EP0021964B1 - Mehrstimmiger digitaler Synthesizer von periodischen Signalen - Google Patents

Mehrstimmiger digitaler Synthesizer von periodischen Signalen Download PDF

Info

Publication number
EP0021964B1
EP0021964B1 EP80400861A EP80400861A EP0021964B1 EP 0021964 B1 EP0021964 B1 EP 0021964B1 EP 80400861 A EP80400861 A EP 80400861A EP 80400861 A EP80400861 A EP 80400861A EP 0021964 B1 EP0021964 B1 EP 0021964B1
Authority
EP
European Patent Office
Prior art keywords
amplitude
block
datum
current amplitude
reading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80400861A
Other languages
English (en)
French (fr)
Other versions
EP0021964A1 (de
Inventor
Christian Jacques Deforeit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Christian Jacques Deforeit Te Semur-En-Auxois Fra
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT80400861T priority Critical patent/ATE7744T1/de
Publication of EP0021964A1 publication Critical patent/EP0021964A1/de
Application granted granted Critical
Publication of EP0021964B1 publication Critical patent/EP0021964B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H7/00Instruments in which the tones are synthesised from a data store, e.g. computer organs
    • G10H7/08Instruments in which the tones are synthesised from a data store, e.g. computer organs by calculating functions or polynomial approximations to evaluate amplitudes at successive sample points of a tone waveform
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/155Musical effects
    • G10H2210/195Modulation effects, i.e. smooth non-discontinuous variations over a time interval, e.g. within a note, melody or musical transition, of any sound parameter, e.g. amplitude, pitch, spectral response, playback speed
    • G10H2210/201Vibrato, i.e. rapid, repetitive and smooth variation of amplitude, pitch or timbre within a note or chord
    • G10H2210/205Amplitude vibrato, i.e. repetitive smooth loudness variation without pitch change or rapid repetition of the same note, bisbigliando, amplitude tremolo, tremulants
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2250/00Aspects of algorithms or signal processing methods without intrinsic musical character, yet specifically adapted for or used in electrophonic musical processing
    • G10H2250/131Mathematical functions for musical analysis, processing, synthesis or composition
    • G10H2250/161Logarithmic functions, scaling or conversion, e.g. to reflect human auditory perception of loudness or frequency

Definitions

  • the present invention relates to a polyphonic digital synthesizer of periodic signals for the production of musical sounds.
  • the synthesizer is associated with keyboards, pedals, buttons, pullbars and control means which record the data necessary for the generation of the signals in the "virtual keyboard", according to the actions on the keys, buttons, pedals, zippers, and according to time.
  • the evolution over time of the amplitude of each sound component must be done with great precision according to determined laws. But this necessity involves considerable work on the control means of the instrument, a great complexity of these means and a high cost of the circuits which compose it.
  • An object of the present invention is to avoid this drawback by considerably simplifying the work of the control means with regard to controlling the development of the envelope of the amplitude of each sound component (or signal periodic).
  • An object of the present invention is a new synthesizer in which the current amplitude of each sound component is capable of evolving automatically as a function of time between an initial value and a determined final value, according to a determined law, and this without the invention of the control means of the instrument at least until the final amplitude value is reached.
  • one or more amplitude clock generators determine the rate at which new amplitude values are calculated.
  • each block containing a current amplitude datum furthermore contains a final amplitude datum which is used periodically for the calculation of the new current amplitude: the changes in the amplitudes of the various periodic signals are thus independent each other.
  • the amplitude data in the block of the virtual keyboard is automatically modified at the rate of the amplitude clock (at very low frequency) according to a substantially linear or logarithmic interpolation.
  • Logarithmic (or exponential) interpolation makes it possible to obtain a very smooth and natural evolution of the amplitude between two initial and final values without the ear being able to perceive the impression of an amplitude evolution by to overcome.
  • the amplitude clock can be independent of the rectangular signal generators which determine the frequencies of the elementary tones. Several amplitude clocks are even desirable to have a wide variety of amplitude evolution speed.
  • the means used for the evolution of the envelope of the amplitude may be common "J ec other means of calculating the synthesizer, which limits the complexity of the circuits.
  • J ec other means of calculating the synthesizer, which limits the complexity of the circuits.
  • These means J - can also be blocked at any time: the external control means of the instrument, in order to suppress the automation, leaving the control means of the instrument, the possibility of producing special effects.
  • the present invention relates to the generation of the envelope of a sound, that is to say the automatic variation of the magnitudes of each wave.
  • circuits are already known for generating the individual waves of a sound by iteration. As for example in patent US-A-4036096.
  • the virtual keyboard 2 is a set of memory blocks each containing, digital parameters used for the generation of a sample of a periodic signal.
  • the virtual keyboard consists, for example, of a memory formed of 256 blocks of 7 memory words each. The content of each of the memory words of the blocks will be explained in the following.
  • the blocks are read one by one, sequentially, according to a determined sequence.
  • the contents of the 7 memory words of each block are read simultaneously, and are applied to the other circuits of the synthesizer. They give rise to the production of a sample, and / or the updating of information contained in the virtual keyboard (current amplitude, instantaneous phase).
  • the virtual keyboard is therefore the fundamental element of the synthesizer because it contains both the data necessary for the production of successive samples of the elementary signals and also address pointers which allow the sequential reading of the blocks according to a determined sequence.
  • each block in the virtual keyboard is defined by an address. This position may vary. It is decided by the external control means of the synthesizer.
  • the position of each piece of data in a block is, on the other hand, constant, each memory being coupled to one or more specific circuits of the synthesizer.
  • main blocks There are therefore two types of blocks in the virtual keyboard 2: main blocks and secondary blocks.
  • Each main block contains an instantaneous phase value ⁇ which is automatically incremented in synchronism substantially with the signal from a generator designated in the block by a number I.
  • the memory 11 contains the secondary pointer PS of the two types of blocks.
  • the memory 12 contains either the primary pointer PP, if it is a main block, or the data M, VA and AF, if it is a secondary block.
  • the memory 13 contains either the instantaneous phase cp (main block) or the current amplitude AC (secondary block). This particular arrangement makes it possible to combine the circuits for incrementing the phase ⁇ and for varying the amplitude AC, these circuits having the same connection to the virtual keyboard.
  • the memory 14 contains either the number 1 of frequency generator (main block) or the number V of output channel (secondary block).
  • the memories 15 and 16 respectively contain either the waveform numbers F and octave 0 if it is a secondary block, or no significant data, in the case of a main block. These locations are, of course, available to contain data usable for any additional operations.
  • the meaning of the data delivered by the virtual keyboard therefore depends on the type of block read, that is to say on the indicator T read in the memory 10.
  • the progress of the operations in the synthesizer is therefore directly linked to the progress of the reading of the blocks, according to a determined sequence as described below with the aid of FIG. 5.
  • This sequence is automatic, but it is however conditioned by the contents of memories 11 and 12 (pointers), determined by the control means (not shown) of the instrument, and by the rectangular signals of a certain number of generators.
  • the control means of the musical instrument communicate with the synthesizer by means of a set of connections called “bus” 1.
  • the commands of the synthesizer therefore boil down to writing and reading operations. in the virtual keyboard, from bus 1.
  • the selection of the blocks of the virtual keyboard is made by an address register 3, also connected to the bus 1.
  • This register is, in fact, a buffer register supplied by an address supplied either by the bus, or by a selector circuit 4 which receives the two address pointers from the virtual keyboard, the primary pointer PP from memory 12, and the secondary pointer PS from memory 11.
  • the selection depends on a selection control signal delivered by the control logic 6 of the synthetic . Renewal of addresses in the register buffer 3 operates at the rate of a clock 5 or of a clock or control signal which determines the frequency of recurrence of the operations of reading the blocks and consequently of producing the samples of the elementary signals. However, the choice and the order of production of the samples depends both on the content of the memory blocks, and in particular on the pointers, and also on rectangular signal generators 7 and 8.
  • a set of generators 7 of rectangular signals determine the frequencies of the elementary signals of the synthesizer.
  • the set 7 contains at least 12 generators whose frequencies are fixed and distributed according to a chromatic range. In general, it contains other generators, for example with a controllable frequency, allowing the production by the synthesizer, of signals of variable frequencies and of special effects.
  • These generators are connected to the control logic 6 which, in connection with the sequence of reading of the blocks of the virtual keyboard 2, detects the changes of states of the generators and commands the updating of the phase information cp and the production of the analog samples.
  • a set of generators 8 determines the speed of the evolution of the envelope of the amplitude of the elementary signals.
  • the frequencies of the generators 8 are very low frequencies (a few hertz to a few hundred hertz).
  • These generators are also connected to the control logic 6 which, always in connection with the sequence of reading of the blocks of the virtual keyboard, detects the changes of states of the generators and commands the updating of the amplitude information AC.
  • logic 6 delivers an update order " ⁇ " of the current data (p or AC, an order of selection of primary or secondary pointer to selector 4 and signals of IT and ADR call for the external control means of the synthesizer, via BUS 1.
  • the generation of the elementary sounds, by successive samples is therefore made from the aforementioned command signals (T, ⁇ ) and from the data read from the virtual keyboard.
  • a computing device 20 performs either the incrementation of the phase cp and its storage, or the updating of the current amplitude AC as a function of the final amplitude AF.
  • An address calculation circuit 21 receives the phase cp, the waveform number F and of octave 0 and delivers an address which is applied to a waveform memory 22.
  • the latter delivers a digital sample instantaneous amplitude (or amplitude variation) to an analog-digital converter device 23.
  • the analog sample obtained is multiplied, in a circuit 24, by the digital data of current amplitude AC and the result is applied to a demultiplexer circuit 25 controlled by the channel selection datum V.
  • the circuit 25 includes several analog output channels 25 which are intended to be connected to amplifiers by means of filtering and amplitude adjustment circuits which are not shown.
  • Circuits 21 to 25 are made very simply.
  • the circuits 21 and 22 are for example read only memories; circuits 23 and 24 consist for example of two digital / analog converters of the multiplier type such as for example the DAC 08 connected in series, the output of one being connected to the reference input of the other; and circuit 25 is a demultiplexer circuit.
  • FIG. 2 shows the detail of the control logic 6 and of the circuit 20 for updating the phase and amplitude data.
  • the control logic comprises two multiplexer circuits 60 and 61.
  • the circuit 60 receives the rectangular signals delivered by the series of generators 7 (16 different frequencies for example) which determine the frequencies of the periodic output signals.
  • the circuit 61 receives the rectangular signals from the series of generators 8 (8 frequencies for example) which determine the speed of evolution of the envelopes of the periodic signals.
  • the output of the exclusive OR 65 therefore delivers an active “ ⁇ ” signal if the states of the input signals are different, and inactive, if they are identical. Each time the “ ⁇ ” signal is active, this signal causes the cp phase or AC amplitude data to be updated (phase incrementation or amplitude interpolation). This update must be carried out in such a way that the least significant bit of cp or AC is always identical to the state of the generator selected by one of the multiplexers. As long as there is equality, circuit 65 does not command an update.
  • the output of the adder 35 therefore delivers:
  • the control logic 6 further comprises an AND circuit 66 performing the operation T " ⁇ " to control the selector circuit 4.
  • T 0 and the signal " ⁇ " has no effect on the selector 4. The sequence of secondary blocks continues its course until appearance of a main block as will be explained later.
  • the IT signal is accompanied by the content ADR of memory 63.
  • the latter also receives via bus 1 an erase signal RESET of its content.
  • the logic 62 is carried out simply by a programmable network (read-only memory). The outputs deliver control signals according to the signals at the inputs, according to the following table (the symbol X means “whatever the state 1 or 0”):
  • FIG. 3 represents the evolution of an envelope of the amplitude of a periodic output signal as a function of time t between an initial amplitude and a final amplitude. It shows an increasing signal and a decreasing signal. The amplitude of each signal actually changes in leaps. The points of each curve indicate the new current amplitude AC (n + 1) t calculated according to the previous amplitude AC nt and the final amplitude AF according to the formula:
  • FIG. 4 represents the envelope amplitude curve of a periodic signal.
  • This curve includes a portion T o -T i of attack where the amplitude is increasing, a portion T i -Tg where the signal undergoes a tremolo of amplitude and a portion T 5 -T 6 etc. signal decay and extinction. It is remarkable to note that this complex evolution of the amplitude requires only a few amplitude commands (writing of the new value of AF) at times T1, T2, T3, etc.
  • FIG. 5 represents a flowchart explaining the sequence of the sequence of reading of the blocks in the synthesizer. This procedure is similar to that which was the subject of detailed explanations in the application EP-A-0011576 published on 28. 05. 80.
  • the invention applies to electronic musical instruments of which it constitutes the fundamental element. Indeed, the realization of an instrument such as an electronic organ requires around the synthesizer other elements such as furniture, keyboards, pedals, power supply, low frequency amplification and control logic of the synthesizer.
  • This control logic is advantageously carried out from a microcomputer of which the synthesizer according to the invention is a peripheral.
  • This microcomputer is moreover very simple and includes a microprocessor associated with program memories, data memories, and logic circuits making the necessary connections to pedalboards, buttons, pull tabs, etc. on the one hand and the synthesizer on the other.
  • Several synthesizers can even be coupled to the same microcomputer and vice versa.
  • the synthesizer according to the invention by automatically carrying out the evolution of the envelope of the envelope of each periodic signal, up to a final amplitude value, relieves the microcomputer of the corresponding task.
  • the complexity of the synthesizer is however not significantly increased since the phase increment and amplitude calculation circuits are common, with the characteristic that each update operation (phase or amplitude) adds an odd amount to the previous value (so that the least significant bit can follow the state of a generator).
  • Other equivalent means are obviously conceivable.
  • the evolution of the amplitude envelope of each periodic signal is independent of that of the other signals.
  • certain periodic signals can be modified from time to time by the control means of the instrument, and others can keep the same amplitude, this in two possible ways: either ignoring the IT signal emitted by the control logic 6, either by placing a mask signal M in the memory 12 of the virtual keyboard.
  • This mask M prevents the logic 62 from transmitting an IT signal to the microprocessor, but does not prevent the operation of the means for updating (20) the current amplitude.
  • the current amplitude value however remains constant and equal to AF.
  • the mask signal M can also be used to block the operation of the updating means 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Multimedia (AREA)
  • Electrophonic Musical Instruments (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Polyesters Or Polycarbonates (AREA)

Claims (10)

1. Polyphoner digitaler Synthesizer für periodische Signale mit mehreren Generatoren (7, 8) für Binärsignale bestimmter Frequenzen, einer virtuellen Klaviatur (2), gebildet von einer Gruppe von Speicherblöcken, welche zumindest die Daten der Augenblicksphase, des Ranges der Harmonischen und der Amplitude enthalten, mit Steuermitteln (6, 20) für das Auslesen der Speicherblökke gemäss einer durch die Signale der Generatoren (7, 8) vorgegebenen Verkettung, und mit Mitteln (20, 21, 22) zum Erzeugen von digitalen Abtastmustern der periodischen Signale, ausgehend von den Daten, die in den Blöcken gelesen worden sind, gefolgt von Mitteln (23, 24)für die Umsetzung digital/analog, dadurch gekennzeichnet, dass die Steuermittel (6, 20) Mittel zum Enwickeln der Hüllkurve der Amplitude jedes periodischen Signals umfassen, umfassend Berechnungsmittel (32-35) zum periodischen Ersetzen aller Amplitudenhüllkurvendaten durch neue Daten, berechnet gemäss einer durch Iteration erfolgenden Interpolation zwischen der vorangehenden Amplitude und einer vorgegebenen EndsmpIitude.
2. Synthesizer nach Anspruch 1, dadurch gekennzeichnet, dass jeder Speicherblock, der ein Datum einer laufenden Amplitude (AC) enthält für die Mittel zum Erzeugen der digitalen Abtastmuster, darüber hinaus ein zusätzliches Datum der Endamplitude (AF) enthält, und dass die Mittel zum Entwickeln der Amplitudenhüllkurve umfassen:
- mindestens einen dieser Generatoren (8) der periodischen Signale;
- die Berechnungsmittel (32-35) zum Erzeugen eines neuen laufenden Amplitudenwertes durch die Interpolation zwischen den Werten der laufenden Amplitude und der Endamplitude jedes gelesenen Blockes; und
- die Steuermittel (6) für die Berechnung und die Speicherung der neuen laufenden Amplitude anstelle der ursprünglichen laufenden Amplitude im wesentlichen synchron mit dem Binärsignal des Generators (8).
3. Synthesizer nach Anspruch 2, dadurch gekennzeichnet, dass jeder die Daten der laufenden Amplitude (AC) und der Endamplitude (AF) enthält, darüber hinaus ein Validisierungsdatum (M) umfasst, und dass die Steuermittel für die Berechnung Mittel zum Beenden der Entwicklung der Amplitudenhüllkurve des entsprechenden periodischen Signals umfassen im Falle des Fehlens des Datums der Validisierung (M).
4. Synthesizer nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Steuermittel (6) für die Amplitudenberechnung synchronisiert sind mit den Steuermitteln für das Lesen der Blöcke zum Auslösen der Berechnung einer neuen laufenden Amplitude nur dann, wenn ein Block, der ein Amplitudendatum enthält, von den Lesesteuermitteln ausgewählt wird und wenn eine Änderung des Zustandes des Generators (8) erfasstwird.
5. Synthesizer nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass jeder Block, der Daten der laufenden Amplitude und der Endamplitude enthält, darüber hinaus ein Datum (VA) für die Auswahl des Generators aus der Mehrzahl von Generatoren umfasst, und dass die Steuermittel für die Berechnung der Amplitude darüber hinaus Auswahlmittel (6) des Generators umfassen, gesteuert von dem Selektionsdatum, das in dem entsprechenden Block gelesen worden ist.
6. Synthesizer nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass die Berechnungsmittel derart ausgebildet sind, dass sie einen neuen Wert der laufenden Amplitude liefern, der eine quasi-logarithmische Interpolation zwischen der unrsprünglichen laufenden Amplitude und der Endamplitude darstellt, gelesen in dem entsprechenden Block.
7. Synthesizer nach Anspruch 6, dadurch gekennzeichnet, dass die Berechnungsmittel einen Addierschaltkreis (35) umfassen, mit einem ersten Eingang zum Empfang des Wertes der ursprünglichen laufenden Amplitude (AC), einem zweiten Eingang, angekoppelt an den Ausgang eines Berechnungsschaltkreises (32, 33), bestimmt zum Liefern eines Bruchteils der Differenz zwischen der Endamplitude (AF) und der laufenden Amplitude (AC), und einen Ausgang, angekoppelt an die Gruppe von Speicherblöcken zum Liefern eines neuen Wertes der laufenden Amplitude.
8. Synthesizer nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass die Gruppe von Speicherblöcken einerseits Hauptblöcke umfassen, die jeder insbesondere ein Datum der Augenblicksphase (cp) enthalten, gemeinsam für die Berechnung mehrerer Abtastmuster, ein Auswahldatum (I) eines Generators für die Binärsignale, und einen Blockindikator (T) des Haupttyps, sowie andererseits Sekundärblöcke umfasst, von denen jeder insbesondere Daten der laufenden (AC) und der Endamplitude (AF) enthält, ein Auswahldatum (VA) eines Amplitudentaktgenerators, und einen Blockindikator (T) des Sekundärtyps, und dass das Ersetzen der Daten der Augenblicksphase (cp) der Hauptblöcke an Eingang und Ausgang der Blöcke zusammenfällt mit dem Ersatz der Daten der laufenden Amplitude (AC) der Sekundärblöcke, und dass er kombinierte Berechnungsmittel (20) umfasst zum Berechnen und Speichern eines neuen Wertes der Augenblicksphase (cp), erhöht um eine Einheit relativ zum vorhergehenden Wert, im Falle der Auslesung eines Hauptblockes, und der Änderung des Zustands des Binärsignals des von dem Auswahldatum (I) bezeichneten Generators, enthalten in dem betreffenden Hauptblock, sowie für die Berechnung und Speicherung eines neuen Wertes der laufenden Amplitude (AC) anstelle des Ursprungswertes im Falle der Auslesung eines Sekundärblockes und einer Änderung des Zustands des Binärsignals des Amplitudentaktgenerators, bezeichnet durch das Auswahldatum (VA), das in dem betreffenden Sekundärblock enthalten ist.
9. Synthesizer nach Anspruch 8, dadurch gekennzeichnet, dass die kombinierten Berechnungsmittel (20) umfassen:
- einen Berechnungsschaltkreis (32, 33) eines Bruchteils der Differenz zwischen der Endamplitude (AF) und der ursprünglichen laufenden Amplitude (AC);
- einen Addierschaltkreis (35) mit einem ersten Eingang zum Empfang entweder des Wertes der laufenden Amplitude (AC) im Falle der Auslesung eines Sekundärblockes oder des Wertes der Augenblicksphase (cp) im Falle der Auslesung eines Hauptblockes; einen zweiten Eingang zum Empfang einer Grösse gleich einer Einheit, und einen dritten Eingang zum Empfang des Datums, geliefert vom Berechnungsschaltkreis (32, 33) über ein Logikgatter (34), das derart angeschlossen ist, dass das an den dritten Eingang angelegte Datum immer geradzahlig ist, wobei das Gatter gesteuert wird durch das Signal (T), das den Typ des Blocks derart angibt, dass eine Grösse Null bei der Auslesung eines Hauptblockes geliefert wird und derart, dass zur Auslesung eines Sekundärblocks übergangen wird; und
- ein Phasenspeicherregister (36) zum Speichern des neuen Wertes der Augenblicksphase, geliefert vom Addierschaltkreis (35) bei der Auslesung eines Hauptblocks.
10. Synthesizer nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, dass er darüber hinaus einen Komparatorschaltkreis (31) umfasst für den Vergleich zwischen der Endamplitude (AF) und der laufenden Amplitude (AC) zum Erzeugen eines Signals, das die Gleichheit anzeigt.
EP80400861A 1979-06-15 1980-06-13 Mehrstimmiger digitaler Synthesizer von periodischen Signalen Expired EP0021964B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80400861T ATE7744T1 (de) 1979-06-15 1980-06-13 Mehrstimmiger digitaler synthesizer von periodischen signalen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7915337A FR2459524A1 (fr) 1979-06-15 1979-06-15 Synthetiseur numerique polyphonique de signaux periodiques et instrument de musique comportant un tel synthetiseur
FR7915337 1979-06-15

Publications (2)

Publication Number Publication Date
EP0021964A1 EP0021964A1 (de) 1981-01-07
EP0021964B1 true EP0021964B1 (de) 1984-05-30

Family

ID=9226648

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80400861A Expired EP0021964B1 (de) 1979-06-15 1980-06-13 Mehrstimmiger digitaler Synthesizer von periodischen Signalen

Country Status (8)

Country Link
US (1) US4344343A (de)
EP (1) EP0021964B1 (de)
JP (1) JPS5632191A (de)
AT (1) ATE7744T1 (de)
DE (1) DE3068012D1 (de)
ES (1) ES8102389A1 (de)
FR (1) FR2459524A1 (de)
NO (1) NO801774L (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4437377A (en) 1981-04-30 1984-03-20 Casio Computer Co., Ltd. Digital electronic musical instrument
GB2113447B (en) * 1981-12-22 1986-07-09 Casio Computer Co Ltd Tone signal generating apparatus of electronic musical instruments
JPH0795235B2 (ja) * 1983-10-27 1995-10-11 株式会社河合楽器製作所 電子楽器
US4549459A (en) * 1984-04-06 1985-10-29 Kawai Musical Instrument Mfg. Co., Ltd. Integral and a differential waveshape generator for an electronic musical instrument
JPS60254097A (ja) * 1984-05-30 1985-12-14 カシオ計算機株式会社 歪波形発生装置
US4776964A (en) * 1984-08-24 1988-10-11 William F. McLaughlin Closed hemapheresis system and method
EP0199192B1 (de) * 1985-04-12 1995-09-13 Yamaha Corporation Tonsignalerzeugungsvorrichtung
US4677889A (en) * 1985-10-25 1987-07-07 Kawai Musical Instrument Mfg. Co., Ltd. Harmonic interpolation for producing time variant tones in an electronic musical instrument
SE469576B (sv) * 1992-03-17 1993-07-26 Televerket Foerfarande och anordning foer talsyntes

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3610800A (en) * 1969-10-30 1971-10-05 North American Rockwell Digital electronic keyboard instrument with automatic transposition
US4036096A (en) * 1974-07-11 1977-07-19 Nippon Gakki Seizo Kabushiki Kaisha Musical tone waveshape generator
JPS5441497B2 (de) * 1974-11-14 1979-12-08
JPS6134160B2 (de) * 1974-12-27 1986-08-06 Kawai Musical Instr Mfg Co
US4023454A (en) * 1975-08-28 1977-05-17 Kabushiki Kaisha Dawai Gakki Seisakusho Tone source apparatus for an electronic musical instrument
FR2344907A1 (fr) * 1976-03-16 1977-10-14 Deforeit Christian Instrument de musique electronique polyphonique
JPS6042953B2 (ja) * 1976-12-29 1985-09-25 ヤマハ株式会社 電子楽器用ウエイブジエネレ−タ
FR2396375A1 (fr) * 1977-07-01 1979-01-26 Deforeit Christian Synthetiseur polyphonique de signaux periodiques et instrument de musique electronique comportant un tel synthetiseur
US4205575A (en) * 1978-05-19 1980-06-03 The Wurlitzer Company Binary interpolator for electronic musical instrument
US4245541A (en) * 1979-06-01 1981-01-20 Kawai Musical Instrument Mfg. Co., Ltd. Apparatus for reducing noise in digital to analog conversion

Also Published As

Publication number Publication date
ES492433A0 (es) 1980-12-16
US4344343A (en) 1982-08-17
ATE7744T1 (de) 1984-06-15
FR2459524A1 (fr) 1981-01-09
FR2459524B1 (de) 1984-11-09
DE3068012D1 (en) 1984-07-05
JPS5632191A (en) 1981-04-01
ES8102389A1 (es) 1980-12-16
NO801774L (no) 1980-12-16
EP0021964A1 (de) 1981-01-07

Similar Documents

Publication Publication Date Title
FR2639458A1 (fr) Appareil permettant de produire, d'enregistrer ou de reproduire des donnees de source sonore et procede associe de codage de compression de donnees de source sonore
NO144443B (no) Fremgangsmaate samt elektronisk musikkinstrument for digital boelgeformgenerering
EP0021964B1 (de) Mehrstimmiger digitaler Synthesizer von periodischen Signalen
US4114498A (en) Electronic musical instrument having an electronic filter with time variant slope
US4184403A (en) Method and apparatus for introducing dynamic transient voices in an electronic musical instrument
JP2835842B2 (ja) 楽音発生器
JPS6289093A (ja) 楽音発生装置
FR2476888A1 (fr) Synthetiseur numerique de signaux sonores et applications aux instruments de musique electronique
US5036541A (en) Modulation effect device
Snell Design of a digital oscillator which will generate up to 256 low distortion sine waves in real time
GB2103005A (en) Modulation effect device
EP0011576B1 (de) Polyphone Syntheseschaltung für periodische Signale unter Anwendung digitaler Techniken
EP0242258B1 (de) Vorrichtung zur Durchführung eines Algorithmus (Leroux-Gueguen) zum Codieren eines Signals durch Linearvorhersage
JPH0642149B2 (ja) 電子楽器
JPS6093492A (ja) 音源装置
JPH0230031B2 (de)
US4084472A (en) Electronic musical instrument with tone generation by recursive calculation
US4240318A (en) Portamento and glide tone generator having multimode clock circuit
US4909118A (en) Real time digital additive synthesizer
JPS5840199B2 (ja) デンシガツキ
US5687105A (en) Processing device performing plural operations for plural tones in response to readout of one program instruction
GB2294799A (en) Sound generating apparatus having small capacity wave form memories
JP2560428B2 (ja) 効果装置
JPS5858678B2 (ja) 電子楽器
JPS581800B2 (ja) デンシガツキ

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT DE GB IT NL

17P Request for examination filed

Effective date: 19810226

R17P Request for examination filed (corrected)

Effective date: 19810227

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEFOREIT, CHRISTIAN JACQUES

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT DE GB IT NL

REF Corresponds to:

Ref document number: 7744

Country of ref document: AT

Date of ref document: 19840615

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840609

Year of fee payment: 5

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: DEFOREIT, CHRISTIAN JACQUES

REF Corresponds to:

Ref document number: 3068012

Country of ref document: DE

Date of ref document: 19840705

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: CHRISTIAN JACQUES DEFOREIT TE SEMUR-EN-AUXOIS, FRA

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19850613

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19860613

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870630

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890613

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900101

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900301