EP0025986B1 - Procédé et dispositif pour l'utilisation de la chaleur recueillie à basse température - Google Patents

Procédé et dispositif pour l'utilisation de la chaleur recueillie à basse température Download PDF

Info

Publication number
EP0025986B1
EP0025986B1 EP80105607A EP80105607A EP0025986B1 EP 0025986 B1 EP0025986 B1 EP 0025986B1 EP 80105607 A EP80105607 A EP 80105607A EP 80105607 A EP80105607 A EP 80105607A EP 0025986 B1 EP0025986 B1 EP 0025986B1
Authority
EP
European Patent Office
Prior art keywords
heat
absorber
absorption
desorber
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80105607A
Other languages
German (de)
English (en)
Other versions
EP0025986A1 (fr
Inventor
Karl-Friedrich Prof. Dr.-Ing. Knoche
Heinrich Prof. Dipl-Ing. Trümper
Dieter Dipl.-Ing. Stehmeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Truemper Heinrich Prof Dipl-Ing
Original Assignee
Knoche Karl-Friedrich Prof Dr-Ing
Truemper Heinrich Prof Dipl-Ing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Knoche Karl-Friedrich Prof Dr-Ing, Truemper Heinrich Prof Dipl-Ing filed Critical Knoche Karl-Friedrich Prof Dr-Ing
Priority to AT80105607T priority Critical patent/ATE5439T1/de
Publication of EP0025986A1 publication Critical patent/EP0025986A1/fr
Application granted granted Critical
Publication of EP0025986B1 publication Critical patent/EP0025986B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B35/00Boiler-absorbers, i.e. boilers usable for absorption or adsorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/002Machines, plants or systems, using particular sources of energy using solar energy
    • F25B27/007Machines, plants or systems, using particular sources of energy using solar energy in sorption type systems

Definitions

  • the invention relates to a method for using heat absorbed at a low temperature, which is released to a heat consumer at a higher temperature level with the interposition of a multi-stage absorption heat pump.
  • a method of this type is known from DE-A-2 743 488.
  • the heat absorbed by the solar collector is converted from a poor solution of a working material pair to a evaporator in the solar collector to an absorber operated with a rich solution transported, from which the released heat of absorption generated in it is fed to a heating circuit as a heat consumer by means of a separate heat transfer stream.
  • the poor solution of a working material pair consisting of a refrigerant (e.g. water) as a liquid working fluid and a liquid sorbent (e.g.
  • aqueous lithium bromide solution for absorbing the low-temperature heat is passed through the solar collector and the refrigerant evaporating there as steam fed the rich solution of the working material pair in the absorber.
  • the refrigerant evaporating there as steam fed the rich solution of the working material pair in the absorber.
  • several expulsion stages and absorber stages are necessary, as well as pumps which deliver the poor solution of the working material pair to the solar collector and the rich solution to the absorber.
  • the working material pair for example water as a refrigerant and aqueous lithium bromine solution
  • the solar collector is fed directly to the solar collector as a liquid absorbent.
  • a single-stage absorption heat pump is also known (US Pat. No. 2,253,907), in which the divided generator is opposed by only one condenser or only one evaporator, so that partial recovery of the heat of condensation is not possible.
  • Degasser and absorber stages are in direct connection for the direct transport of working fluid (hydrogen) from one metal hydride to the other metal hydride.
  • working fluid hydrogen
  • thermodynamic units for the use of liquid working fluid pairs is not specified.
  • This known heat pump differs from the well-known Altenkirch multi-stage absorption chillers only in that instead of the heat of condensation (at Attenkirch), the heat of absorption of the first stage is used to achieve the desorption of a second stage.
  • This principle of absorption and desorption of metal hydrides known more under the name “chemical heat pump”, allows only limited use in the field of heat pumps, because the same restrictions exist that apply to the application of Altenkirch's multi-stage.
  • a periodically acting single-stage absorption heat pump in which two independent desorber and absorber or evaporator and evaporator stages are provided, is known (DE-OS 2 801 895). These two stages are switched during operation at certain time intervals in order to ensure continuous operation in the evaporator stage.
  • the invention is based on the object of designing the above-mentioned method for using heat absorbed at low temperature in such a way that the limitations of the known methods are avoided, that work can be carried out more economically than with the known methods and that it is simple and inexpensive devices that can be produced and that cause little noise during operation can be carried out.
  • a particularly suitable absorption heat pump for carrying out the method is to be specified.
  • the method according to the invention can only be carried out with low-temperature heat, as long as the return of the heat transfer stream coming from the heat consumer can evaporate the working medium (refrigerant) of the working material pair in the degasser or evaporator stages. Thereafter, a regeneration of the rich solution of the working material pair in the absorber stages and possibly the poor solution of the working material pair in the degassing stages is required. This specified regeneration of the working substance pair is carried out until the working substance pair has reached its original richer concentration in the absorber stages and, if appropriate, has reached its original poorer concentration in the degassing stages.
  • the method according to the invention can be used with great advantage if high-quality thermal energy (high-temperature heat) is available temporarily and irregularly. This can be used sensibly for regeneration. Is there a plant for the use of, for example, solar energy, geothermal energy or other low-temperature heat, sometimes also high-temperature heat, e.g. Exhaust heat, available, the heat pump can be switched over immediately, so that in the periods. in which the higher-quality energy is available, the working material pair is regenerated in the degasifier and absorber stages, so no heating energy for this; for example, an oil burner.
  • high-quality thermal energy high-temperature heat
  • the absorption heat pump according to the invention has the advantage that each associated absorber and degasser part (or evaporator plate) can be prefabricated and in it as an absorption unit that is completely sealed off from the outside with the common steam chamber and the means for bringing the steam into contact with the rich solution in the absorber part for an optimal heat and mass transfer.
  • the absorption units are set to different evaporation and absorption temperatures corresponding to the stages.
  • the chamber walls of the absorber parts and the evaporator are arranged separately from one another in a flow guide for a heat transfer stream. The from the low temperature heat source, e.g.
  • the incoming heat transfer medium absorbs absorption heat through the flow around and / or through the individual absorber units, while the return flow of heat transfer medium flows through the individual absorption units in the opposite direction and emits heat to the degassing stages until the heat transfer fluid has cooled to a temperature at which it Is able to, for example, in the low temperature heat source the solar collector to absorb heat again.
  • the special design of the absorption units favor the exchange of materials and heat.
  • Each absorption unit 1 consists of a hermetically sealed chamber 2, which is divided into a degassing part 3 (or evaporator part) and an absorber part 4 lying next to it.
  • the chamber 2 is filled with a liquid two-substance mixture 5 suitable for the absorption process as a working material pair and is set to a pressure which corresponds to the respective stage of the heat pump.
  • the chambers 2 consist of a deep-drawn lower tub and a deep-drawn lid. These are connected to each other to form the hermetically sealed chamber 2.
  • Both parts 3, 4 have a common vapor space.
  • the lower part of the degassing part 3 is divided from the lower part of the absorber plate 4 by a double-walled partition 6 arranged in such a way that the two-component mixture 5 cannot pass from one part of the chamber to the other part, but the refrigerant vapor of the two-component mixture can.
  • the outer surfaces of the degassing part 3 and the absorber part 4 are in heat exchange via large ribs 7 to two heat transfer streams 8 and 9, which are separated from each other by an insulating wall 10.
  • the first heat transfer stream 8 (return flow) flowing back from the heat consumer in heat pump operation flows around the degasser part 3 and emits heat to the refrigerant or to the dilute poor solution of the two-substance mixture therein, so that part evaporates and the steam passes to the absorber part 4.
  • the heat released in this process is released via the heat exchange ribs 7 of the absorber part 4 to the second heat transfer stream 9 (flow), which consumes the heat consumer in heat pump operation.
  • a double-walled deflecting wall 11 reaching into the rich solution is arranged in the absorber part 4 as a means for bringing the steam into contact with the rich solution, which ensures that the steam which is transferred comes into better contact with the rich solution and a certain amount Movement on the surface of the rich solution in absorber part 4 occurs.
  • the double-walled partition 6 and the insulating wall 10 ensure that no significant amounts of heat pass through the chamber wall from the degassing part 3 to the absorber part 4 and vice versa.
  • the poor and the rich solution of the two-substance mixture 5 must be regenerated. This is done by operating the absorber part 4 as the expeller part and the degassing part 3 as the absorber part.
  • the second heat transfer stream 9 is brought to a higher temperature than it has in the heating mode, so that it cools down as it flows around the absorber parts 4, which now operate as expellers.
  • the first heat transfer medium stream 8 is now heated when the degassing parts 3 of the heat pump, which work as resorbers (or evaporators), flow around.
  • the heat pump shown in Fig. 3 and 4 consists of a larger number, for. B. 10 to 30 disc-shaped absorption units 1.
  • Each unit has a circular chamber 2 in plan, which is divided by an annular partition 6 into the outer degasser part 3 and the inner absorber part 4 such that the liquid mixture of two substances 5 does not move from one chamber part into the other other can, but the refrigerant vapor.
  • the absorption units 1 are spaced one above the other by annular insulating walls 10 and arranged in a container 12 which is divided into cells 14 by partitions 13 for receiving an absorption unit. In each partition 13 through openings 15 for the heat transfer streams 8 and 9 are formed on both sides of the insulating wall.
  • the annular insulating walls 10 separate the second heat carrier flow 9, which flows around the inner absorber parts 4 of the absorption units 1, from the first heat carrier flow 8, which flows around the outer degasser parts 3 of the absorption units 1.
  • the round, disc-shaped absorption units 1 are provided in the middle with a through channel 16 for the second heat transfer stream 9.
  • Fig. 3 shows schematically the operation of an absorption heat pump for the use of low temperature heat, e.g. of solar energy.
  • a heat transfer fluid is heated in a low-temperature heat source 20, for example a solar collector, to which it flows via an inlet line, for example from +2 to + 12 ° C.
  • This heat carrier flow heated in this way flows via an outlet line 17, a first three-way valve 23, a connecting line 18, a second three-way valve 24 and an inlet line 19 as a second heat carrier flow 9 via an inlet 28 to the absorber part 4 of the uppermost one of the absorption units 1 arranged one above the other and then passes through one after the other the following, rising in temperature absorber parts 4 and is in heat exchange with them.
  • the heat carrier flow is absorbed by the refrigerant in the individual graded absorption units heated to a higher temperature, which is suitable for low-temperature heating at 45 ° C.
  • This second heat transfer stream 9 leaves the absorber part 4 of the lowest absorption unit 1 through an outlet 34 and enters as a flow into a heat consumer, for example a heating circuit.
  • the return flow of the heat consumer passes through the degassing part 3 of the lowest absorption unit 1 as the first heat transfer stream 8 with a temperature of 35 ° C. via an inlet 37 and then successively through the subsequent degassing parts 3 of the absorption units 1, which decrease in temperature.
  • the returning heat transfer stream 8 cools from, e.g. B.
  • the regenerating heat transfer stream heats up by flowing around the outer degassing parts 3 of the graded absorption units, which work as a resorber (or condenser), from a temperature of 30 to 80.degree a return line 27 is returned to the high-temperature heat source 25.
  • the particular advantage of this absorption heat pump lies in the fact that lowering the flow and return temperatures or increasing the temperatures in the low-temperature heat source 20 improves the ratio of the amount of heat given off to the heat consumer to the amount of heat to be absorbed by the high-temperature heat source 25 becomes.
  • Such a flexible adaptation results in a particularly low use of heating energy from fossil fuels in the high-temperature heat source 25 on average. The standard effort for such a heating system is minimal.
  • the arrangement of the absorber parts 4, which also work as expeller parts, inside the disk-shaped absorption units 1 and the arrangement of the degassing parts 3, which also work as resorber stages, in the outer ring area of the absorption units 1 causes the warmer parts and heat transfer medium of colder parts and Heat carriers are surrounded and therefore only slight heat losses will occur.
  • FIG. 5 and 6 show a combination of an absorption heat pump according to the invention with an oil, coal or gas burner 30 arranged centrally in the upper area as a high-temperature heat source and a hot water preparation tank 31 for the hot water supply integrated in the lower area.
  • the second heat transfer stream 9 coming from the low-temperature heat source 20 via the outlet line 18, a four-way valve 29 and the inlet line 19 and heated in the absorber stages 4 of the absorption units 1 from 12 to 45 ° C. and emerging from a connection 34 Introduced via a line 32 into the inlet 35 of a heat exchanger 33 of the hot water preparation tank 31 before it reaches a heating circuit as a lead 21.
  • the returning heat transfer stream 8 is again fed to the degassing points 3 of the absorption units 1, in which it cools down to about 2 ° C., so that it can heat up again to 12 ° C. in the low-temperature heat source 20 (solar collector).
  • the outlet 38 of the heat carrier flow 8 led around the outer evaporator or degasifier parts 3 of the absorption units 1 via the four-way valve 29 with the inlet 28 of the around the inner absorber parts 4 of the absorption units 1 connected to leading heat transfer stream 9 and the burner 30 started.
  • the absorber parts 4 now work as an expeller and the degassing parts 3 (or evaporator parts) as a resorber (or condenser).
  • the burner 30 heats the heat carrier flow 9 in the inner absorber parts 4 of the upper absorption units to approximately 100 ° C., so that it can now serve as a regenerating heat carrier flow.
  • This regenerating heat transfer stream 9 then cools by flowing around the inner one Absorber parts 4 of the lower absorption units 1, which are now working as expellers, drop to 50 ° and are then passed through the heat exchanger 33 of the hot water preparation tank 31 and, after leaving the outlet 36, as a feed 21 into the heating circuit.
  • the return flow is introduced again as heat transfer stream 8 through the inlet 37 of the degassing part 3 of the lowermost absorption unit 1 and successively around the outer absorber parts 3 of the absorption units, which now work as a resorber, so that it heats up to a temperature of 800C and through the outlet 38 the top absorption unit emerges.
  • the four-way valve 29 converted for regeneration and the feed line 19 the heat carrier flow is fed back directly into the inlet 28 of the absorber part 4 of the top absorption unit 1.
  • FIG. 7 and 8 show chambers 2 of absorption units 1, each of which is composed of a trough 42 and a cover 43 to form the hermetically sealed chamber 2.
  • An annular partition 6 is arranged in the trough 42 and an annular deflecting wall 11 is arranged in the cover 43 in the radially outer region.
  • An annular insulating wall 10 and an annular outer wall 40 are arranged between adjacent chambers 2.
  • the flow guide for the first heat transfer stream 8 through the degassing parts 3 is formed by tubular through-channels 41 and the space between the insulating wall 10 and the outer wall 40.
  • the flow guide for the second heat carrier flow 9 through the absorber parts 4 is formed by tubular through channels 16 ′ and the interior of the annular insulating walls 10
  • each hermetically sealed chamber 2 is in turn ring-shaped.
  • the inner absorber part 4 of the chamber 2 is arranged lower than the outer degasser part 3.
  • Each chamber 2 is composed of two deep-drawn sheet metal shells into which radially extending beads 44 and concentrically extending beads 45 are embossed in order to enlarge the outer heat exchange surfaces.
  • the flow guide for the first heat transfer stream 8 through the degasser runs along the concentric beads 45 and through outer channels 46 on the circumference of the chamber 2.
  • the flow guide for the second heat transfer stream 9 through the absorber parts 4 runs along the radial beads 44 from the inside out and then around the inner partition 13 to the next absorber part 4.
  • the upper deep-drawn sheet metal shell of the chamber has a deflecting wall reaching downwards into the rich solution of the absorber part, so that the steam with the rich solution enters into a good heat and material exchange.
  • 11 and 12 show vertically extending absorption units with a lower degassing part 3 and an upper absorber part 4.
  • a wall 10 ' initially connected radially and then vertically in the middle to the outer wall, occurs the rich solution of the absorber part 4 from the poor solution of the Two-substance mixture 5 in the degasser part 3.
  • the vertical part of the wall 10 ' is overlaid by a bell-shaped steam guide wall 50 which extends downwards and corresponds to the deflection wall 11. It ensures that the steam rising from the degassing part 3 is passed through the rich solution of the absorber part 4 and that in the regeneration mode, the steam expelled in the absorber part 4 is pressed under the level of the solution in the degassing part 3 working as a absorber.
  • the contact areas of the solution in the degassing part 3 and in the absorber part 4 can be enlarged by capillary and wicking walls 51 and 52 arranged there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Claims (13)

1. Procédé pour l'utilisation de la chaleur recueillie à basse température, qui, par l'intermédiaire d'une pompe de chaleur à absorption, opérant avec une paire de substances actives liquides, est cédée, à une température plus élevée, à un consommateur de chaleur, dans lequel un flux caloporteur est chauffé par de la chaleur à basse température; passe ensuite à travers l'absorbeur de la pompe de chaleur à absorption, recueille alors de la chaleur d'absorption et se chauffe à la température plus élevée nécessaire pour le consommateur de chaleur, cède, après, de la chaleur au consommateur de chaleur et traverse ensuite le désorbeurde la pompe de chaleur à absorption; cède alors de la chaleur d'évaporation et se refroidit à une température basse qui convient à la source de chaleur à basse température, et dans lequel la paire de substances actives liquides de l'absorbeur et du désorbeur est sujettie à une régénération, caractérisé en ce que le flux caloporteur, chauffé par la chaleur à basse température, traverse successivement plusieurs échelons d'absorption, chacun d'une température plus élevé par rapport à l'échelon précédent, et, après avoir cédé de la chaleur au consommateur de chaleur, parcourt successivement un nombre égal d'échelons de désorption; ayant chacun une température plus basse par rapport à l'échelon précédent, les échelons d'absorption et de désorption étant disposés en paires hermétiquement étanches vers l'extérieur et comportant une paire commune de substances actives liquides et un espace commun à vapeur pour cette paire de substances actives, et, ensuite, est chauffé à nouveau par de la chaleur à basse température, et en ce que, pour effectuer la régénération de la solution pauvre de la paire de substances actives dans les plusieurs échelons de désorption et de la solution riche de la paire de substances actives dans les plusieurs échelons d'absorption, le flux caloporteur est chauffé périodiquement, par de la chaleur à haute température, au-delà dé la température de désorption pour la solution riche dans le premier échelon d'absorption et, en tant que flux calopor teur de régénération, passe d'abord, et ce dans le même ordre que le flux caloporteur chauffé par la chaleur à basse température, à travers les échelons d'absorption opérant à ce moment comme désorbeurs, chasse alors, de la solution riche, le réfrigérant qui est ensuite résorbé, en libérant de la chaleur, par la solution pauvre dans les échelons respectifs de désorption, opérant à ce moment comme résorbeurs, et, après avoir cédé une autre quantité de chaleur au consommateur de chaleur, parcourt, et ce dans le même ordre que le flux caloporteur sortant du consommateur de chaleur, les échelons de désorption, opérant à ce moment comme résorbeurs; et recueille alors la chaleur de résorption, après quoi il est ensuite chauffé à nouveau, par de la chaleur à haute température, au-delà de la température de dé- sorptton pour le premier échelon d'absorption.
2. Pompe de chaleur à absorption pour la mise en oeuvre du procédé selon la revendication 1, comportant au moins un désorbeur, dans lequel un réfrigérant liquide d'une paire de substances actives liquides s'évapore, et au moins un absorbeur, raccordé au désorbeur et dans lequel le réfrigérant évaporé est absorbé dans une solution riche, caractérisée en ce que le désorbeur et l'absorbeur sont divisés en plusieurs sections de désorption (3) et sections d'absorption (4) coopérant respectivement les unes avec les autres, et les sections de désorption et d'absorption (3, 4) associées sont réglées à des températures différentes d'évaporation et d'absorption, en ce que chaque section de désorption (3) et la section d'absorption (4) qui est en communication avec elle, font partie d'une chambre (2) en forme de disque, fermée hermétiquement vers l'extérieur, cette chambre étant remplie d'une paire de substances actives (5) et réglée à une pression désirée et comportant un espace à vapeur commun, et toutes les sections de désorption (3) sont disposées dans un premier trajet pour un premier flux caloporteur (8), et toutes les sections d'absorption (4) sont disposées dans un deuxième trajet pour un deuxième flux caloporteur (9), ce deuxième trajet se trouvant séparé du premier trajet par une paroi d'isolation (10), et en ce que dans une zone des chambres (2) est montée la section de désorption (3) respective, cloisonnée par une cloison de séparation (6) qui fait saillie dans l'espace à vapeur, et dans l'autre zone des chambres (2) est montée la section d'absorption (4) correspondante, et en ce que la section d'absorption (4) comporte des moyens (11) y relatifs servant à mettre en contact la vapeur du réfrigérant venant de la section de désorption (3) avec la solution riche, contenue dans ladite section d'absorption (4), de la paire de substances actives (5).
3. Pompe de chaleur à absorption selon la revendication 2, caractérisée en ce que les moyens servant à mettre en contact la vapeur du réfrigérant avec la solution riche de la paire de substances actives (5) sont réalisés sous forme d'une paroi de déflecdon (11) qui divise l'espace à vapeur et se prolonge- jusque dans la solution riche.
4. Pompe de chaleur à absorption selon la revendication 3, caractérisée en ce que au moins un canal (16, 16'), allant de bout en bout, pour le deuxième flux caloporteur (9) est monté dans les sections d'absorption (4) de chacune des chambres (2) en forme de disque.
5. Pompe de chaleur à absorption selon une quelconque des revendications 3 et 4, caractérisée en ce que le tracé des chambres (2) en forme de disque est circulaire, et en ce que leur cloison de séparation (6), leur paroi de déflection (11) et chacune des parois d'isolation (10) sont positionnées d'une manière concentrique.
6. Pompe de chaleur à absorption selon une quelconque des revendications 3 et 4, caractérisée en ce que les chambres (2) en forme de disque sont prévues dans un compartiment (14) chacun d'un récipient (12) divisé par des parois intermédiaires (13); le trajet du premier flux caloporteur (8) pour la section de désorption (3) de chaque compartiment (14) va du côté extérieur de la paroi d'isolation (10) à la paroi intérieure du récipient (12) et retourne dans la direction opposée; le trajet du deuxième flux caloporteur (9) pour la section d'absorption (4) de chaque compartiment (14) va du côté intérieur de la paroi d'isolation (10) au canal traversant central (16) et retourne dans la direction opposée; et en ce que des trous passants (15) sont aménagés dans les parois intermé- daires (13), sur les deux côtés de chaque paroi d'isolation (10).
7. Pompe de chaleur à absorption selon une quelconque des revendications 3 à 6, caractérisée en ce que chacune des chambres (2) en forme de disque est composée de deux cuvettes embouties profondes en tôle, et en ce que la cuvette Inférieure comporte une paroi de séparation (6) et la cuvette supérieure comporte au moins une paroi de déflection (11), ces parois étant formées Intégralement avec leurs cuvettes respectives.
8. Pompe de chaleur à absorption selon une quelconque des revendications 3 à 6, caractérisée en ce que chacune des chambres (2) comporte dans la section d'absorption (4), plus particulièrement située à l'intérieur, aussi bien que dans la section de désorption (3), plus particulièrement située vers l'extérieur, un plus grand nombre de canaux traversants tubulaires (16', 41) pour les trajets des flux caloporteurs (8, 9).
9. Pompe de chaleur à absorption selon la revendication 8, caractérisée en ce que les chambres (2), avec intercalation d'une paroi d'isolation (10) annulaire intérieure et d'une paroi extérieure (40) annulaire chacune, sont montées en pile et rattachées les unes aux autres pour en former un récipient
10. Pompe de chaleur à absorption selon une quelconque des revendications 6 à 9, caractérisée en ce que les chambres (2) en forme de disque et les compartiments (14) ont une forme annulaire, et en ce que, à l'intérieur des compartiments annulaires (14), un brûleur (30) est monté dans la zone des sections d'absorption (4) soumises à des températures basses d'évaporation et d'absorption, et un réservoir d'eau chaude (31) est monté dans la zone des sections d'absorption (4) soumises à des températures plus élevées d'évaporation et d'absorption.
11. Pompe de chaleur à absorption selon la revendication 10, caractérisée en ce que la sortie (34) du trajet du deuxième flux caloporteur (9), qui passe dans les sections d'absorption (4), peut être raccordée, par l'intermédiaire d'une canalisation (32), à l'entrée (35) d'un échangeur de chaleur (33) qui est installé à l'intérieur du réservoir d'eau chaude (31) et à la sortie (36) duquel un consommateur de chaleur peut être raccordé.
12. Pompe de chaleur à absorption selon une quelconque des revendications 10 et 11, caractérisée en ce que la sortie (38) du trajet du premier flux caloporteur (8), qui passe dans les sections de désorption (3), peut être raccordée, par l'intermédiaire d'une soupape à deux positions, à l'entrée (28) du trajet du deuxième flux caloporteur (9) qui passe dans les sections d'absorption (4).
13. Pompe de chaleur à absorption selon une quelconque des revendications 3 à 9, caractérisée en ce que l'entrée (28) au trajet du deuxième flux caloporteur (9), qui passe dans les sections d'absorption (4), peut être raccordée, par l'intermédiaire d'un distributeur à plusieurs voies (23), à une canalisation (17) venant d'une source de basse température, et à une canalisation (26) venant d'une chaudière de chauffage (25), et en ce que la sortie (38) du trajet du premier flux caloporteur (8), qui passe dans les sections de désorption (3), peut être raccordée à une canalisation débouchant dans une source de basse température (20) et à une canalisation (27) débouchant dans la chaudière de chauffage (25).
EP80105607A 1979-09-21 1980-09-18 Procédé et dispositif pour l'utilisation de la chaleur recueillie à basse température Expired EP0025986B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80105607T ATE5439T1 (de) 1979-09-21 1980-09-18 Verfahren und vorrichtung zur nutzung von bei niedriger temperatur aufgenommener waerme.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2938203 1979-09-21
DE19792938203 DE2938203A1 (de) 1979-09-21 1979-09-21 Verfahren und vorrichtung zur nutzung von bei niedriger temperatur aufgenommener waerme

Publications (2)

Publication Number Publication Date
EP0025986A1 EP0025986A1 (fr) 1981-04-01
EP0025986B1 true EP0025986B1 (fr) 1983-11-23

Family

ID=6081460

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80105607A Expired EP0025986B1 (fr) 1979-09-21 1980-09-18 Procédé et dispositif pour l'utilisation de la chaleur recueillie à basse température

Country Status (4)

Country Link
US (1) US4368623A (fr)
EP (1) EP0025986B1 (fr)
AT (1) ATE5439T1 (fr)
DE (2) DE2938203A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008003630A1 (de) * 2008-01-09 2009-07-16 Helioplus Energy Systems Gmbh Hybridklimatisierungssystem

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4422500A (en) * 1980-12-29 1983-12-27 Sekisui Kagaku Kogyo Kabushiki Kaisha Metal hydride heat pump
FR2539854A1 (fr) * 1983-04-22 1984-07-27 Cetiat Installation de refrigeration par adsorption sur un adsorbant solide et procede pour sa mise en oeuvre
DE3405800C2 (de) * 1984-02-17 1986-11-20 Knoche, Karl-Friedrich, Prof. Dr.-Ing., 5100 Aachen Verfahren zum Betreiben einer Generator-Absorptionswärmepumpen-Heizanlage für die Raumheizung und/oder Warmwasserbereitung und Generator-Absorptionswärmepumpen-Heizanlage
JPS61180891A (ja) * 1985-02-04 1986-08-13 Hitachi Ltd 熱エネルギーの蓄熱方法と蓄熱装置
FR2585812B1 (fr) * 1985-07-30 1987-10-23 Jeumont Schneider Machine thermique a adsorption-desorption
JPH0694968B2 (ja) * 1986-01-28 1994-11-24 西淀空調機株式会社 吸着式冷凍装置
DE3901558A1 (de) * 1989-01-20 1990-07-26 Zeolith Tech Sorptionsbehaelter fuer feste sorptionsmittel
DE4121131A1 (de) * 1991-06-26 1993-01-07 Zeolith Tech Sorptionsmittelbehaelter-anordnung und sorptionsverfahren mit regenerativem waermetausch
DE4431864A1 (de) * 1994-09-07 1996-03-14 Zahnradfabrik Friedrichshafen Fahrantrieb
US5666818A (en) * 1995-12-26 1997-09-16 Instituto Tecnologico And De Estudios Superiores Solar driven ammonia-absorption cooling machine
US9207003B2 (en) * 2014-04-02 2015-12-08 King Fahd University Of Petroleum And Minerals Intermittent absorption system with a liquid-liquid heat exchanger

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE227099C (fr) *
US1506531A (en) * 1921-12-12 1924-08-26 Westinghouse Electric & Mfg Co Refrigeration apparatus
US1729083A (en) * 1925-03-11 1929-09-24 Silica Gel Corp Refrigeration process and apparatus
DE505267C (de) * 1927-06-27 1930-08-16 Silica Gel Corp Verfahren zur Kaelteerzeugung
US1960824A (en) * 1929-05-03 1934-05-29 Electrolux Servel Corp Refrigeration
DE620249C (de) * 1930-08-17 1935-10-19 Siemens Schuckertwerke Akt Ges Absorptionsapparat, bestehend aus zwei in sich geschlossenen einzelnen Absorptionsmaschinen
DE671791C (de) * 1931-12-09 1939-02-17 Siemens Schuckertwerke Akt Ges Absorptionsapparat
US2138686A (en) * 1933-02-28 1938-11-29 Altenkirch Edmund Intermittent absorption refrigerating apparatus
US2253907A (en) * 1936-12-15 1941-08-26 Julius Y Levine Refrigerating apparatus
NL7601906A (nl) * 1976-02-25 1977-08-29 Philips Nv Cyclische desorptiekoelmachine resp. - warmte- pomp.
GB1572737A (en) * 1977-01-17 1980-08-06 Exxon France Heat pump
US4121432A (en) * 1977-03-24 1978-10-24 Institute Of Gas Technology Solid adsorption air conditioning apparatus and method
DE2720561A1 (de) * 1977-05-07 1978-11-09 Tchernev Dimiter I Sorptionssystem fuer die nutzbarmachung schwacher (solarer) waermequellen
DE2743488A1 (de) * 1977-09-28 1979-03-29 Karl Friedrich Prof Dr Knoche Verfahren und vorrichtung zur nutzung von sonnenenergie fuer raumheizung
US4224803A (en) * 1978-11-07 1980-09-30 Leonard Greiner Chemical heat pump
US4187688A (en) * 1978-10-10 1980-02-12 Owens-Illinois, Inc. Solar powered intermittent cycle heat pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008003630A1 (de) * 2008-01-09 2009-07-16 Helioplus Energy Systems Gmbh Hybridklimatisierungssystem

Also Published As

Publication number Publication date
ATE5439T1 (de) 1983-12-15
US4368623A (en) 1983-01-18
EP0025986A1 (fr) 1981-04-01
DE3065698D1 (en) 1983-12-29
DE2938203A1 (de) 1981-04-02

Similar Documents

Publication Publication Date Title
DE10217443B4 (de) Feststoff-Sorptionswärmepumpe
EP0025986B1 (fr) Procédé et dispositif pour l'utilisation de la chaleur recueillie à basse température
WO2007068481A1 (fr) Pompe a chaleur
DE3706072C2 (fr)
EP2304341B1 (fr) Procédé de transmission thermique entre des adsorbeurs travaillant en alternance et dispositif correspondant
DE8490084U1 (de) Sonnenenergie-Kälteerzeugungseinrichtung
EP0001296B1 (fr) Procédé et appareil pour l'utilisation de la chaleur, notamment de l'énergie solaire pour chauffage central
DE102014225410A1 (de) Sorptionsmodul
EP3557161A1 (fr) Pompe à chaleur hybride et son utilisation
DE2622699A1 (de) Speicherelement fuer ein sorptions- waermespeichersystem
EP3557174B1 (fr) Pompe à chaleur ou machine de réfrigération à adsorption et son procédé de fonctionnement
DE10248557B4 (de) Diffusionsabsorptionsanlage
DE102008023662A1 (de) Wärmepumpe
DE102020129341A1 (de) Adsorptionskältemaschine oder -wärmepumpe mit Kältemittelverteilung in der Flüssigphase
DE10053045A1 (de) Verfahren zur Herstellung eines Verdampfers/Kondensators
DE19838652C2 (de) Verfahren zum Auskoppeln und Nutzen von Wärme aus einer Brennstoffzelle, Brennstoffzelle und Absorptionswärmepumpe oder Absorptionskältemaschine mit einer solchen Brennstoffzelle
EP1136771B1 (fr) Rectificateur pour système d'absorption à diffusion
DE2219083C3 (de) Absorptionskälteanlage
DE102009043515A1 (de) Solarthermisch betriebene Adsorptionskältemaschine zur Raumklimatisierung und Lebensmittelkühlung
DE102020131615B4 (de) Plattenapparate für Stoff- und Wärmeübertragung in Sorptionswärmepumpen mit Separation von Flüssigkeits- und Dampfströmung
DE10014124C1 (de) Rektifikator für eine Diffusionsabsorptionsanlage
DE3844679C2 (de) Verdampfer für eine Adsorptionskälteanlage
DE4437950A1 (de) Raumheizeinrichtung
AT408914B (de) Sorptionswärmepumpe
DE10014122C1 (de) Diffusionsabsorptionsanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB SE

17P Request for examination filed

Effective date: 19810519

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB LI SE

REF Corresponds to:

Ref document number: 5439

Country of ref document: AT

Date of ref document: 19831215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3065698

Country of ref document: DE

Date of ref document: 19831229

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840906

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19840911

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840928

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19840930

Year of fee payment: 5

Ref country code: BE

Payment date: 19840930

Year of fee payment: 5

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19861113

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19870918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19870919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19870930

Ref country code: CH

Effective date: 19870930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890930

BERE Be: lapsed

Owner name: STEHMEIER DIETER

Effective date: 19890930

Owner name: TRUMPER HEINRICH

Effective date: 19890930

Owner name: KNOCHE KARL-FRIEDRICH

Effective date: 19890930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19900531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 80105607.8

Effective date: 19880906