist eine weitere Vermischung mit hochvolumigen Teilchen, die ebenfalls zur Agglomerierung neigen, sehr erleichert, da sich diese hochvolumigen Teilchen bzw. aus ihnen bestehende Agglomerate zwischen die einzelnen, auf Abstand gehaltenen Trübungsmittelteilchen und/oder Faserbestandteile schieben können. Von besonderem Vorteil ist es, wenn das Dispergiermittel und das Isoliermaterial identisch sind, da die bereits im Vorgemisch erfolgte Trennung eine äußerst leichte Auflösung des Trubungsmittels und/oder Fasermaterials in der Isoliermittelmasse bewirkt, was letztlich auf eine Verdünnung dieser Materialien hinausläuft.
  • Als Trübungsmittel, das zur Erhöhung des Wärmereflexionsvermögens zugegeben wird, kommen entweder organische oder anorganische Verbindungen in Frage, die die thermische Strahlung streuen, absorbieren oder reflektieren können, wobei bei der Wahl der Substanzen auf die Einsatztemperatur geachtet werden muß. Die Korngröße dieser Trübungsmittel liegt üblicherweise in einem Bereich von 0,5 bis 20µm, vorzugsweise 1 bis 10µm, wobei das Maximum der Häufigkeitsverteilung zwischen 2,5 und 5µm liegen soll. Zu einsetzbaren Trübungsmitteln gehören Graphit und Ruß, sofern die Temperatur nicht zu hoch ist, anorganische Oxide von Titan, die ggfs. Eisen (III) - Oxid enthalten können (Ilmenit), Rutil, Chromoxid, Manganoxid, Eisenoxid sowie Karbide des Siliciums, Bors, Tantals oder Wolframs oder deren Gemische. Weiterhin lassen sich metallisches Aluminium, Wolfram oder Silicium, Zirkon, Titandioxid oder Bleimonoxid sowie weitere Stoffe einsetzen, die einen hohen Wärmereflexions- oder IR-Refraktionsindex besitzen. Diese Trübungsmittel können bis zu einer Menge von 60 Gew.% in dem Warmeisolierkörper vorliegen. Die eingesetzte Trübungsmittelmenge wird dabei nach der auftretenden Wärmestrahlung gewählt, wobei die eingesetzte Trübungsmittelmenge mit steigender Temperatur ebenfalls ansteigt. Das Trübungsmittel besitzt außerdem den Vorteil, daß es wegen seiner im Vergleich zum Isoliermittel großen Korngröße große Zwischenbereiche aufzufüllen vermag so daß hierdurch die thermische Leitfähigkeit des Endprodukts verringert und somit die thermische Qualität verbessert wird.
  • Besonders bevorzugt ist Ilmenit FeTi03 als Trübungsmittel, da dies sehr billig und außerdem leicht vermahlbar ist. Dieses Trübungsmittel kann mit chemischgebundenem Mangan (Mn) verunreinigt sein.
  • Als verstärkend wirkende Fasern können sämtliche organische oder anorganischen Fasern eingesetzt werden, die die mechanischen Eigenschaften des Wärmeisolierkörpers, insbesondere die Oberflächenhafteigenschaften verbessern. Zu derartigen Fasern gehören Mineralfasern, beispielsweise Basaltfasern oder Glasfasern, Asbestfasern, Aluminiumsilikatfasern, synthetische organische Fasern auf der Basis von Polyamiden, Polyacrylsäure, Viscose...Der Faserdurchmesser soll dabei in einem Bereich von 1 bis 20, insbesondere 5 bis 10µm liegen. Die Länge dieser Fasern liegt im allgemeinen bei einigen mm bis einigen cm. Diese Verstärkungsfasern können bis zu einer Menge von 40 Gew.% dem Gemisch zugesetzt werden.
  • Als Dispergiermittel können hydrophobierte Substanzen anorganischer oder organischer Art eingesetzt werden, beispielsweise hydrophobierte Kieselsäure, pyrogene Kieselsäure oder Polymerisate, wie Polytetrafluoräthylen, wobei die Kieselsäuren aus Kostengründen bevorzugt sind.
  • Dieses Dispergiermittel, dessen Korngröße selbst unter 1µm liegt, wird mit dem Trübungsmittel in einem Gewichtsverhaltnis von 2:98 bis 30:70, vorzugsweise 10:90 unter Bildung eines Vorgemisches innig vermischt. Dieses Vorgemisch wird mit den anderen Bestandteilen des Wärmeisolierkörpers solange in einem Mischer vermengt, bis eine gleichförmige und äußerst feine Verteilung dieser Bestandteile gewährleistet ist. Das Dispergiermittel dient hierbei als Abstandshalter zu dentbrigen Bestandteilen des Wärmeisolierkörpers, so daß die einzelnen Binde-mittelteilchen ohne AggLomerieren gleichförmig verteilt in der Isoliermasse vorliegen. Somit dient also das Dispergiermittel nicht nur als Abstandshalter zu den einzelnen Isoliermittelteilchen,sondern auch als Mischhilfe.
  • Sofern das Trübungsmittel noch auf die gewünschte Korngröße gemahlen werden soll, kann dies in Anwesenheit des Dispergiermittels erfolgen, da hierdurch die Agglomeratbildung wirksam verhindert wird. Es wird dabei vor dem Einverleiben in das Isoliermaterial mit dem Dispergiermittel innig vermischt und anschließend auf die gewünschte Korngröße gemahlen.
  • Als teilchenförmiges Isoliermaterial können Pulver- oder Faserteilchen oder deren Gemische in Frage kommen. Dabei kann es sich um Agglomerate von fein verteilten Teilchen mit einer Korngröße unter 0,1µm handeln, die eine röhrenförmige oder poröse Struktur besitzen. Zu derartigen Isolierstoffen gehören Quarz- oder Glasfasern, Aluminiumsilikatfasern sowie weitere keramische Fasern, pulverförmiges Aluminium oder Gemische aus Flugasche mit expandierter Kieselerde, feinteiliges Aluminium- oder Chromoxid und Aerogele, beispielsweise von Kieselsäure, Chromoxid, Thoriumoxid, Magnesiumhydrat, Aluminiumoxid oder deren Gemische. Diese Aerogele können erfindungsgemäß nicht nur als Isoliermaterial, sondern auch als Dispergiermittel eingesetzt werden, sofern sie eine aggregatspaltende Struktur besitzen oder hydrophobiert sind.
  • Weiterhin gehört zu derartigen Isolierstoffen die pyrogene Kieselsäure, die aus der chemischen Zersetzung von Siliciumtetrachlorid entsteht. Die Größe dieser Teilchen liegt in einem Bereich von 10 Å-2mm, insbesondere unterhalb 1µm. Im allgemeinen besteht der Wärmeisolierkörper bis zu 95% aus diesem Isoliermaterial, wobei bevorzugt 30 bis 85% Isoliermaterial eingesetzt werden.
  • Würde der nach dem Mischen und Verfestigen dieser Materialien erhaltene Wärmeisolierkörper einer üblichen Beanspruchung ausgesetzt, so wäre festzustellen, daß dieser infolge seiner ungünstigen mechanischen Eigenschaften nicht einsetzbar wäre. Infolgedessen muß der Körper in eine Umschließung, beispielsweise einen Sack eingeschlossen werden, oder aber mit speziellen Bindemitteln gehärtet werden, um die gewünschte mechanische Steifigkeit und Festigkeit zu erhalten.
  • Als Bindemittel können sämtliche anorganische oder organische Bindemittel eingesetzt werden, die durch Mahlen in eine Korngröße unter 1µm Überführt werden können und unterhalb 700° C erweichen bzw. schmelzen, wodurch sie eine Verbindung mit den umgebenden Isoliermaterialteilchen eingehen können. Das Vermahlen dieser Bindemittelteilchen auf eine Korngröße im Bereich von 1µm oder darunter läßt Bindemittelteilchen entstehen, die bei einer gleichförmigen Verteilung im Isolierkörper eine hohe mechanische Beständigkeit erzeugen. Die obere Temperaturgrenze von ca. 700° C ist deshalb zu beachten, weil oberhalb dieser Temperaturgrenze die Isoliermaterialteilchen zu sintern beginnen und dadurch die wärmedämmende Eigenschaft des Isolierkörpers verloren geht.
  • Zu Bindemitteln auf anorganischer Basis gehören niederschmelzende Gläser, glasbildende Stoffe, Glaslote, Phosphate, Sulfate, Carbonate, Hydroxide oder Oxide der Alkali- oder Erdalkalimetalle, Natriumsilikate, Borate, Borax, Natriumperborat und deren Gemische. Vorzugsweise wird Soda oder Natriumsulfat eingesetzt, wobei diesem Natriumsulfat zur Reduzierung etwas feinkörniger Ruß beigegeben wird.
  • Beispiele für Bindemittel auf organischer Basis sind Harze vom Phenol-Formaldehydtyp, Harnstoff-Formaldehydtyp, thermisch erweichbare Harze, wie PVC-Harze oder Kopolymere von Vinylchlorid und Vinylacetat, Granulate von Polyurethan, Polyamiden, Polyäthylen, Siliconharze und dgl. Vorzugsweise werden feinst gemahlene Formaldehydharze oder Methylsiliconharze eingesetzt.
  • Im allgemeinen wird die Menge des eingesetzten Bindemittels an Hand der gewünschten Steifigkeit und Biegefähigkeit der Platte bestimmt, wobei es regelmäßig ausreicht, wenn die Platte durch den Zusatz des Bindemittels abriebfest wird. Üblicherweise wird das Bindemittel deshalb in einer Menge von 2 - 30 Gew.%, insbesondere 5 - 10 Gew.%, bezogen auf das Isoliermittel, eingesetzt.
  • Andererseits kann das verpresste Gemisch auch in eine Umhüllung eingebracht werden, welche beispielsweise in der DE-PS 19 54 992 beschrieben ist. In der Umschließung steht der Wärmeisolierkörper derart unter Druck, daß er hohen mechanischen Belastungen gewachsen ist und trotzdem gute Wärmeisoliereigenschaften besitzt.
  • In dem erfindungsgemäßen Verfahren zur Herstellung des Wärmeisolierkörpers wird das Vorgemisch dadurch hergestellt, daß man das Trübungsmittel und/oder die Ver- , stärkungsfaser mit dem Dispergiermittel- in einem üblichen Mischer vermischt. Man verwendet 2-30, insbesondere 10 Gew.% Dispergiermittel und die entsprechende Menge Trübungsmittel. Die Bestandteile dieses Gemischs werden einzeln in den Mischer gegeben. Anschließend wird solange gemischt, bis eine einheitliche Mischung erreicht ist. Die Mischungszeit liegt je nach eingesetztem Material zwischen 5 Sek. und 5 Min., insbesondere in einem Zeitraum von 20-50 Sek. Das dadurch hergestellte Vorgemisch besitzt eine hochfeine, einheitliche Verteilung und weist keine Agglomerate bzw. grtißere Faserkörper mehr auf. Dieses Vorgemisch wird zu der restlichen Isoliermittelnasse zugesetzt, wobei diese ebenfalls bis zu 5 Min., vorzugsweise 20-50 Sek. gemischt wird. Das erhaltene Endgemisch kann beispielsweise aus ca. 60% pyrogener Kieselsäure und 40% Vorgemisch bestehen.
  • In einer bevorzugten Ausführungsform werden zur Bildung des Vorgemischs 10% pyrogene Kieselsäure, die ebenfalls als Isoliermaterial verwendet wird, und 90% Trübungsmittel, beispielsweise Ilmenit eingesetzt.
  • Diese Endmischung wird in einer Presse zu Platten oder Formteilen verpresst und anschließend einer Wärmebehandlung unterzogen, sofern Bindemittel eingesetzt wurde. Falls die Endmischung ohne Bindemittel hergestellt und deshalb vor dem Pressen in einen Sack abgefüllt wurde, wird dieser Sack der Pressbehandlung unterzogen, wobei der Druck im allgemeinen zwischen 0,07 und 21 kg/cm2 oder auch darüber liegt. Vorteilhafterweise kann zwischen der Presse und dem Isoliermaterial ein Trennmittel vorgesehen sein.
  • Bei Verwendung eines Bindemittels wird die so gepresste Platte oder Form anschließend einer Wärmebehandlung entweder in einem Ofen oder aber in einer HF- oder Mikrowellenapparatur ausgesetzt.
  • Das erhaltene Endprodukt weist ausgezeichnete Wärmeisoliereigenschaften auf und kann beispielsweise in Speicheröfen und dergleichen eingesetzt werden.
  • In der Zeichnung sind Ausführungsbeispiele für den erfindungsgemäßen Warmeisolierkörper wiedergegeben. Es zeigen
    • Fig. 1 eine schematische Skizze der Herstellung der Vormischung und der Endmischung und
    • Fig. 2 eine schematische Darstellung der gesamten Misch- und Abfüllstation.
  • Gemäß der in Fig. 1 gezeigten Skizze werden die zu einem Vorgemisch zu verarbeitenden Materialien über eine Leitung 1 in den Vormischer 2 überführt, wobei das Trübungsmittel 3 und die pyrogene Kieselsäure 4 in Einem zugegeben werden. Dabei spielt die Reihenfolge der Zugabe keine Rolle. Anschließend wird in diesem Vormischer 30-40 Sek., wenn Trübunsmittel eingesetzt wird,und 3-5 Min., wenn Mineralfaserwolle eingesetzt wird, gemischt. Das erhaltene Vorgemisch besteht aus 2-30, vorzugsweise 10 Gew.% Dispergiermittel (pyrogene Kieselsäure), wenn Trübungsmittel vermischt werden soll, und bis zu 50, vorzugsweise 25-30 Gew.% Dispergiermittel, wenn Verstärkungsfaser verwendet wird. Das erhaltene Vorgemisch wird über die Leitung 5 in den Hauptmischer 7 überführt, in den weitere Leitungen, beispielsweise die Leitung 6 für die Zugabe der übrigen Materialien, münden können. Nach dem Einfüllen der Vormischung 8 in den Hauptmischer 7 wird die Verstärkungsfaser 9 und die pyrogene Kieselsäure 10 entsprechend der für die Fasermischung vorstehend angegebenen Menge zugeführt. Die Verstärkungsfaser kann jedoch auch in einem weiteren Vormischer mit der pyrogenen Kieselsäure vermahlen und als weiteres Vorgemisch dem Hauptmischer zugegeben werden. Weiterhin ist es möglich, Trübungsmittel zusammen mit der Verstärkungsfaser in einem Vormischer mit der Kieselsäure zu mischen. Es ist jedoch immer so, daß die vorstehend angegebenen Mengenverhältnisse zu beachten sind, wenn Trübungsmittel und/oder Verstärkungsfaser dispergiert werden sollen. Nach dem Zugeben der restlichen Menge Kieselsäure 11, die den Hauptbestandteil der Mischung betrifft, wird die Endmischung im Hauptmischer 7 nochmals 30-40 Sek. gemischt. Die erhaltene Endmischung wird danach in eine Abfüllstation und anschließend in eine Presse überführt.
  • Aus Fig. 2 ist der gesamte Verfahrenslauf bis zur Abfüllstation ersichtlich. Das Trübungsmittel 3 wird über die Leitung 1 in den Vormischer 2 gegeben, während die Kieselsäure 4 über einen Aufgabetrichter 12, der durch eine Schleuse 13 die Leitungen 1 und 6 speisen kann, aufgegeben wird. Über die Leitungen 1 und 1 gelangen also die Vormischungsbestandteile in den Vormischer 2, wo sie anschliessend vermischt werden und über die Leitung 5 nach dem Mischen in den Hauptmischer 7 gelangen. Die Verstärkungsfaser 9 wird über die Leitung 6 und die zur Mischung der Verstärkungsfaser notwendige Kieselsäuremenge wird über die. Leitung 6 ebenfalls in den Hauptmischer 7 eingebracht, wo das Vorgemisch 8, die Verstärkungsfaser 9 und die Kieselsäure 10 vermischt werden. Danach wird die restliche Kieselsäure über die Leitung 6 wiederum dem Hauptmischer 7 zugeführt, wo dann das Endgemisch hergestellt wird. Dieses Endgemisch wird über die Ablassleitung 14 in ein Silo 15 überführt, von wo es über einen Schneckenförderer 16 und eine Waage 17 in die Abfüllstation 18 gelangt. Diese Abfüllstation 18 kann direkt in einer Presse vorgesehen sein, sofern kein vorheriges Abfüllen in Säcke erfolgt, die anschließend ebenfalls einer Druckbehandlung in einer Presse ausgesetzt werden. Hinter der Presse ist noch eine Erwärmungsvorrichtung vorgesehen, sofern der Wärmeisolierkörper mit einem auszuhärtenden Bindemittel versehen ist.

Claims (13)

1. Verfahren zur Herstellung eines Wärmeisolierkörpers aus einem hochdispersen Isoliermaterial, Trübungsmittel, verstärkendem Fasergemisch und ggfs. einem Bindemittel, wobei diese Materialien gemischt und verfestigt werden, dadurch gekennzeichnet, daß das Trübungsmittel und/oder das verstärkende Fasergemisch mit einem Dispergiermittel zu einem Vorgemisch vermischt werden, welches anschließend mit den restlichen Materialien weiter vermischt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als Trübungsmittel organische oder anorganische Verbindungen einsetzt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Korngröße des Trübungsmittels 0,2-20, vorzugsweise 1-10µm mit einem Maximum der Häufigkeitsverteilung zwischen 2,5 und 5;um beträgt.
4. Verfahren nach einem oder mehreren der vorhergenden Ansprüche, dadurch gekennzeichnet, daß man als Trübungsmittel Graphit, Ruß, anorganische Oxide von Titan, Ilmenit, Rutil, Chromoxid, Manganoxid, Eisenoxid, Karbide des Siliciums, Bors, Tantals oder Wolframs oder deren Gemische einsetzt.
5. verrahren nach Anspruch 4, dadurch gekennzeichnet, daß man als Trübungsmittel Ilmenit FeTi03 einsetzt, das ggfs. mit Mangan verunreinigt ist.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als verstärkendes Fasergemisch Fasern aus Asbest, Aluminiumsilikat, Mineralfasern oder organischen Fasern einsetzt.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß man als Fasergemisch ein Aluminiumsilikatfasergemisch einsetzt.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß der Faserdurchmesser in einem Bereich von 1-20, vorzugsweise 5-10µm liegt.
9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als Dispergiermittel hydrophobierte oder pyrogene Kieselsäure einsetzt.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die Korngröße des Dispergiermittels unter 1µm liegt.
11. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche 1-10, dadurch gekennzeichnet, daß das Gewichtsverhältnis Dispergiermittel/Trübungsmittel in einem Bereich von 2:98 - 30:70, insbesondere 10:90 liegt.
12. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche 1-10, dadurch gekennzeichnet, daß dem zu einem Vorgemisch zu verarbeitenden Fasergemisch bis zu 50, vorzugsweise 25-30 Gew.% Dispergiermittel zugesetzt werden.
13. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche 1-12, dadurch gekennzeichnet, daß das Trübungsmittel bereits vor dem Mahlen mit Dispergiermittel versetzt wird, wobei beim Mahlen bereits ein Vorgemisch erzeugt wird.
EP80106278A 1979-10-18 1980-10-15 Verfahren zur Herstellung eines Wärmeisolierkörpers Expired EP0027633B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80106278T ATE1497T1 (de) 1979-10-18 1980-10-15 Verfahren zur herstellung eines waermeisolierkoerpers.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2942180A DE2942180C2 (de) 1979-10-18 1979-10-18 Verfahren zur Herstellung eines Wärmeisolierkörpers
DE2942180 1979-10-18

Publications (2)

Publication Number Publication Date
EP0027633A1 true EP0027633A1 (de) 1981-04-29
EP0027633B1 EP0027633B1 (de) 1982-09-01

Family

ID=6083798

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80106278A Expired EP0027633B1 (de) 1979-10-18 1980-10-15 Verfahren zur Herstellung eines Wärmeisolierkörpers

Country Status (8)

Country Link
US (1) US4363738A (de)
EP (1) EP0027633B1 (de)
JP (1) JPS56100183A (de)
AT (1) ATE1497T1 (de)
CA (1) CA1153537A (de)
DD (1) DD153678A5 (de)
DE (1) DE2942180C2 (de)
YU (1) YU266980A (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0090883A2 (de) * 1982-04-02 1983-10-12 Degussa Aktiengesellschaft Wässrige Suspension zur Beschichtung von pyrogene Kieselsäure enthaltenden Formkörpern
DE3212261A1 (de) * 1982-04-02 1983-11-10 Degussa Ag, 6000 Frankfurt Waessrige suspension von bentonit und deren verwendung zur beschichtung von waermedaemmplatten
EP0205155A2 (de) * 1985-06-12 1986-12-17 Wacker-Chemie GmbH Katalysatorauspuff mit Wärmedämmung
EP0269101A2 (de) * 1986-11-28 1988-06-01 Wacker-Chemie GmbH Katalysatorauspuff mit Wärmedämmung
EP0340707A3 (en) * 1988-05-03 1990-09-26 Basf Aktiengesellschaft Insulating material with a density of 0,1 to 0,4 g/cm3
FR2690106A1 (fr) * 1992-04-16 1993-10-22 Saint Gobain Isover Feutre aiguilleté comportant une couche de revêtement et procédé pour sa fabrication.
FR2695981A1 (fr) * 1992-09-18 1994-03-25 Rhone Poulenc Chimie Panneau d'isolation thermique et/ou acoustique et ses procédés d'obtention.
EP0623567A1 (de) * 1993-05-06 1994-11-09 Wacker-Chemie GmbH Verfahren zur Herstellung eines mikroporösen Körpers mit wärmedämmenden Eigenschaften
WO1996012683A1 (de) * 1994-10-20 1996-05-02 Hoechst Aktiengesellschaft Aerogelhaltige zusammensetzung, verfahren zur ihrer herstellung sowie ihre verwendung
WO1996015997A1 (de) * 1994-11-23 1996-05-30 Hoechst Aktiengesellschaft Aerogelhaltiges verbundmaterial, verfahren zu seiner herstellung sowie seine verwendung
WO2023148082A1 (en) 2022-02-03 2023-08-10 Empa Eidgenössische Materialprüfungs- Und Forschungsanstalt Binder-free bulk silica aerogel material, method of producing the same and uses thereof
EP4382498A1 (de) 2022-12-09 2024-06-12 EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt Bindemittelfreies bulk-silica-aerogelmaterial, verfahren zur herstellung davon und verwendungen davon

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3125875A1 (de) * 1981-07-01 1983-01-27 Degussa Ag, 6000 Frankfurt Waermeisolationsmischung
US4681788A (en) * 1986-07-31 1987-07-21 General Electric Company Insulation formed of precipitated silica and fly ash
DE3882031T2 (de) * 1988-01-11 1994-01-27 Raychem Corp Korrosionsverhütendes Material und Verfahren.
US5053282A (en) * 1989-09-19 1991-10-01 Ceram-Sna Inc. Non-inflammable insulating composite material
US4976884A (en) * 1989-09-19 1990-12-11 Ceram-Sna Inc. Heat resistant composition processable by wet spinning
US5154955A (en) * 1989-09-21 1992-10-13 Ceram-Sna Inc. Fiber-reinforced cement composition
US5118544A (en) * 1989-09-21 1992-06-02 Ceram-Sna Inc. Heat resistant composition processable by vacuum forming
US5250588A (en) * 1990-01-16 1993-10-05 Ceram Sna Inc. Organic friction material composition for use to produce friction linings
US5076986A (en) * 1990-10-03 1991-12-31 Ceram Sna Inc. Process for manufacturing a composite material
JPH11509878A (ja) * 1995-05-22 1999-08-31 インペリアル・ケミカル・インダストリーズ・ピーエルシー 有機エーロゲル
DE19744555A1 (de) * 1997-10-09 1999-04-15 Ako Werke Gmbh & Co Heizeinrichtung
AU2004236755A1 (en) 2003-05-06 2004-11-18 Aspen Aerogels, Inc. Load-bearing, lightweight, and compact insulation system
US8461223B2 (en) 2005-04-07 2013-06-11 Aspen Aerogels, Inc. Microporous polycyclopentadiene-based aerogels
US9469739B2 (en) 2005-04-07 2016-10-18 Aspen Aerogels, Inc. Microporous polyolefin-based aerogels
US20060264133A1 (en) * 2005-04-15 2006-11-23 Aspen Aerogels,Inc. Coated Aerogel Composites
US20060269734A1 (en) * 2005-04-15 2006-11-30 Aspen Aerogels Inc. Coated Insulation Articles and Their Manufacture
US9476123B2 (en) 2005-05-31 2016-10-25 Aspen Aerogels, Inc. Solvent management methods for gel production
WO2007011750A2 (en) 2005-07-15 2007-01-25 Aspen Aerogels, Inc. Secured aerogel composites and method of manufacture thereof
US9181486B2 (en) 2006-05-25 2015-11-10 Aspen Aerogels, Inc. Aerogel compositions with enhanced performance
WO2011017309A2 (en) * 2009-08-03 2011-02-10 Britt James M Method for protecting the valve of a molten-metal ladle and facilitating free opening thereof
DE102010029513A1 (de) * 2010-05-31 2011-02-24 Wacker Chemie Ag Dämmung mit Schichtaufbau
US8952119B2 (en) 2010-11-18 2015-02-10 Aspen Aerogels, Inc. Organically modified hybrid aerogels
US8906973B2 (en) 2010-11-30 2014-12-09 Aspen Aerogels, Inc. Modified hybrid silica aerogels
US9938712B2 (en) 2011-03-30 2018-04-10 Owens Corning Intellectual Capital, Llc High thermal resistivity insulation material with opacifier uniformly distributed throughout
US9133280B2 (en) 2011-06-30 2015-09-15 Aspen Aerogels, Inc. Sulfur-containing organic-inorganic hybrid gel compositions and aerogels
SI24001A (sl) 2012-02-10 2013-08-30 Aerogel Card D.O.O. Kriogena naprava za transport in skladiščenje utekočinjenih plinov
US9302247B2 (en) 2012-04-28 2016-04-05 Aspen Aerogels, Inc. Aerogel sorbents
US11053369B2 (en) 2012-08-10 2021-07-06 Aspen Aerogels, Inc. Segmented flexible gel composites and rigid panels manufactured therefrom
WO2014197028A2 (en) 2013-03-08 2014-12-11 Aspen Aerogels, Inc. Aerogel insulation panels and manufacturing thereof
FR3007025B1 (fr) 2013-06-14 2015-06-19 Enersens Materiaux composites isolants comprenant un aerogel inorganique et une mousse de melamine
KR101485784B1 (ko) * 2013-07-24 2015-01-26 주식회사 지오스에어로젤 단열 및 방음 기능 향상을 위한 에어로겔이 포함된 단열성 조성물 및 이를 이용한 단열원단의 제조방법
US9434831B2 (en) 2013-11-04 2016-09-06 Aspen Aerogels, Inc. Benzimidazole based aerogel materials
US11380953B2 (en) 2014-06-23 2022-07-05 Aspen Aerogels, Inc. Thin aerogel materials
KR101562552B1 (ko) 2014-07-30 2015-10-23 주식회사 지오스에어로젤 에어로젤이 함유된 알루미늄 복합패널 및 그 제조방법
CN114804125A (zh) * 2014-10-03 2022-07-29 斯攀气凝胶公司 改良的疏水性气凝胶材料
MX2020012746A (es) 2018-05-31 2021-02-22 Aspen Aerogels Inc Composiciones de aerogel reforzadas de clase ignifuga.
CN114349521B (zh) * 2021-12-07 2023-04-11 南京钢铁股份有限公司 一种高强度纳米绝热板及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2422384B2 (de) * 1973-05-11 1977-03-03 Höganäs AB, Höganäs (Schweden) Verwendung von kolloidaler kieselsaeure in hitzebestaendigen auskleidungsmaterialien
DE1671186B2 (de) * 1966-09-29 1979-02-15 United Kingdom Atomic Energy Authority, London Verfahren zur Herstellung von Wärmeisoiiermaterial
DE2748307A1 (de) * 1977-10-27 1979-05-03 Gruenzweig Hartmann Glasfaser Waermedaemmplatte und verfahren zu ihrer herstellung
EP0013387A1 (de) * 1978-12-20 1980-07-23 Consortium für elektrochemische Industrie GmbH Agglomerierte Teilchen aus hochdispersen Metalloxiden und Trübungsstoffen, Verfahren zu ihrer Herstellung und ihre Verwendung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3176354A (en) * 1960-03-25 1965-04-06 Johns Manville Method of applying a free flowing insulating fill material
US3055831A (en) * 1961-09-25 1962-09-25 Johns Manville Handleable heat insulation shapes
US3625896A (en) * 1968-06-07 1971-12-07 Air Reduction Thermal insulating powder for low-temperature systems and methods of making same
US3634563A (en) * 1970-03-13 1972-01-11 Atomic Energy Commission Method for the manufacture of inorganic thermal insulation
US3623938A (en) * 1970-05-12 1971-11-30 Johns Manville Mineral aggregate insulation board
DE2754517A1 (de) * 1977-12-07 1979-06-13 Wacker Chemie Gmbh Verfahren zum verbessern von waermeschutzgegenstaenden
DE2754956A1 (de) * 1977-12-09 1979-06-13 Gruenzweig Hartmann Glasfaser Waermedaemmplatte
US4221672A (en) * 1978-02-13 1980-09-09 Micropore International Limited Thermal insulation containing silica aerogel and alumina

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1671186B2 (de) * 1966-09-29 1979-02-15 United Kingdom Atomic Energy Authority, London Verfahren zur Herstellung von Wärmeisoiiermaterial
DE2422384B2 (de) * 1973-05-11 1977-03-03 Höganäs AB, Höganäs (Schweden) Verwendung von kolloidaler kieselsaeure in hitzebestaendigen auskleidungsmaterialien
DE2748307A1 (de) * 1977-10-27 1979-05-03 Gruenzweig Hartmann Glasfaser Waermedaemmplatte und verfahren zu ihrer herstellung
EP0013387A1 (de) * 1978-12-20 1980-07-23 Consortium für elektrochemische Industrie GmbH Agglomerierte Teilchen aus hochdispersen Metalloxiden und Trübungsstoffen, Verfahren zu ihrer Herstellung und ihre Verwendung

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0090883A2 (de) * 1982-04-02 1983-10-12 Degussa Aktiengesellschaft Wässrige Suspension zur Beschichtung von pyrogene Kieselsäure enthaltenden Formkörpern
DE3212261A1 (de) * 1982-04-02 1983-11-10 Degussa Ag, 6000 Frankfurt Waessrige suspension von bentonit und deren verwendung zur beschichtung von waermedaemmplatten
EP0090883A3 (en) * 1982-04-02 1983-11-16 Degussa Aktiengesellschaft Aqueous suspension for coating products that contain pyrogenic silica
EP0205155A2 (de) * 1985-06-12 1986-12-17 Wacker-Chemie GmbH Katalysatorauspuff mit Wärmedämmung
EP0205155A3 (de) * 1985-06-12 1987-10-14 Wacker-Chemie GmbH Katalysatorauspuff mit Wärmedämmung
EP0269101A2 (de) * 1986-11-28 1988-06-01 Wacker-Chemie GmbH Katalysatorauspuff mit Wärmedämmung
EP0269101A3 (de) * 1986-11-28 1989-02-01 Wacker-Chemie GmbH Katalysatorauspuff mit Wärmedämmung
EP0340707A3 (en) * 1988-05-03 1990-09-26 Basf Aktiengesellschaft Insulating material with a density of 0,1 to 0,4 g/cm3
FR2690106A1 (fr) * 1992-04-16 1993-10-22 Saint Gobain Isover Feutre aiguilleté comportant une couche de revêtement et procédé pour sa fabrication.
FR2695981A1 (fr) * 1992-09-18 1994-03-25 Rhone Poulenc Chimie Panneau d'isolation thermique et/ou acoustique et ses procédés d'obtention.
EP0594469A1 (de) * 1992-09-18 1994-04-27 Rhone-Poulenc Chimie Wärme- und/oder Schallisolierungsplatte und Verfahren zur ihrer Herstellung
EP0623567A1 (de) * 1993-05-06 1994-11-09 Wacker-Chemie GmbH Verfahren zur Herstellung eines mikroporösen Körpers mit wärmedämmenden Eigenschaften
US5685932A (en) * 1993-05-06 1997-11-11 Wacker-Chemie Gmbh Process for the production of a microporous body having heat insulation properties
WO1996012683A1 (de) * 1994-10-20 1996-05-02 Hoechst Aktiengesellschaft Aerogelhaltige zusammensetzung, verfahren zur ihrer herstellung sowie ihre verwendung
US5948314A (en) * 1994-10-20 1999-09-07 Hoechst Aktiengesellschaft Composition containing an aerogel, method of producing said composition and the use thereof
WO1996015997A1 (de) * 1994-11-23 1996-05-30 Hoechst Aktiengesellschaft Aerogelhaltiges verbundmaterial, verfahren zu seiner herstellung sowie seine verwendung
US6080475A (en) * 1994-11-23 2000-06-27 Hoechst Aktiengesellschaft Composite material containing aerogel, process for manufacturing the same and the use thereof
WO2023148082A1 (en) 2022-02-03 2023-08-10 Empa Eidgenössische Materialprüfungs- Und Forschungsanstalt Binder-free bulk silica aerogel material, method of producing the same and uses thereof
EP4382498A1 (de) 2022-12-09 2024-06-12 EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt Bindemittelfreies bulk-silica-aerogelmaterial, verfahren zur herstellung davon und verwendungen davon

Also Published As

Publication number Publication date
DE2942180A1 (de) 1981-04-30
JPS56100183A (en) 1981-08-11
US4363738A (en) 1982-12-14
DD153678A5 (de) 1982-01-27
EP0027633B1 (de) 1982-09-01
YU266980A (en) 1983-02-28
DE2942180C2 (de) 1985-02-21
CA1153537A (en) 1983-09-13
ATE1497T1 (de) 1982-09-15

Similar Documents

Publication Publication Date Title
EP0027633B1 (de) Verfahren zur Herstellung eines Wärmeisolierkörpers
EP0672635B1 (de) Formkörper, enthaltend Silica-Aerogel-Partikel sowie Verfahren zu ihrer Herstellung
EP0027264B1 (de) Wärmeisolierkörper sowie Verfahren zu seiner Herstellung
EP0650939B1 (de) Verfahren zur Einfärbung von Baustoffen
DE2631481C2 (de) Verfahren zur Herstellung von expandierbaren Perlen und deren Verwendung
DE19962451C1 (de) Verfahren für die Herstellung von opakem Quarzglas und für die Durchführung des Verfahrens geeignetes Si0¶2¶-Granulat
EP3022025B1 (de) Verfahren zur befüllung der hohlkammern von lochziegeln mit einer ein hydrophobierungsmittel enthaltenden wärmedämmstoffmischung
EP0692524B1 (de) Verfahren zur Herstellung von Kieselsäuregranulat und Verwendung des so hergestellten Granulats
EP0031166B1 (de) Verfahren zur Herstellung von Wärmeisolierkörpern sowie Vorrichtung zur Durchführung des Verfahrens
DE69915509T2 (de) Herstellung eines fliessfähigen urandioxids durch atomisationstrocknen und mittels trockenumsetzung von uf6
DE10361993A1 (de) Granuläre Pigmente, die zum Färben von Beton geeignet sind
DE2509730A1 (de) Sorptionstraeger und verfahren zu dessen herstellung
DE1569190A1 (de) Verfahren zur Herstellung eines Stabilisierungsmittels fuer synthetische Harze
DE2941606C2 (de) Wärmedämmkörper sowie ein Verfahren zu seiner Herstellung
DE3820601A1 (de) Magnesia-granulat und verfahren zur herstellung desselben
DE2942087A1 (de) Waermeisolierkoerper sowie verfahren zu seiner herstellung
DE10360508A1 (de) Rohstoffgranaliengranulat für feuerfeste Erzeugnisse sowie Verfahren zur Herstellung und Verwendung des Rohstoffgranaliengranulats
DE2326937A1 (de) Kohlenstoffhaltiger poroeser koerper und verfahren zu seiner herstellung
DE3105595A1 (de) "feuerfestes oder feuerbestaendiges verbundbauteil mit einem formteil aus beliebigem, feuerfesten oder feuerbestaendigen werkstoff und einer isolierschicht mit hoeherer waermedaemmung bzw. einer dehnungsausgleichsschicht"
EP0367914A1 (de) Verfahren zur Herstellung auslaugfester Agglomerate
EP1222148B1 (de) Farbpigmentgranalien und verfahren zur herstellung
DE102022130877A1 (de) Verfahren zum Herstellen eines Formkörpers
DE2309500C3 (de) Verfahren zur Herstellung von Leichtbaukörpern aus Rotschlamm
DE69006592T2 (de) Agglomerierte Verstärkungsfasern und Verfahren zu deren Herstellung.
DE102012112648B4 (de) Graphitmatrix mit kristallinem Bindemittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT NL SE

17P Request for examination filed

Effective date: 19810522

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT NL SE

REF Corresponds to:

Ref document number: 1497

Country of ref document: AT

Date of ref document: 19820915

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19841025

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19841231

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19861013

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19871031

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19881016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19881031

Ref country code: CH

Effective date: 19881031

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: MICROPORE INTERNATIONAL LIMITED

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19891015

EUG Se: european patent has lapsed

Ref document number: 80106278.7

Effective date: 19890614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970910

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19971007

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19971030

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981031

BERE Be: lapsed

Owner name: MICROPORE INTERNATIONAL LTD

Effective date: 19981031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19981015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT