EP0025986B1 - Method and apparatus for the utilisation of heat taken up at low temperature - Google Patents

Method and apparatus for the utilisation of heat taken up at low temperature Download PDF

Info

Publication number
EP0025986B1
EP0025986B1 EP80105607A EP80105607A EP0025986B1 EP 0025986 B1 EP0025986 B1 EP 0025986B1 EP 80105607 A EP80105607 A EP 80105607A EP 80105607 A EP80105607 A EP 80105607A EP 0025986 B1 EP0025986 B1 EP 0025986B1
Authority
EP
European Patent Office
Prior art keywords
heat
absorber
absorption
desorber
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80105607A
Other languages
German (de)
French (fr)
Other versions
EP0025986A1 (en
Inventor
Karl-Friedrich Prof. Dr.-Ing. Knoche
Heinrich Prof. Dipl-Ing. Trümper
Dieter Dipl.-Ing. Stehmeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Truemper Heinrich Prof Dipl-Ing
Original Assignee
Knoche Karl-Friedrich Prof Dr-Ing
Truemper Heinrich Prof Dipl-Ing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Knoche Karl-Friedrich Prof Dr-Ing, Truemper Heinrich Prof Dipl-Ing filed Critical Knoche Karl-Friedrich Prof Dr-Ing
Priority to AT80105607T priority Critical patent/ATE5439T1/en
Publication of EP0025986A1 publication Critical patent/EP0025986A1/en
Application granted granted Critical
Publication of EP0025986B1 publication Critical patent/EP0025986B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B35/00Boiler-absorbers, i.e. boilers usable for absorption or adsorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/002Machines, plants or systems, using particular sources of energy using solar energy
    • F25B27/007Machines, plants or systems, using particular sources of energy using solar energy in sorption type systems

Definitions

  • the invention relates to a method for using heat absorbed at a low temperature, which is released to a heat consumer at a higher temperature level with the interposition of a multi-stage absorption heat pump.
  • a method of this type is known from DE-A-2 743 488.
  • the heat absorbed by the solar collector is converted from a poor solution of a working material pair to a evaporator in the solar collector to an absorber operated with a rich solution transported, from which the released heat of absorption generated in it is fed to a heating circuit as a heat consumer by means of a separate heat transfer stream.
  • the poor solution of a working material pair consisting of a refrigerant (e.g. water) as a liquid working fluid and a liquid sorbent (e.g.
  • aqueous lithium bromide solution for absorbing the low-temperature heat is passed through the solar collector and the refrigerant evaporating there as steam fed the rich solution of the working material pair in the absorber.
  • the refrigerant evaporating there as steam fed the rich solution of the working material pair in the absorber.
  • several expulsion stages and absorber stages are necessary, as well as pumps which deliver the poor solution of the working material pair to the solar collector and the rich solution to the absorber.
  • the working material pair for example water as a refrigerant and aqueous lithium bromine solution
  • the solar collector is fed directly to the solar collector as a liquid absorbent.
  • a single-stage absorption heat pump is also known (US Pat. No. 2,253,907), in which the divided generator is opposed by only one condenser or only one evaporator, so that partial recovery of the heat of condensation is not possible.
  • Degasser and absorber stages are in direct connection for the direct transport of working fluid (hydrogen) from one metal hydride to the other metal hydride.
  • working fluid hydrogen
  • thermodynamic units for the use of liquid working fluid pairs is not specified.
  • This known heat pump differs from the well-known Altenkirch multi-stage absorption chillers only in that instead of the heat of condensation (at Attenkirch), the heat of absorption of the first stage is used to achieve the desorption of a second stage.
  • This principle of absorption and desorption of metal hydrides known more under the name “chemical heat pump”, allows only limited use in the field of heat pumps, because the same restrictions exist that apply to the application of Altenkirch's multi-stage.
  • a periodically acting single-stage absorption heat pump in which two independent desorber and absorber or evaporator and evaporator stages are provided, is known (DE-OS 2 801 895). These two stages are switched during operation at certain time intervals in order to ensure continuous operation in the evaporator stage.
  • the invention is based on the object of designing the above-mentioned method for using heat absorbed at low temperature in such a way that the limitations of the known methods are avoided, that work can be carried out more economically than with the known methods and that it is simple and inexpensive devices that can be produced and that cause little noise during operation can be carried out.
  • a particularly suitable absorption heat pump for carrying out the method is to be specified.
  • the method according to the invention can only be carried out with low-temperature heat, as long as the return of the heat transfer stream coming from the heat consumer can evaporate the working medium (refrigerant) of the working material pair in the degasser or evaporator stages. Thereafter, a regeneration of the rich solution of the working material pair in the absorber stages and possibly the poor solution of the working material pair in the degassing stages is required. This specified regeneration of the working substance pair is carried out until the working substance pair has reached its original richer concentration in the absorber stages and, if appropriate, has reached its original poorer concentration in the degassing stages.
  • the method according to the invention can be used with great advantage if high-quality thermal energy (high-temperature heat) is available temporarily and irregularly. This can be used sensibly for regeneration. Is there a plant for the use of, for example, solar energy, geothermal energy or other low-temperature heat, sometimes also high-temperature heat, e.g. Exhaust heat, available, the heat pump can be switched over immediately, so that in the periods. in which the higher-quality energy is available, the working material pair is regenerated in the degasifier and absorber stages, so no heating energy for this; for example, an oil burner.
  • high-quality thermal energy high-temperature heat
  • the absorption heat pump according to the invention has the advantage that each associated absorber and degasser part (or evaporator plate) can be prefabricated and in it as an absorption unit that is completely sealed off from the outside with the common steam chamber and the means for bringing the steam into contact with the rich solution in the absorber part for an optimal heat and mass transfer.
  • the absorption units are set to different evaporation and absorption temperatures corresponding to the stages.
  • the chamber walls of the absorber parts and the evaporator are arranged separately from one another in a flow guide for a heat transfer stream. The from the low temperature heat source, e.g.
  • the incoming heat transfer medium absorbs absorption heat through the flow around and / or through the individual absorber units, while the return flow of heat transfer medium flows through the individual absorption units in the opposite direction and emits heat to the degassing stages until the heat transfer fluid has cooled to a temperature at which it Is able to, for example, in the low temperature heat source the solar collector to absorb heat again.
  • the special design of the absorption units favor the exchange of materials and heat.
  • Each absorption unit 1 consists of a hermetically sealed chamber 2, which is divided into a degassing part 3 (or evaporator part) and an absorber part 4 lying next to it.
  • the chamber 2 is filled with a liquid two-substance mixture 5 suitable for the absorption process as a working material pair and is set to a pressure which corresponds to the respective stage of the heat pump.
  • the chambers 2 consist of a deep-drawn lower tub and a deep-drawn lid. These are connected to each other to form the hermetically sealed chamber 2.
  • Both parts 3, 4 have a common vapor space.
  • the lower part of the degassing part 3 is divided from the lower part of the absorber plate 4 by a double-walled partition 6 arranged in such a way that the two-component mixture 5 cannot pass from one part of the chamber to the other part, but the refrigerant vapor of the two-component mixture can.
  • the outer surfaces of the degassing part 3 and the absorber part 4 are in heat exchange via large ribs 7 to two heat transfer streams 8 and 9, which are separated from each other by an insulating wall 10.
  • the first heat transfer stream 8 (return flow) flowing back from the heat consumer in heat pump operation flows around the degasser part 3 and emits heat to the refrigerant or to the dilute poor solution of the two-substance mixture therein, so that part evaporates and the steam passes to the absorber part 4.
  • the heat released in this process is released via the heat exchange ribs 7 of the absorber part 4 to the second heat transfer stream 9 (flow), which consumes the heat consumer in heat pump operation.
  • a double-walled deflecting wall 11 reaching into the rich solution is arranged in the absorber part 4 as a means for bringing the steam into contact with the rich solution, which ensures that the steam which is transferred comes into better contact with the rich solution and a certain amount Movement on the surface of the rich solution in absorber part 4 occurs.
  • the double-walled partition 6 and the insulating wall 10 ensure that no significant amounts of heat pass through the chamber wall from the degassing part 3 to the absorber part 4 and vice versa.
  • the poor and the rich solution of the two-substance mixture 5 must be regenerated. This is done by operating the absorber part 4 as the expeller part and the degassing part 3 as the absorber part.
  • the second heat transfer stream 9 is brought to a higher temperature than it has in the heating mode, so that it cools down as it flows around the absorber parts 4, which now operate as expellers.
  • the first heat transfer medium stream 8 is now heated when the degassing parts 3 of the heat pump, which work as resorbers (or evaporators), flow around.
  • the heat pump shown in Fig. 3 and 4 consists of a larger number, for. B. 10 to 30 disc-shaped absorption units 1.
  • Each unit has a circular chamber 2 in plan, which is divided by an annular partition 6 into the outer degasser part 3 and the inner absorber part 4 such that the liquid mixture of two substances 5 does not move from one chamber part into the other other can, but the refrigerant vapor.
  • the absorption units 1 are spaced one above the other by annular insulating walls 10 and arranged in a container 12 which is divided into cells 14 by partitions 13 for receiving an absorption unit. In each partition 13 through openings 15 for the heat transfer streams 8 and 9 are formed on both sides of the insulating wall.
  • the annular insulating walls 10 separate the second heat carrier flow 9, which flows around the inner absorber parts 4 of the absorption units 1, from the first heat carrier flow 8, which flows around the outer degasser parts 3 of the absorption units 1.
  • the round, disc-shaped absorption units 1 are provided in the middle with a through channel 16 for the second heat transfer stream 9.
  • Fig. 3 shows schematically the operation of an absorption heat pump for the use of low temperature heat, e.g. of solar energy.
  • a heat transfer fluid is heated in a low-temperature heat source 20, for example a solar collector, to which it flows via an inlet line, for example from +2 to + 12 ° C.
  • This heat carrier flow heated in this way flows via an outlet line 17, a first three-way valve 23, a connecting line 18, a second three-way valve 24 and an inlet line 19 as a second heat carrier flow 9 via an inlet 28 to the absorber part 4 of the uppermost one of the absorption units 1 arranged one above the other and then passes through one after the other the following, rising in temperature absorber parts 4 and is in heat exchange with them.
  • the heat carrier flow is absorbed by the refrigerant in the individual graded absorption units heated to a higher temperature, which is suitable for low-temperature heating at 45 ° C.
  • This second heat transfer stream 9 leaves the absorber part 4 of the lowest absorption unit 1 through an outlet 34 and enters as a flow into a heat consumer, for example a heating circuit.
  • the return flow of the heat consumer passes through the degassing part 3 of the lowest absorption unit 1 as the first heat transfer stream 8 with a temperature of 35 ° C. via an inlet 37 and then successively through the subsequent degassing parts 3 of the absorption units 1, which decrease in temperature.
  • the returning heat transfer stream 8 cools from, e.g. B.
  • the regenerating heat transfer stream heats up by flowing around the outer degassing parts 3 of the graded absorption units, which work as a resorber (or condenser), from a temperature of 30 to 80.degree a return line 27 is returned to the high-temperature heat source 25.
  • the particular advantage of this absorption heat pump lies in the fact that lowering the flow and return temperatures or increasing the temperatures in the low-temperature heat source 20 improves the ratio of the amount of heat given off to the heat consumer to the amount of heat to be absorbed by the high-temperature heat source 25 becomes.
  • Such a flexible adaptation results in a particularly low use of heating energy from fossil fuels in the high-temperature heat source 25 on average. The standard effort for such a heating system is minimal.
  • the arrangement of the absorber parts 4, which also work as expeller parts, inside the disk-shaped absorption units 1 and the arrangement of the degassing parts 3, which also work as resorber stages, in the outer ring area of the absorption units 1 causes the warmer parts and heat transfer medium of colder parts and Heat carriers are surrounded and therefore only slight heat losses will occur.
  • FIG. 5 and 6 show a combination of an absorption heat pump according to the invention with an oil, coal or gas burner 30 arranged centrally in the upper area as a high-temperature heat source and a hot water preparation tank 31 for the hot water supply integrated in the lower area.
  • the second heat transfer stream 9 coming from the low-temperature heat source 20 via the outlet line 18, a four-way valve 29 and the inlet line 19 and heated in the absorber stages 4 of the absorption units 1 from 12 to 45 ° C. and emerging from a connection 34 Introduced via a line 32 into the inlet 35 of a heat exchanger 33 of the hot water preparation tank 31 before it reaches a heating circuit as a lead 21.
  • the returning heat transfer stream 8 is again fed to the degassing points 3 of the absorption units 1, in which it cools down to about 2 ° C., so that it can heat up again to 12 ° C. in the low-temperature heat source 20 (solar collector).
  • the outlet 38 of the heat carrier flow 8 led around the outer evaporator or degasifier parts 3 of the absorption units 1 via the four-way valve 29 with the inlet 28 of the around the inner absorber parts 4 of the absorption units 1 connected to leading heat transfer stream 9 and the burner 30 started.
  • the absorber parts 4 now work as an expeller and the degassing parts 3 (or evaporator parts) as a resorber (or condenser).
  • the burner 30 heats the heat carrier flow 9 in the inner absorber parts 4 of the upper absorption units to approximately 100 ° C., so that it can now serve as a regenerating heat carrier flow.
  • This regenerating heat transfer stream 9 then cools by flowing around the inner one Absorber parts 4 of the lower absorption units 1, which are now working as expellers, drop to 50 ° and are then passed through the heat exchanger 33 of the hot water preparation tank 31 and, after leaving the outlet 36, as a feed 21 into the heating circuit.
  • the return flow is introduced again as heat transfer stream 8 through the inlet 37 of the degassing part 3 of the lowermost absorption unit 1 and successively around the outer absorber parts 3 of the absorption units, which now work as a resorber, so that it heats up to a temperature of 800C and through the outlet 38 the top absorption unit emerges.
  • the four-way valve 29 converted for regeneration and the feed line 19 the heat carrier flow is fed back directly into the inlet 28 of the absorber part 4 of the top absorption unit 1.
  • FIG. 7 and 8 show chambers 2 of absorption units 1, each of which is composed of a trough 42 and a cover 43 to form the hermetically sealed chamber 2.
  • An annular partition 6 is arranged in the trough 42 and an annular deflecting wall 11 is arranged in the cover 43 in the radially outer region.
  • An annular insulating wall 10 and an annular outer wall 40 are arranged between adjacent chambers 2.
  • the flow guide for the first heat transfer stream 8 through the degassing parts 3 is formed by tubular through-channels 41 and the space between the insulating wall 10 and the outer wall 40.
  • the flow guide for the second heat carrier flow 9 through the absorber parts 4 is formed by tubular through channels 16 ′ and the interior of the annular insulating walls 10
  • each hermetically sealed chamber 2 is in turn ring-shaped.
  • the inner absorber part 4 of the chamber 2 is arranged lower than the outer degasser part 3.
  • Each chamber 2 is composed of two deep-drawn sheet metal shells into which radially extending beads 44 and concentrically extending beads 45 are embossed in order to enlarge the outer heat exchange surfaces.
  • the flow guide for the first heat transfer stream 8 through the degasser runs along the concentric beads 45 and through outer channels 46 on the circumference of the chamber 2.
  • the flow guide for the second heat transfer stream 9 through the absorber parts 4 runs along the radial beads 44 from the inside out and then around the inner partition 13 to the next absorber part 4.
  • the upper deep-drawn sheet metal shell of the chamber has a deflecting wall reaching downwards into the rich solution of the absorber part, so that the steam with the rich solution enters into a good heat and material exchange.
  • 11 and 12 show vertically extending absorption units with a lower degassing part 3 and an upper absorber part 4.
  • a wall 10 ' initially connected radially and then vertically in the middle to the outer wall, occurs the rich solution of the absorber part 4 from the poor solution of the Two-substance mixture 5 in the degasser part 3.
  • the vertical part of the wall 10 ' is overlaid by a bell-shaped steam guide wall 50 which extends downwards and corresponds to the deflection wall 11. It ensures that the steam rising from the degassing part 3 is passed through the rich solution of the absorber part 4 and that in the regeneration mode, the steam expelled in the absorber part 4 is pressed under the level of the solution in the degassing part 3 working as a absorber.
  • the contact areas of the solution in the degassing part 3 and in the absorber part 4 can be enlarged by capillary and wicking walls 51 and 52 arranged there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A method and apparatus for the use of heat taken up at low temperature is disclosed wherein a flow of transfer medium is passed through a low temperature heat source to absorb heat. The flow then passes through multiple, sequential stages of a heat pump which successively increase in temperature whereby the flow picks up heat. The flow then releases heat to the heat receiver and subsequently passes through multiple sequential degassing stages of the heat pump. The flow releases evaporation heat and is cooled to a suitable temperature for use in the low temperature heat source. The heat pump preferably includes a two substance mixture provided within a two portion, hermetically sealed chamber.

Description

Die Erfindung bezieht sich auf ein Verfahren zur Nutzung von bei niedriger Temperatur aufgenommener Wärme, die unter Zwischenschaltung einer mehrstufigen Absorptionswärmepumpe bei einem höheren Temperaturniveau an einen Wärmeverbraucher abgegeben wird.The invention relates to a method for using heat absorbed at a low temperature, which is released to a heat consumer at a higher temperature level with the interposition of a multi-stage absorption heat pump.

Ein Verfahren dieser Art ist bekannt aus der DE-A-2 743 488. Bei diesem bekannten Verfahren zur Nutzung von Sonnenenergie für Raumheizung wird die vom Solarkollektor aufgenommene Wärme von einem im Solarkollektor verdampfenden Kältemittel einer armen Lösung eines Arbeitsstoffpaares zu einem mit reicher Lösung betriebenen Absorber transportiert, von dem die in ihm erzeugte freiwerdende Absorptionswärme mittels eines getrennten Wärmeträgerstroms einem Heizungskreislauf als Wärmeverbraucher zugeführt wird. Bei dem bekannten Verfahren wird die arme Lösung eines Arbeitsstoffpaares aus einem Kältemittel (z. B. Wasser) als flüssigem Arbeitsmittel und einem flüssigen Sorptionsstoff (z. B. wässrige Lithiumbromidlösung) zur Aufnahme der Niedertemperaturwärme durch den Solarkollektor geführt und das dort verdampfende Kältemittel als Dampf der reichen Lösung des Arbeitsstoffpaares im Absorber zugeführt. Zur Regeneration der dem Sonnenkollektor zugeführten armen Lösung und der dem Absorber zugeführten reichen Lösung sind mehrere Austreiberstufen und Resorberstufen notwendig sowie auch Pumpen, welche die arme Lösung des Arbeitsstoffpaares dem Sonnenkollektor und die reiche Lösung dem Absorber zuführen.A method of this type is known from DE-A-2 743 488. In this known method for using solar energy for space heating, the heat absorbed by the solar collector is converted from a poor solution of a working material pair to a evaporator in the solar collector to an absorber operated with a rich solution transported, from which the released heat of absorption generated in it is fed to a heating circuit as a heat consumer by means of a separate heat transfer stream. In the known method, the poor solution of a working material pair consisting of a refrigerant (e.g. water) as a liquid working fluid and a liquid sorbent (e.g. aqueous lithium bromide solution) for absorbing the low-temperature heat is passed through the solar collector and the refrigerant evaporating there as steam fed the rich solution of the working material pair in the absorber. For the regeneration of the poor solution supplied to the solar collector and the rich solution supplied to the absorber, several expulsion stages and absorber stages are necessary, as well as pumps which deliver the poor solution of the working material pair to the solar collector and the rich solution to the absorber.

Bei dem bekannten Verfahren besteht der Nachteil, dass das Arbeitsstoffpaar, beispielsweise Wasser als Kältemittel und wässrige Lithiumbromldlösung, als flüssiger Absorptionsstoff dem Sonnenkollektor unmittelbar zugeführt wird. Aus diesem Grunde bestehen relativ hohe Materialanforderungen an den Kollektor, die zu- und abführenden Leitungen sowie an die Pumpen und Venteile, weiche mit dem Arbeitsstoffpaar in Berührung kommen.In the known method, there is the disadvantage that the working material pair, for example water as a refrigerant and aqueous lithium bromine solution, is fed directly to the solar collector as a liquid absorbent. For this reason, there are relatively high material requirements for the collector, the supply and discharge lines as well as for the pumps and valves, which come into contact with the working material pair.

Es sind kontinuierlich und periodisch wirkende Ad- und Absorptionsantagen zur Kälteerzeugung sowie die Kombination solcher Anlagen (DE-C-620 249) bekannt. Ferner ist der bekannte Grundgedanke der Altenkirchschen Mehrstufigkeit von Abeorptionskältemaschinen angewendet worden (DE-C-671791), um einmal durch Hintereinanderschatten von Kondensator und nächster Generatorstufe ein günstigeres Wärmeverhältnis für einen Absorptionsapparat erzielen zu können und zum anderen durch HIntereinanderschalten von Absorber und Verdampfer der zweiten Absorptionsstufe für eine vorgegebene Arbeitsstoffpaarung grössere Temperaturdifferenzen zwischen dem Verdampfer der ersten Stufe und dem Absorber der zweiten Stufe überbrücken zu können. Dieses bekannte Grundprinzip wird im Rahmen der Erfindung In abgewandelter Form angewendet Der Betrieb einer Absorptionswärmepumpe unterscheidet sich wesentlich vom Betrieb der bekannten Absorptionskältemaschine. Letztere kann nach dem bekannten Verfahren nur stufenweise dem Wärmeverhältnis oder der erreichbaren Verdampfungstemperatur angepasst werden, was für die Zwecke der Kühlung vollkommen ausreichend ist. Für den Wärmepumpenbetrieb stellt eine solche stufenweise Veränderung eine zu grosse Rasterung dar. Vielmehr hat sich gezeigt, dass eine stufenlose Anpassung für eine höchstmögliche Wärmeausnutzung erforderlich ist.Continuously and periodically acting ad and absorption antagen for cooling and the combination of such systems (DE-C-620 249) are known. Furthermore, the well-known basic idea of Altenkirch's multi-stage of absorption chillers has been applied (DE-C-671791) in order to be able to achieve a more favorable heat ratio for an absorption apparatus by shading the condenser and the next generator stage and by switching the absorber and evaporator of the second absorption stage in series to be able to bridge larger temperature differences between the evaporator of the first stage and the absorber of the second stage for a given pair of working materials. This known basic principle is used in a modified form in the context of the invention. The operation of an absorption heat pump differs significantly from the operation of the known absorption refrigerator. The latter can only be gradually adapted to the heat ratio or the achievable evaporation temperature by the known method, which is completely sufficient for the purposes of cooling. For the heat pump operation, such a gradual change represents a grid that is too large. Rather, it has been shown that a continuous adjustment is necessary for maximum heat utilization.

Es ist ferner eine einstufige Absorptionswärmepumpe bekannt (US-A-2 253 907), bei der dem unterteilten Generator nur ein Kondensator bzw. nur ein Verdampfer gegenübersteht, so dass eine teilweise Rückgewinnung der Kondensationswärme nicht möglich ist.A single-stage absorption heat pump is also known (US Pat. No. 2,253,907), in which the divided generator is opposed by only one condenser or only one evaporator, so that partial recovery of the heat of condensation is not possible.

Bei einer weiteren Absorptionswärmepumpe ist die Anwendung bekannter hinsichtlich der Temperatur abgestufter, absorberseitig zeitweise hintereinandergeschalteter und entgaserseitig parallelgeschalteter Hydridspeicher bekannt (DE-A-2 706 048). Diese sind für ein festes Arbeitsstoffpaar, nämlich Metallhydride als Sorptionsstoff und Wasserstoff als Arbeitsmittel, weicher zu den verschiedenen Metallen eine unterschiedliche Affinität besitzt und daher Absorptions- und Desorptionsprozesse von unterschiedlichem Temperaturniveau ermöglicht, beschrieben. Für den Wärmetransport von der Niedertemperaturquelle dient ein erster geschlossener Wärmeträgerstrom-Kreis und für den Transport der auf die höhere Temperatur gepumpten Wärme zum Wärmeverbraucher ein getrennter zweiter geschlossener Wärmestrom-Kreis. Ausserdem wird Wärme von Absorbern an einen Luftstrom abgegeben. Entgaser- und Absorberstufen stehen für den unmittelbaren Arbeitsmittel-(Wasserstoff-)transport von einem Metallhydrid zum anderen Metalihydrid in unmittelbarer Verbindung. Eine besondere Ausbildung dieser sogenannten thermodynamischen Einheiten für die Verwendung flüssiger Arbeitsstoffpaare ist nicht angegeben. Von der bekannten Altenkirchschen Mehrstufigkeit von Absorptionskältemaschinen unterscheidet sich diese bekannte Wärmepumpe lediglich dadurch, dass anstelle der Kondensationswärme (bei Attenkirch) die Absorptionswärme der ersten Stufe genutzt wird, um die Desorption einer zweiten Stufe zu bewerkstelligen. Dieses mehr unter dem Namen «chemische Wärmepumpe» bekannte Prinzip der Absorption und Desorption von Metallhydriden lässt nur eine beschränkte Anwendung im Bereich der Wärmepumpe zu, weil die gleichen Einschränkungen bestehen, die für die Anwendung der Altenkirchschen Mehrstufigkeit existieren. Der Wärme- und Stoffaustausch bei Arbeitsstoffpaaren aus festem Sorptlonsstoff und gasförmigem Arbeitsmittel ist grundsätzlich verschieden vom Absorptionsprozess mit flüssigen Arbeitsstoffpaaren. Daher sind notwendigerweise auch die erforderlichen Apparaturen konstruktiv sehr unterschiedlich zu gestalten. Die Ausnutzung der Absorptionswärme fester Absorptionsstoffe und gasförmiger Arbeitsmittel zum Beheizen einer weiteren Stufe ist lediglich in der schon von Altenkirch beschriebenen einfachen Form dargestellt.In the case of a further absorption heat pump, the use of known hydride accumulators which are graded in terms of temperature, are sometimes connected in series on the absorber side and are connected in parallel on the degassing side is known (DE-A-2 706 048). These are described for a fixed pair of working materials, namely metal hydrides as sorbent and hydrogen as working medium, which have different affinities for the different metals and therefore enable absorption and desorption processes of different temperature levels. A first closed heat transfer flow circuit is used for the heat transport from the low temperature source and a separate second closed heat flow circuit is used to transport the heat pumped to the higher temperature to the heat consumer. In addition, heat from absorbers is transferred to an air stream. Degasser and absorber stages are in direct connection for the direct transport of working fluid (hydrogen) from one metal hydride to the other metal hydride. A special design of these so-called thermodynamic units for the use of liquid working fluid pairs is not specified. This known heat pump differs from the well-known Altenkirch multi-stage absorption chillers only in that instead of the heat of condensation (at Attenkirch), the heat of absorption of the first stage is used to achieve the desorption of a second stage. This principle of absorption and desorption of metal hydrides, known more under the name “chemical heat pump”, allows only limited use in the field of heat pumps, because the same restrictions exist that apply to the application of Altenkirch's multi-stage. The heat and material exchange in working material pairs made of solid sorpton material and gaseous working material is fundamentally different from the absorption process with liquid working material pairs. Therefore, those are necessarily to design the necessary equipment very differently. The use of the heat of absorption of solid absorption materials and gaseous working materials for heating a further stage is only shown in the simple form already described by Altenkirch.

Eine periodisch wirkende einstufige Absorptionswärmepumpe, bei der zwei unabhängige Desorber- und Absorber- bzw. Verdampfer- und Verdampferstufen vorgesehen sind, ist bekannt (DE-OS 2 801 895). Diese beiden Stufen werden im Betrieb in gewissen Zeitabständen umgeschaltet, um in der Verdampferstufe eine kontinuierliche Betriebsweise zu gewährleisten.A periodically acting single-stage absorption heat pump, in which two independent desorber and absorber or evaporator and evaporator stages are provided, is known (DE-OS 2 801 895). These two stages are switched during operation at certain time intervals in order to ensure continuous operation in the evaporator stage.

Bei einer anderen bekannten zyklischen Absorptions-Wärmepumpe (US-PS 4121432) werden die Absorberelemente verschieden temperierten Luftströmen ausgesetzt, wodurch für die Absorption ein zyklischer Betrieb möglich wird. Die zahlreichen Entgaserelemente unterliegen ebenfalls einem zyklischen Betrieb. Die bei der Umschaltung des Prozesses freigesetzte Resorptionswärme wird hier nicht zur Austreibung in anderen Stufen verwendet. Es handelt sich daher um eine im Prinzip einstufige Absorptions-Wärmepumpe.In another known cyclic absorption heat pump (US Pat. No. 4,121,432), the absorber elements are exposed to air currents at different temperatures, which makes cyclic operation possible for absorption. The numerous degasser elements are also subject to cyclical operation. The heat of absorption released when the process is switched over is not used here for expulsion in other stages. It is therefore a basically single-stage absorption heat pump.

Der Erfindung liegt die Aufgabe zugrunde, das eingangs genannte Verfahren zur Nutzung von bei niedriger Temperatur aufgenommener Wärme dahingehend auszugestalten, dass die Einschränkungen der bekannten Verfahren vermieden sind, dass wirtschaftlicher gearbeitet werden kann als mit den bekannten Verfahren und dass es mit einfach gestalteten und geringem Aufwand herstellbaren sowie im Betrieb wenig Geräusch verursachenden Vorrichtungen durchführbar ist. Darüber hinaus soll eine besonders geeignete Absorptionswärmepumpe zur Durchführung des Verfahrens angegeben werden.The invention is based on the object of designing the above-mentioned method for using heat absorbed at low temperature in such a way that the limitations of the known methods are avoided, that work can be carried out more economically than with the known methods and that it is simple and inexpensive devices that can be produced and that cause little noise during operation can be carried out. In addition, a particularly suitable absorption heat pump for carrying out the method is to be specified.

Ein diese Aufgabe lösendes Verfahren ist im Patentanspruch 1 gekennzeichnet. Eine vorteilhafte Absorptionswärmepumpe, die sich für die Durchführung des erfindungsgemässen Verfahrens besonders eignet, ergibt sich mit ihren Ausgestaltungen aus den weiteren Patentansprüchen.A method that solves this problem is characterized in claim 1. An advantageous absorption heat pump, which is particularly suitable for carrying out the method according to the invention, arises with its configurations from the further patent claims.

Das erfindungsgemässe Verfahren ist nur mit Niedertemperatur-Wärme durchführbar, solange der vom Wärmeverbraucher kommende Rücklauf des Wärmeträgerstroms Arbeitsmittel (Kältemittel) des Arbeitsstoffpaars in den Entgaser- bzw. Verdampferstufen verdampfen kann. Danach ist jeweils eine Regeneration der reichen Lösung des Arbeitsstoffpaares in den Absorberstufen und gegebenenfalls der armen Lösung des Arbeitsstoffpaares in den Entgaserstufen erforderlich. Diese angegebene Regeneration des Arbeitsstoffpaares wird solange durchgeführt, bis das Arbeitsstoffpaar in den Absorberstufen ihre ursprüngliche reichere Konzentration und gegebenenfalls in den Entgaserstufen ihre ursprüngliche ärmere Konzentration erreicht haben.The method according to the invention can only be carried out with low-temperature heat, as long as the return of the heat transfer stream coming from the heat consumer can evaporate the working medium (refrigerant) of the working material pair in the degasser or evaporator stages. Thereafter, a regeneration of the rich solution of the working material pair in the absorber stages and possibly the poor solution of the working material pair in the degassing stages is required. This specified regeneration of the working substance pair is carried out until the working substance pair has reached its original richer concentration in the absorber stages and, if appropriate, has reached its original poorer concentration in the degassing stages.

Das erfindungsgemässe Verfahren kann mit grossem Vorteil angewandt werden, wenn hochwertige Wärmeenergie (Hochtemperatur-Wärme) kurzzeitig und unregelmässig zur Verfügung steht. Diese kann sinnvoll für die Regeneration verwendet werden. Steht einer Anlage zur Nutzung beispielsweise von Sonnenenergie, Erdwärme oder einer anderen Niedertemperatur-Wärme, zeitweise auch Hochtemperatur-Wärme, z.B. Abgaswärme, zur Verfügung, kann die Wärmepumpe unverzüglich umgeschaltet werden, so dass in den Perioden,. in denen die höherwertige Energie verfügbar ist, das Arbeitsstoffpaar in den Entgaser- und Absorberstufen regeneriert wird, hierzu also keine Heizenergie; beispielsweise eines Ölbrenners, erforderlich ist.The method according to the invention can be used with great advantage if high-quality thermal energy (high-temperature heat) is available temporarily and irregularly. This can be used sensibly for regeneration. Is there a plant for the use of, for example, solar energy, geothermal energy or other low-temperature heat, sometimes also high-temperature heat, e.g. Exhaust heat, available, the heat pump can be switched over immediately, so that in the periods. in which the higher-quality energy is available, the working material pair is regenerated in the degasifier and absorber stages, so no heating energy for this; for example, an oil burner.

Die erfindungsgemässe Absorptionswärmepumpe hat den Vorteil, dass jeder einander zugeordnete Absorber- und Entgaserteil (bzw. Verdampfertell) als eine nach aussen völlig abgeschlossene Absorptionseinheit mit dem gemeinsamen Dampfraum und den Mitteln zum Inkontaktbringen des Dampfes mit der reichen Lösung im Absorberteil vorgefertigt werden kann und in ihr für einen optimalen Wärme- und Stoffaustausch gesorgt ist. Die Absorptionseinheiten sind auf unterschiedliche, den Stufen entsprechende Verdampfungs- und Absorptionstemperaturen eingestellt. Die Kammerwandungen- der Absorberteile und der Verdampfer sind voneinander getrennt in einer Strömungsführung für einen Wärmeträgerstrom angeordnet. Der von der Niedertemperatur-Wärmequelle, z.B. einem Sonnenkollektor, kommende Wärmeträgerstrom nimmt durch Um- und/ oder Durchströmung der einzelnen Absorbereinheiten Absorptionswärme auf, während der rückströmende Wärmeträgerstrom die einzelnen Absorptionseinheiten in Gegenrichtung durchströmt und Wärme an die Entgaserstufen abgibt, bis die Wärmeträgerflüssigkeit auf eine Temperatur abgekühlt ist, in der sie in der Lage ist, in der Niedertemperatur-Wärmequelle, z.B. dem Sonnenkollektor, wieder Wärme aufzunehmen. Die besonderen Gestaltungsformen der Absorptionseinheiten begünstigen den Stoff- und Wärmetausch.The absorption heat pump according to the invention has the advantage that each associated absorber and degasser part (or evaporator plate) can be prefabricated and in it as an absorption unit that is completely sealed off from the outside with the common steam chamber and the means for bringing the steam into contact with the rich solution in the absorber part for an optimal heat and mass transfer. The absorption units are set to different evaporation and absorption temperatures corresponding to the stages. The chamber walls of the absorber parts and the evaporator are arranged separately from one another in a flow guide for a heat transfer stream. The from the low temperature heat source, e.g. a solar collector, the incoming heat transfer medium absorbs absorption heat through the flow around and / or through the individual absorber units, while the return flow of heat transfer medium flows through the individual absorption units in the opposite direction and emits heat to the degassing stages until the heat transfer fluid has cooled to a temperature at which it Is able to, for example, in the low temperature heat source the solar collector to absorb heat again. The special design of the absorption units favor the exchange of materials and heat.

Ausführungsbeispiele der Erfindung sind anhand einer Zeichnung näher erläutert, in der zeigt:

  • Fig. 1 eine schematische Schnittansicht von zwei übereinander angeordneten Absorptionseinheiten einer Absorptionswärmepumpe,
  • Fig. 2 eine Ansicht nach der Schnittlinie 11-11 in Fig. 1,
  • Fig;3 eine schematische Darstellung einer Anlage zur Nutzung von Sonnenenergie mit Hilfe einer mehrstufigen Absorptionswärmepumpe,
  • Fig. 4 eine Anlage nach Fig. 3 im Regenerationsbetrieb,
  • Fig. 5 eine der Wärmepumpe nach Fig. 3 ähnliche mehrstufige Absorptionswärmepumpe, in die jedoch ein Warmwasserbereitungsbehälter sowie ein Gas-Kohle- oder Ölbrenner integriert sind,
  • Fig. 6 die Anlage nach Fig. 5 im Regenerationsbetrieb,
  • Fig. 7 und 9 Seitenansichten und
  • Fig. 8 und 10 Draufsichten auf unterschiedlich gestaltete Absorptionseinheiten sowie
  • Fig. 11 und 12Schnittansichtenvon Absorptionseinheiten mit übereinanderliegendem Absorber-und Entgaserteil.
Exemplary embodiments of the invention are explained in more detail with reference to a drawing, in which:
  • 1 is a schematic sectional view of two absorption units of an absorption heat pump arranged one above the other,
  • 2 is a view along the section line 11-11 in Fig. 1,
  • 3 shows a schematic illustration of a system for using solar energy with the aid of a multi-stage absorption heat pump,
  • 4 shows a plant according to FIG. 3 in regeneration mode,
  • 5 a multi-stage absorption heat pump similar to the heat pump according to FIG. 3, in which, however, a hot water preparation tank and a gas-coal or oil burner are integrated,
  • 6 shows the plant according to FIG. 5 in regeneration mode,
  • 7 and 9 side views and
  • 8 and 10 plan views of differently designed absorption units as well
  • 11 and 12 are sectional views of absorption units with superimposed absorber and degasser parts.

Die Fig. 1 und 2 zeigen zwei Absorptionseinheiten 1 einer Absorptionswärmepumpe. Jede Absorptionseinheit 1 besteht aus einer hermetisch abgeschlossenen Kammer 2, die in einen Entgaserteil 3 (bzw. Verdampferteil) und einem neben diesem liegenden Absorberteil 4 unterteilt ist. Die Kammer 2 ist mit einem für den Absorptionsprozess geeigneten flüssigen Zweistoffgemisch 5 als Arbeitsstoffpaar gefüllt und auf einen Druck eingestellt, der der jeweiligen Stufe der Wärmepumpe entspricht. Die Kammern 2 bestehen aus einer tiefgezogenen unteren Wanne und einem tiefgezogenen Deckel. Diese sind zu der hermetisch abgeschlossenen Kammer 2 miteinander verbunden.1 and 2 show two absorption units 1 of an absorption heat pump. Each absorption unit 1 consists of a hermetically sealed chamber 2, which is divided into a degassing part 3 (or evaporator part) and an absorber part 4 lying next to it. The chamber 2 is filled with a liquid two-substance mixture 5 suitable for the absorption process as a working material pair and is set to a pressure which corresponds to the respective stage of the heat pump. The chambers 2 consist of a deep-drawn lower tub and a deep-drawn lid. These are connected to each other to form the hermetically sealed chamber 2.

Beide Teile 3, 4 haben einen gemeinsamen Dampfraum. Der untere Teil des Entgaserteils 3 ist vom unteren Teil des Absorbertells 4 durch eine derart angeordnete doppelwandige Trennwand 6 abgeteilt, dass das Zweistoffgemisch 5 nicht von einem Teil der Kammer in den anderen Teil übertreten kann, wohl aber der Kältemitteldampf des Zweistoffgemisches.Both parts 3, 4 have a common vapor space. The lower part of the degassing part 3 is divided from the lower part of the absorber plate 4 by a double-walled partition 6 arranged in such a way that the two-component mixture 5 cannot pass from one part of the chamber to the other part, but the refrigerant vapor of the two-component mixture can.

Die Aussenflächen des Entgaserteils 3 und des Absorberteils 4 stehen über grosse Rippen 7 in Wärmeaustausch zu zwei Wärmeträgerströmen 8 und 9, die durch eine lsolierwand 10 voneinander getrennt sind. Der erste, im Wärmepumpenbetrieb vom Wärmeverbraucher zurückftiessende Wärmeträgerstrom 8 (Rücklauf) umströmt den Entgaserteil 3 und gibt Wärme an das Kältemittel bzw. an die darin befindliche verdünnte arme Lösung des Zweistoffgemisches ab, so dass ein Teil verdampft und der Dampf zum Absorberteil 4 übertritt. In diesem befindet sich die konzentrierte reiche Lösung des Zweistoffgemisches, so dass der im Entgasertell 3 freigewordene Dampf im Absorberteil 4 absorbiert wird.The outer surfaces of the degassing part 3 and the absorber part 4 are in heat exchange via large ribs 7 to two heat transfer streams 8 and 9, which are separated from each other by an insulating wall 10. The first heat transfer stream 8 (return flow) flowing back from the heat consumer in heat pump operation flows around the degasser part 3 and emits heat to the refrigerant or to the dilute poor solution of the two-substance mixture therein, so that part evaporates and the steam passes to the absorber part 4. This contains the concentrated, rich solution of the two-substance mixture, so that the steam released in the degasifier 3 is absorbed in the absorber part 4.

Die dabei freigesetzte Wärme wird über die Wärmetausch-Rippen 7 des Absorberteils 4 an den zweiten, im Wärmepumpenbetrieb zum Wärmeverbraucher fressenden Wärmeträgerstrom 9 (Vorlauf) abgegeben. im Absorberteil 4 Ist im Dampfraum eine bis In die reiche Lösung reichende doppetwandige Umlenkwand 11 als Mittel zum Inkontaktbringen des Dampfes mit der reichen Lösung im Absorberteit 4 angeordnet, die dafür sorgt, dass der übertretende Dampf in einem besseren Kontakt zur reichen Lösung tritt und eine gewisse Bewegung an der Oberfläche der reichen Lösung im AbsorberteIl 4 entsteht.The heat released in this process is released via the heat exchange ribs 7 of the absorber part 4 to the second heat transfer stream 9 (flow), which consumes the heat consumer in heat pump operation. In the absorber part 4, a double-walled deflecting wall 11 reaching into the rich solution is arranged in the absorber part 4 as a means for bringing the steam into contact with the rich solution, which ensures that the steam which is transferred comes into better contact with the rich solution and a certain amount Movement on the surface of the rich solution in absorber part 4 occurs.

Durch die Doppelwandigkelt der Trennwand 6 und der lsolierwand 10 ist dafür gesorgt, dass keine wesentlichen Wärmemengen durch die Kammerwandung vom Entgaserteil 3 zum Absorberteil 4 und umgekehrt übertreten.The double-walled partition 6 and the insulating wall 10 ensure that no significant amounts of heat pass through the chamber wall from the degassing part 3 to the absorber part 4 and vice versa.

Wenn das Kältemittel verbraucht oder die arme Lösung des Zweistoffgemisches derart angereichert ist, dass dort nur noch geringe Kältemittelanteile verdampfen, müssen die arme und die reiche Lösung des Zweistoffgemisches 5 regeneriert werden. Dies geschieht dadurch, dass der Absorberteil 4 als Austreiberteil und der Entgaserteil 3 als Resorbertell betrieben werden. Dazu wird der zweite Wärmeträgerstrom 9 auf eine höhere Temperatur gebracht, als er sie im Heizbetrieb hat, so dass er sich beim Umströmen der nun als Austreiber arbeitenden Absorberteile 4 abkühlt. Der erste Wärmeträgerstrom 8 wird nun beim Umströmen der als Resorber (bzw. Verdampfer) arbeitenden Entgaserteile 3 der Wärmepumpe aufgeheizt.When the refrigerant is used up or the poor solution of the two-substance mixture is enriched in such a way that only small amounts of refrigerant evaporate there, the poor and the rich solution of the two-substance mixture 5 must be regenerated. This is done by operating the absorber part 4 as the expeller part and the degassing part 3 as the absorber part. For this purpose, the second heat transfer stream 9 is brought to a higher temperature than it has in the heating mode, so that it cools down as it flows around the absorber parts 4, which now operate as expellers. The first heat transfer medium stream 8 is now heated when the degassing parts 3 of the heat pump, which work as resorbers (or evaporators), flow around.

Um beispielsweise einen vorlaufenden Wärmeträgerstrom 9 in Wärmepumpen um 30° zu erwärmen, sind etwa 10 bis 30 aufeinander abgestimmte Absorptionseinheiten 1 erforderlich, in denen bei gleichen Zweistoffengemischen unterschiedliche Drücke eingestellt sind.In order, for example, to heat a leading heat transfer stream 9 in heat pumps by 30 °, about 10 to 30 coordinated absorption units 1 are required, in which different pressures are set for the same two-substance mixtures.

Es ist auch möglich, die Absorptionseinheiten 1 mit unterschiedlichen, für die jeweilige Stufe der Absorptionswärmepumpe jeweils optimalen Zweistoffgemischen zu füllen.It is also possible to fill the absorption units 1 with different two-substance mixtures that are optimal for the respective stage of the absorption heat pump.

Die in Fig. 3 und 4 dargestellte Wärmepumpe besteht aus einer grösseren Anzahl, z. B. 10 bis 30 scheibenförmigen Absorptionseinheiten 1. Jede Einheit hat eine im Grundriss kreisförmige Kammer 2, die durch eine ringförmige Trennwand 6 in den äusseren Entgaserteil 3 und den inneren Absorberteil 4 derart unterteilt ist, dass das flüssige Zweistoffgemisch 5 nicht von einem Kammerteil in den anderen übertreten kann, wohl aber der Kältemitteldampf.The heat pump shown in Fig. 3 and 4 consists of a larger number, for. B. 10 to 30 disc-shaped absorption units 1. Each unit has a circular chamber 2 in plan, which is divided by an annular partition 6 into the outer degasser part 3 and the inner absorber part 4 such that the liquid mixture of two substances 5 does not move from one chamber part into the other other can, but the refrigerant vapor.

Die Absorptionseinheiten 1 sind durch ringförmige isolierwände 10 In Abständen übereinander gehalten und in einem Behälter 12 angeordnet, der zur Aufnahme je einer Absorptionseinheit in Zellen 14 durch Zwischenwände 13 unterteilt ist. In jeder Zwischenwand 13 sind zu beiden Seiten der isolierwand 10 Durchgangsöffnungen 15 für die Wärmeträgerströme 8 und 9 ausgebildet. Die ringförmigen Isolierwände 10 trennen den zweiten Wärmeträgerstrom 9, der die inneren Absorberteile 4 der Absorptionseinheiten 1 umströmt, von dem ersten Wärmeträgerstrom 8, der die äusseren Entgaserteile 3 der Absorptionseinheiten 1 umströmt. Die runden, scheibenförmigen Absorptionseinheiten 1 sind in ihrer Mitte mit einem Durchgangskanal 16 für den zweiten Wärmeträgerstrom 9 versehen.The absorption units 1 are spaced one above the other by annular insulating walls 10 and arranged in a container 12 which is divided into cells 14 by partitions 13 for receiving an absorption unit. In each partition 13 through openings 15 for the heat transfer streams 8 and 9 are formed on both sides of the insulating wall. The annular insulating walls 10 separate the second heat carrier flow 9, which flows around the inner absorber parts 4 of the absorption units 1, from the first heat carrier flow 8, which flows around the outer degasser parts 3 of the absorption units 1. The round, disc-shaped absorption units 1 are provided in the middle with a through channel 16 for the second heat transfer stream 9.

Fig. 3 zeigt schematisch den Betrieb einer Absorptionswärmepumpe zur Nutzung von Niedertemperaturwärme, z.B. von Sonnenenergie.Fig. 3 shows schematically the operation of an absorption heat pump for the use of low temperature heat, e.g. of solar energy.

Eine Wärmeträgerflüssigkeit wird in einer Niedertemperatur-Wärmequelle 20, beispielsweise einem Sonnenkollektor, dem er über eine Zulaufleitung zuströmt, erwärmt, z.B. von +2 auf +12°C. Dieser so angewärmte Wärmeträgerstrom fliesst über eine Austrittsleitung 17, ein erstes Dreiwegeventil 23, eine Verbindungsleitung 18, ein zweites Dreiwegeventit 24 und eine Zulaufleitung 19 als zweiter Wärmeträgerstrom 9 über einen Einlass 28 dem Absorberteil 4 der obersten der übereinander angeordneten Absorptionseinheiten 1 zu und durchläuft anschliessend nacheinander die darunterfolgenden, in der Temperatur ansteigenden Absorberteilen 4 und steht mit diesen im Wärmetausch. Durch den Wärmetausch mit den Absorberteilen 4 wird der Wärmeträgerstrom durch die Absorption des Kältemittels in den einzelnen abgestuften Absorptionseinheiten auf eine höhere Temperatur erwärmt, die für eine Niedertemperatur-Heizung bei 45°C geeignet ist. Dieser zweite Wärmeträgerstrom 9 verlässt den Absorberteil 4 der untersten Absorptionseinheit 1 durch einen Auslass 34 und tritt als Vorlauf in einen Wärmeverbraucher, z.B. einen Heizungskreislauf, ein. Der Rücklauf des Wärmeverbrauchers durchläuft als erster Wärmeträgerstrom 8 mit einer Temperatur von 35 °C über einen Einlass 37 den Entgaserteil 3 der untersten Absorptionseinheit 1 und danach nacheinander die darüberfolgenden, in der Temperatur abnehmenden Entgaserteile 3 der Absorptionseinheiten 1. Der zurückfliessende Wärmeträgerstrom 8 kühlt sich dabei ab, z. B. auf eine Temperatur von 2 °C. Der aus einem Auslass 38 des Entgaserteils 3 der obersten Absorptionseinheit 1 austretende Wärmeträgerstrom fliesst als abgekühlter Rücklauf über eine Ablaufleitung 22 der Niedertemperatur-Wärmequelle 20 wieder zu. Er wird dann in dieser wieder erwärmt. Dieser Wärmepumpen- bzw. Absorberbetrieb ist möglich, solange ausreichende Konzentrationsunterschiede des Zweistoffgemisches 5 im Absorberteil 4 und Entgaserteil 3 jeder Absorptionseinheit 1 bestehen.A heat transfer fluid is heated in a low-temperature heat source 20, for example a solar collector, to which it flows via an inlet line, for example from +2 to + 12 ° C. This heat carrier flow heated in this way flows via an outlet line 17, a first three-way valve 23, a connecting line 18, a second three-way valve 24 and an inlet line 19 as a second heat carrier flow 9 via an inlet 28 to the absorber part 4 of the uppermost one of the absorption units 1 arranged one above the other and then passes through one after the other the following, rising in temperature absorber parts 4 and is in heat exchange with them. Due to the heat exchange with the absorber parts 4, the heat carrier flow is absorbed by the refrigerant in the individual graded absorption units heated to a higher temperature, which is suitable for low-temperature heating at 45 ° C. This second heat transfer stream 9 leaves the absorber part 4 of the lowest absorption unit 1 through an outlet 34 and enters as a flow into a heat consumer, for example a heating circuit. The return flow of the heat consumer passes through the degassing part 3 of the lowest absorption unit 1 as the first heat transfer stream 8 with a temperature of 35 ° C. via an inlet 37 and then successively through the subsequent degassing parts 3 of the absorption units 1, which decrease in temperature. The returning heat transfer stream 8 cools from, e.g. B. to a temperature of 2 ° C. The heat carrier flow emerging from an outlet 38 of the degassing part 3 of the uppermost absorption unit 1 flows as a cooled return via a drain line 22 to the low-temperature heat source 20. It is then heated up again in this. This heat pump or absorber operation is possible as long as there are sufficient concentration differences of the two-substance mixture 5 in the absorber part 4 and degassing part 3 of each absorption unit 1.

Sind diese Konzentrationsunterschiede durch längeren Betrieb soweit abgebaut, dass eine ausreichende Wärmemenge nicht mehr gepumpt wird, muss regeneriert werden. Dies kann gemäss Fig. 4 dadurch erreicht werden, dass durch Umschalten des ersten Dreiwegeventils 23 der Flüssigkeitskreislauf von der Niedertemperatur-Wärmequelle 20 abgeschaltet und dafür in den Kreislauf einer als Heizkessel ausgebildeten Hochtemperatur-Wärmequelle 25 eingekoppelt wird. Nunmehr wird der Wärmeträgerstrom auf eine hohe, über der Austreibungstemperatur des Kältemittels in der reichen Lösung im Absorberteil der obersten Absorptionseinheit 1 liegenden Temperatur, z.B. 100 °C, erwärmt und als Regenerier-Wärmeträgerstrom über eine Vorleitung 26, das erste Dreiwegeventil 23, die Verbindungsleitung 18, das zweite Dreiwegeventil 24 und die Zulaufleitung 19 in Wärmeaustausch mit den nun als Austreiber arbeitenden inneren Absorberteilen 4 gebracht, wodurch das Kältemittel aus der reichen konzentrierten Lösung des Zweistoffsgemisches ausgetrieben und kondensiert bzw. in den nun als Resorber arbeitenden äusseren Entgaserteilen 3 der jeweiligen Absorptionseinheiten 1 resorbiert wird. Durch diesen Vorgang kühltsich die Regenerierflüssigkeit ab, z.B. auf eine Temperatur von 50 °C, mit der sie dann in den Wärmeverbraucher, z. B. einen Heizkreislauf, als Vorlauf geleitet werden kann. Der Rücklauf des Wärmeverbrauchers wird zur Aufnahme der Kondensations- bzw. Resorptionswärme verwendet. Der Regenerier-Wärmeträgerstrom erwärmt sich durch Umströmen der als Resorber (bzw. Kondensator) arbeitenden äusseren Entgaserteile 3 der abgestuften Absorptionseinheiten von einer Temperatur von 30 auf 80 °C und wird nach Austritt aus dem Auslass 38 über die Ableitung 22, das zweite Dreiwegeventil 24 und eine Rückleitung 27 in die Hochtemperatur-Wärmequelle 25 zurückgeführt.If these concentration differences have been reduced to such an extent by long-term operation that a sufficient amount of heat is no longer pumped, regeneration is necessary. 4 can be achieved by switching off the first three-way valve 23 to switch off the liquid circuit from the low-temperature heat source 20 and to couple it into the circuit of a high-temperature heat source 25 designed as a boiler. Now the heat transfer stream is brought to a high temperature above the expulsion temperature of the refrigerant in the rich solution in the absorber part of the uppermost absorption unit 1, e.g. 100 ° C, heated and brought as a regenerating heat transfer stream via a feed line 26, the first three-way valve 23, the connecting line 18, the second three-way valve 24 and the feed line 19 into heat exchange with the inner absorber parts 4, which now function as the expeller, thereby removing the refrigerant from the rich concentrated solution of the two-substance mixture is expelled and condensed or is resorbed in the outer degassing parts 3 of the respective absorption units 1, which are now working as resorbers. This process cools the regeneration liquid, e.g. to a temperature of 50 ° C, with which they are then in the heat consumer, for. B. a heating circuit can be conducted as a flow. The return of the heat consumer is used to absorb the heat of condensation or absorption. The regenerating heat transfer stream heats up by flowing around the outer degassing parts 3 of the graded absorption units, which work as a resorber (or condenser), from a temperature of 30 to 80.degree a return line 27 is returned to the high-temperature heat source 25.

Der besondere Vorteil dieser Absorptionswärmepumpe liegt neben der einfachen Gestaltung darin, dass eine Absenkung der Vor- und Rücklauftemperaturen bzw. ein Anheben der Temperaturen in der Niedertemperatur-Wärmequelle 20 das Verhältnis der zum Wärmeverbraucher abgegebenen Wärmemenge zu der von der Hochtemperatur-Wärmequelle 25 aufzunehmenden Wärmemenge verbessert wird. Eine solche flexible Anpassung hat im Mittel einen besonders geringen Einsatz an Heizenergie aus fossilen Brennstoffen in der Hochtemperatur-Wärmequelle 25 zur Folge. Der Regelaufwand für eine solche Heizanlage ist minimal.In addition to the simple design, the particular advantage of this absorption heat pump lies in the fact that lowering the flow and return temperatures or increasing the temperatures in the low-temperature heat source 20 improves the ratio of the amount of heat given off to the heat consumer to the amount of heat to be absorbed by the high-temperature heat source 25 becomes. Such a flexible adaptation results in a particularly low use of heating energy from fossil fuels in the high-temperature heat source 25 on average. The standard effort for such a heating system is minimal.

Die Anordnung der Absorberteile 4, die auch als Austreiberteile arbeiten, im Inneren der scheibenförmigen Absorptionseinheiten 1 und die Anordnung der Entgaserteile 3, die auch als Resorberstufen arbeiten, im äusseren Ringbereich der Absorptionseinheiten 1 bewirkt, dass die jeweils wärmeren Teile und Wärmeträger von kälteren Teilen und Wärmeträgern umgeben sind und deshalb nur geringe Wärmeverluste auftreten werden.The arrangement of the absorber parts 4, which also work as expeller parts, inside the disk-shaped absorption units 1 and the arrangement of the degassing parts 3, which also work as resorber stages, in the outer ring area of the absorption units 1 causes the warmer parts and heat transfer medium of colder parts and Heat carriers are surrounded and therefore only slight heat losses will occur.

Fig. 5 und 6 zeigen eine Kombination einer erfindungsgemässen Absorptionswärmepumpe mit einem im oberen Bereich zentral angeordneten Öl-, Kohle-, oder Gasbrenner 30 als Hochtemperatur-Wärmequelle und einem im unteren Bereich integrierten Warmwasserbereitungsbehälter 31 für die Brauchwasserversorgung. Bei dieser Warmwasseranlage wird der von der Niedertemperatur-Wärmequelle 20 über die Austrittsleitung 18, ein Vierwegeventit 29 und die Zulaufleitung 19 kommende und in den Absorberstufen 4 der Absorptionseinheiten 1 von 12 auf 45°C auf geheizte, und aus einem Anschluss 34 austretende zweite Wärmeträgerstrom 9 über eine Leitung 32 in den Einlass 35 eines Wärmetauschers 33 des Warmwasserbereitungsbehälters 31 eingeleitet, bevor er als Vorlauf 21 in einen Heizungskreislauf gelangt. Der rücklaufende Wärmeträgerstrom 8 wird wieder den Entgasertellen 3 der Absorptionseinheiten 1 zugeführt, in denen er auf etwa 2°C abkühlt, so dass er in der Niedertemperatur-Wärmequelle 20 (Sonnenkollektor) sich wieder auf 12°C erwärmen kann.5 and 6 show a combination of an absorption heat pump according to the invention with an oil, coal or gas burner 30 arranged centrally in the upper area as a high-temperature heat source and a hot water preparation tank 31 for the hot water supply integrated in the lower area. In this hot water system, the second heat transfer stream 9 coming from the low-temperature heat source 20 via the outlet line 18, a four-way valve 29 and the inlet line 19 and heated in the absorber stages 4 of the absorption units 1 from 12 to 45 ° C. and emerging from a connection 34 Introduced via a line 32 into the inlet 35 of a heat exchanger 33 of the hot water preparation tank 31 before it reaches a heating circuit as a lead 21. The returning heat transfer stream 8 is again fed to the degassing points 3 of the absorption units 1, in which it cools down to about 2 ° C., so that it can heat up again to 12 ° C. in the low-temperature heat source 20 (solar collector).

Zur Regeneration des Zweistoffgemisches oder der Zweistoffgemische in den gestuften Absorptionseinheiten 1 wird, wie Fig. 6 zeigt, der Auslass 38 des um die äusseren Verdampfer- bzw. Entgaserteile 3 der Absorptionseinheiten 1 geführten Wärmeträgerstroms 8 über das Vierwegeventil 29 mit dem Einlass 28 des um die inneren Absorberteile 4 der Absorptionseinheiten 1 zu führenden Wärmeträgerstroms 9 verbunden und der Brenner 30 in Betrieb gesetzt. Die Absorberteile 4 arbeiten nun als Austreiber und die Entgaserteile 3 (bzw. Verdampferteile) als Resorber (bzw. Kondensator). Der Brenner 30 erhitzt den Wärmeträgerstrom 9 in den inneren Absorberteilen 4 der oberen Absorptionseinheiten auf etwa 100°C, so dass er nun als Regenerier-Wärmeträgerstrom dienen kann. Dieser Regenerier-Wärmeträgerstrom 9 kühlt sich dann durch Umströmen der inneren Absorberteile 4 der unteren Absorptionseinheiten 1, die nunmehr als Austreiber arbeiten, auf 50° ab und wird dann durch den Wärmetauscher 33 des Warmwasserbereitungsbehälters 31 und nach Austritt aus dessen Auslass 36 als Vorlauf 21 in den Heizungskreislauf geführt. Der Rücklauf wird als Wärmeträgerstrom 8 wieder durch den Einlass 37 des Entgaserteils 3 der untersten Absorptionseinheit 1 eingeieitet und um die äusseren, nun als Resorber arbeitenden Absorberteile 3 der Absorptionseinheiten nacheinander geführt, so dass er sich auf eine Temperatur von 800C erwärmt und durch den Auslass 38 der obersten Absorptionseinheit austritt. Ober die Ableitung, das für die Regeneration umgestellte Vierwegeventil 29 und die Zulaufleitung 19 wird der Wärmeträgerstrom unmittelbar zurück in den Einlass 28 des Absorberteils 4 der obersten Absorptionseinheit 1 zurückgeleitet.For the regeneration of the two-substance mixture or the two-substance mixtures in the staged absorption units 1, as shown in FIG. 6, the outlet 38 of the heat carrier flow 8 led around the outer evaporator or degasifier parts 3 of the absorption units 1 via the four-way valve 29 with the inlet 28 of the around the inner absorber parts 4 of the absorption units 1 connected to leading heat transfer stream 9 and the burner 30 started. The absorber parts 4 now work as an expeller and the degassing parts 3 (or evaporator parts) as a resorber (or condenser). The burner 30 heats the heat carrier flow 9 in the inner absorber parts 4 of the upper absorption units to approximately 100 ° C., so that it can now serve as a regenerating heat carrier flow. This regenerating heat transfer stream 9 then cools by flowing around the inner one Absorber parts 4 of the lower absorption units 1, which are now working as expellers, drop to 50 ° and are then passed through the heat exchanger 33 of the hot water preparation tank 31 and, after leaving the outlet 36, as a feed 21 into the heating circuit. The return flow is introduced again as heat transfer stream 8 through the inlet 37 of the degassing part 3 of the lowermost absorption unit 1 and successively around the outer absorber parts 3 of the absorption units, which now work as a resorber, so that it heats up to a temperature of 800C and through the outlet 38 the top absorption unit emerges. Via the discharge line, the four-way valve 29 converted for regeneration and the feed line 19, the heat carrier flow is fed back directly into the inlet 28 of the absorber part 4 of the top absorption unit 1.

Die Fig. 7 und 8 zeigen Kammern 2 von Absorptionseinheiten 1, die jeweils aus einer Wanne 42 und einem Deckel 43 zur hermetisch abgeschlossenen Kammer 2 zusammengesetzt sind. In der Wanne 42 ist eine ringförmige Trennwand 6 und im Deckel 43 im radial äusseren Bereich eine ringförmige Umlenkwand 11 angeordnet. Zwischen benachbarten Kammern 2 ist eine ringförmige Isolierwand 10 und eine ringförmige Aussenwand 40 angeordnet. Die Strömungsführung für den ersten Wärmeträgerstrom 8 durch die Entgaserteile 3 wird von rohrförmigen Durchgangskanälen 41 und dem Zwischenraum zwischen lsolierwand 10 und Aussenwand 40 gebildet. Die Strömungsführung für den zweiten Wärmeträgerstrom 9 durch die Absorberteile 4 wird von rohrförmigen Durchgangskanälen 16' und dem Innenraum der ringförmigen lsolierwände 10 gebildet7 and 8 show chambers 2 of absorption units 1, each of which is composed of a trough 42 and a cover 43 to form the hermetically sealed chamber 2. An annular partition 6 is arranged in the trough 42 and an annular deflecting wall 11 is arranged in the cover 43 in the radially outer region. An annular insulating wall 10 and an annular outer wall 40 are arranged between adjacent chambers 2. The flow guide for the first heat transfer stream 8 through the degassing parts 3 is formed by tubular through-channels 41 and the space between the insulating wall 10 and the outer wall 40. The flow guide for the second heat carrier flow 9 through the absorber parts 4 is formed by tubular through channels 16 ′ and the interior of the annular insulating walls 10

In den Fig. 9 und 10 sind drei Absorptionsstufen 1 dargestellt, bei denen jede hermetisch abgeschlossene Kammer 2 wiederum ringförmig ausgebildet ist. Der innere Absorberteil 4 der Kammer 2 ist tiefer angeordnet als der äussere Entgaserteil 3. Jede Kammer 2 ist aus zwei tiefgezogenen Blechschalen zusammengesetzt, in welche zur Vergrösserung der äusseren Wärmetauschftächen radial verlaufende Sicken 44 und konzentrisch verlaufende Sicken 45 eingeprägt sind. Die Strömungsführung für den ersten Wärmeträgerstrom 8 durch den Entgaserteil verläuft entlang der konzentrischen Sicken 45 und durch äussere Kanäle 46 am Umfang der Kammer 2. Die Strömungsführung für den zweiten Wärmeträgerstrom 9 durch die Absorberteile 4 verläuft entlang der radialen Sicken 44 von innen nach aussen und dann um die innere Zwischenwand 13 zum nächsten Absorberteil 4. Die obere tiefgezogene Blechschale der Kammer weist jeweils eine nach unten in die reiche Lösung des Absorberteils reichende Umlenkwand auf, damit der Dampf mit der reichen Lösung in guten Wärme-und Stoffaustausch tritt.9 and 10 show three absorption stages 1, in which each hermetically sealed chamber 2 is in turn ring-shaped. The inner absorber part 4 of the chamber 2 is arranged lower than the outer degasser part 3. Each chamber 2 is composed of two deep-drawn sheet metal shells into which radially extending beads 44 and concentrically extending beads 45 are embossed in order to enlarge the outer heat exchange surfaces. The flow guide for the first heat transfer stream 8 through the degasser runs along the concentric beads 45 and through outer channels 46 on the circumference of the chamber 2. The flow guide for the second heat transfer stream 9 through the absorber parts 4 runs along the radial beads 44 from the inside out and then around the inner partition 13 to the next absorber part 4. The upper deep-drawn sheet metal shell of the chamber has a deflecting wall reaching downwards into the rich solution of the absorber part, so that the steam with the rich solution enters into a good heat and material exchange.

Die Fig. 11 und 12 zeigen sich vertikal erstrekkende Absorptionseinheiten mit einem unteren Entgaserteil 3 und einem oberen Absorberteil 4. Eine innen mittig an die Aussenwand angeschlossene zunächst radial und dann vertikal verlaufende Wand 10' tritt die reiche Lösung des Absorberteils 4 von der armen Lösung des Zweistoffgemisches 5 im Entgaserteil 3.11 and 12 show vertically extending absorption units with a lower degassing part 3 and an upper absorber part 4. A wall 10 ', initially connected radially and then vertically in the middle to the outer wall, occurs the rich solution of the absorber part 4 from the poor solution of the Two-substance mixture 5 in the degasser part 3.

Der vertikale Teil der Wand 10' ist von einer glockenförmigen, innen nach unten verlängerten, der Umlenkwand 11 entsprechenden Dampfführungswand 50 überfangen. Sie sorgt dafür, dass der vom Entgaserteil 3 aufsteigende Dampf durch die reiche Lösung des Absorberteils 4 geführt wird und dass im Regenerationsbetrieb, der im Absorberteil 4 ausgetriebene Dampf unter den Spiegel der Lösung im als Resorber arbeitenden Entgaserteil 3 gedrückt wird.The vertical part of the wall 10 'is overlaid by a bell-shaped steam guide wall 50 which extends downwards and corresponds to the deflection wall 11. It ensures that the steam rising from the degassing part 3 is passed through the rich solution of the absorber part 4 and that in the regeneration mode, the steam expelled in the absorber part 4 is pressed under the level of the solution in the degassing part 3 working as a absorber.

Wie Fig. 12 zeigt, können die Kontaktflächen der Lösung im Entgaserteil 3 und im Absorberteil 4 durch dort angeordnete Kapillar- und Dochtwände 51 und 52 vergrössert werden.As FIG. 12 shows, the contact areas of the solution in the degassing part 3 and in the absorber part 4 can be enlarged by capillary and wicking walls 51 and 52 arranged there.

Claims (13)

1. Method for the utilisation of heat taken up at low temperature, this heat being delivered, through an absorption heat pump which operates with a liquid working medium pair, to a heat consumer at a higher temperature, in which method a flux of a heat transfer medium is warmed by means of low temperature heat, then passes through the absorber of the absorption heat pump while taking up absorption heat and warming up to the higher temperature necessary for the heat consumer, thereafter gives up heat to the heat consumer and subsequently passes through the desorber of the absorption heat pump while giving up evaporation heat and cooling down to a low temperature suitable for the low temperature heat source, and in which method the liquid working medium pair of the absorber and the desorber is sublected to regeneration, characterized in that the flux of heat transfer medium, warmed by the low temperature heat, passes successively through a plurality of absorption stages of respectively increasing temperatures, and, after having delivered heat to the heat consumer, passes successively through a like number of desorber stages of respectively decreasing temperatures, the absorber and desorber stages being arranged in pairs hermetically sealed to the outside and having a common liquid working medium pair and a common vapour space therefor, and subsequently is reheated by low temperature heat, and in that, in order to regenerate the weak solution of the working medium pair in the plurality of desorber stages, and the rich solution of the working medium pair in the plurality of absorption stages, the flux of heat transfer medium is warmed period- tcatty by high temperature heat beyond the desorption temperature for the rich solution in the first absorption stage and, acting as a regenerating flux of heat transfer medium, initially, and in the same order as does the flux of heat transfer medium heated by the low temperature heat, passes through the absorption stages which are now operating as desorbers, at the same time drives off the refrigerant from the rich solution, this refrigerant, while liberating heat, then being resorbed by the weak solution in the respective desorber stages which are now operating as resorbers, and, after having delivered further heat to the heat consumer, and in the same order as does the flux of heat transfer medium exiting from the heat consumer, passes through the desorber stages which are now operating as resorbers, and at the same time takes up the resorption heat, whereupon it is subsequently heated again by high temperature heat beyond the desorption temperature of the first absorber stage.
2. Absorption heat pump for carrying out the method as defined in claim 1, with at least one desorber in which a liquid refrigerant of a liquid working medium pair evaporates, and at least one absorber, connected to the desorber and in which the evaporated refrigerant is absorbed in a rich solution, characterized in that the desorber and the absorber are subdivided into a plurality of cooperating desorber sections (3) and absorber sections (4), and the cooperating desorber and absorber sections (3, 4) are set to different evaporation and absorption temperatures, in that each desorber section (3) and the absorber section (4) in communication with it form part of a disk-shaped chamber (2) which has a common vapour space and is hermetically sealed to the outside, being filled with a working medium pair (5) and set to a desired pressure, and all of the desorber sections (3) are placed in a first flow path for a first flux (8) of heat transfer medium, and all of the absorber sections (4) are placed in a second flow path for a second flux (9) of heat transfer medium, the second flow path being separated from the first flow path by an insulation wall (10), and in one area of the chambers (2) is accommodated the respective desorber section (3), partitioned off by means of a dividing wall (6) which projects into the vapour space, and in the other area of the chambers (2) is accommodated the respective absorber section (4), and the absorber section (4) is provided with respective means (11) for bringing the refrigerant vapour which migrates from the desorber section (3) into contact with the rich solution of the working medium pair (5) which is contained in that absorber section (4).
3. Absorption heat pump according to claim 2, characterized in that the means for bringing the refrigerant vapour into contact with the rich soiu- tion of the working medium pair (5) are designed as a baffle wall (11) which subdivides the vapour space and is immerged in the rich solution.
4. Absorption heat pump according to claim 3, characterized in that in the absorber sections (4) of each disk-shaped chamber (2) at least one through-passage (16,16') for the second flux (9) of heat transfer medium is provided.
5. Absorption heat pump according to claim 3 or 4, characterized in that the disk-shaped chambers (2) are, in plan, of circular shape and have their dividing wall (6) and their baffle wall (11) as well as each of the insulation walls (10) positioned in a concentrical manner.
6. Absorption heat pump according to claim 3 or 4, characterized in that the disk-shaped chambers (2) are provided in a compartment (14) each of a container (12) which is subdivided by intermediate walls (13), the flow path for the first flux (8) of heat transfer medium for the desorber section (3) of each compartment (14) is run from the outer side of the insulation wall (10) to the inner wall of the container (12) and then in the reverse direction, the flow path for the second flux (9) of heat transfer medium for the absorber section (4) of each compartment (14) is run from the inner side of the insulation wall (10) to the central through-passage (16) and then in the reverse direction, and through-holes (15) are formed into the intermediate walls (13) on opposite sides of each insulation wall (10).
7. Absorption heat pump according to any one of claims 3 to 6, characterized in that each disk-shaped chamber (2) is composed of two deep- drawn sheet metal shells, and in that the lower sheet metal shell has formed therein a dividing wall (6) and the upper sheet metal shell has formed therein at least one baffle wall (11).
8. Absorption heat pump according to any one of claims 3 to 6, characterized in that each chamber (2) is provided in its, especially inner, absorber section (4) as well as in its, especially outer, desorber section (3) with a larger number of tubelike through-passages (16', 41) to accommodate the flow paths for the fluxes (8, 9) of heat transfer medium.
9. Absorption heat pump according to claim 8, characterized in that the chambers (2) are stacked one upon another and are secured to each other, with each an inner annular insulation wall (10) and an annular outer wall (40) being positioned therebetween, to form a container.
10. Absorption heat pump according to any one of claims 6 to 9, characterized in that the disk-shaped chambers (2) and compartments (14) are of annular configuration, and in that within the annular compartments (14), a burner (30) is mounted in the area of the absorber sections (4) for low evaporation and absorption temperatures, and a hot water tank (31) is mounted in the area of the absorber sections (4) for higher evaporation and absorption temperatures.
11. Absorption heat pump according to claim 10, characterized in that the outlet (34) from the flow path for the second flux (9) of heat transfer medium through the absorber sections (4) is arranged for connection through a duct (32) to the inlet into a heat exchanger (33) placed inside the hot water tank (31) and having an outlet (36) for connection to a heat consumer.
12. Absorption heat pump according to claim 10 or 11, characterized in that the outlet (38) from the flow path for the first flux (8) of heat transfer medium through the desorber sections (3) is arranged for connection, via an on-off valve, to the inlet (28) into the flow path for the second flux (9) of heat transfer medium through the absorber see- tions (4).
13. Absorption heat pump according to any one of claims 3 to 9, characterized in that the inlet (28) into the flow path for the second flux (9) of heat transfer medium through the absorber sections (4) is arranged for connection, via a multiple-way valve (23), to a duct (17) leading from a low temperature source and to a duct (26) leading from a heating boiler (25), and in that the outlet (38) from the flow path for the first flux (8) of heat transfer medium through the desorber sections (3) is arm ranged for connection to a duct leading to the low temperature source (20) and to a duct (27) leading to the heating boiler (25).
EP80105607A 1979-09-21 1980-09-18 Method and apparatus for the utilisation of heat taken up at low temperature Expired EP0025986B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80105607T ATE5439T1 (en) 1979-09-21 1980-09-18 METHOD AND DEVICE FOR UTILIZING HEAT TAKEN AT LOW TEMPERATURE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2938203 1979-09-21
DE19792938203 DE2938203A1 (en) 1979-09-21 1979-09-21 METHOD AND DEVICE FOR UTILIZING HEAT AT LOW TEMPERATURE

Publications (2)

Publication Number Publication Date
EP0025986A1 EP0025986A1 (en) 1981-04-01
EP0025986B1 true EP0025986B1 (en) 1983-11-23

Family

ID=6081460

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80105607A Expired EP0025986B1 (en) 1979-09-21 1980-09-18 Method and apparatus for the utilisation of heat taken up at low temperature

Country Status (4)

Country Link
US (1) US4368623A (en)
EP (1) EP0025986B1 (en)
AT (1) ATE5439T1 (en)
DE (2) DE2938203A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008003630A1 (en) * 2008-01-09 2009-07-16 Helioplus Energy Systems Gmbh Hybrid air conditioning system for operating in heating or air conditioning mode, has combustion chamber and absorption heat pump that are arranged at inner space of housing

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4422500A (en) * 1980-12-29 1983-12-27 Sekisui Kagaku Kogyo Kabushiki Kaisha Metal hydride heat pump
FR2539854A1 (en) * 1983-04-22 1984-07-27 Cetiat ADSORPTION REFRIGERATION FACILITY ON SOLID ADSORBENT AND METHOD FOR ITS IMPLEMENTATION
DE3405800C2 (en) * 1984-02-17 1986-11-20 Knoche, Karl-Friedrich, Prof. Dr.-Ing., 5100 Aachen Method for operating a generator absorption heat pump heating system for space heating and / or hot water preparation and a generator absorption heat pump heating system
JPS61180891A (en) * 1985-02-04 1986-08-13 Hitachi Ltd Method of storing heat using porous material and device therefor
FR2585812B1 (en) * 1985-07-30 1987-10-23 Jeumont Schneider THERMAL MACHINE WITH ADSORPTION-DESORPTION
JPH0694968B2 (en) * 1986-01-28 1994-11-24 西淀空調機株式会社 Adsorption refrigerator
DE3901558A1 (en) * 1989-01-20 1990-07-26 Zeolith Tech SORPTION CONTAINER FOR SOLID SORPTION AGENTS
DE4121131A1 (en) * 1991-06-26 1993-01-07 Zeolith Tech SORPTION AGENT CONTAINER AND SORPTION METHOD WITH REGENERATIVE HEAT EXCHANGER
DE4431864A1 (en) * 1994-09-07 1996-03-14 Zahnradfabrik Friedrichshafen traction drive
US5666818A (en) * 1995-12-26 1997-09-16 Instituto Tecnologico And De Estudios Superiores Solar driven ammonia-absorption cooling machine
US9207003B2 (en) * 2014-04-02 2015-12-08 King Fahd University Of Petroleum And Minerals Intermittent absorption system with a liquid-liquid heat exchanger

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE227099C (en) *
US1506531A (en) * 1921-12-12 1924-08-26 Westinghouse Electric & Mfg Co Refrigeration apparatus
US1729083A (en) * 1925-03-11 1929-09-24 Silica Gel Corp Refrigeration process and apparatus
DE505267C (en) * 1927-06-27 1930-08-16 Silica Gel Corp Process for generating cold
US1960824A (en) * 1929-05-03 1934-05-29 Electrolux Servel Corp Refrigeration
DE620249C (en) * 1930-08-17 1935-10-19 Siemens Schuckertwerke Akt Ges Absorption apparatus, consisting of two self-contained individual absorption machines
DE671791C (en) * 1931-12-09 1939-02-17 Siemens Schuckertwerke Akt Ges Absorption apparatus
US2138686A (en) * 1933-02-28 1938-11-29 Altenkirch Edmund Intermittent absorption refrigerating apparatus
US2253907A (en) * 1936-12-15 1941-08-26 Julius Y Levine Refrigerating apparatus
NL7601906A (en) * 1976-02-25 1977-08-29 Philips Nv CYCLIC DESORPTION COOLING MACHINE RESP. - HEAT PUMP.
GB1572737A (en) * 1977-01-17 1980-08-06 Exxon France Heat pump
US4121432A (en) * 1977-03-24 1978-10-24 Institute Of Gas Technology Solid adsorption air conditioning apparatus and method
DE2720561A1 (en) * 1977-05-07 1978-11-09 Tchernev Dimiter I Sorption system using solar energy - converts small variations in absolute temp. to larger variations in gas pressure
DE2743488A1 (en) * 1977-09-28 1979-03-29 Karl Friedrich Prof Dr Knoche METHOD AND DEVICE FOR USE OF SOLAR ENERGY FOR SPACE HEATING
US4224803A (en) * 1978-11-07 1980-09-30 Leonard Greiner Chemical heat pump
US4187688A (en) * 1978-10-10 1980-02-12 Owens-Illinois, Inc. Solar powered intermittent cycle heat pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008003630A1 (en) * 2008-01-09 2009-07-16 Helioplus Energy Systems Gmbh Hybrid air conditioning system for operating in heating or air conditioning mode, has combustion chamber and absorption heat pump that are arranged at inner space of housing

Also Published As

Publication number Publication date
DE2938203A1 (en) 1981-04-02
US4368623A (en) 1983-01-18
EP0025986A1 (en) 1981-04-01
ATE5439T1 (en) 1983-12-15
DE3065698D1 (en) 1983-12-29

Similar Documents

Publication Publication Date Title
DE10217443B4 (en) Solid sorption heat pump
EP0025986B1 (en) Method and apparatus for the utilisation of heat taken up at low temperature
EP1963757A1 (en) Heat pump
DE3706072C2 (en)
EP2304341B1 (en) Method for carrying out a heat transfer between alternately working adsorbers and device
DE8490084U1 (en) Solar energy refrigeration device
EP0001296B1 (en) Method and apparatus for the utilization of heat, especially solar energy, for the heating of rooms
DE102014225410A1 (en) Sorptionsmodul
EP3557161A1 (en) Hybrid heat pump and its use
DE2622699A1 (en) STORAGE ELEMENT FOR A SORPTIONAL HEAT STORAGE SYSTEM
EP3557174B1 (en) Adsorption heat pump or refrigeration machine and method for operating the same
DE10248557B4 (en) Diffusion absorption plant
EP2015006A2 (en) Heat pump
DE10053045A1 (en) Process for manufacturing an evaporator / condenser
WO2021089818A1 (en) Adsorption refrigeration machine or heat pump with a liquid-phase refrigerant distribution function, and method for operating the adsorption refrigeration machine or heat pump
DE19838652C2 (en) Method for decoupling and using heat from a fuel cell, fuel cell and absorption heat pump or absorption refrigerator with such a fuel cell
EP1136771B1 (en) Rectifier for diffusion absorption system
DE2219083C3 (en) Absorption refrigeration system
DE102009043515A1 (en) Solar thermally driven adsorption refrigeration machine for e.g. space air conditioning process, has housing hermetically and gas-tightly locked to environment, where adsorbent within machine is exposed to direct or indirect solar radiation
DE102020131615B4 (en) Plate apparatus for mass and heat transfer in sorption heat pumps with separation of liquid and vapor flow
DE10014124C1 (en) Rectification device for diffusion absorption system has heat exchanger around boiler with inner, outer walls forming at least one channel between them, enclosing further channels with drops
DE3844679C2 (en) Multiple column adsorption cooling system
DE3237377C2 (en) Method and device for continuous or quasi-continuous heat exchange between two fluids
DE4437950A1 (en) Space heating appts.
AT408914B (en) Sorption heat pump

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB SE

17P Request for examination filed

Effective date: 19810519

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB LI SE

REF Corresponds to:

Ref document number: 5439

Country of ref document: AT

Date of ref document: 19831215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3065698

Country of ref document: DE

Date of ref document: 19831229

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840906

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19840911

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840928

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19840930

Year of fee payment: 5

Ref country code: BE

Payment date: 19840930

Year of fee payment: 5

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19861113

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19870918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19870919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19870930

Ref country code: CH

Effective date: 19870930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890930

BERE Be: lapsed

Owner name: STEHMEIER DIETER

Effective date: 19890930

Owner name: TRUMPER HEINRICH

Effective date: 19890930

Owner name: KNOCHE KARL-FRIEDRICH

Effective date: 19890930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19900531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 80105607.8

Effective date: 19880906