EP0020890A1 - Verfahren zur Entchlorung des Anolyten einer Alkalichlorid-Elektrolysezelle - Google Patents

Verfahren zur Entchlorung des Anolyten einer Alkalichlorid-Elektrolysezelle Download PDF

Info

Publication number
EP0020890A1
EP0020890A1 EP80101828A EP80101828A EP0020890A1 EP 0020890 A1 EP0020890 A1 EP 0020890A1 EP 80101828 A EP80101828 A EP 80101828A EP 80101828 A EP80101828 A EP 80101828A EP 0020890 A1 EP0020890 A1 EP 0020890A1
Authority
EP
European Patent Office
Prior art keywords
anolyte
pressure
chlorine
electrolysis
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80101828A
Other languages
English (en)
French (fr)
Other versions
EP0020890B1 (de
Inventor
Dieter Dr. Bergner
Kurt Hannesen
Wolfgang Müller
Wilfried Schulte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Priority to AT80101828T priority Critical patent/ATE2852T1/de
Publication of EP0020890A1 publication Critical patent/EP0020890A1/de
Application granted granted Critical
Publication of EP0020890B1 publication Critical patent/EP0020890B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes

Definitions

  • the invention relates to a process for largely removing chlorine from the anolyte of an alkali metal chloride electrolysis, which leaves hot and saturated with chlorine from a pressure electrolysis carried out at a pressure of more than 7 bar.
  • the anolyte In the industrial processes for dechlorinating the anolyte of electrolysis cells, which operate under normal pressure, the anolyte is dechlorinated by relaxing it in a container kept under vacuum. During this spontaneous expansion, the dissolved chlorine evaporates, so that a dechlorinated anolyte remains in the vacuum container. The chlorine-containing vapors formed during the evaporation are cooled, the resulting chlorine-containing condensate is pumped back into the anolyte and the portion which is not condensed during the cooling, essentially consisting of chlorine and water vapor, is brought back to normal pressure and then dried.
  • the task was therefore an economical process for processing the products that arise in the anode compartment of an alkali chloride electrolysis cell.
  • the electrical heat loss should be used as widely as possible and liquefaction of the chlorine should be particularly easy.
  • a process has now been found for dechlorinating and cooling the anolyte of an alkali metal chloride electrolysis cell by means of lowering the pressure, which is characterized in that the electrolysis is operated under a pressure of at least 8 bar in the anode compartment, and the products flowing from the anode compartment are mechanically operated in a separator (Anolyte and gases formed) are separated, the separated anolyte is released at a temperature above the boiling point at atmospheric pressure in a strip column to a pressure which is between atmospheric pressure and 2 bar, with the proviso that under these conditions the anolyte boils, and then the anolyte freed from chlorine by the expansion is separated from the gas phase formed in the stripping column.
  • Pressure in the anode compartment of 8-20 bar, in particular 8-12 bar, are preferred. At pressures above about 50 bar, investment and operating costs rise sharply.
  • feed temperatures into the stripping column of at least 103 ° C., preferably at least 105 ° C., in particular at least 110 ° C., are generally sufficient to bring the used anolyte to a boil by depressurization .
  • the feed temperature is preferably max. 140 ° C, especially max. 130 ° C.
  • the problem of the mechanical resistance of the cation exchange membrane mentioned in DE-OS 27 29 589 can be solved even at working pressures of over 8 bar.
  • the membrane can be pressed directly onto an electrode, but preferably the anode.
  • This electrode is then preferably made openwork, e.g. made of expanded metal. In this way it is achieved that the membrane is supported by the electrode surface, but the circulation of the electrolyte is still sufficient.
  • This pressure difference should be a maximum of 5 bar, better a maximum of 3 bar, even better a maximum of 1 bar, even better a maximum of 0.5 bar, preferably a maximum of 0.1 bar. So that the membrane is pressed against the electrode, the pressure difference should, however, be at least 5 mbar, preferably at least 10 mbar.
  • the same materials that are used for the construction of normal pressure electrolysis cells can be used in the manufacture of the electrolysis cell, which works at a pressure of over 8 bar, for example titanium for the inside of the anode compartment and steel for the inside of the cathode compartment.
  • a pressure electrolysis cell that is particularly well suited for working pressures of at least 8 bar is the opposite was a parallel application * of the applicant ("electrolysis apparatus"). It is briefly described in Example 2 (with the associated Figures 1 and 2a, 2b). * with the same priority (HOE 79 / F093) It is not absolutely necessary to feed the entire amount of anolyte that has been freed of chlorine in the separator into the stripping column. Part of the brine dechlorinated in the separator can also be pumped back into the anode compartment directly or via a cooler, for example in order to increase the internal brine flow and to improve the dissipation of the heat loss from the cells.
  • the stripping column will generally be designed as a standing cylindrical container, which can contain various internals (e.g. trays or packing layers). However, the strip column can also be designed as a horizontal container. It is only important that no backmixing can take place between the incoming and the outgoing brine and that the brine has sufficient evaporation area available. The evaporation area and the dwell time of the brine in the stripping column must be such that the majority of the chlorine in the column is removed. It is advantageous, but not necessary, to attach a droplet separator to the top of the column in order to retain entrained liquid constituents.
  • the temperature at which the anolyte leaves the anode compartment is below the boiling point at atmospheric pressure, it must be heated before it is fed into the stripping column.
  • steam can also be blown into the stripping column from below.
  • Installations e.g. floors or packing are advantageous for improving the gas exchange between boiling anolyte and steam.
  • the temperature of the anolyte in the cell is preferably at least 90 ° C., preferably 105-140 ° C., in particular 110-130 ° C.
  • a gas which mainly consists of chlorine and water vapor.
  • the water vapor is advantageously condensed on cold surfaces, ie by indirect cooling.
  • the further work-up preferably consists in applying cold (i.e. colder than the temperature of the gas phase) liquid-aqueous phase to the top of the stripping column and thus removing the main part of the remaining water vapor from the gas phase.
  • cold catholyte under reduced pressure can be used as the cooling medium, which can be obtained from hot catholyte by relaxation and subsequent vacuum treatment. While the water vapor is partially condensed and the chlorine is cooled, the kqtholyte boils. In this way, the heat of condensation of the water vapor can be used to evaporate the cotholyte.
  • the chlorine-containing condensate obtained can be used, among other things, to sprinkle the internals of the stripping column (packing, trays) from above and thus keep them moist. In this way, the salt mist that occurs when the hot anolyte relaxes is better retained.
  • the parts that are not liquefied during the condensation (chlorine, water vapor) can be compressed and e.g. be returned to the separator.
  • the gas phase formed in the stripping column does not have to be freed from the main amount of water by condensation. They can also be fed directly to a neutralization column, in which hypochlorite is produced, or - in the case of smaller plants - to chlorine destruction.
  • the anolyte largely freed of chlorine in the stripping column can be introduced into a vacuum container and further expanded there.
  • the vapors obtained can be condensed by further cooling. Cooling takes place as soon as the anolyte is let down in the vacuum container. The degree of cooling depends on the level of the vacuum.
  • the vacuum container can be carried out lying or standing. It is essential that a sufficiently large evaporation surface is present and backmixing between freshly entering, warm and cooled brine is avoided.
  • the chlorine- and salt-free condensate that occurs when condensing the vapors of the vacuum container can be used for many purposes. If the alkali metal chloride electrolysis is operated according to the membrane cell process, it is advantageous to add the chlorine- and salt-free condensate to the catholyte of the membrane cell, for example by introducing it directly into the cathode compartment.
  • the condensate can also be added at the salt dissolver. In both cases, the amount of soft water to be procured is reduced.
  • the latent heat of evaporation which is released during the condensation of the vapors which arise during the expansion in the vacuum container can also be used for the evaporation of the catholyte.
  • the anolyte When cells are started up, the anolyte, which leaves the cell at a pressure of at least 8 bar, will generally not yet have reached the boiling point at atmospheric pressure.
  • the anolyte can be heated, for example, in a heat exchanger or the expansion of the anolyte in the stripping column can be supported by adding water vapor.
  • This process for dechlorinating the anolyte of the alkali metal chloride electrolysis by lowering the pressure is thus characterized in that the electrolysis is operated under a pressure of at least 8 bar in the anode compartment, and the products flowing from the anode compartment of the electrolytic cell (anolyte and resulting gases ), the separated anolyte is released at a temperature below the boiling point of the anolyte at atmospheric pressure in a strip column to a pressure which is between atmospheric pressure and 2 bar, and the anolyte is countercurrent in the strip column Steam is treated until it boils and the anolyte, which has been freed of chlorine by the relaxation and steam treatment, is separated from the resulting gas phase. Introducing steam into the strip column causes some dilution of the anolyte. However, this measure may be desirable because water is removed from the anolyte in a membrane electrolysis cell.
  • FIG. (3) A special embodiment of the method according to the invention can be seen in the flow diagram of FIG. (3).
  • the combination of apparatus shown there is only of exemplary importance, so that in individual cases a different circuit and a different design of apparatus is entirely possible, depending on the circumstances.
  • the pressure electrolysis cell (4) is divided into anode space (79) with anode (12) and cathode space (89) with cathode (16) by a membrane (14). Reinforced brine is pressed into the anode compartment (79) through line (21 A). A mixture of H 2 and catholyte is removed from the cathode compartment (89) through line (21 C).
  • the chlorine-water vapor mixture which still has a low content of oxygen and inert gases, passes through the drip layer (51) and, under electrolysis pressure, passes through line (52) for further processing, for example drying and liquefaction.
  • the resulting in (50) relaxed anolyte (53) (corresponding to pressure and temperature with chlorine g e-saturated) is withdrawn from the separator (50) and via the line (54) and the expansion valve (55) in the stripping column ( 56) relaxed to a lower pressure (here: atmospheric pressure). This causes the anolyte to boil. In this way, it is completely dechlorinated in the strip column.
  • the expulsion of the chlorine in (56) can be supported by water vapor, which is supplied via line (57).
  • a particularly good contact between the relaxed anolyte and water vapor is achieved through the packing layer (58).
  • This addition of water vapor is - as stated above - particularly useful if the anolyte temperature has not yet reached the boiling point when starting up a system.
  • the upper packing layer (59) frees the chlorine / water vapor gene from brine droplets.
  • the chlorine-water vapor mixture leaves the column (56) via line (60). Part of the steam is precipitated in the condenser (61) and the condensate (62) caught in the collecting vessel (63).
  • a cooling medium (for example cooling water or expanded catholyte which has been further cooled by vacuum evaporation) is introduced through line (64) and leaves the condenser warmed up through line (65).
  • This chlorine-containing condensate is returned to the electrolysis via line (66), pump (67) and line (68), a part of which can be fed to the strip column (56) via line (69). This can ensure that the packed bed (59) of the strip column (56) remains moist and the retention of brine droplets is improved.
  • the chlorine-water-vapor mixture which is not condensed in (63) is passed via line (70), into which the compressor (71) is inserted, into the separator (50).
  • Other parts can be directed via line (72) for hypochlorite production or a liquefaction plant for chlorine.
  • the brine completely dechlorinated in the strip column (56) is drawn off via line (73) and expanded into the vacuum container (75) via the expansion valve (74).
  • the level of the vacuum in the container (75) depends on the temperature at which the brine (76) concentrated there should leave the container (75), or on the amount of chlorine- and salt-free condensate that occurs when the brine is concentrated should be won.
  • the brine cooled in the container (75) leaves it via the line (77). It is pumped back with the help of the pump (78) into the salt dissolver and the brine cleaning (not shown) and finally into the anode compartment (79).
  • the water vapor developed in the container (75) is freed of entrained brine droplets in the drip layer (80) and led via the line (81) to the condenser (82), where water vapor condenses.
  • the condenser (82) can be supplied with cooling water via the line (83), which heats the condenser again via line (84) leaves; However, it is also possible to use at least part of the large amount of heat obtained for the catholyte evaporation, ie for cooling in (82) lye as a coolant.
  • the condensate generated in (82) is conducted via line (85) to the condensate tank (86) and collected there.
  • the condensate (87) can be fed into the line (21 B), through which the circulating catholyte is returned to the cathode chamber (89). In this way, the concentration of the catholyte can be constant divulg.Ebenso 'may be the condensate (87) of Salzlöserei (not illustrated) are fed.
  • the vacuum pump (90) which is connected to the condensate container (86) via the line (91), creates the vacuum in the condensate container (86) and in the container (75).
  • Chlorine together with about 0.035 t / h Steam The condensate of the vapors of the strip column (e.g. 0.5 t / h) contains only a little chlorine dissolved and can be pumped into the salt dissolving station.
  • the brine itself leaves at boiling temperature, i.e. at approx. 107 ° C, the strip column. If a pressure of 400 mbar is maintained when the strip column is expanded into the vacuum container, the dechlorinated brine cools down to about 83 ° C. by evaporation. Here 29 t / h Steam released; if the pressure in the vacuum container is only 520 mbar, the brine only cools down to 90 ° C and 20 t / h evaporate. Steam.
  • the amount of heat generated in the condensation of the vapors is sufficient to evaporate the cell solution, for example from 25% by weight to 50% by weight. In this respect, the use of external steam for the concentration is made unnecessary.
  • the electrolysis apparatus has at least one electrolysis cell 4.
  • Each individual electrolytic cell 4 essentially consists of the two flange parts 1 and 2, between which the membrane 14 is sealed, and which are held together with the screws 6.
  • the flange parts 1 and 2 are electrically insulated from one another, for example by means of insulating bushes 3.
  • the half-shells 9 and 11 are inserted into the flanges 1 and 2, which line the flanges 1 and 2 from the inside and with their brims over the gasket flanges 1 and 2 are pulled away.
  • the sealing rings 13 and 15 provide a seal against the membrane 14.
  • the anode 12 and the cathode 16 are fastened to the half-shells 9 and 11.
  • the bottoms of the half-shells 9 and 11 of adjacent cells press against one another under the internal pressure of the cells; they can be separated from one another by a film 10 (plastic or metal). Surrounding beads in the half-shells 9 and 11 cause a membrane-like behavior (not shown).
  • the spacers 17 and 18 (electrically conductive bolts), which are used for power supply and power transmission, have on their front side in the interior of the cell power transmission elements 19 and 20, for example disks made of insulating material, between which the membrane 14 is clamped.
  • the anode 12 and the cathode 16 are fastened to the spacers 17 and 18, respectively.
  • the anolyte and the catholyte are supplied and discharged via lines 21 which are guided radially through the flanges 1 and 2.
  • the terminal half-shells of the electrolysis apparatus are supported by pressure-absorbing organs.
  • the organs consist of the two plates 7 and the tie rods 8. Instead of the tie rods, the two plates 7 can be connected to hydraulic devices (not shown).
  • the outward-pointing half-shell 9 or 11 of the last cell 4 is supported against the internal pressure of the cell by the plate 7, which may snap into the flange 2 or 1 with a spring 22.
  • the two end plates 7 are pulled together via the tie rods 8, so that the liquid pressure on the half-shells is compensated for via the tie rods. They rest on foot elements 5.
  • threaded bolts 23 which exert pressure on the spacers 17 and 18 when screwed in.
  • the threaded bolts 23 are connected to the power supply lines 24 by means of appropriate devices 25.
  • the supply cables (not shown) are connected to these power supply lines 24.
  • the individual electrolysis cells 4 are pressed together with the pressure-absorbing member and then the threaded bolts 23 are tightened so that the electrical contacts are made through the spacers 17 and 18 through all cells.
  • the individual electrolytic cells have an essentially circular cross section, ie the cross section in the electrode plane is circular, elliptical, oval or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Man hat bereits die Elektrolyse wässriger Alkalichlorid-Lösungen unter Druck durchgeführt. Erfindungsgemäss wird nun bei einer solchen Elektrolyse ein Druck von mindestens 8 bar im Anodenraum (79) sowie ein spezielles Verfahren zur Aufarbeitung der Produkte des Anodenraums (79) angewandt. Das aus dem Anodenraum (79) strömende Gemisch von Gas und Anolyt wird zunächst mechanisch getrennt und dann der Anolyt in eine Stripkolonne (56) entspannt. Dabei findet eine Entchlorung und eine Abkühlung des Anolyten statt. Der Anolyt soll in das Entspannungsgefäss (56) mit einer Temperatur eintreten, die über der Siedetemperatur des Anolyten bei Atmosphärendruck liegt. Der Entspannungsdruck soll zwischen 2 bar und Atmosphärendruck liegen. Mit diesen Massnahmen lässt sich erreichen, dass der Anolyt in der Stripkolonne (56) zum Sieden kommt. Schliesslich wird das bei der Entspannung freigewordene Chlor vom Anolyten abgetrennt. Alternativ kann man in der Stripkolonne (56) den Anolyten im Gegenstrom mit Wasserdampf behandeln, bis er siedet; der durch die Entspannung und Wasserdampfbehandlung von Chlor befreite Anolyt wird sodann von der entstandenen Gasphase abgetrennt.

Description

  • Die Erfindung betrifft ein Verfahren zur weitgehenden Befreiung des Anolyten einer Alkalichlorid-Elektrolyse, der heiß und chlorgesättigt eine bei einem Druck von über 7 bar durchgeführte Druckelektrolyse verläßt, von Chlor.
  • Bei den großtechnisch angewandten Verfahren zur Entchlorung des Anolyten von Elektrolysezellen, die unter Normaldruck arbeiten, wird der Anolyt dadurch entchlort, daß er in einem unter Vakuum gehaltenen Behälter entspannt wird. Bei dieser spontanen Entspannung findet eine Verdampfung des gelösten Chlors statt, so daß im Vakuumbehälter ein entchlorter Anolyt zurückbleibt. Der bei der Verdampfung entstehende chlorhaltige Brüden wird gekühlt, das dabei anfallende chlorhaltige Kondensat in den Anolyten zurückgepumpt und der bei der Kühlung nicht kondensierte Anteil, im wesentlichen aus Chlor und Wasserdampf bestehend, wieder auf Normaldruck gebracht und dann getrocknet. Eine vollständige Entchlorung des Anolyts ist jedoch nur gewährleistet, wenn bei vorgegebener Temperatur des Anolyten das Vakuum so tief gewählt wird, daß der Anolyt bei der Entspannung zum Sieden kommt. In der Praxis findet jedoch die Entspannung oft in einen einfachen Behälter hinein statt, so daß infolge des Vermischungseffektes keine vollständige Entchlorung erfolgt. Die Restentchlorung wird dann in der Weise vorgenommen, daß man das verbliebene Chlor mittels Luft ausbläst und die mit Chlor und Wasserdampf beladene Luft kühlt, und mittels eines Gebläses in die Anlage zur Chlorvernichtung einführt.
  • Die Nachteile dieser in vielen Varianten unter Normaldruck betriebenen Elektrolyse-Verfahren sind offenkundig:
    • Da bei steigender Temperatur zusammen mit dem Chlor auch überproportional wachsende Mengen an Wasserdampf aus den Zellen ausgetragen werden, die anschließend aus dem Chlorstrom durch Kühlung und Trocknung entfernt werden müssen, ist die Temperatur des Anolyten auf max. etwa 85°C begrenzt. Wenn eine niedrigere Temperatur vorliegt, dann muß, damit der Anolyt zum Sieden kommt, dieser in ein entsprechend höheres Vakuum entspannt werden. Damit wächst aber das Volumen des Brüdendampfes, welches größere Apparate- und Leitungsguerschnitte erfordert. Insbesondere muß der Chlorkompressor für ein großes Ansaugvolumen und für höhere Leistung ausgelegt werden. Hierbei ist zu berücksichtigen, daß die mit feuchtem Chlor in Berührung kommenden Teile der Apparatur wegen der Korrosionsgefahr aus teuren Sondermaterialien gefertigt sein müssen. Außerdem steigt mit sinkender Anolyttemperatur der Energieaufwand in der Elektrolysezelle.
  • Die oben erwähnte Restentchlorung des Anolyten durch Einblasen von Luft hat den Nachteil, daß die mit Chlor beladene Luft in der Chlorvernichtungsanlage entchlort werden muß, was zu großem Zwangsanfall von Hypochlorit führt.
  • Die Gewinnung von chlor- und salzfreiem Kondensat ist bei den unter Normaldruck betriebenen Elektrolysen nur begrenzt möglich, da mit den üblichen zur Verfügung stehenden Vakuumanlagen bei der Entspannung die Temperatur des Anolyten nur wenig abgesenkt wird. Ein größerer Teil des Wärmeinhalts des Anolyten kann nur dann zur Verdampfung von Wasser benutzt werden, wenn das angewandte Vakuum erheblich verbessert wird. Dies bedeutet aber einmal höheren technischen Aufwand für die Vakuumerzeugung und führt ferner zu einer Vergrößerung des Brüdenvolumens. Das Kondensat aus den Brüden ist außerdem chlorhaltig und müßte, damit es weiter verwendet werden kann, mit Hilfe einer zweiten Entspannung nach einer Aufwärmung oder durch Strippung entchlort werden. Dies ist aber mit unverhältnismäßig großem Aufwand verbunden.
  • Einige dieser Nachteile lassen sich dadurch beheben, daß man die Elektrolyse unter Druck durchführt, da sich damit höhere Anolyt-Temperaturen erreichen lassen. So ist es z.B. aus der DE-OS 27 29 589 bereits bekannt, die Elektrolyse unter Verwendung einer Kationenaustauscher-Membran und bei einem Druck von 1 - 5 ata durchzuführen. Als Vorteile werden angegeben, daß die Zellenspannung gesenkt werden kann und daß die Zellentemperatur erhöht werden kann, ohne die Zellenspannung zu erhöhen. Ferner kann - bei Verwendung einer Kationenaustauschermembran - die Elektrolyse bei hoher Stromdichte durchgeführt werden, ohne daß die Membran geschädigt wird. Ferner kann für die Verflüssigung des Chlors die zur Komprimierung notwendige Antriebsenergie verringert oder völlig eingespart werden. Die in der Elektrolysezelle erzeugte Joulesche Wärme des Anolyten kann als Wärmequelle für die Konzentrierung des Alkalihydroxids ausgenutzt werden.
  • In der DE-OS 27 29 589 wird jedoch davor gewarnt, Drucke von 7 bar oder mehr anzuwenden, da sonst die Gefahr bestehe, daß die Membran-Zellen die Kationenaustauscher- Membran dem hohen Betriebsdruck nicht mehr standhält. Nach den Angaben der genannten Patentanmeldung erfolgt die Kühlung des erzeugten heißen Chlors durch direkten Wärmeaustausch mit kalter Alkalichlorid-Lösung und kaltem Wasser. Das gelöste Chlor muß schließlich aus dem Wasser durch Vakuumbehandlung abgetrennt werden. Da der Arbeitsdruck der Elektrolyse unter dem Verflüssigungsdruck von Chlor bei Raumtemperatur liegt, ist eine Verflüssigung nur mit Hilfe eines Kompressors oder durch Einsatz von Kühlaggregaten möglich.
  • Es bestand daher die Aufgabe, ein wirtschaftliches Verfahren zur Aufarbeitung der Produkte, die im Anodenraum einer Alkalichlorid-Elektrolysezelle entstehen, anzugeben. Dabei sollte die elektrische Verlustwärme möglichst weitgehend nutzbringend angewandt werden und die Verflüssigung des Chlors besonders leicht möglich sein.
  • Es wurde nun ein Verfahren zur Entchlorung und Kühlung des Anolyten einer Alkalichlorid-Elektrolysezelle mittels Druckabsenkung gefunden, das dadurch gekennzeichnet ist, daß man die Elektrolyse unter einem Druck von mindestens 8 bar im Anodenraum betreibt, man mechanisch in einem Abscheider die aus dem Anodenraum strömenden Produkte (Anolyt und entstandene Gase) trennt, man den abgetrennten Anolyt mit einer Temperatur, die über der Siedetemperatur bei Atmosphärendruck liegt, in einer Stripkolonne auf einen Druck entspannt, der zwischen Atmosphärendruck und 2 bar liegt, mit der Maßgabe, daß unter diesen Bedingungen der Anolyt siedet, und man anschließend den durch die Entspannung von Chlor befreiten Anolyt von der in der Stripkolonne entstandenen Gasphase abtrennt.
  • Bevorzugt sind Drucke im Anodenraum von 8 - 20 bar, insbesondere 8-12 bar. Bei Drucken über etwa 50 bar steigen Investitions- und Betriebskosten stark an.
  • Die Siedetemperatur des Anolyten bei der Entspannung hängt natürlich etwas vom augenblicklichen Barometerstand ("Atmosphärendruck") ab. Bei den in der Alkalichlorid-Elektrolyse üblicherweise verwendeten Solekonzentrationen des verbrauchten Anolyten reichen im allgemeinen aber Einspeisungstemperaturen in die Stripkolonne von mindestens 103°C, vorzugsweise mindestens 105°C, insbesondere mindestens 110°C aus, um den verbrauchten Anolyt durch Druckentspannung zum Sieden zu bringen. Vorzugsweise beträgt die Einspeisungstemperatur max. 140°C, insbesondere max. 130°C.
  • Bei der Druckentspannung verdampft das gelöste Chlor sowie Wasser. Gleichzeitig kühlt sich der Anolyt ab.
  • Soweit für die Alkalichlorid-Elektrolyse Membranzellen eingesetzt werden, läßt sich das in der DE-OS 27 29 589 angesprochene Problem der mechanischen Beständigkeit der Kationenaustauschermembran auch bei Arbeitsdrücken von über 8 bar lösen. Man kann beispielsweise die Membran direkt an eine Elektrode, vorzugsweise aber die Anode, andrücken. Diese Elektrode wird dann vorzugsweise durchbrochen gestaltet, z.B. aus Streckmetall hergestellt. Auf diese Weise wird erreicht, daß die Membran durch die Elektrodenoberfläche gestüzt wird, aber die Zirkulation des Elektrolyten noch ausreichend ist.
  • Man kann auch mit Hilfe einer an sich bekannten automatischen Druckregelung erreichen, daß die Druckdifferenz zwischen Kathoden- und Anodenraum eine bestimmte Größe nicht überschreitet und ggf. zusätzliche Ventile zur Entnahme von Chlor oder Anolyt, bzw. Wasserstoff oder Katholyt geöffnet werden.
  • Diese Druckdifferenz soll maximal 5 bar, besser maximal 3 bar, noch besser maximal 1 bar, noch besser maximal 0,5 bar, vorzugsweise maximal 0,1 bar betragen. Damit die Membran an die Elektrode angepreßt wird, soll die Druckdifferenz jedoch mindestens 5 mbar, vorzugsweise mindestens 10 mbar groß sein.
  • Bei der Herstellung der Elektrolysezelle, die bei einem Druck von über 8 bar arbeitet, können die gleichen Materialien benutzt werden, die auch zur Konstruktion von Normaldruck-Elektrolysezellen eingesetzt werden, beispielsweise Titan für die Innenseite des Anodenraums und Stahl für die Innenseite des Kathodenraumes.
  • Eine Druckelektrolyse-Zelle, die sich besonders gut für Arbeitsdrucke von mindestens 8 bar eignet, ist Gegenstand einer Parallelanmeldung* der Anmelderin ("Elektrolyseapparat"). Sie ist kurz in Beispiel 2 (mit den zugehörigen Figuren 1 und 2a, 2b) beschrieben. * mit gleicher Priorität (HOE 79/F093) Es ist nicht unbedingt nötig, die gesamte Menge an Anolyt, die im Abscheider von Chlor befreit wurde, in die Strip- kolonne einzuspeisen. Man kann auch, beispielsweise um den inneren Soleumlauf zu erhöhen und um die Abfuhr der Verlustwärme der Zellen zu verbessern, einen Teil der im Abscheider entchlorten Sole direkt oder über einen Kühler in den Anodenraum zurückpumpen.
  • Die Stripkolonne wird im allgemeinen als stehender zylindrischer Behälter ausgeführt werden, der verschiedene Einbauten (z.B. Böden oder Füllkörperschichten) enthalten kann. Ebensogut kann die Stripkolonne aber auch als liegender Behälter gestaltet sein. Wesentlich ist nur, daß zwischen der eingehenden und der abgehenden Sole keine Rückvermischung stattfinden kann und daß der Sole ausreichend Ausdampffläche zur Verfügung steht. Ausdampffläche und Verweilzeit der Sole in der Stripkolonne müssen so bemessen sein, daß die Hauptmenge des Chlors in der Kolonne entfernt wird. Es ist vorteilhaft, aber nicht notwendig, am Kopf der Kolonne einen Tropfenabscheider anzubringen um mitgerissene flüssige Bestandteile zurückzuhalten.
  • Wenn die Temperatur mit der der Anolyt den Anodenraum verläßt unter dem Siedepunkt bei Atmosphärendruck liegt, so muß er, bevor er in die Stripkolonne eingespeist wird, aufgeheizt werden.
  • Zur Verbesserung der Entchlorung kann man zusätzlich in die Stripkolonne von unten Dampf einblasen. Dabei sind Einbauten (z.B. Böden oder Füllkörper) zur Verbesserung des Gasaustausches zwischen siedendem Anolyt und Dampf vorteilhaft.
  • Im Prinzip ist es auch möglich, die Stripkolonne bei Unterdruck zu betreiben, z. B. dann, wenn die Temperatur des zu entchlorenden Anolyten noch unter dem Siedepunkt bei Atmosphärendruck liegt. Der technische Aufwand zur Erzeugung des Vakuums und zur Behandlung der entstehenden großen Gasvolumina ist jedoch beträchtlich.
  • Es ist daher besser, die Elektrolyse so zu betreiben, daß bereits der den Anodenraum verlassende Anolyt eine Temperatur aufweist, die über dem Siedepunkt bei Atmosphärendruck liegt. Vorzugsweise beträgt die Temperatur des Anolyten in der Zelle mindestens 90 °C, vorzugsweise 105 - 140 °C, insbesondere 110 - 130 °C.
  • In der Stripkolonne werden Arbeitsdrucke von ma. 1.5 insbesondere von max. 1.1 bar bevorzugt.
  • Beim Sieden des Anolyten in der
    Figure imgb0001
    tripkolonne entsteht ein Gas, das in der Hauptsache aus Chlor und Wasserdampf besteht. Um die weitere Aufarbeitung dieses Gasstroms zu vereinfachen, ist es vorteilhaft, durch Abkühlen die Hauptmenge an Wasser zu kondensieren. Dabei entsteht ein chlorhaltiges Kondensat, das beispielsweise durch Zumischen zur Speisesole wieder in den Anodenraum der Elektrolysezelle zurückgepumpt werden kann. Die Kondensation des Wasserdampfs erfolgt vorteilhafterweise an kalten Oberflächen, d. h. durch indirekte Kühlung.
  • Die weitere Aufarbeitung besteht vorzugsweise darin auf den Kopf der Stripkolonne kalte (d. h. kältere als der Temperatur der Gasphase entspricht) flüssig- wäßrige Phase aufzugeben und so den Hauptteil des verbleibenden Wasserdampfes aus der Gasphase zu entfernen.
  • Als Kühlmedium kann beispielsweise kalter, unter vermindertem Druck stehender Katholyt benutzt werden, der durch Entspannung und nachfolgende Vakuumbehandlung aus heißem Katholyt erhältlich ist. Während so der Wasserdampf teilkondensiert und das Chlor abgekühlt wird, kommt der Kqtholyt zum Sieden. Auf diese Weise kann die Kondensationswärme des Wasserdrampfs zum Eindampfen des Kotholyten benutzt werden.
  • Das gewonnene chlorhaltige Kondensat kann unter anderem dazu benutzt werden, die Einbauten der Stripkolonne (Füllkörper,Böden) von oben zu berieseln und so feucht zu halten. Auf diese Weise werden die Salznebel, die bei der Entspannung des heißen Anolyten auftreten, besser zurückgehalten.
  • Man kann aber auch aus dem Kondensat durch Einblasen von Inertgasen, z.B. von Luft, die Hauptmenge an Chlor entfernen. Wegen der geringen Kondensatmengen und des apparativen Mehraufwandes ist diese Variante bei kleinen Anlagen jedoch nicht vorteilhaft.
  • Die bei der Kondensation nicht verflüssigten Anteile (Chlor, Wasserdampf) können komprimiert und z.B. wieder in den Abscheider zurückgeführt werden.
  • Die in der Stripkolonne entstandene Gasphase muß nicht durch Kondensation von der Hauptmenge an Wasser befreit werden. Man kann sie auch unmittelbar einer Neutralisationskolonne zuführen, in der Hypochlorit erzeugt wird, oder - bei kleineren Anlagen - einer Chlorvernichtung zuführen.
  • Der in der Stripkolonne weitgehend von Chlor befreite Anolyt kann in einen Vakuumbehälter eingeleitet und dort weiter entspannt werden. Die dabei anfallenden Brüden können durch weiteres Abkühlen kondensiert werden. Bereits bei der Entspannung des Anolyten im Vakuumbehälter findet eine Abkühlung statt. Der Grad der Abkühlung hängt von der Höhe des Vakuums-ab.
  • Der Vakuumbehälter kann liegend oder stehend ausgeführt werden. Wesentlich ist, daß eine genügend große Ausdampfoberfläche vorhanden ist und eine Rückvermischung zwischen frisch eintretender, warmer und abgekühlter Sole vermieden wird.
  • Das bei der Kondensation der Brüden des Vakuumbehälters anfallende chlor- und salzfreie Kondensat kann für viele Zwecke eingesetzt werden. Sofern die Alkalichlorid-Elektrolyse nach dem Membranzellenverfahren betrieben wird, ist es vorteilhaft, das chlor- und salzfreie Kondensat dem Katholyt der Membranzelle zuzugeben, beispielsweise direkt in den Kathodenraum einzuleiten. Man kann das Kondensat auch bei der Salzlöserei zugeben. In beiden Fällen wird dabei die anderweitig zu beschaffende Weichwassermenge verringert.
  • Wenn auf die Gewinnung von chlor- und salzfreiem Kondensat verzichtet werden kann, d.h. wenn genügend salzfreies Wasser zur Verfügung steht, ist die zweite Entspannung in dem Vakuumbehälter entbehrlich.
  • Die bei der Kondensation der Brüden, die bei der Entspannung im Vakuumbehälter entstehen, freiwerdende latente Verdampfungswärme kann ebenfalls für die Eindampfung des Katholyten benutzt werden.
  • Es wurde festgestellt, daß man durch die erfindungsgemäßen Maßnahmen, insbesondere durch die Erhöhung der Anolyt-Temperatur in der Zelle, auf sehr wirtschaftliche Weise, d.h. mit sehr geringem elektrischem und thermischem Energieaufwand zu einem Chlorstrom gelangt, der sich leicht verflüssigen läßt. Diese Verflüssigung gelingt ohne Kompressions-Arbeit, lediglich durch Wasserkühlung, ohne Anwendung von zusätzlicher Kälte. Da verflüssigtes Chlor bei Raumtemperatur nur sehr wenig Wasser gelöst enthält, ist auch der Aufwand für die Trocknung des Chlors gering. Das erfindungsgemäße Verfahren erweist sich als besonders vorteilhaft im Zusammenhang mit einer Membranzellen-Elektrolyse.
  • Bei der Inbetriebnahme von Zellen wird der Anolyt, der die Zelle mit einem Druck von mindestens 8 bar verläßt, im allgemeinen noch nicht die Siedetemperatur bei Atmosphärendruck erreicht haben. In diesem Fall kann man den Anolyten beispielsweise in einem Wärmeaustauscher aufheizen oder die Entspannung des Anolyten in der Strip- kolonne durch Zugabe von Wasserdampf unterstützen. Dieses Verfahren zur Entchlorung des Anolyten der Alkalichlorid-Elektrolyse mittels Druckabsenkung ist also dadurch gekennzeichnet, daß man die Elektrolyse unter einem Druck von mindestens 8 bar im Anodenraum betreibt, man mechanisch in einem Abscheider die aus dem Anodenraum der Elektrolysezelle strömenden Produkte (Anolyt und entstandene Gase) trennt, man den abgetrennten Anolyt mit einer Temperatur, die unter der Siedetemperatur des Anolyten bei Atmosphärendruck liegt, in einer Strip- Kolonne auf einen Druck entspannt, der zwischen Atmosphärendruck und 2 bar liegt, man in der Strip-Kolonne den Anolyten im Gegenstrom mit Wasserdampf behandelt, bis er siedet und man den durch die Entspannung und Wasserdampfbehandlung von Chlor befreiten Anolyten von der entstandenen Gasphase abtrennt. Das Einführen von Dampf in die Strip-Kolonne bewirkt eine gewisse Verdünnung des Anolyten. Diese Maßnahme kann jedoch erwünscht sein, weil dem Anolyt in einer Membran-Elektrolysezelle Wasser entzogen wird.
  • Eine spezielle Ausgestaltung des erfindungsgemäßen Verfahrens läßt sich dem Fließbild der Figur (3) entnehmen. Die dort wiedergegebene Kombination von Apparaten hat nur beispielhafte Bedeutung, so daß im Einzelfall eine andere Schaltung und eine andere Ausführung von Apparaten je nach den gegebenen Verhältnissen durchaus möglich ist.
  • Die Druckelektrolyse-Zelle (4) ist in Anodenraum (79) mit Anode (12) und Kathodenraum (89) mit Kathode (16) durch eine Membran (14) unterteilt. Durch Leitung (21 A) wird aufgestärkte Sole in den Anodenraum (79) eingedrückt. Durch Leitung (21 C) wird ein Gemisch von H2 und Katholyt aus dem Kathodenraum (89) entnommen.
  • Das vom Anodenraum (79) kommende Gemisch aus verarmter Sole, Chlor und Wasserdampf, das eine Temperatur von z.B. 110°C aufweist, wird über die Leitung (21 D) in den Abscheider (50) mit der Tropfenfängerschicht (51) eingeführt. Dabei trennen sich die flüssigen von den dampfförmigen Anteilen. Das Chlor-Wasserdampfgemisch, das noch einen geringen Gehalt an Sauerstoff und Inertgasen besitzt, passiert die Tropfenfängerschicht (51) und gelangt unter Elektrolysedruck über die Leitung (52) zur weiteren Aufarbeitung, beispielsweise zu einer Trocknung und Verflüssigung. Der in (50) anfallende entspannte Anolyt (53)(entsprechend Druck und Temperatur mit Chlor ge-sättigt) wird aus dem Abscheider (50) abgezogen und über die Leitung (54) und das Entspannungsventil (55) in der Strip-Kolonne (56) auf einen niedrigeren Druck (hier: Atmosphärendruck) entspannt. Dabei kommt der Anolyt zum Sieden. Er wird so in der Strip-Kolonne vollständig entchlort.
  • Die Austreibung des Chlors in (56) kann unterstützt werden durch Wasserdampf, der mittels Leitung (57) zugeführt wird. Dabei wird durch die Füllkörperschicht (58) ein besonders guter Kontakt zwischen entspanntem Anolyt und Wasserdampf erreicht. Diese Zugabe von Wasserdampf ist - wie oben ausgeführt - besonders sinnvoll wenn beim Anfahren einer Anlage die Anolyttemperatur noch nicht den Siedepunkt erreicht hat. Die obere Füllkörperschicht (59) befreit dabei das Chlor/Wasserdampf-Genisch von Soletröpfchen. Das Chlor-Wasserdampf-Gemisch verläßt die Kolonne (56) über die Leitung (60). Im Kondensator (61) wird ein Teil des Dampfes niedergeschlagen und das Kondensat (62) in dem Sammelgefäß (63) aufgefangen. Durch Leitung (64) wird ein Kühlmedium (z.B. Kühlwasser oder entspannter und durch Vakuumverdampfung weiter abgekühlter Katholyt) eingeführt, das durch Leitung (65) den Kondensator aufgewärmt verläßt.
  • Über die Leitung (66), die Pumpe (67) und die Leitung (68) wird dieses chlorhaltige Kondensat wieder in die Elektrolyse zurückgeführt, wobei ein Teil über Leitung (69) der Strip-Kolonne (56) zugeführt werden kann. Damit kann erreicht werden, daß die Füllkörperschicht (59) der Strip-Kolonne (56) feucht bleibt und so die Zurückhaltung von Soletröpfchen verbessert wird.
  • Das in (63) nicht kondensierte Chlor-Wasser-Dampfgemisch wird über Leitung (70), in die der Kompressor (71) eingefügt ist, in den Abscheider (50) geleitet. Andere Teile können über Leitung (72) zur Hypochloritherstellung oder eine Verflüssungsanlage für Chlor geleitet werden.
  • Die in der Strip-Kolonne (56) vollständig entchlorte Sole wird über Leitung (73) abgezogen und über das Entspannungsventil (74) in den Vakuumbehälter (75) entspannt. Die Höhe des Vakuums im Behälter (75) richtet sich nach der Temperatur, mit der die dort eingeengte Sole (76) den Behälter (75) verlassen soll, bzw. nach der Menge an chlor- und salzfreiem Kondensat, das bei der Einengung der Sole gewonnen werden soll. Die im Behälter (75) abgekühlte Sole verläßt diesen über die Leitung (77). Sie wird mit Hilfe der Pumpe (78) in die Salzlöserei und die Solereinigung (nicht gezeichnet) und schließlich den Anodenraum (79) zurückgepumpt. Der in dem Behälter (75) entwickelte Wasserdampf wird in der Tropfenfängerschicht (80) von mitgerissenen Soletröpfchen befreit und über die Leitung (81) zum Kondensator (82) geführt, wo sich Wasserdampf niederschlägt. Der Kondensator (82) kann über die Leitung (83) mit Kühlwasser beaufschlagt werden, das erwärmt über Leitung (84) den Kondensator wieder verläßt; es ist aber auch möglich, wenigstens einen Teil der anfallenden großen Wärmemenge für die Katholyt-Eindampfung zu nutzen, d.h. für die Kühlung in (82) Lauge als Kühlmittel einzusetzen. Das in (82) erzeugte Kondensat wird über die Leitung (85) zum Kondensatbehälter (86) geleitet und dort aufgefangen. Über die Leitung (92), in die die Pumpe (88) eingefügt ist, kann das Kondensat (87) in die Leitung (21 B) eingespeist werden, durch die zirkulierender Katholyt in den Kathodenraum (89) zurückgeführt wird. Auf diese Weise läßt sich die Konzentration des Katholyten konstant halten.Ebenso'kann das Kondensat (87) der Salzlöserei (nicht gezeichnet) zugeführt werden. Durch die Vakuumpumpe (90) die über die Leitung (91) mit dem Kondensatbehälter (86) verbunden ist, wird das Vakuum in dem Kondensatbehälter (86) und im Behälter (75) erzeugt.
  • Beispiel 1
  • Bei einem gewählten Zellendruck von 10 bar, einer Zellentemperatur von 115°C, einer geplanten Chlorerzeugung von 170 000 jato, einer angenommenen Verarmung der Sole von 260 kg auf 220 kg NaCl/t Sole errechnet sich ein Soleumlauf von 825 t/Std., eine Chlorerzeugung von 20 t/Std und ein Salzverbrauch von 33 t NaCl /Stunde. Im Anolyt, der den Abscheider noch mit Zellentemperatur verläßt, sind 1,2 bis 1,6 t /Std. Chlor gelöst; dies entspricht ca. 6 bis 8 % der erzeugten Chlormenge. Nach der Kondensation der Brüden aus der Strip-Kolonne verbleiben in der Gasphase die genannten 1,2 bis 1,6 t/Std. Chlor zusammen mit etwa 0,035 t/Std. Wasserdampf. Das-Kondensat der Brüden der Strip-Kolonne (z.B. 0,5 t/Std.) enthält nur wenig Chlor gelöst und kann in die Salzlösestation gepumpt werden. Die Sole selbst verläßt mit Siedetemperatur, d.h. mit ca. 107°C, die Stripkolonne. Hält man bei der Entspannung der Strip-Kolonne in den Vakuumbehälter hinein einen Druck von 400 mbar aufrecht, so kühlt sich die entchlorte Sole durch Verdampfung auf etwa 83°C ab. Hierbei werden 29 t/Std. Dampf freigesetzt; wenn der Druck im Vakuumbehälter nur 520 mbar beträgt, so kühlt sich die Sole nur auf 90°C ab und es verdampfen 20 t/Std. Wasserdampf. Die bei der Kondensation der Brüden anfallende Wärmemenge reicht aus, um die Zellenlauge beispielsweise von 25 Gew.-% auf 50 Gew.-% einzudampfen. Insoweit wird der Einsatz von Fremddampf für die Konzentration entbehr-lich gemacht.
  • Beispiel 2
  • Der für Drucke von mehr als 10 bar beständige Elektrolyseapparat zur Herstellung von Chlor aus wässriger Alkalichloridlösung weist mindestens eine Elektrolysezelle auf, deren Anode und Kathode durch eine Trennwand voneinander getrennt in einem Gehäuse aus zwei Halbschalen angeordnet sind, wobei das Gehäuse mit Einrichtungen zum Zuführen der Elektrolyseausgangsstoffe und zum Abführen der Elektrolyseprodukte versehen ist, und die Trennwand mittels Dichtelementen zwischen den Rändern der Halbschalen eingeklemmt und zwischen sich jeweils bis zu den Elektroden erstreckenden Kraftübertragungselementen aus elektrisch nicht leitendem Material gehalten ist. Dieser Elektrolyseapparat ist dadurch gekennzeichnet, daß die Elektroden über Distanzstücke, die an Halbschalen mit im wesentlichen kreisförmigem Querschnitt befestigt sind und über ihre Ränder mit den Halbschalen mechanisch und elektrisch leitend verbunden sind, die Halbschalen benachbarter Zellen sich flach gegeneinander abstützen, und die endständigen Halbschalen des Elektrolyseapparates durch druckaufnehmende Organe unterstützt sind.
    • Figur 1 zeigt eine Ansicht des Elektrolyseapparates teilweise geschnitten.
    • Figur 2a zeigt eine Aufsicht auf die druckaufnehmenden Organe des Elektrolyseapparates.
    • Figur 2 b die Ansicht II b - II b der Figur 2 a.
  • Der Elektrolyseapparat weist mindestens eine Elektrolysezelle 4 auf. Jede einzelne Elektrolysezelle 4 besteht im wesentlichen aus den beiden Flanschteilen 1 und 2, zwischen denen die Membran 14 eingedichtet ist, und die mit den Schrauben 6 zusammengehalten werden. Die Flanschteile 1 und 2 sind gegeneinander elektrisch isoliert, z.B. mittels Isolierbüchsen 3. In die Flansche 1 und 2 sind die Halbschalen 9 und 11 eingeschoben, die die Flansche 1 und 2 von innen auskleiden und mit ihren Krempen über die Dichtflächen der Flansche 1 und 2 hinweggezogen sind. Die Dichtringe 13 und 15 sorgen für eine Abdichtung gegen die Membran 14. An die Halbschalen 9 und 11 sind die Anode 12 und die Kathode 16 befestigt. Die Böden der Halbschalen 9 und 11 benachbarter Zellen pressen sich unter dem Innendruck der Zellen aufeinander; sie können durch eine Folie 10 (Kunststoff oder Metall) voneinander getrennt sein. Umlaufende Sicken in den Halbschalen 9 und 11 bewirken ein membranartiges Verhalten (nicht dargestellt). Die Distanzstücke 17 und 18 (elektrisch leitende Bolzen), die der Stromzuführung und der Kraftübertragung dienen, besitzen an ihrer Stirnseite im Zelleninnern Kraftübertragungselemente 19 und 20, z.B. Scheiben aus isolierendem Material, zwischen denen die Membran 14 eingeklemmt ist. An den Distanzstücken 17 bzw. 18 sind die Anode 12 bzw. die Kathode 16 befestigt. Die Zuführung und Abführung des Anolyten und des Katholyten erfolgt über Leitungen 21, die radial durch die Flanschen 1 und 2 geführt sind.
  • Die endständigen Halbschalen des Elektrolyseapparates werden durch druckaufnehmende Organe abgestützt. Die Organe bestehen aus den beiden Platten 7 und den Zugankern 8. Statt der Zuganker können die beiden Platten 7 mit Hydraulikeinrichtungen verbunden sein (nicht dargestellt). Die nach außen zeigende Halbschale 9 bzw. 11 der jeweils letzten Zelle 4 wird gegen den Innendruck der Zelle durch die Platte 7 abgestützt, die gegebenenfalls mit einer Feder 22 in den Flansch 2 bzw. 1 einrastet. Die beiden Endplatten 7 werden über die Zuganker 8 zusammengezogen, so daß der Flüssigkeitsdruck auf die Halbschalen über die Zuganker kompensiert wird. Sie ruhen auf Fußelementen 5. In den Platten 7 sind Gewindebolzen 23 angeordnet, die beim Eindrehen Druck auf die Distanzstücke 17 und 18 ausüben. Die Gewindebolzen 23 sind mit den Stromzuführungen 24 mittels entsprechender Einrichtungen 25 verbunden. An diese Stromzuführungen 24 werden die Zuleitungskabel (nicht dargestellt) angeschlossen. Vor Inbetriebnahme des Elektrolyseapparates werden die einzelnen Elektrolysezellen 4 mit dem druckaufnehmenden Organ aufeinandergepreßt und dann die Gewindebolzen 23 angezogen, so daß die elektrischen Kontakte über die Distanzstücke 17 und 18 durch alle Zellen hindurch hergestellt sind. Die einzelnen Elektrolysezellen haben im wesentlichen kreisförmigen Querschnitt, d.h. der Querschnitt in der Elektrodenebene ist kreisförmig, ellipsenförmig, oval oder dergleichen.

Claims (18)

1. Verfahren zur Entchlorung und Kühlung des Anolyten einer Alkalichlorid-Elektrolyse mittels Druckabsenkung, dadurch gekennzeichnet, daß man die Elektrolyse unter einem Druck von mindestens 8 bar im Anodenraum betreibt, man mechanisch mit einem Abscheider die aus dem Anodenraum der Elektrolysezelle strömenden Produkte (Anolyt und entstandene Gase) trennt, man den abgetrennten Anolyt mit einer Temperatur, die über der Siedetemperatur des Anolyten bei Atmosphärendruck liegt, in eine Strip-Kolonne auf einen Druck entspannt, der zwischen Atmosphärendruck und 2 bar liegt, mit der Maßgabe, daß unter diesen Bedingungen der Anolyt siedet und man abschließend den durch die Entspannung von Chlor befreiten Anolyten von der in der Strip- Kolonne entstandenen Gasphase abtrennt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Strip-Kolonne oberflächenreiche Einbauten enthält.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Sole nach Verlassen der Strip-Kolonne in einen Vakuumbehälter weiter entspannt und man die dabei entstehenden Brüden durch Abkühlen kondensiert.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Elektrolyse bei einem Druck von 8 bis 20 bar durchführt.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß in der Strip-Kolonne der Druck auf max. 1,5, vorzugsweise auf max. 1,1 bar, abgesenkt wird.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man zur Erleichterung der Entchlorung des Anolyten in die Strip-Kolonne von unten Dampf einbläst.
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Elektrolyse so betreibt, daß der Anolyt eine Temperatur von mindestens90°C erreicht.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Temperatur des Anolyten 105 - 140°C, vorzugsweise 110 - 130°C beträgt.
9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man aus der Gasphase, die in der Strip-Kolonne entstanden ist, durch Abkühlen die Hauptmenge an Wasser kondensiert.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß man die beim Abkühlen mit Wasser nicht kondensierte, im wesentlichen aus Chlor und Wasserdampf bestehende, Gasphase komprimiert und in den Abscheider zurückführt.
11. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß man mit einem Teil des chlorhaltigen Kondensats die Strip-Kolonne berieselt.
12. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Alkalichlorid-Elektrolyse nach dem MembranZellenverfahren betreibt.
13. Verfahren nach Ansprüchen 3 und 12, dadurch gekennzeichnet, daß man das bei der Kondensation der Brüden des Vakuumbehälters anfallende chlor- und salzfreie Kondensat dem Katholyten der Membranzelle zugibt.
14. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß man den Druck im Anodenraum und Kathodenraum der Elektrolysezelle so bemißt, daß der Druckunterschied max. bar beträgt.
15. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß man im Kathodenraum einen größeren Druck aufrecht hält als im Anodenraum und die Membran an die Anode angedrückt wird.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß eine Streckmetall-Anode eingesetzt wird.
17. Verfahren nach Anspruch 3 oder 9, dadurch gekennzeichnet, daß die bei der Kondensation des Wasserdampfs oder der Brüden freiwerdende Wärme für die Eindampfung des Katholyten benutzt wird.
18.Verfahren zur Entchlorung des Anolyten der Alkalichlorid-Elektrolyse mittels Druckabsenkung, dadurch gekennzeichnet, daß man die Elektrolyse unter einem Druck von mindestens 8 bar im Anodenraum betreibt, man mechanisch in einem Abscheider die aus dem Anodenraum der Elektrolysezelle strömenden Produkte (Anolyt und entstandene Gase) trennt, man den abgetrennten Anolyt mit einer Temperatur, die unter der Siedetemperatur des Anolyten bei Atmosphärendruck liegt, in eine Strip-Kolonne auf einen Druck entspannt, der zwischen Atmosphärendruck und 2 bar liegt, man in die Strip-Kolonne den Anolyten im Gegenstrom mit Wasserdampf behandelt, bis er siedet und man den durch die Entspannung und Wasserdampfbehandlung von Chlor befreiten Anolyten von der entstandenen Gasphase abtrennt.
EP80101828A 1979-04-12 1980-04-05 Verfahren zur Entchlorung des Anolyten einer Alkalichlorid-Elektrolysezelle Expired EP0020890B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80101828T ATE2852T1 (de) 1979-04-12 1980-04-05 Verfahren zur entchlorung des anolyten einer alkalichlorid-elektrolysezelle.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2914870 1979-04-12
DE19792914870 DE2914870A1 (de) 1979-04-12 1979-04-12 Verfahren zur entchlorung und kuehlung des anolyten der alkalihalogenid- elektrolyse

Publications (2)

Publication Number Publication Date
EP0020890A1 true EP0020890A1 (de) 1981-01-07
EP0020890B1 EP0020890B1 (de) 1983-03-23

Family

ID=6068172

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80101828A Expired EP0020890B1 (de) 1979-04-12 1980-04-05 Verfahren zur Entchlorung des Anolyten einer Alkalichlorid-Elektrolysezelle

Country Status (14)

Country Link
US (1) US4251335A (de)
EP (1) EP0020890B1 (de)
JP (1) JPS55141581A (de)
AR (1) AR227391A1 (de)
AT (1) ATE2852T1 (de)
AU (1) AU531558B2 (de)
BR (1) BR8002280A (de)
CA (1) CA1165273A (de)
DE (2) DE2914870A1 (de)
ES (1) ES490264A0 (de)
FI (1) FI65820C (de)
IN (1) IN152456B (de)
NO (1) NO801059L (de)
ZA (1) ZA802175B (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8612627D0 (en) * 1986-05-23 1986-07-02 Ici Plc Dechlorination of aqueous alkali metal chloride solution
US5607619A (en) * 1988-03-07 1997-03-04 Great Lakes Chemical Corporation Inorganic perbromide compositions and methods of use thereof
US5620585A (en) * 1988-03-07 1997-04-15 Great Lakes Chemical Corporation Inorganic perbromide compositions and methods of use thereof
US5112464A (en) * 1990-06-15 1992-05-12 The Dow Chemical Company Apparatus to control reverse current flow in membrane electrolytic cells
US5385650A (en) * 1991-11-12 1995-01-31 Great Lakes Chemical Corporation Recovery of bromine and preparation of hypobromous acid from bromide solution
US5616234A (en) * 1995-10-31 1997-04-01 Pepcon Systems, Inc. Method for producing chlorine or hypochlorite product
EP4083257A1 (de) * 2021-04-27 2022-11-02 Siemens Energy Global GmbH & Co. KG Verfahren zum entgasen von aus einem elektrolyseur abgeleiteten flüssigkeitsströmen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE160450C (de) *
DE1592019B2 (de) * 1965-02-16 1970-04-23
DE2510396A1 (de) * 1974-03-09 1975-09-11 Asahi Chemical Ind Verfahren zur elektrolyse waessriger loesungen und elektrolysezelle zur durchfuehrung des verfahrens
DE2729589A1 (de) * 1976-07-05 1978-01-12 Asahi Chemical Ind Verfahren zur alkalihalogenidelektrolyse

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3988235A (en) * 1974-07-26 1976-10-26 Kureha Kagaku Kogyo Kabushiki Kaisha Vertical diaphragm type electrolytic apparatus for caustic soda production
US4176023A (en) * 1978-10-05 1979-11-27 Desal-Chem, Inc. Delsalinization and chemical extraction process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE160450C (de) *
DE1592019B2 (de) * 1965-02-16 1970-04-23
DE2510396A1 (de) * 1974-03-09 1975-09-11 Asahi Chemical Ind Verfahren zur elektrolyse waessriger loesungen und elektrolysezelle zur durchfuehrung des verfahrens
DE2729589A1 (de) * 1976-07-05 1978-01-12 Asahi Chemical Ind Verfahren zur alkalihalogenidelektrolyse

Also Published As

Publication number Publication date
NO801059L (no) 1980-10-13
JPS6340872B2 (de) 1988-08-12
FI65820C (fi) 1984-07-10
DE3062405D1 (en) 1983-04-28
IN152456B (de) 1984-01-21
CA1165273A (en) 1984-04-10
ES8100679A1 (es) 1980-12-01
AR227391A1 (es) 1982-10-29
ZA802175B (en) 1981-05-27
FI801144A (fi) 1980-10-13
AU5737980A (en) 1980-10-16
ATE2852T1 (de) 1983-04-15
BR8002280A (pt) 1980-12-02
JPS55141581A (en) 1980-11-05
FI65820B (fi) 1984-03-30
EP0020890B1 (de) 1983-03-23
DE2914870A1 (de) 1980-10-30
US4251335A (en) 1981-02-17
ES490264A0 (es) 1980-12-01
AU531558B2 (en) 1983-08-25

Similar Documents

Publication Publication Date Title
DE2729589C2 (de)
AT392056B (de) Verfahren zur verdunstung und wiedergewinnung von wasser aus der waessrigen loesung eines galvanischen bades
DE3049838T1 (de) Method of desalinating water
EP0020890B1 (de) Verfahren zur Entchlorung des Anolyten einer Alkalichlorid-Elektrolysezelle
EP2495353B1 (de) Verfahren zum Betrieb einer Sauerstoffverzehrelektrode
EP3201140B1 (de) Verfahren zum betreiben eines osmosekraftwerks und osmosekraftwerk
DE2426056A1 (de) Verfahren zur wiedergewinnung von chlor aus gasgemischen, die neben chlor kohlendioxid enthalten
DE2547594B2 (de) Verfahren zum Abtrennen von Chlor aus einem Chlorgas und nicht Kondensierbares Gas enthaltenden Gasgemisch
DE2648306A1 (de) Verfahren zur herstellung von konzentrierten waessrigen aetzalkaliloesungen
DE60013697T2 (de) Vorrichtung zum Destillieren unter vermindertem Druck
EP0018623B1 (de) Verfahren zur Flüssigchlorgewinnung
DE102020206447A1 (de) Verfahren zur Steuerung einer Elektrolysevorrichtung
DE2725738A1 (de) Verfahren zur halogen-speicherung bei einem halogenid-akku und dafuer geeigneter akkumulator
DE3018918A1 (de) Vorrichtung zum abkuehlen und gleichzeitigen teilverdampfen einer fluessigkeit
WO2018130385A1 (de) Verfahren und vorrichtung zur kühlung einer elektrolyseeinheit und zur wasseraufbereitung
DD287960A5 (de) Verfahren zum kuehlen von gasfoermigem chlor
WO2023165736A1 (de) Verfahren und anlage zur bereitstellung von gasförmigem drucksauerstoff
DE2624553C2 (de) Elektrolysezelle und Verfahren zur Verminderung der Ätzalkalifilmkonzentration auf der Kathodenseite der Diaphragmen von Elektrolysezellen
DE727242C (de) Rueckgewinnung von Ammoniak und Waerme aus gebrauchtem Kupferkunstseide-Faellwasser
EP4083257A1 (de) Verfahren zum entgasen von aus einem elektrolyseur abgeleiteten flüssigkeitsströmen
AT148134B (de) Verfahren zur stufenweisen Konzentration von "schwerem" Wasser.
DE628142C (de) Verfahren zum Zerlegen von Gasgemischen
DE1192222B (de) Verfahren und Vorrichtung zur Gewinnung von Gasbestandteilen mit Hilfe von periodisch umschaltbaren Waermeaustauschern
AT398583B (de) Verfahren zur wiedergewinnung von schwefelkohlenstoff aus spinnbädern
DE2255034A1 (de) Verfahren zum mehrstufigen konzentrieren von alkalilauge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19810407

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 2852

Country of ref document: AT

Date of ref document: 19830415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3062405

Country of ref document: DE

Date of ref document: 19830428

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920306

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920309

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920312

Year of fee payment: 13

Ref country code: GB

Payment date: 19920312

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920317

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920401

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920430

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920611

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930405

Ref country code: AT

Effective date: 19930405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930430

Ref country code: CH

Effective date: 19930430

Ref country code: BE

Effective date: 19930430

BERE Be: lapsed

Owner name: HOECHST A.G.

Effective date: 19930430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19931101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930405

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19931229

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 80101828.4

Effective date: 19931110