EP0020536B1 - Annular casings and process for the production of tubes by powder metallurgy and process for the manufacturing of such casings - Google Patents

Annular casings and process for the production of tubes by powder metallurgy and process for the manufacturing of such casings Download PDF

Info

Publication number
EP0020536B1
EP0020536B1 EP79901411A EP79901411A EP0020536B1 EP 0020536 B1 EP0020536 B1 EP 0020536B1 EP 79901411 A EP79901411 A EP 79901411A EP 79901411 A EP79901411 A EP 79901411A EP 0020536 B1 EP0020536 B1 EP 0020536B1
Authority
EP
European Patent Office
Prior art keywords
capsule
wall
insert
powder
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79901411A
Other languages
German (de)
French (fr)
Other versions
EP0020536A1 (en
Inventor
Christer Aslund
Ake Akerman
Hans Eriksson
Benny Flodin
Claes Tornberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Granges Nyby AB
Original Assignee
Granges Nyby AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19782846659 external-priority patent/DE2846659A1/en
Priority claimed from DE19782846658 external-priority patent/DE2846658C2/en
Priority claimed from DE2846660A external-priority patent/DE2846660C2/en
Application filed by Granges Nyby AB filed Critical Granges Nyby AB
Publication of EP0020536A1 publication Critical patent/EP0020536A1/en
Application granted granted Critical
Publication of EP0020536B1 publication Critical patent/EP0020536B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/1208Containers or coating used therefor
    • B22F3/1258Container manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding

Definitions

  • the present invention relates to an annular capsule for compacts for the powder-metallurgical production of pipes, the capsule having an outer and inner jacket made of thin, ductile sheet metal, between which there is an interior with an annular cross section for receiving metal or alloy powders to be pressed isostatically, which can be closed tightly on its end faces by means of an annular cover.
  • the present invention further relates to a method for producing such capsules and a method for the powder-metallurgical production of tubes.
  • the metallic capsules which are filled with the steel powder, can be evacuated before closing and / or with a gas, in particular an inert gas, e.g. Argon, fill.
  • a gas in particular an inert gas, e.g. Argon, fill.
  • metallic capsules are preferably used, the wall thickness of which is less than 3%, in particular less than 1% of the outer diameter of the capsule, and in particular metallic capsules are used, the wall thickness of which is between about 0.1 to 5 mm, preferably is between about 0.2 and 3 mm.
  • composite pipes can also be produced, using thin-walled metallic capsules which are separated into two or more areas by one or more concentric partition walls and the predominantly spherical powder particles of the different steel qualities being in one of these areas at the same time Vibrate filled, then the partitions removed and the capsules closed, whereupon the isostatic cold pressing and the extrusion takes place at elevated temperature. Glass is normally used as a lubricant when extruding the compacts into tubes.
  • the object of the present invention is to increase the yield, i.e. to reduce the percentage of defective extruded tubes and to increase the quality and dimensional accuracy of the extruded tubes.
  • this object is achieved according to the invention in that at least the outer jacket has a circumference which changes in the direction of the longitudinal axis of the capsule, the jacket end sections adjacent to the end faces of the capsule having the radial dimensions of the finished compact and the jacket center section with one Shrinkage in the isostatic pressing compensating bulge, which is uniformly directed outwards from the capsule axis, and the central jacket section is connected to the end sections via conically widening jacket intermediate sections, and that at least on the front end face of the capsule is a solid material or powder-pressed, a flat outer end face is provided, provided with a central bore for receiving the inner shell, tapered, hemispherical or conically tapered insert, the tapering part of the Inserted into the flared intermediate section of the jacket.
  • the embodiment of the capsule according to the invention has the advantage that the compact does not show an "hourglass shape" with a constricted central region after the capsule has been cold-isostatically pressed.
  • This so-called "hourglass shape” often arises from the fact that the ends of the capsule, which are closed by means of a lid or the like, show less shrinkage in cold isostatic pressing than that middle area of the capsule. Since a compact is required for the extrusion process, the outer jacket of which is cylindrical as precisely as possible, it is necessary to trim the ends of an "hourglass shape" of the compact, which is a very expensive process, with the risk of cracks occurring.
  • the design of the capsule according to the invention has the advantage that there is no processing or trimming of the compact to achieve a cylindrical shape.
  • the invention makes it possible to produce compacts whose diameters correspond very precisely to the desired diameter dimensions. Accuracies of ⁇ 0.2%, in particular + 0.1%, can be achieved according to the invention.
  • the diameter dimensions of the compact can be manufactured with an accuracy of ⁇ 0.2 mm, in particular ⁇ 0.1 mm.
  • the outer shell and / or the inner shell are preferably produced in the region of the capsule ends as essentially cylindrical sections, the diameter dimensions of which correspond exactly to those of the desired compact and which continuously merge into a bulged central capsule region.
  • the shape of the outer and / or inner shell of the capsule is designed according to the invention such that the bulge from each of the cylindrical sections at the capsule ends in the axial direction, as seen in each case towards the center of the capsule, initially gradually in a region having a concave cross-sectional profile and increases steadily, the inclination of the outer and / or inner casing against the capsule axis also gradually and steadily increasing, then preferably follows a conical intermediate region in which the inclination of the outer and / or inner casing remains essentially constant, whereby this conical intermediate area is adjoined by an area in which the outer and / or inner jacket has a convex cross-sectional profile and gradually and continuously merges into an axially parallel central section, which preferably has a substantially constant diameter.
  • An improvement in the dimensional accuracy of the compact and a reduction in the reject rate can also be achieved according to the invention in that a plate, cone, hemisphere or funnel-shaped insert made of solid material is arranged on the front and / or rear end of the capsule.
  • the provision of such inserts significantly improves the flow properties when extruding the compact and increases the yield of stainless material, since the inserts, which preferably consist of electrically conductive metal, in particular soft iron or a low-carbon soft steel, form the ends of the extruded tubes. that have to be cut off anyway.
  • the inserts which preferably consist of an electrically conductive metal, in the region of the front and / or rear end face of the capsule considerably facilitate the heating of the compact prior to extrusion by means of inductive heat, since the metal inserts can be easily inductively heated and their heat to the Dispense the remaining parts of the compact, in particular to the powder-filled interior, and thus contribute to the rapid heating of the entire compact.
  • the inserts can be designed as caps that close the end of the capsule, wherein the inserts can be tightly welded to the outer shell of the capsule and the inner shell of the capsule.
  • sheet inserts can also be arranged between the inserts and the interior of the capsule, which are designed as lids and are tightly connected to the outer jacket and the inner jacket by welding.
  • the angle y between the wall of the central bore for the inner shell of the capsule and the conical surface of the funnel-shaped insert is approximately 40 ° to 60 °, preferably approximately 40 ° to 50 °, in particular approximately 45 °.
  • annular insert provided with a central bore, which has a substantially flat end face, and its boundary surface between the wall of the central bore and its largest outer diameter has approximately a circular cross-sectional profile, the center of the circular profile approximately in the area the line of intersection between the flat end face and the central hole.
  • a further significant improvement of the capsules and the compacts produced therefrom and the extruded objects, in particular the extruded tubes, can be achieved in combination with the inserts designed according to the invention described above or independently of these inserts according to the invention by at least covering the capsule has approximately the same strength properties in the axial direction over the entire circumference.
  • at least the outer shell of the capsule according to the invention is formed by a thin-walled, spiral welded or extruded tube.
  • Such a design of the outer shell of the capsule offers the advantage that extruded products, in particular tubes, are obtained in which the error rate and thus the reject are markedly reduced.
  • the slope of the spiral formed by the weld seam in relation to the length of the capsule is preferably dimensioned such that the weld seam forms approximately one complete turn.
  • An outer jacket provided with such a weld seam has only one weld seam at each point along its circumference in the axial direction and approximately the same strength properties in the axial direction.
  • the weld seam can form two, three or more complete turns.
  • the present invention is applicable to capsules and compacts for extruding objects, in particular pipes, rods or similarly profiled, elongated, dense, metallic objects, in particular made of stainless steel or high-alloyed nickel steels, in particular heat-resistant steels for heat exchangers, e.g. high-alloy nickel steels with 80% nickel and 20% chromium, powder in the capsule according to the invention made of metal or metal alloys or mixtures thereof or mixtures of powders made of metals and / or metal alloys with ceramic powders.
  • Spherical or predominantly spherical powder is preferably used as the powder, with an average diameter preferably below about 1 mm.
  • spherical powder is used which, in an inert gas, preferably argon, atmosphere from the desired starting material, i.e. the desired metal and / or metal alloy has been produced by atomization.
  • Powder grains with a diameter greater than 1 mm are preferably sieved, at least for the most part, since there is a risk that argon will be enclosed in powder grains with a diameter larger than 1 mm.
  • Such inclusion of argon can be used in atomizing e.g. done by turbulence. Inclusion of argon would cause unfavorable properties of the extruded articles during extrusion and lead to inclusion lines.
  • the capsule for producing the compacts for the pipes to be extruded is filled with the powder, the density of the powder filled in the capsule being increased by vibration to about 60 to 71% of the theoretical density and the frequency of the vibration preferably being at least about 70 Hz, advantageously 80 to 100 Hz is selected.
  • a density of about 68 to 71% of the theoretical density can be obtained by vibration at 80 to 100 Hz.
  • the capsule is closed, preferably after evacuation and / or filling with inert gas.
  • the density of the powder is then increased by isostatic cold pressing with a pressure of at least 4000 bar, preferably 4200 to 6000 bar, in particular 4500 to 5000 bar, with at least 80 to 93% of the theoretical density.
  • capsules which are generally made of thin sheet metal, preferably about 1 to 2 mm thick sheet, in particular about 1.5 mm thick sheet, are particularly advantageous.
  • Low-carbon soft steel in particular with a carbon content of less than 0.015%, in particular less than 0.004%, is preferably used as the material for this capsule in order to prevent carburization of the powder during heating and during extrusion.
  • the capsule Due to the all-round pressure during cold isostatic pressing, the capsule is compressed uniformly both in the longitudinal direction and in the radial direction and then forms a compact. As far as possible, this compact should not have any irregularities, since these lead to difficulties in extruding, in particular when extruding pipes.
  • a capsule which is designed as an annular body, the outer jacket of this annular body being formed by a spiral-welded tube section which, for example, is made from an approximately 1.5 mm thick sheet.
  • an inner jacket is used, for example in the form of a longitudinally welded tube section, which has a smaller diameter but the same wall thickness as the outer jacket.
  • An annular cover is fastened on one side between the outer and inner jacket and the annular space between the two tubes is closed on one side.
  • spherical powder is poured into the annular space and compacted to about 68% of the theoretical density by vibrating at 80 Hz, for example. It is then evacuated and the other end face of the annular body is sealed by a corresponding second cover. This is followed by cold isostatic pressing in a liquid, for example water, at a pressure of, for example, 4700 bar.
  • the aim of the capsule according to the invention is that the spiral weld seam is as smooth as possible and that the properties of the sheet do not change significantly. Therefore, the weld seam is preferably smoothed by means of rollers and / or by means of grinding.
  • the welding seam can be smoothed by means of rollers immediately after the welding process.
  • the outer casing In the case of capsules for the production of pipes, it may be expedient not only to produce the outer casing, but also the inner casing from a pipe which has approximately the same strength properties in the axial direction along its circumference.
  • the inner jacket can either consist of a spiral welded tube or an extruded tube.
  • the use of an extruded or spiral welded tube for the inner jacket is particularly useful with large dimensions. In the case of smaller dimensions, it is generally sufficient if the outer casing of the capsule is produced according to the invention from a tube section which has approximately the same strength properties in the axial direction along its circumference.
  • the capsule is generally designated 101 in FIG. 1.
  • the capsule has an outer casing 102 and an inner casing 104.
  • Inserts 130 and 140 are arranged both in the area of the front face of the capsule and in the area of the rear and bottom face of the capsule, which form the front and rear face of the capsule.
  • the outer jacket 102 consists of a spiral welded pipe section, over the circumference of which the weld seam runs in a spiral, the pitch of which is dimensioned such that the spiral forms approximately a complete turn over the length of the pipe section.
  • the outer casing 102 and also the inner casing 104 of the capsule 101 consisted of sheet metal with a thickness of 1.5 mm and a carbon content of less than 0.004%.
  • the capsule had a length of 600 mm and an outer diameter of 150 mm.
  • the inner diameter of the inner jacket 104 was approximately 55 mm.
  • the inner jacket 104 consisted of a longitudinally welded pipe section. To produce the compact, powder, which consisted predominantly of spherical grains with an average diameter of less than 1 mm and was obtained from the desired starting material by atomization in an argon atmosphere, e.g. had been made of stainless steel, filled in the bottom sealed capsule 101.
  • the powder was compacted by vibration at a frequency of 80 Hz to a density of about 68% of the theoretical density.
  • the capsule was then evacuated and closed by means of the lid 110, which was connected to the outer casing 102 of the capsule by welding approximately along the weld seam 116 in FIG. 1.
  • the density of the powder was then increased to about 85% of the theoretical density by cold isostatic pressing at a pressure of 4700 bar.
  • the compact thus obtained was, as described in DE-AS 24 19 014, extruded to the tube.
  • the front insert 130 has a central bore 132 for receiving the inner shell 104 of the capsule.
  • the insert 130 has an essentially flat end face 134. However, it is chamfered or rounded at its outer edge at 135 and then initially has a cylindrical section 137 which merges into the conical outer surface 136. At 139, the transition from the conical outer surface 136 to the wall of the central bore 132 is rounded.
  • the contour of the cover 110 which is designed as a sheet metal insert, corresponds exactly to that of the adjacent parts of the insert 130. In particular, the cover 110 has a cylindrical section 117 on the outer edge, which ensures that the cover 110 is in good contact with the outer jacket 102.
  • the cover 110 has a short, essentially cylindrical section 119, which bears against the inner casing 104 of the capsule and is sealed at 118 by means of a weld seam to the inner casing 104.
  • the cover 110 also has a rounding corresponding to the rounding 139 of the insert 130.
  • an insert 140 is arranged, which has a central bore 142 and a flat end face 144 pointing outward. This insert 140 is also beveled or rounded at the edge at 145 and has one outer cylindrical portion 147.
  • the shape of the bottom cover or capsule base 120 corresponds to the shape of the insert 140 and also has an outer cylindrical section 127 and an inner cylindrical section 129.
  • the bottom cover 120 is welded tightly to the outer casing 102 and the inner casing 104 by means of weld seams 126 and 128.
  • the inserts 130 and 140 are preferably made of soft iron or low-carbon soft steel.
  • the insert 130 provided on the front end face of the capsule has an essentially circular arc-shaped cross-sectional profile 136.
  • the center points of the circular cross-sectional profile 136 lie on a circle which is approximately in the region of the intersection between the flat end face 134 and the wall of the bore 132, i.e. lies in the region of the front boundary line of the bore 132, and is indicated by two crosses 138 in FIG. 1.
  • the approximately circular cross-sectional profile 136 offers the advantage that when extruding the compact, the insert 130 made of soft iron or a similar metal together with the cover 110, the weld seams 116, 118 and the adjacent parts of the outer casing 102 and the inner casing 104 form the first part of the Form tube which is cut off after extrusion or even falls off by itself if the connection to the subsequent tube, which is preferably made of stainless steel and made from the powder filling of the capsule, has no or no sufficient strength.
  • the approximately circular arc of the boundary line 136 of the insert 130 ensures that the dividing line between the front, waste section of the extruded tube and the actual tube, which is made of high-quality stainless material, is formed sharply and as a separating surface which extends essentially perpendicular to the longitudinal axis of the tube .
  • the lid 110 also has an approximately cylindrical section 117, which is welded at 116 to the outer casing 102 of the capsule, and an approximately cylindrical inner section 119, which bears against the inner casing 104 and at 118 by means of a circumferential weld seam tightly to the inner casing connected is.
  • the transition from the wall of the central bore 132 to the circular cross-sectional profile 136 is rounded off at 139.
  • cover 110 and base 120 can be omitted.
  • inserts 130, 140 When using sheet metal inserts as a lid or base, it may be expedient to attach inserts 130, 140 to them by spot welding. In many cases, however, it is also sufficient to fix the inserts 130 and 140 through the flanged ends 115 and 125 of the outer jacket 102.
  • the use in the area of the front end face of the capsule leads to a kind of tunnel effect when extruding, if this insert is made of ductile material, e.g. ductile iron, soft iron, low-alloy carbon steel or cast iron.
  • ductile material e.g. ductile iron, soft iron, low-alloy carbon steel or cast iron.
  • the pressure required in the container of the extrusion press to extrude the compact is reduced if the front insert is made of ductile material and this material is easier to flow than the powder filling of the compact. Once the flow process that takes place during extrusion is initiated, it also spreads to the powder filling, even if the flow limit of the powder filling is higher than the flow limit of the ductile material of the insert; so there is a kind of tunnel effect.
  • the outer jacket 102 has a bulge 103 which is opposite to the shrinkage during cold isostatic pressing.
  • the insert 140 in the area of the capsule base 120 also has an approximately circular cross-sectional profile 146, which in the area of the central bore 142 merges into the wall of the bore 142 via a rounded region 149.
  • the insert 140 On the outside, the insert 140 has an essentially cylindrical section 147, against which a cylindrical section 127 of the base 120 comes to rest.
  • the cylindrical section 127 is welded at 126 to a substantially cylindrical section 166 of the outer jacket 102.
  • the cylindrical portion 129 of the cover 120 bears against the inner shell 104 and is welded to the inner shell at 128.
  • the outer end face 144 of the insert 140 is planar and rounded or beveled at the outer edge at 145, so that the flanged lower edge 125 of the outer casing 102 can hold the insert 140.
  • the bulge 103 is dimensioned such that the inner surface of the outer jacket 102 shrinks after the cold isostatic pressing up to the line 170, which corresponds to the ideal cylindrical shape. Accordingly, the cylindrical sections 156 and 166 of the outer casing 102 are preferably drawn in by rolling until they are aligned with the line 170.
  • the outer jacket 102 essentially has a constant outer diameter in the region indicated at 150.
  • outwardly concave regions 157 and 167 are approximately mirror images of the cross-sectional profile 136 and 146 of the inserts, the line 170 representing the mirror symmetry axis and the angle of curvature of the outer jacket indicated at ⁇ approximately in the ratio of the percentage shrinkage to the angle of curvature 8 of the neighboring mission is reduced.
  • FIG. 2 shows a modified embodiment, similar to FIG. 1, in which all the same or similar parts are provided with reference numbers increased by a hundred.
  • the inserts 230 and 240 have a cross-sectional profile which is substantially tapered at 239 and 249, so that the appropriately designed lid 210 and the appropriately designed bottom 220 extend directly to the inner jacket 204 and form an obtuse angle with them form a or a '. It has been shown that this training is advantageous for exact centering of the compact.
  • bulging of the inner jacket 204 is not necessary.
  • a slight outward bulge of the inner jacket can be advantageous in the embodiment according to FIG.
  • the bulge of the outer and / or inner jacket can be advantageous according to the invention in connection with any insert.
  • the bulge in combination with a spiral-welded outer and / or inner tube can also be advantageous.
  • FIG. 3 shows a modified embodiment, similar to FIG. 2, in which all the same or similar parts are provided with reference numbers increased by a hundred. The main difference is that the inserts 330 and 340 are provided with tips 339 and 349 and that no sheet metal inserts are provided.
  • the regions with a changing cross section of the outer jacket 302 each form a transition region 355, 365, which is arranged in the region of an insert 330 or 340.
  • the cross-sectional contour 336, 346 of the inserts 330, 340 is approximately a reflection of the contour of the outer jacket in the transition regions 355, 365, which is mirrored on the line 370 of the desired cylindrical shape of the compact, but is stretched in the radial direction, the extent of the stretch being approximately corresponds to the ratio of the difference between the outer and inner diameter of the compact to the shrinkage of the capsule, preferably taking into account the change in the cross-sectional area as the radius becomes smaller.
  • the inserts 330 and 340 are directly welded to the outer and inner jacket, respectively.
  • 337 and 347 are cylindrical portions of the inserts 330 and 340, respectively, which correspond to the cylindrical portions 137, 147 and 237, 247 of Figures 1 and 2, respectively.
  • a sheet-metal insert forming a bottom was welded similarly to insert 120 in FIG. 1, on the one hand tightly to the outer jacket and on the other hand tightly to an inner jacket which consisted of a 590 mm long, longitudinally welded tube with a wall thickness of 1.5 mm and an inner diameter of 40 mm.
  • annular or funnel-shaped insert similar to insert 140, made of low-alloy carbon steel with approximately 0.004% carbon stock was inserted from the first end of the outer jacket and fastened by means of spot welding.
  • the capsule was placed upright on a plate, filled with powder and vibrated at 80 Hz and compressed to about 68% of the theoretical density and at the same time provided with a funnel-shaped sheet-metal insert similar to 110 in FIG. 1, which between Inner and outer sheath was pushed in with great pressure from above. Then the sheet insert was tightly welded to the inner and outer jacket, as indicated in Figure 1 at 116 and 118. Then the front ring-shaped or funnel-shaped insert was inserted from above, which was designed similarly to 130 in FIG. 1 and consisted of low-alloy carbon steel with approx. 0.004% C. This ring-shaped insert was advantageously welded to the funnel-shaped sheet metal insert or the inner or outer jacket by means of spot welding.
  • the capsule was cold isostatically pressed at 4700 bar in water to a density of 88% of the theoretical density.
  • the compact shrank to an outside diameter of 144 mm, i.e. to the same dimension as the retracted cylindrical sections at the ends.
  • the dimension of 144 mm also corresponded to the inner diameter of the container of the extrusion press. This ensured perfect centering.
  • the inside diameter of the compact was almost exactly 40 mm.
  • the compact was also completely straight and, after induction heating to 1200 ° C., could be extruded directly into the desired seamless tube made of stainless steel, without further processing being necessary.
  • the front section of the tube made of low-alloy carbon steel was cut off. None was cut from the stainless steel. Due to the fact that the insert is conical, a line of separation between the extruded insert and the stainless steel, which is approximately perpendicular to the pipe axis, was maintained in the extruded tube. The part of the pipe made of stainless material had a flawless surface. The material loss was thereby reduced to a minimum.
  • a glass layer can be applied according to the invention on the surface of the front insert facing the powder filling 308.
  • Such an intermediate glass layer makes the separation between the low-alloy carbon steel and the stainless steel considerably easier when the extruded tube is obtained, so that the two types of steel are obtained completely separately from one another and without mixing.
  • the surface of the bottom-side insert 340 adjoining the powder filling 308 can also be provided with a glass layer which facilitates the separation of stainless material and low-alloy carbon steel.
  • the inserts 130, 140, 230, 240, 330 and 340 can also be pressed from powdered starting material.
  • powdered starting material e.g. water-atomized soft iron or water-atomized low-carbon steel can be used, which is cold isostatically pressed to the desired shape of the insert mentioned and then sintered.
  • the pressing of the soft iron powder can be carried out cold isostatically in a plastic mold, the pressure preferably being chosen to be at least as high, if not higher, than the pressure for the cold isostatic pressing which is used for the production of the capsules. Subsequent hot sintering can result in a dense material.
  • a seal can be obtained by applying an outer glass layer, in this case also on the end faces 134, 234, 334 or 144, 244 and 344 and the peripheral surfaces.
  • the embodiment according to FIG. 4 largely corresponds to that according to FIG. 3. Only the insert pieces have a modified shape.
  • the front insert 330 ' consists of two rings 380 and 381, which are held together by means of several spot welds 382. Instead of two rings 380, 381, three or more rings can of course also be provided, the outer contour of which approximates the ideal contour of the front insert, which is represented by curve 336 of FIG. 3 or circular cross-section 236 of FIG. 2 or 136 of FIG. 1 is given.
  • the bottom-side insert 340 ' consists of an annular plate.
  • additional rings with a stepped outer diameter and / or stepped inner diameter can be provided in order to approximate the desired ideal profile, e.g. to achieve an approximation to the profile 346 according to FIG. 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Formation And Processing Of Food Products (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Extrusion Of Metal (AREA)
  • Food-Manufacturing Devices (AREA)
  • Auxiliary Devices For And Details Of Packaging Control (AREA)
  • Meat, Egg Or Seafood Products (AREA)
  • Jellies, Jams, And Syrups (AREA)
  • Closures For Containers (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Forging (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Medicinal Preparation (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

A casing for isostatically pressed pieces, which are intended for the extrusion of metal articles, in particular stainless steel metal pipes. The outer and inner envelopes (302, 304) of the casing (301) are comprised of a thin metal sheet: the outer envelope (302) at least has, along the periphery thereof, resistance characteristic substantially uniform in the axial direction and it consists of, in particular, a spiral welded pipe and is provided, preferably, with a bulge directed outwardly, opposed to the narrowing. It is provided, at least at the front part of the casing an intermediary piece which is made of one or several parts; this piece is obtained from ductile material or from a material obtained by compression of a powder. It is also provided a method for producing such casings and pressed pieces and a method for the extrusion of pipes as well as pipes obtained by such method.

Description

Die vorliegende Erfindung betrifft eine ringförmige Kapsel für Preßlinge zur pulvermetallurgischen Herstellung von Rohren, wobei die Kapsel einen Außen- und Innenmantel aus dünnem, duktilem Blech aufweist, zwischen denen ein Innenraum mit ringförmigem Querschnitt zur Aufnahme von isostatisch zu pressenden Metall- oder Legierungspulvern vorhande ist, der an seinen Stirnseiten mittels ringförmiger Deckel dicht verschließbar ist. Weiter betrifft die vorliegende Erfindung ein Verfahren zum Herstellen derartiger Kapseln sowie ein Verfahren zur pulvermetallurgischen Herstellung von Rohren.The present invention relates to an annular capsule for compacts for the powder-metallurgical production of pipes, the capsule having an outer and inner jacket made of thin, ductile sheet metal, between which there is an interior with an annular cross section for receiving metal or alloy powders to be pressed isostatically, which can be closed tightly on its end faces by means of an annular cover. The present invention further relates to a method for producing such capsules and a method for the powder-metallurgical production of tubes.

Aus der DE-AS 24 19 014 (deutsche Auslegeschrift Nr. 24 19 014) ist bereits ein Verfahren zum Herstellen von Rohren aus rostfreiem Stahl bekannt, die gleichmäßiges Gefüge sowie gleichmäßig physikalische und chemische Eigenschaften und eine gute Weiterverarbeitbarkeit aufweisen, wobei Pulver aus solchem Stahl in metallische Kapseln gefüllt und die verschlossenen Kapseln mittels allseitig wirkendem Druck komprimiert werden und der so erhaltene Preßling zu Rohren stranggepreßt wird, und wobei durch Zerstäuben von Schmelze in Inertgas, hergestelltes Stahlpulver aus überwiegend sphärischen Teilchen verwendet wird, dünnwandige Kapseln aus einem duktilen Metall verwendet werden, deren Wanddicke maximal etwa 5% des Außendurchmessers der Kapsel beträgt, die Dichte des in die Kapsel eingefüllten Stahlpulvers durch Vibration und/oder Ultraschall auf etwa 60 bis 70% der theoretischen Dichte erhöht wird und die Dichte des Stahlpulvers durch isostatisches Kaltpressen der Kapsel mittels eines Druckes von mindestens 1500 bar auf mindestens 80%, vorzugsweise 80% bis 93% der theoretischen Dichte erhöht wird, der Preßling erwärmt und anschließend heiß, vorzugsweise bei Temperaturen von mindestens etwa 1200°C zu dem gewünschten Halbzeug stranggepreßt wird.From DE-AS 24 19 014 (German Auslegeschrift No. 24 19 014) a method for manufacturing pipes made of stainless steel is already known, which have a uniform structure and physical and chemical properties and good processability, powder of such steel filled into metallic capsules and the sealed capsules are compressed by means of pressure acting on all sides, and the compact thus obtained is extruded into tubes, and thin-walled capsules made of a ductile metal are used by atomizing melt in inert gas, produced steel powder from predominantly spherical particles , whose wall thickness is a maximum of about 5% of the outer diameter of the capsule, the density of the steel powder filled into the capsule is increased to about 60 to 70% of the theoretical density by vibration and / or ultrasound, and the density of the steel powder by cold isostatic pressing of the capsule by means of a Pressure is increased from at least 1500 bar to at least 80%, preferably 80% to 93% of the theoretical density, the compact is heated and then extruded hot, preferably at temperatures of at least about 1200 ° C., to give the desired semi-finished product.

Nach der DE-AS 24 19 014 kann man die metallischen Kapseln, die mit dem Stahlpulver gefüllt sind, vor dem Verschließen evakuieren und/oder mit einem Gas, insbesondere einem Inertgas, z.B. Argon, füllen.According to DE-AS 24 19 014, the metallic capsules, which are filled with the steel powder, can be evacuated before closing and / or with a gas, in particular an inert gas, e.g. Argon, fill.

Nach der DE-AS 24 19 014 werden vorzugsweise metallische Kapseln verwendet, deren Wanddicke weniger als 3%, insbesondere weniger als 1% des Außendurchmessers der Kapsel beträgt, und insbesondere metallische Kapseln verwendet, deren Wanddicke zwischen etwa 0,1 bis 5 mm, vorzugsweise zwischen etwa 0,2 und 3 mm liegt.According to DE-AS 24 19 014, metallic capsules are preferably used, the wall thickness of which is less than 3%, in particular less than 1% of the outer diameter of the capsule, and in particular metallic capsules are used, the wall thickness of which is between about 0.1 to 5 mm, preferably is between about 0.2 and 3 mm.

Nach der DE-AS 24 19 014 sind auch Verbundrohre herstellbar, wobei man dünnwandige metallische Kapseln verwendet, die durch eine oder mehrere konzentrische Scheidewände in zwei oder mehr Bereiche getrennt sind und man die überwiegend sphärischen Pulverteilchen der verschiedenen Stahlqualitäten in jeweils einen dieser Bereiche unter gleichzeitigem Vibrieren einfüllt, danach die Scheidewände entfernt und die Kapseln verschließt, worauf das isostatische Kaltpressen und das Strangpressen bei erhöhter Temperatur erfolgt. Beim Strangpressen der Preßlinge zu Rohren wird normalerweise Glas als Schmiermittel verwendet. Da große Ansprüche an das Schmiermittel beim Extrudieren, insbesondere von rostfreien Stahlqualitäten, bei höheren Temperaturen gestellt werden, ist es notwendig, eine im wesentlichen plane Stirnfläche des Preßlings zu haben, damit das in Form eines Glasrondells auf die Stirnfläche des Preßlings gegebene Schmiermittel wirklich ausgenutzt wird.According to DE-AS 24 19 014, composite pipes can also be produced, using thin-walled metallic capsules which are separated into two or more areas by one or more concentric partition walls and the predominantly spherical powder particles of the different steel qualities being in one of these areas at the same time Vibrate filled, then the partitions removed and the capsules closed, whereupon the isostatic cold pressing and the extrusion takes place at elevated temperature. Glass is normally used as a lubricant when extruding the compacts into tubes. Since high demands are made on the lubricant during extrusion, in particular of stainless steel qualities, at higher temperatures, it is necessary to have a substantially flat end face of the compact so that the lubricant given in the form of a glass rondelle on the end face of the compact is really used .

Es hat sich nun gezeigt, daß man bei der Extrudierung Oberflächenfehler erhielt, und zwar im vorderen Teil des extrudierten Rohres, was seinen Grund darin hatte, daß man beim Übergang zwischen Deckel und Mantel eine kräftige Störung des Fließverlaufs erhielt, was auf die störende Wirkung der Schweißung zurückzuführen war. Dies verursachte eine bedeutende Ausbeuteeinbuße.It has now been shown that surface defects were obtained during the extrusion, specifically in the front part of the extruded tube, which was due to the fact that a strong disturbance in the flow course was obtained at the transition between the cover and the jacket, which had an adverse effect on the Was due to welding. This caused a significant loss in yield.

Aufgabe der vorliegenden Erfindung ist es, die Ausbeute zu erhöhen, d.h. den prozentuellen Anteil an fehlerhaften extrudierten Rohren zu verringern und die Qualität und Maßgenauigkeit der extrudierten Rohre zu erhöhen.The object of the present invention is to increase the yield, i.e. to reduce the percentage of defective extruded tubes and to increase the quality and dimensional accuracy of the extruded tubes.

Diese Aufgabe wird ausgehend von einer Kapsel der eingangs genannten Art erfindungsgemäß dadurch gelöst, daß zumindest der Außenmantel einen in Richtung der Kapsellängsachse sich ändernden Umfang aufweist, wobei die den Stirnseiten der Kapsel benachbarten Mantelendabschnitte die radialen Abmessungen des fertigen Preßlings aufweisen und der Mantelmittelabschnitt mit einer die Schrumpfung beim isostatischen Pressen ausgleichenden, von der Kapselachse gleichmäßig nach außen gerichteten Ausbauchung versehen ist und der Mantelmittelabschnitt mit den Endabschnitten über sich von diesen aus konisch erweiternde Mantelzwischenabschnitte verbunden ist und daß zumindest an der vorderen Stirnseite der Kapsel ein aus Vollmaterial bestehender oder aus Pulver gepreßter, eine plane äußere Stirnfläche aufweisender, mit einer zentralen Bohrung zur Aufnahme des Innenmantels versehener, sich kegel-, halbkugelförmig oder konisch verjüngender Einsatz vorgesehen ist, wobei sich der sich verjüngende Teil des Einsatzes in den sich konisch erweiternden Mantelzwischenabschnitt hineinerstreckt.Starting from a capsule of the type mentioned at the outset, this object is achieved according to the invention in that at least the outer jacket has a circumference which changes in the direction of the longitudinal axis of the capsule, the jacket end sections adjacent to the end faces of the capsule having the radial dimensions of the finished compact and the jacket center section with one Shrinkage in the isostatic pressing compensating bulge, which is uniformly directed outwards from the capsule axis, and the central jacket section is connected to the end sections via conically widening jacket intermediate sections, and that at least on the front end face of the capsule is a solid material or powder-pressed, a flat outer end face is provided, provided with a central bore for receiving the inner shell, tapered, hemispherical or conically tapered insert, the tapering part of the Inserted into the flared intermediate section of the jacket.

Die erfindungsgemäße Ausbildung der Kapsel bietet den Vorteil, daß der Preßling nach dem kaltisostatischen Pressen der Kapsel keine "Sanduhrform" mit eingeschnürtem mittleren Bereich zeigt. Diese sogenannte "Sanduhrform" entsteht vielfach dadurch, daß die Enden der Kapsel, die mittels Deckel oder dgl. verschlossen sind, eine geringere Schrumpfung bei einer kaltisostatischen Pressung zeigen als der mittlere Bereich der Kapsel. Da für den Extrudiervorgang ein Preßling erforderlich ist, dessen Außenmantel möglichst genau zylinderförmig ausgebildet ist, ist es notwendig, bei einer "Sanduhrform" des Preßlings die Enden zu trimmen, was eine sehr teure Bearbeitung darstellt, wobei die Gefahr besteht, daß Risse auftreten. Die erfindungsgemäße Ausbildung der Kapsel bietet den Vorteil, daß eine Bearbeitung bzw. ein Trimmen des Preßlings zur Erzielung einer zylindrischen Form entfällt. Darüber hinaus ermöglicht es die Erfindung, Preßlinge herzustellen, deren Durchmesser sehr genau den gewünschten Durchmesserabmessungen entsprechen. Erfindungsgemäß können Genauigkeiten von ±0,2%, insbesondere +0,1% erreicht werden. Dabei können die Durchmesserabmessungen des Preßlings absolut ±0,2 mm, insbesondere ±0,1 mm genau hergestellt werden.The embodiment of the capsule according to the invention has the advantage that the compact does not show an "hourglass shape" with a constricted central region after the capsule has been cold-isostatically pressed. This so-called "hourglass shape" often arises from the fact that the ends of the capsule, which are closed by means of a lid or the like, show less shrinkage in cold isostatic pressing than that middle area of the capsule. Since a compact is required for the extrusion process, the outer jacket of which is cylindrical as precisely as possible, it is necessary to trim the ends of an "hourglass shape" of the compact, which is a very expensive process, with the risk of cracks occurring. The design of the capsule according to the invention has the advantage that there is no processing or trimming of the compact to achieve a cylindrical shape. In addition, the invention makes it possible to produce compacts whose diameters correspond very precisely to the desired diameter dimensions. Accuracies of ± 0.2%, in particular + 0.1%, can be achieved according to the invention. The diameter dimensions of the compact can be manufactured with an accuracy of ± 0.2 mm, in particular ± 0.1 mm.

Vorzugsweise werden bei der erfindungsgemäßen Kapsel der Außenmantel und/oder der Innenmantel im Bereich der Kapselenden als im wesentlichen zylindrische Abschnitte hergestellt, deren Durchmesserabmessungen genau denjenigen des gewünschten Preßlings entsprechen und die stetig in einen ausgebauchten mittleren Kapselbereich übergehen.In the capsule according to the invention, the outer shell and / or the inner shell are preferably produced in the region of the capsule ends as essentially cylindrical sections, the diameter dimensions of which correspond exactly to those of the desired compact and which continuously merge into a bulged central capsule region.

Vorteilhafterweise wird die Formgebung des Außen- und/oder Innenmantels der Kapsel erfindungsgemäß so gestaltet, daß die Ausbauchung von jedem der zylindrischen Abschnitte an den Kapselenden aus in axialer Richtung, jeweils zur Kapselmitte hin gesehen, zunächst in einem nach außen ein konkaves Querschnittsprofil aufweisenden Bereich allmählich und stetig zunimmt, wobei die Neigung des Außen- und/oder Innenmantels gegen die Kapselachse ebenfalls allmählich und stetig zunimmt, dann folgt vorzugsweise ein konischer Zwischenbereich, in dem die Neigung des Außen- und/oder Innenmantels im wesentlichen etwa konstant bleibt, wobei sich an diesen konischen Zwischenbereich ein Bereich anschließt, in dem der Außen- und/oder Innenmantel nach außen ein konvexes Querschnittsprofil aufweist und allmählich und stetig in einen achsparallelen Mittelabschnitt übergeht, der vorzugsweise im wesentlichen einen konstanten Durchmesser aufweist.Advantageously, the shape of the outer and / or inner shell of the capsule is designed according to the invention such that the bulge from each of the cylindrical sections at the capsule ends in the axial direction, as seen in each case towards the center of the capsule, initially gradually in a region having a concave cross-sectional profile and increases steadily, the inclination of the outer and / or inner casing against the capsule axis also gradually and steadily increasing, then preferably follows a conical intermediate region in which the inclination of the outer and / or inner casing remains essentially constant, whereby this conical intermediate area is adjoined by an area in which the outer and / or inner jacket has a convex cross-sectional profile and gradually and continuously merges into an axially parallel central section, which preferably has a substantially constant diameter.

Eine Verbesserung der Maßgenauigkeit des Preßlings und eine Verminderung der Ausschußquote kann erfindungsgemäß auch dadurch erzielt werden, daß an der vorderen und/oder hinteren Stirnseite der Kapsel ein platten-, kegel-, halbkugel- oder trichterförmiger Einsatz aus Vollmaterial angeordnet wird. Durch das Vorsehen derartiger Einsätze werden die Fließeigenschaften beim Extrudieren des Preßlings wesentlich verbessert und die Ausbeute an rostfreiem Material erhöht, da die Einsätze, die vorzugsweise aus elektrisch leitendem Metall, insbesondere Weicheisen bzw. einem kohlenstoffarmen weichen Stahl bestehen, die Enden der extrudierten Rohre bilden, die ohnehin abgeschnitten werden müssen. Ferner wird durch die vorzugsweise aus einem elektrisch leitenden Metall bestehenden Einsätze im Bereich der vorderen und/oder hinteren Stirnfläche der Kapsel die Erwärmung des Preßlings vor dem Extrudieren mittels induktiver Wärme wesentlich erleichtert, da die metallischen Einsätze sich leicht induktiv aufheizen lassen und ihre Wärme an die übrigen Teile des Preßlings, insbesondere an den mit Pulver gefüllten Innenraum abgeben und damit zur schnellen Aufheizung des gesamten Preßlings beitragen.An improvement in the dimensional accuracy of the compact and a reduction in the reject rate can also be achieved according to the invention in that a plate, cone, hemisphere or funnel-shaped insert made of solid material is arranged on the front and / or rear end of the capsule. The provision of such inserts significantly improves the flow properties when extruding the compact and increases the yield of stainless material, since the inserts, which preferably consist of electrically conductive metal, in particular soft iron or a low-carbon soft steel, form the ends of the extruded tubes. that have to be cut off anyway. Furthermore, the inserts, which preferably consist of an electrically conductive metal, in the region of the front and / or rear end face of the capsule considerably facilitate the heating of the compact prior to extrusion by means of inductive heat, since the metal inserts can be easily inductively heated and their heat to the Dispense the remaining parts of the compact, in particular to the powder-filled interior, and thus contribute to the rapid heating of the entire compact.

Als besonders vorteilhaft hat sich die Kombination der vorgenannten Einsätze im Bereich der vorderen und/oder hinteren Stirnfläche der Kapsel und die Ausbildung des Außen- und/oder Innenmantels der Kapsel mit einer der Schrumpfung beim isostatischen Pressen entgegen- und nach außen gerichteten Ausbauchung erwiesen, die so bemessen ist, daß sie durch die Schrumpfung im wesentlichen wieder beseitigt wird. Durch diese Kombination können erfindungsgemäß die Abmessungen des Preßlings noch wesentlich genauer eingehalten werden. Insbesondere ist es möglich, die Abmessungen des Preßlings auf ±0,05% oder absolut auf ±0,1 mm oder genauer einzuhalten, was für die fehlerfreie Herstellung von extrudierten Gegenständen, insbesondere von extrudierten Rohren, von größter Bedeutung ist.The combination of the above-mentioned inserts in the area of the front and / or rear end face of the capsule and the formation of the outer and / or inner shell of the capsule with a bulge which is opposed to and outward from the shrinkage during isostatic pressing has proven to be particularly advantageous is such that it is essentially eliminated again by the shrinkage. With this combination, the dimensions of the compact can be maintained even more precisely according to the invention. In particular, it is possible to maintain the dimensions of the compact to ± 0.05% or absolutely to ± 0.1 mm or more precisely, which is of the greatest importance for the faultless manufacture of extruded objects, in particular of extruded tubes.

Erfindungsgemäß können die Einsätze als die Kapsel stirnseitig verschließende Deckel ausgebildet sein, wobei die Einsätze mit dem Kapselaußenmantel und dem Kapselinnenmantel dicht verschweißt werden können. Vorteilhafterweise können zwischen den Einsätzen und dem Innenraum der Kapsel auch Blecheinlagen angeordnet werden, die als Deckel ausgebildet sind und mit dem Außenmantel und dem Innenmantel durch Schweißen dicht verbunden werden.According to the invention, the inserts can be designed as caps that close the end of the capsule, wherein the inserts can be tightly welded to the outer shell of the capsule and the inner shell of the capsule. Advantageously, sheet inserts can also be arranged between the inserts and the interior of the capsule, which are designed as lids and are tightly connected to the outer jacket and the inner jacket by welding.

Erfindungsgemäß können für Kapseln zum Herstellen von Preßlingen zum Extrudieren von Rohren Einsätze für die vordere Stirnseite der Kapsel verwendet werden, die trichterförmig ausgebildet und mit einer zentralen Bohrung versehen sind, wobei der Winkel y zwischen der Wandung der zentralen Bohrung für den Innenmantel der Kapsel und der kegeligen Manfelfläche des trichterförmigen Einsatzes etwa 40° bis 60°, vorzugsweise etwa 40° bis 50° insbes. etwa 45° beträgt.According to the invention can be used for capsules for the production of compacts for extruding tubes inserts for the front end of the capsule, which are funnel-shaped and are provided with a central bore, the angle y between the wall of the central bore for the inner shell of the capsule and the conical surface of the funnel-shaped insert is approximately 40 ° to 60 °, preferably approximately 40 ° to 50 °, in particular approximately 45 °.

Erfindungsgemäß kann es für die Rohrherstellung vorteilhaft sein, daß zumindestens an der vorderen Stirnseite der Kapsel ein mit einer zentralen Bohrung versehener ringförmiger Einsatz vorgesehen wird, der eine im wesentlichen plane Stirnfläche aufweist, und dessen Begrenzungsfläche zwischen der Wandung der zentralen Bohrung und seinem größten Außendurchmesser ein etwa kreisbogenförmiges Querschnittsprofil aufweist, wobei der Mittelpunkt des Kreisbogenprofils etwa im Bereich der Schnittlinie zwischen der planen Stirnfläche und der zentralen Bohrung liegt.According to the invention, it can be advantageous for the tube production that at least on the front end face of the capsule an annular insert provided with a central bore is provided, which has a substantially flat end face, and its boundary surface between the wall of the central bore and its largest outer diameter has approximately a circular cross-sectional profile, the center of the circular profile approximately in the area the line of intersection between the flat end face and the central hole.

Eine weitere wesentliche Verbesserung der Kapseln und der daraus hergestellten Preßlinge und der extrudierten Gegenstände, insbesondere der extrudierten Rohre, kann in Kombination mit den vorstehen beschriebenen erfindungsgemäß ausgebildeten Einlagen oder unabhängig von diesen Einlagen nach der Erfindung dadurch erzielt werden, daß zumindeste der Mantel der Kapsel über den ganzen Umfang etwa gleiche Festigkeitseigenschaften in axialer Richtung aufweist. Vorzugsweise ist mindestens der Außenmantel der Kapsel nach der Erfindung von einem dünnwandigen, spiralgeschweißten oder extrudierten Rohr gebildet. Eine derartige Ausbildung des Außenmantels der Kapsel bietet den Vorteil, daß extrudierte Produkte, insbesondere Rohre, erhalten werden, bei denen die Fehlerquote und damit der Ausschuß merklich verringert sind.A further significant improvement of the capsules and the compacts produced therefrom and the extruded objects, in particular the extruded tubes, can be achieved in combination with the inserts designed according to the invention described above or independently of these inserts according to the invention by at least covering the capsule has approximately the same strength properties in the axial direction over the entire circumference. Preferably, at least the outer shell of the capsule according to the invention is formed by a thin-walled, spiral welded or extruded tube. Such a design of the outer shell of the capsule offers the advantage that extruded products, in particular tubes, are obtained in which the error rate and thus the reject are markedly reduced.

Vorzugsweise wird die Steigung der von der Schweißnaht gebildeten Spirale im Verhältnis zur Länge der Kapsel so bemessen, daß die Schweißnaht etwa eine vollständige Windung bildet. Ein mit einer derartigen Schweißnaht vorgesehener Außenmantel weist an jedem Punkt längs seines Umfanges in axialer Richtung nur eine Schweißnaht und in axialer Richtung in etwa gleiche Festigkeitseigenschaften auf. Alternativ kann die Schweißnaht zwei, drei oder mehr vollständige Windungen bilden.The slope of the spiral formed by the weld seam in relation to the length of the capsule is preferably dimensioned such that the weld seam forms approximately one complete turn. An outer jacket provided with such a weld seam has only one weld seam at each point along its circumference in the axial direction and approximately the same strength properties in the axial direction. Alternatively, the weld seam can form two, three or more complete turns.

Die vorliegende Erfindung ist anwendbar bei Kapseln und Preßlingen zum Extrudieren von Gegenständen, insb. von Rohren, Stangen oder ähnlich profilierten, langgestreckten, dichten, metallischen Gegenständen, insbesondere aus rostfreiem Stahl oder hochlegierten Nickelstählen, insbesondere warmfesten Stählen für Wärmetauscher, z.B. hochlegierten Nickelstählen mit 80% Nickel und 20% Chrom, wobei in die erfindungsgemäße Kapsel Pulver aus Metall oder Metallegierungen oder Mischungen davon oder Mischungen von Pulvern aus Metallen und/oder Metallegierungen mit keramischen Pulvern gefüllt wird. Als Pulver wird vorzugsweise sphärisches oder zum überwiegenden Teil sphärisches Pulver verwendet, mit einem mittleren Durchmesser vorzugsweise unter etwa 1 mm. Erfindungsgemäß wird sphärisches Pulver verwendet, das in einer Schutzgas-, vorzugsweise Argonatmosphäre, aus dem gewünschten Ausgangsmaterial, d.h. dem gewünschten Metall und/oder Metallegierung durch Atomisieren hergestellt worden ist. Dabei werden vorzugsweise Pulverkörner mit einem Durchmesser größer als 1 mm, zumindest zum überwiegenden Teil, abgesiebt, da die Gefahr besteht, daß in Pulverkörnern mit einem Durchmesser größer als 1 mm Argon eingeschlossen ist. Ein derartiger Einschluß von Argon kann beim Atomisieren z.B. durch Turbulenz erfolgen. Ein Argoneinschluß würde beim Extrudieren ungünstige Eigenschaften der extrudierten Gegenstände hervorrufen und zu Einschlußzeilen führen.The present invention is applicable to capsules and compacts for extruding objects, in particular pipes, rods or similarly profiled, elongated, dense, metallic objects, in particular made of stainless steel or high-alloyed nickel steels, in particular heat-resistant steels for heat exchangers, e.g. high-alloy nickel steels with 80% nickel and 20% chromium, powder in the capsule according to the invention made of metal or metal alloys or mixtures thereof or mixtures of powders made of metals and / or metal alloys with ceramic powders. Spherical or predominantly spherical powder is preferably used as the powder, with an average diameter preferably below about 1 mm. According to the invention, spherical powder is used which, in an inert gas, preferably argon, atmosphere from the desired starting material, i.e. the desired metal and / or metal alloy has been produced by atomization. Powder grains with a diameter greater than 1 mm are preferably sieved, at least for the most part, since there is a risk that argon will be enclosed in powder grains with a diameter larger than 1 mm. Such inclusion of argon can be used in atomizing e.g. done by turbulence. Inclusion of argon would cause unfavorable properties of the extruded articles during extrusion and lead to inclusion lines.

Erfindungsgemaß wird die Kapsel zum Herstellen der Preßlinge für die zu extrudierenden Rohre mit dem Pulver gefüllt, wobei die Dichte des in die Kapsel gefüllten Pulvers durch Vibration auf etwa 60 bis 71% der theoretischen Dichte erhöht wird und wobei die Frequenz der Vibration vorzugsweise mindestens etwa 70 Hz, vorteilhafterweise 80 bis 100 Hz gewählt wird. Durch Vibration mit 80 bis 100 Hz kann eine Dichte von etwa 68 bis 71% der theoretischen Dichte erhalten werden.According to the invention, the capsule for producing the compacts for the pipes to be extruded is filled with the powder, the density of the powder filled in the capsule being increased by vibration to about 60 to 71% of the theoretical density and the frequency of the vibration preferably being at least about 70 Hz, advantageously 80 to 100 Hz is selected. A density of about 68 to 71% of the theoretical density can be obtained by vibration at 80 to 100 Hz.

Nach dem Einfüllen und Verdichten des Pulvers mittels Vibration wird die Kapsel verschlossen, vorzugsweise nach Evakuierung und/oder Füllen mit Inertgas. Danach wird die Dichte des Pulvers durch isostatisches Kaltpressen mit einem Druck von mindestens 4000 bar, vorzugsweise 4200 bis 6000 bar, insb. 4500 bis 5000 bar, mit mindestens 80 bis 93% der theoretischen Dichte erhöht.After the powder has been filled in and compacted by means of vibration, the capsule is closed, preferably after evacuation and / or filling with inert gas. The density of the powder is then increased by isostatic cold pressing with a pressure of at least 4000 bar, preferably 4200 to 6000 bar, in particular 4500 to 5000 bar, with at least 80 to 93% of the theoretical density.

Es hat sich gezeigt, daß Kapseln, die im allgemeinen aus dünnem Blech, vorzugsweise etwa 1 bs 2 mm dickem Blech, insb. etwa 1,5 mm dickem Blech, besonders vorteilhaft sind. Als Material für diese Kapsel wird vorzugsweise kohlenstoffarmer weicher Stahl, insb. mit einem Kohlenstoffgehalt kleiner 0,015%, insb. kleiner 0,004% verwendet, um ein Aufkohlen des Pulvers während der Erwärmung und beim Extrudieren zu verhindern.It has been found that capsules which are generally made of thin sheet metal, preferably about 1 to 2 mm thick sheet, in particular about 1.5 mm thick sheet, are particularly advantageous. Low-carbon soft steel, in particular with a carbon content of less than 0.015%, in particular less than 0.004%, is preferably used as the material for this capsule in order to prevent carburization of the powder during heating and during extrusion.

Durch den allseitigen Druck beim kaltisostatischen Pressen wird die Kapsel gleichförmig sowohl in Längsrichtung wie auch in radialer Richtung komprimiert und bildet dann einen Preßling. Dieser Preßling soll möglichst keine Unregelmäßigkeiten aufweisen, da diese zu Schwierigkeiten beim Extrudieren, insb. beim Extrudieren von Rohren, führen.Due to the all-round pressure during cold isostatic pressing, the capsule is compressed uniformly both in the longitudinal direction and in the radial direction and then forms a compact. As far as possible, this compact should not have any irregularities, since these lead to difficulties in extruding, in particular when extruding pipes.

Um einen Preßling zum Extrudieren eines Rohres herzustellen, wird eine Kapsel verwendet, die als Ringkörper ausgebildet ist, wobei der Außenmantel dieses Ringkörpers von einem spiralgeschweißten Rohrabschnitt gebildet wird, der z.B. aus einem etwa 1,5 mm dicken Blech hergestellt ist.In order to produce a compact for extruding a tube, a capsule is used which is designed as an annular body, the outer jacket of this annular body being formed by a spiral-welded tube section which, for example, is made from an approximately 1.5 mm thick sheet.

Im Inneren dieses Außenmantels wird ein Innenmantel z.B. in Form eines längsgeschweißten Rohrabschnitts eingesetzt, der einen kleineren Durchmesser, aber die gleiche Wandstärke aufweist, wie der Außenmantel. An einer Seite wird ein ringförmiger Deckel zwischen Außen- und Innenmantel befestigt und der Ringraum zwischen den beiden Rohren so einseitig verschlossen. Dann wird sphärisches Pulver in den Ringraum eingefüllt und durch Vibrieren mit z.B. 80 Hz auf etwa 68% der theoretischen Dichte verdichtet. Dann wird evakuiert und die andere Stirnseite des ringförmigen Körpers durch einen entsprechenden zweiten Deckel abgedichtet. Danach erfolgt ein kaltisostatisches Pressen in einer Flüssigkeit, z.B. Wasser, mit einem Druck von z.B. 4700 bar. Durch den allseitigen Druck erhält man einen Preßling mit einer Dichte von z.B. 85% der theoretischen Dichte.In the interior of this outer jacket, an inner jacket is used, for example in the form of a longitudinally welded tube section, which has a smaller diameter but the same wall thickness as the outer jacket. An annular cover is fastened on one side between the outer and inner jacket and the annular space between the two tubes is closed on one side. Then spherical powder is poured into the annular space and compacted to about 68% of the theoretical density by vibrating at 80 Hz, for example. It is then evacuated and the other end face of the annular body is sealed by a corresponding second cover. This is followed by cold isostatic pressing in a liquid, for example water, at a pressure of, for example, 4700 bar. Through all-round printing a compact with a density of, for example, 85% of the theoretical density is obtained.

Bei der erfindungsgemäßen Kapsel wird angestrebt, daß die spiralförmige Schweißnaht möglichst glatt ist und möglichst die Eigenschaften des Bleches nicht wesentlich verändert. Daher wird die Schweißnaht vorzugsweise mittels Walzen und/oder mittels Schleifen geglättet. Die Glättung der Schweißnaht mittels Walzen kann unmittelbar an den Schweißvorgang erfolgen.The aim of the capsule according to the invention is that the spiral weld seam is as smooth as possible and that the properties of the sheet do not change significantly. Therefore, the weld seam is preferably smoothed by means of rollers and / or by means of grinding. The welding seam can be smoothed by means of rollers immediately after the welding process.

Bei Kapseln zum Herstellen von Rohren kann es zweckmäßig sein, nicht nur den Außenmantel, sondern auch den Innenmantel aus einem Rohr zu fertigen, das längs seines Umfangs etwa gleiche Festigkeitseigenschaften in axialer Richtung aufweist. Hierbei kann der Innenmantel entweder aus einem spiralgeschweißten Rohr oder aus einem extrudierten Rohr bestehen. Die Anwendung eines extrudierten oder spiralgeschweißten Rohres für den Innenmantel ist insbesondere bei großen Abmessungen zweckmäßig. Bei kleineren Abmessungen ist est im allgemeinen ausreichend, wenn der Außenmantel der Kapsel erfindungsgemäß aus einem Rohrabschnitt hergestellt wird, der längs seines Umfangs etwa die gleichen Festigkeitseigenschaften in axialer Richtung aufweist.In the case of capsules for the production of pipes, it may be expedient not only to produce the outer casing, but also the inner casing from a pipe which has approximately the same strength properties in the axial direction along its circumference. The inner jacket can either consist of a spiral welded tube or an extruded tube. The use of an extruded or spiral welded tube for the inner jacket is particularly useful with large dimensions. In the case of smaller dimensions, it is generally sufficient if the outer casing of the capsule is produced according to the invention from a tube section which has approximately the same strength properties in the axial direction along its circumference.

Im folgenden wird die Erfindung anhand einer schematischen Zeichnung an einem Ausführungsbeispiel näher erläutert.

  • Fig. 1 zeigt eine Ausführungsform der erfindungsgemäßen Kapsel im Längsschnitt;
  • Fig. 2, 3 und 4 zeigen Längsschnitte ähnlich Fig. 1 von abgewandelten Ausführungsformen.
The invention is explained in more detail below with the aid of a schematic drawing using an exemplary embodiment.
  • Fig. 1 shows an embodiment of the capsule according to the invention in longitudinal section;
  • 2, 3 and 4 show longitudinal sections similar to FIG. 1 of modified embodiments.

Die Kapsel ist in Fig. 1 allgemein mit 101 bezeichnet. Die Kapsel weist einen Außenmantel 102 und einen Innenmantel 104 auf. Sowohl im Bereich der vorderen Stirnseite der Kapsel wie im Bereich der hinteren bzw. bodenseitigen Stirnseite der Kapsel sind Einsätze 130 bzw. 140 angeordnet, die die vordere bzw. hintere Stirnfläche der Kapsel bilden. Der Außenmantel 102 besteht aus einem spiralgeschweißten Rohrabschnitt, über dessen Umfang die Schweißnaht in einer Spirale verläuft, deren Steigung so bemessen ist, daß die Spirale über die Länge des Rohrabschnittes etwa eine vollständige Windung bildet.The capsule is generally designated 101 in FIG. 1. The capsule has an outer casing 102 and an inner casing 104. Inserts 130 and 140 are arranged both in the area of the front face of the capsule and in the area of the rear and bottom face of the capsule, which form the front and rear face of the capsule. The outer jacket 102 consists of a spiral welded pipe section, over the circumference of which the weld seam runs in a spiral, the pitch of which is dimensioned such that the spiral forms approximately a complete turn over the length of the pipe section.

Insbesondere hat sich gezeigt, daß es zweckmäßig ist, die spiralförmige Schweißnaht des Außenmantels 102 so anzuordnen, daß sie zwischen den Schweißnähten 116 und 126, durch die die Deckel 110 und 120 am Außenmantel 102 festgeschweißt sind, eine vollständige Windung bildet. Es kann aber auch vorteilhaft sein, die Steigung der Schweißnaht des Außenmantels so zu wählen, daß die Spiralschweißnaht zwischen den Schweißnähten 116 und 126 zwei, drei oder mehr vollständige Windungen bildet.In particular, it has been shown that it is expedient to arrange the spiral weld seam of the outer jacket 102 such that it forms a complete turn between the weld seams 116 and 126, by means of which the covers 110 and 120 are welded to the outer jacket 102. However, it can also be advantageous to choose the slope of the weld seam of the outer jacket so that the spiral weld seam between the weld seams 116 and 126 forms two, three or more complete turns.

Der Außenmantel 102 und auch der Innenmantel 104 der Kapsel 101 bestanden bei einem praktischen Ausführungsbeispiel aus Blech mit einer Dicke von 1,5 mm und einem Kohlenstoffgehalt kleiner als 0,004%. Die Kapsel hatte bei dem genannten Ausführungsbeispiel eine Länge von 600 mm und einen Außendurchmesser von 150 mm. Der Innendurchmesser des Innenmantels 104 betrug etwa 55 mm. Der Innenmantel 104 bestand aus einem längsgeschweißten Rohrabschnitt. Zum Herstellen des Preßlings wurde Pulver, das zum überwiegenden Teil aus sphärischen Körnern mit einem mittleren Durchmesser unter 1 mm bestand und das durch Atomisierung in Argonatmosphäre aus dem gewünschten Ausgangsmaterial z.B. aus rostfreiem Stahl hergestellt worden war, in die bodenseitig verschlossene Kapsel 101 eingefüllt. Nach dem Einfüllen wurde das Pulver durch Vibration mit einer Frequenz von 80 Hz auf eine Dichte von etwa 68% der theoretischen Dichte verdichtet. Danach wurde evakuiert und die Kapsel mittels des Deckels 110 verschlossen, der durch Schweißen etwa längs der Schweißnaht 116 in Fig. 1 mit dem Außenmantel 102 der Kapsel verbunden wurde. Danach wurde die Dichte des Pulvers durch isostatisches Kaltpressen mit einem Druck von 4700 bar auf etwa 85% der theoretischen Dichte erhöht. Der so erhaltene Preßling wurde, wie in der DE-AS 24 19 014 beschrieben, zum Rohr stranggepreßt.In a practical exemplary embodiment, the outer casing 102 and also the inner casing 104 of the capsule 101 consisted of sheet metal with a thickness of 1.5 mm and a carbon content of less than 0.004%. In the exemplary embodiment mentioned, the capsule had a length of 600 mm and an outer diameter of 150 mm. The inner diameter of the inner jacket 104 was approximately 55 mm. The inner jacket 104 consisted of a longitudinally welded pipe section. To produce the compact, powder, which consisted predominantly of spherical grains with an average diameter of less than 1 mm and was obtained from the desired starting material by atomization in an argon atmosphere, e.g. had been made of stainless steel, filled in the bottom sealed capsule 101. After filling, the powder was compacted by vibration at a frequency of 80 Hz to a density of about 68% of the theoretical density. The capsule was then evacuated and closed by means of the lid 110, which was connected to the outer casing 102 of the capsule by welding approximately along the weld seam 116 in FIG. 1. The density of the powder was then increased to about 85% of the theoretical density by cold isostatic pressing at a pressure of 4700 bar. The compact thus obtained was, as described in DE-AS 24 19 014, extruded to the tube.

Bei der Ausführungsform gemäß Fig. 1 weist der vordere Einsatz 130 eine zentrale Bohrung 132 für die Aufnahme des Innenmantels 104 der Kapsel auf. Der Einsatz 130 weist eine im wesentlichen plane Stirnfläche 134 auf. Er ist jedoch an seinem äußeren Rand bei 135 abgeschrägt bzw. abgerundet und weist dann zunächst einen zylindrischen Abschnitt 137 auf, der in die konische Mantelfläche 136 übergeht. Bei 139 ist der Übergang von der kegelförmigen Mantelfläche 136 zur Wandung der zentralen Bohrung 132 abgerundet. Der Deckel 110, der als Blecheinlage ausgebildet ist, entspricht in seiner Kontur genau derjenigen der angrenzenden Teile der Einlage 130. Insbesondere weist der Deckel 110 am äußeren Rand einen zylindrischen Abschnitt 117 auf, der eine gute Anlage des Deckels 110 an dem Außenmantel 102 sicherstellt, wobei der äußere Rand dieses zylindrischen Abschnittes 117 mittels einer Schweißnaht 116 mit dem Außenmantel 102 verbunden ist. Auch im inneren Bereich weist der Deckel 110 einen kurzen, im wesentlichen zylinderförmigen Abschnitt 119 auf, der an dem Innenmantel 104 der Kapsel anliegt und bei 118 mittels einer Schweißnaht mit dem Innenmantel 104 dicht verschweißt ist. Auch weist der Deckel 110 eine der Abrundung 139 des Einsatzes 130 entsprechende Abrundung auf.In the embodiment according to FIG. 1, the front insert 130 has a central bore 132 for receiving the inner shell 104 of the capsule. The insert 130 has an essentially flat end face 134. However, it is chamfered or rounded at its outer edge at 135 and then initially has a cylindrical section 137 which merges into the conical outer surface 136. At 139, the transition from the conical outer surface 136 to the wall of the central bore 132 is rounded. The contour of the cover 110, which is designed as a sheet metal insert, corresponds exactly to that of the adjacent parts of the insert 130. In particular, the cover 110 has a cylindrical section 117 on the outer edge, which ensures that the cover 110 is in good contact with the outer jacket 102. wherein the outer edge of this cylindrical section 117 is connected to the outer jacket 102 by means of a weld seam 116. Also in the inner region, the cover 110 has a short, essentially cylindrical section 119, which bears against the inner casing 104 of the capsule and is sealed at 118 by means of a weld seam to the inner casing 104. The cover 110 also has a rounding corresponding to the rounding 139 of the insert 130.

Im Bereich der hinteren Stirnseite der Kapsel 101 ist ein Einsatz 140 angeordnet, der eine zentrale Bohrung 142 aufweist und eine nach außen weisende ebene Stirnfläche 144. Dieser Einsatz 140 ist am Rand bei 145 ebenfalls abgeschrägt bzw. abgerundet und weist einen äußeren zylindrischen Abschnitt 147 auf. Der bodenseitige Deckel bzw. Kapselboden 120 entspricht in seiner Form der Form des Einsatzes 140 und weist auch einen äußeren zylindrischen Abschnitt 127 und einen inneren zylindrischen Abschnitt 129 auf. Der bodenseitige Deckel 120 ist mittels Schweißnähten 126 und 128 mit dem Außenmantel 102 bzw. dem Innenmantel 104 dicht verschweißt. Die Einsätze 130 und 140 bestehen vorzugsweise aus Weicheisen bzw. kohlenstoffarmen weichem Stahl.In the area of the rear end face of the capsule 101, an insert 140 is arranged, which has a central bore 142 and a flat end face 144 pointing outward. This insert 140 is also beveled or rounded at the edge at 145 and has one outer cylindrical portion 147. The shape of the bottom cover or capsule base 120 corresponds to the shape of the insert 140 and also has an outer cylindrical section 127 and an inner cylindrical section 129. The bottom cover 120 is welded tightly to the outer casing 102 and the inner casing 104 by means of weld seams 126 and 128. The inserts 130 and 140 are preferably made of soft iron or low-carbon soft steel.

Bei dem Ausführungsbeispiel gemäß Fig. 1 weist der an der vorderen Stirnseite der Kapsel vorgesehene Einsatz 130 ein im wesentlichen kreisbogenförmiges Querschnittsprofil 136 auf. Die Mittelpunkte des kreisbogenförmigen Querschnittsprofils 136 liegen auf einem Kreis, der etwa im Bereich der Schnittlinie zwischen der planen Stirnfläche 134 und der Wandung der Bohrung 132, d.h. im Bereich der vorderen Begrenzungslinie der Bohrung 132, liegt und durch zwei Kreuze 138 in Fig. 1 angedeutet ist. Das etwa kreisbogenförmige Querschnittsprofil 136 bietet den Vorteil, daß beim Extrudieren des Preßlings der aus Weicheisen oder einem ähnlichen Metall bestehende Einsatz 130 zusammen mit dem Deckel 110, den Schweißnähten 116, 118 und den benachbarten Teilen des Außenmantels 102 und des Innenmantels 104 den ersten Teil des Rohres bilden, der nach dem Extrudieren abgeschnitten wird oder sogar von selber abfällt, wenn die Verbindung zu dem vorzugsweise aus rostfreiem Stahl bestehenden, aus der Pulverfüllung der Kapsel hergestellten nachfolgenden Rohr keine oder keine hinreichende Festigkeit aufweist. Durch die etwa kreisbogenförmige Ausbildung der Begrenzungslinie 136 des Einsatzes 130 wird erreicht, daß die Trennungslinie zwischen dem vorderen, als Abfall anfallenden Abschnitt des extrudierten Rohres und dem eigentlichen aus hochwertigem rostfreiem Material bestehenden Rohr scharf und als sich im wesentlichen senkrecht zur Rohrlängsachse erstreckende Trennungsfläche ausgebildet ist. Auch der Deckel 110 weist einen in etwa zylindrischen Abschnitt 117 auf, der bei 116 mit dem Außenmantel 102 der Kapsel verschweißt ist, sowie einen etwa zylinderförmigen inneren Abschnitt 119, der an dem Innenmantel 104 anliegt und bei 118 mittels einer umlaufenden Schweißnaht dicht mit dem Innenmantel verbunden ist. Der Übergang von der Wandung der zentralen Bohrung 132 zu dem kreisförmigen Querschnittsprofil 136 ist bei 139 abgerundet.In the exemplary embodiment according to FIG. 1, the insert 130 provided on the front end face of the capsule has an essentially circular arc-shaped cross-sectional profile 136. The center points of the circular cross-sectional profile 136 lie on a circle which is approximately in the region of the intersection between the flat end face 134 and the wall of the bore 132, i.e. lies in the region of the front boundary line of the bore 132, and is indicated by two crosses 138 in FIG. 1. The approximately circular cross-sectional profile 136 offers the advantage that when extruding the compact, the insert 130 made of soft iron or a similar metal together with the cover 110, the weld seams 116, 118 and the adjacent parts of the outer casing 102 and the inner casing 104 form the first part of the Form tube which is cut off after extrusion or even falls off by itself if the connection to the subsequent tube, which is preferably made of stainless steel and made from the powder filling of the capsule, has no or no sufficient strength. The approximately circular arc of the boundary line 136 of the insert 130 ensures that the dividing line between the front, waste section of the extruded tube and the actual tube, which is made of high-quality stainless material, is formed sharply and as a separating surface which extends essentially perpendicular to the longitudinal axis of the tube . The lid 110 also has an approximately cylindrical section 117, which is welded at 116 to the outer casing 102 of the capsule, and an approximately cylindrical inner section 119, which bears against the inner casing 104 and at 118 by means of a circumferential weld seam tightly to the inner casing connected is. The transition from the wall of the central bore 132 to the circular cross-sectional profile 136 is rounded off at 139.

Es kann auch vorteilhaft sein, die Einsätze 130 und 140 unmittelbar mit dem Außenmantel 102 bzw. dem Innenmantel 104 dicht zu verschweißen. In diesem Fall können Deckel 110 und Boden 120 entfallen.It may also be advantageous to tightly weld the inserts 130 and 140 directly to the outer jacket 102 and the inner jacket 104, respectively. In this case, cover 110 and base 120 can be omitted.

Bei Verwendung von Blecheinlagen als Deckel bzw. Boden kann es zweckmäßig sein, an diesen die Einsätze 130, 140 durch Punktschweißen zu befestigen. Vielfach genügt es jedoch auch, die Einsätze 130 und 140 durch die gebördelten Enden 115 bzw. 125 des Außenmantels 102 festzulegen.When using sheet metal inserts as a lid or base, it may be expedient to attach inserts 130, 140 to them by spot welding. In many cases, however, it is also sufficient to fix the inserts 130 and 140 through the flanged ends 115 and 125 of the outer jacket 102.

Der Einsatz im Bereich der vorderen Stirnfläche der Kapsel führt beim Extrudieren zu einer Art Tunneleffekt, wenn dieser Einsatz aus duktilem Material, z.B. duktilem Eisen, Weicheisen, niedriglegiertem Kohlenstoffstahl oder Gußeien, besteht. Der Druck, der im Container der Extrusionspresse zum Extrudieren des Preßlings erforderlich ist, erniedrigt sich, wenn der vordere Einsatz aus duktilem Material besteht und dieses Material leichter zum Fließen bringbar ist, als die Pulverfüllung des Preßlings. Ist der Fließvorgang, der bei der Extrusion stattfindet, einmal eingeleitet, so greift er auch auf die Pulverfüllung über, selbst dann, wenn die Fließgrenze der Pulverfüllung höher liegt als die Fließgrenze des duktilen Materials des Einsatzes; es findet also eine Art Tunneleffekt statt.The use in the area of the front end face of the capsule leads to a kind of tunnel effect when extruding, if this insert is made of ductile material, e.g. ductile iron, soft iron, low-alloy carbon steel or cast iron. The pressure required in the container of the extrusion press to extrude the compact is reduced if the front insert is made of ductile material and this material is easier to flow than the powder filling of the compact. Once the flow process that takes place during extrusion is initiated, it also spreads to the powder filling, even if the flow limit of the powder filling is higher than the flow limit of the ductile material of the insert; so there is a kind of tunnel effect.

Der Außenmantel 102 weist in Figur 1 eine Ausbauchung 103 auf, die der Schrumpfung beim kaltisostatischen Pressen entgegengesetzt ist. In Figur 1 weist auch der Einsatz 140 im Bereich des Kapselbodens 120 ein etwa kreisbogenförmiges Querschnittsprofil 146 auf, das im Bereich der zentralen Bohrung 142 über einen abgerundeten Bereich 149 in die Wandung der Bohrung 142 übergeht. Außen besitzt der Einsatz 140 einen im wesentlichen zylindrischen Abschnitt 147, an dem ein zylindrischer Abschnitt 127 des Bodens 120 zur Anlage kommt. Der zylindrische Abschnitt 127 ist bei 126 an einem im wesentlichen zylindrischen Abschnitt 166 des Außenmantels 102 angeschweißt. An dem Innenmantel 104 liegt der Deckel 120 mit seinem zylindrischen Abschnitt 129 an und ist bei 128 mit dem Innenmantel verschweißt. Die äußere Stirnfläche 144 des Einsatzes 140 ist plan ausgebildet und am äußeren Rand bei 145 abgerundet bzw. abgeschrägt, sodaß der gebördelte untere Rand 125 des Außenmantels 102 den Einsatz 140 festhalten kann. Die Ausbauchung 103 ist so bemessen, daß die Innenfläche des Außenmantels 102 nach dem kaltisostatischen Pressen bis zur Linie 170 schrumpft, die der idealen Zylinderform entspricht. Dementsprechend sind auch die zylindrischen Abschnitte 156 und 166 des Außenmantels 102 bis zur Fluchtung mit der Linie 170 vorzugsweise durch Walzen eingezogen.In FIG. 1, the outer jacket 102 has a bulge 103 which is opposite to the shrinkage during cold isostatic pressing. In FIG. 1, the insert 140 in the area of the capsule base 120 also has an approximately circular cross-sectional profile 146, which in the area of the central bore 142 merges into the wall of the bore 142 via a rounded region 149. On the outside, the insert 140 has an essentially cylindrical section 147, against which a cylindrical section 127 of the base 120 comes to rest. The cylindrical section 127 is welded at 126 to a substantially cylindrical section 166 of the outer jacket 102. The cylindrical portion 129 of the cover 120 bears against the inner shell 104 and is welded to the inner shell at 128. The outer end face 144 of the insert 140 is planar and rounded or beveled at the outer edge at 145, so that the flanged lower edge 125 of the outer casing 102 can hold the insert 140. The bulge 103 is dimensioned such that the inner surface of the outer jacket 102 shrinks after the cold isostatic pressing up to the line 170, which corresponds to the ideal cylindrical shape. Accordingly, the cylindrical sections 156 and 166 of the outer casing 102 are preferably drawn in by rolling until they are aligned with the line 170.

Um keine Faltenbildung zu erhalten und einen möglichst genau zentrierten Preßling zu erzielen, ist es erfindungsgemäß vorteilhaft, die Änderung des Durchmessers des Außenmantels 102 auf den Bereich der Einsätze 130 bzw. 140 im wesentlichen zu beschränken. Zwischen diesen Einsätzen weist der Außenmantel 102 in dem bei 150 angedeuteten Bereich im wesentlichen einen konstanten Außendurchmesser auf. Es hat sich als besonders vorteilhaft erwiesen, an die zylindrischen Abschnitte 156, 166 zur Kapselmitte hin jeweils einen Bereich 157 bzw. 167 mit einem nach außen konkaven Querschnittsprofil und daran einen kegelstumpfförmigen Zwischenbereich 158 bzw. 168 anzuschließen und diesem einen Bereich 159, 169 folgen zu lassen, der ein nach außen konvexes Querschnittsprofil aufweist und in den zylindrischen, achsparallelen Mittelbereich 150 übergeht. Wesentlich ist, daß die nach außen konkaven Bereiche 157 und 167 etwa spiegelbildlich zu dem Querschnittsprofil 136 bzw. 146 der Einsätze ausgebildet sind, wobei die Linie 170 die Spiegelsymmetrieachse darstellt und der bei β angedeutete Krümmungswinkel des Außenmantels etwa im Verhältnis der prozentualen Schrumpfung zum Krümmungswinkel 8 des benachbarten Einsatzes verkleinert ist.In order to avoid wrinkling and to achieve a compact that is centered as precisely as possible, it is advantageous according to the invention to essentially limit the change in the diameter of the outer casing 102 to the area of the inserts 130 and 140, respectively. Between these inserts, the outer jacket 102 essentially has a constant outer diameter in the region indicated at 150. It has proven to be particularly advantageous to have a respective area 157 and 167 on the cylindrical sections 156, 166 towards the center of the capsule to connect an outwardly concave cross-sectional profile and to it a frustoconical intermediate region 158 or 168 and to let this be followed by a region 159, 169 which has an outwardly convex cross-sectional profile and merges into the cylindrical, axially parallel central region 150. It is essential that the outwardly concave regions 157 and 167 are approximately mirror images of the cross-sectional profile 136 and 146 of the inserts, the line 170 representing the mirror symmetry axis and the angle of curvature of the outer jacket indicated at β approximately in the ratio of the percentage shrinkage to the angle of curvature 8 of the neighboring mission is reduced.

Die Figur 2 zeigt eine abgewandelte Ausführungsform, ähnlich Figur 1, bei der alle gleichen oder ähnlichen Teile mit um hundert erhöhten Bezugsziffern versehen sind. Der wesentliche Unterschied besteht darin, daß die Einsätze 230 und 240 ein bei 239 und 249 im wesentlichen spitz zulaufendes Querschnittsprofil aufweisen, sodaß der entsprechend ausgebildete Deckel 210 und der entsprechend ausgebildete Boden 220 sich bis unmittelbar an den Innenmantel 204 erstrecken und mit diesen einen stumpfen Winkel a bzw. a' bilden. Es hat sich gezeigt, daß diese Ausbildung für eine exakte Zentrierung des Preßlings vorteilhaft ist. Bei der Ausführung nach Figur 2 ist eine Ausbauchung des Innenmantels 204 nicht erforderlich. Dagegen kann bei der Ausführung gemäß Figur 1 eine geringe nach außen gerichtete Ausbauchung des Innenmantels vorteilhaft sein. Die Ausbauchung des Außen- und/oder Innenmantels kann in Verbindung mit beliebig ausgebildeten Einsätzen erfindungsgemäß vorteilhaft sein. Auch kann die Ausbauchung in Kombination mit einem spiralgeschweißten Außen-und/oder Innenrohr vorteilhaft sein.FIG. 2 shows a modified embodiment, similar to FIG. 1, in which all the same or similar parts are provided with reference numbers increased by a hundred. The main difference is that the inserts 230 and 240 have a cross-sectional profile which is substantially tapered at 239 and 249, so that the appropriately designed lid 210 and the appropriately designed bottom 220 extend directly to the inner jacket 204 and form an obtuse angle with them form a or a '. It has been shown that this training is advantageous for exact centering of the compact. In the embodiment according to FIG. 2, bulging of the inner jacket 204 is not necessary. In contrast, a slight outward bulge of the inner jacket can be advantageous in the embodiment according to FIG. The bulge of the outer and / or inner jacket can be advantageous according to the invention in connection with any insert. The bulge in combination with a spiral-welded outer and / or inner tube can also be advantageous.

Die Figur 3 zeigt eine abgewandelte Ausführungsform, ähnlich Figur 2, bei der alle gleichen oder ähnlichen Teile mit um hundert erhöhten Bezugsziffern versehen sind. Der wesentliche Unterschied besteht darin, daß die Einsätze 330 und 340 mit Spitzen 339 und 349 versehen sind und daß keine Blecheinlagen vorgesehen sind. Die Ausbauchung 303 von jedem der zylindrischen Abschnitte 356, 366 aus in axialer Richtung, jeweils zur Kapselmitte hin gesehen zunächst in einem ein konkaves Querschnittsprofil aufweisenden Bereich 357, 367 allmählich und stetig zunimmt, wobei die Neigung des Außenmantels 302 gegen die Kapselachse ebenfalls allmählich und stetig zunimmt, dann über einen kegelförmigen Zwischenbereich 358, 368 die Neigung des Außenmantels 302 im wesentlichen etwa konstant bleibt und sich ein Bereich 359, 369 anschließt, in dem der Außenmantel 302 ein nach außen konvexes Querschnittsprofil aufweist und allmählich und stetig in einen achsparallelen Mittelbereich 350 übergeht. Dabei bilden die Bereiche mit sich änderndem Querschnitt des Außenmantels 302 jeweils einen Übergangsbereich 355, 365, der im Bereich eines Einsatzes 330 bzw. 340 angeordnet ist. Die Querschnittskontur 336, 346 der Einsätze 330, 340 ist etwa ein Spiegelbild der Kontur des Außenmantels in den Übergangsbereichen 355, 365, das an der Linie 370 der gewünschten Zylinderform des Preßlings gespiegelt, jedoch in radialer Richtung gedehnt ist, wobei das Maß der Dehnung etwa dem Verhältnis von Differenz zwischen Außen- und Innendurchmesser des Preßlings zu Durchmesserschrumpfung der Kapsel, vorzugsweise unter Berücksichtigung der Änderung der Querschnittsfläche mit kleiner werdenden Radius, entspricht.FIG. 3 shows a modified embodiment, similar to FIG. 2, in which all the same or similar parts are provided with reference numbers increased by a hundred. The main difference is that the inserts 330 and 340 are provided with tips 339 and 349 and that no sheet metal inserts are provided. The bulge 303 from each of the cylindrical sections 356, 366 in the axial direction, in each case towards the center of the capsule, initially gradually and steadily increases in a region 357, 367 with a concave cross-sectional profile, the inclination of the outer casing 302 towards the capsule axis also gradually and continuously increases, then the inclination of the outer casing 302 remains substantially constant over a conical intermediate region 358, 368 and an area 359, 369 adjoins in which the outer casing 302 has an outwardly convex cross-sectional profile and gradually and continuously merges into an axially parallel central region 350 . The regions with a changing cross section of the outer jacket 302 each form a transition region 355, 365, which is arranged in the region of an insert 330 or 340. The cross-sectional contour 336, 346 of the inserts 330, 340 is approximately a reflection of the contour of the outer jacket in the transition regions 355, 365, which is mirrored on the line 370 of the desired cylindrical shape of the compact, but is stretched in the radial direction, the extent of the stretch being approximately corresponds to the ratio of the difference between the outer and inner diameter of the compact to the shrinkage of the capsule, preferably taking into account the change in the cross-sectional area as the radius becomes smaller.

Bei 316, 318, 326 und 328 sind die Einsätze 330 bzw. 340 direkt mit dem Außen- bzw. Innenmantel dicht verschweißt. 337 und 347 sind zylindrische Abschnitte der Einsätze 330 bzw. 340, die den zylindrischen Abschnitten 137, 147 bzw. 237, 247 der Figur 1 und 2 entsprechen.With 316, 318, 326 and 328, the inserts 330 and 340 are directly welded to the outer and inner jacket, respectively. 337 and 347 are cylindrical portions of the inserts 330 and 340, respectively, which correspond to the cylindrical portions 137, 147 and 237, 247 of Figures 1 and 2, respectively.

Beispiel:Example:

Um einen Preßling mit einem Außendurchmesser von 144 mm für das Extrudieren eines Rohres aus rostfreiem Stahl mit einem Außendurchmesser von 50 mm und einer Wandstärke von 5 mm herzustellen, wurde als Außenmantel für die Kapsel ein spiralgeschweißtes 600 mm langes Rohr mit einem Außendurchmesser von 154 mm und einer Wandstärke von 1,5 mm an seinen beiden Enden durch Walzen oder Drehdrücken eingeschnürt, derart, daß an den Enden zylindrische Abschnitte mit einem Außendurchmesser von 144 mm, entsprechend den Abschnitten 156, 166; 256, 266; 356, 366 der Figur 1 bis 3 vorhanden waren, an die sich Übergangsbereich anschlossen, die entsprechend den Übergangsbereichen 155, 165; 255, 265; 355, 365 geformt waren. Dann wurden die Enden des Außenmantels plan geschliffen. An einem ersten Ende wurde eine einen Boden bildende Blecheinlage ähnlich der Einlage 120 in Figur 1, einerseits dicht mit dem Außenmantel und andererseits dicht mit einem Innenmantel verschweißt, der aus einem 590 mm langen längsgeschweißten Rohr mit einer Wandstärke von 1,5 mm und einem Innendurchmesser von 40 mm bestand.In order to produce a compact with an outer diameter of 144 mm for the extrusion of a tube made of stainless steel with an outer diameter of 50 mm and a wall thickness of 5 mm, a spiral-welded 600 mm long tube with an outer diameter of 154 mm and a wall thickness of 1.5 mm constricted at both ends by rolling or rotary pressing, in such a way that cylindrical sections with an outer diameter of 144 mm, corresponding to sections 156, 166; 256, 266; 356, 366 of FIGS. 1 to 3 were present, which were followed by transition regions, which correspond to transition regions 155, 165; 255, 265; 355, 365 were molded. Then the ends of the outer jacket were ground flat. At a first end, a sheet-metal insert forming a bottom was welded similarly to insert 120 in FIG. 1, on the one hand tightly to the outer jacket and on the other hand tightly to an inner jacket which consisted of a 590 mm long, longitudinally welded tube with a wall thickness of 1.5 mm and an inner diameter of 40 mm.

Bis zur Anlage an das Bodenblech wurde ein ring- bzw. trichterförmiger Einsatz, ähnlich dem Einsatz 140, der aus niedriglegiertem Kohlenstoffstahl mit ca. 0,004% Kohlenstoffbestand von dem genannten ersten Ende des Außenmantels aus eingeschoben und mittels Punktschweißen befestigt.Until it touched the floor panel, an annular or funnel-shaped insert, similar to insert 140, made of low-alloy carbon steel with approximately 0.004% carbon stock was inserted from the first end of the outer jacket and fastened by means of spot welding.

Die Kapsel wurde stehend auf eine Platte gestellt, mit Pulver gefüllt und mit 80 Hz vibriert und auf etwa 68% der theoretischen Dichte verdichtet und gleichzeitig mit einer trichterförmigen als Deckel dienenden Blecheinlage ähnlich 110 in Figur 1, versehen, die zwischen Innen- und Außenmantel von oben mit großem Druck eingeschoben wurde. Dann wurde die Blecheinlage mit dem Innen- und Außenmantel dicht verschweißt, wie in Figur 1 bei 116 und 118 angedeutet. Dann wurde der vordere ring- bzw. trichterförmige Einsatz von oben eingeschoben, der ähnlich 130 in Figur 1 ausgebildet war und aus niedrig legiertem Kohlenstoffstahl mit ca. 0,004% C bestand. Mit Vorteil wurde dieser ringförmige Einsatz mittels Punktschweißen an der trichterförmigen Blecheinlage oder dem Innen- oder Außenmantel angeschweißt.The capsule was placed upright on a plate, filled with powder and vibrated at 80 Hz and compressed to about 68% of the theoretical density and at the same time provided with a funnel-shaped sheet-metal insert similar to 110 in FIG. 1, which between Inner and outer sheath was pushed in with great pressure from above. Then the sheet insert was tightly welded to the inner and outer jacket, as indicated in Figure 1 at 116 and 118. Then the front ring-shaped or funnel-shaped insert was inserted from above, which was designed similarly to 130 in FIG. 1 and consisted of low-alloy carbon steel with approx. 0.004% C. This ring-shaped insert was advantageously welded to the funnel-shaped sheet metal insert or the inner or outer jacket by means of spot welding.

Die Kapsel wurde kaltisostatisch gepreßt bei 4700 bar in Wasser auf eine Dichte von 88% der theoretischen Dichte. Dabei schrumpfte der Preßling auf 144 mm Außendurchmesser, d.h. auf dieselbe Abmessung wie die eingezogenen zylindrischen Abschnitte an den Enden. Die Abmessung von 144 mm entsprach ebenfalls dem Innendiameter des Containers der Extrudionspresse. Eine perfekte Zentrierung war damit gewährleistet. Zudem war auch der Innendurchmesser des Preßlings fast genau 40 mm.The capsule was cold isostatically pressed at 4700 bar in water to a density of 88% of the theoretical density. The compact shrank to an outside diameter of 144 mm, i.e. to the same dimension as the retracted cylindrical sections at the ends. The dimension of 144 mm also corresponded to the inner diameter of the container of the extrusion press. This ensured perfect centering. In addition, the inside diameter of the compact was almost exactly 40 mm.

Der Preßling war auch im übrigen vollständig gerade und konnte nach induktiver Erwärmung auf 1200°C direkt zu dem gewünschten nahtlosen Rohr aus rostfreiem Stahl extrudiert werden, ohne daß weitere Bearbeitungen notwendig waren. Der aus niedriglegiertem Kohlenstoffstahl bestehende vordere Abschnitt des Rohres wurde abgeschnitten. Von dem rostfreien Stahl wurde nichts abgeschnitten. Dadurch, daß der Einsatz konisch ist, hielt man bei dem extrudierten Rohr eine gegen die Rohrachse etwa senkrechte Trennungslinie zwischen dem extrudierten Einsatz und dem rostfreien Stahl. Der Teil des Rohres, der aus rostfreiem Material bestand, hatte eine fehlerfreie Oberfläche. Der Materialverlust wurde dadurch auf ein Minimum eingeschränkt.The compact was also completely straight and, after induction heating to 1200 ° C., could be extruded directly into the desired seamless tube made of stainless steel, without further processing being necessary. The front section of the tube made of low-alloy carbon steel was cut off. Nothing was cut from the stainless steel. Due to the fact that the insert is conical, a line of separation between the extruded insert and the stainless steel, which is approximately perpendicular to the pipe axis, was maintained in the extruded tube. The part of the pipe made of stainless material had a flawless surface. The material loss was thereby reduced to a minimum.

Um eine gute Trennung zwischen dem vorderen Abschnitt des extrudierten Rohres, der aus niedriglegiertem Kohlenstoffstahl besteht, und dem gewünschten nahtlosen Rohr aus rostfreiem Stahl zu erzielen, kann erfindungsgemäß eine Glasschicht auf der der Pulverfüllung 308 zugewandten Fläche des vorderen Einsatzes aufgebracht werden. Hierzu kann es zweckmäßig sein, das vordere Einsatzstück 330 zu erwärmen und die Fläche 336 mit Glaspulver zu bestreuen, wobei die Temperatur des Einsatzstückes so gewählt wird, daß das Glaspulver erweicht und festklebt. Durch eine derartige Glaszwischenschicht wird die Trennung zwischen dem niedriglegierten Kohlenstoffstahl und dem rostfreien Stahl bei Erhalt des extrudierten Rohres wesentlich erleichtert, so daß die beiden Stahlsorten völlig getrennt voneinander und ohne Vermischung erhalten werden.In order to achieve a good separation between the front section of the extruded tube, which is made of low-alloy carbon steel, and the desired seamless tube made of stainless steel, a glass layer can be applied according to the invention on the surface of the front insert facing the powder filling 308. For this purpose, it may be expedient to heat the front insert 330 and to sprinkle the surface 336 with glass powder, the temperature of the insert being selected so that the glass powder softens and sticks. Such an intermediate glass layer makes the separation between the low-alloy carbon steel and the stainless steel considerably easier when the extruded tube is obtained, so that the two types of steel are obtained completely separately from one another and without mixing.

In analoger Weise kann auch die an die Pulverfüllung 308 angrenzende Fläche des bodenseitigen Einsatzstückes 340 mit einer Glasschicht versehen werden, die eine Trennung von rostfreiem Material und niedriglegiertem Kohlenstoffstahl erleichtert.In an analogous manner, the surface of the bottom-side insert 340 adjoining the powder filling 308 can also be provided with a glass layer which facilitates the separation of stainless material and low-alloy carbon steel.

Die Einsatzstücke 130, 140, 230, 240, 330 und 340 können auch aus pulverförmigem Ausgangsmaterial gepreßt werden. Hierzu kann z.B. wasseratomisiertes Weicheisen bzw. wasseratomisierter kohlenstoffarmer Stahl verwendet werden, der kaltisostatisch zu der gewünschten Form der genannten Einsatzstück gepreßt und anschließend gesintert wird. Die Pressung des Weicheisenpulvers kann kaltisostatisch in einer Kunststofform vorgenommen werden, wobei der Druck vorzugsweise mindestens genauso hoch, wenn nicht höher als der Druck der für die kaltisostatische Pressung gewählt wird, die für die Herstellung der Kapseln verwendet wird. Durch anschließende Heißinterung kann ein dichtes Material erhalten werden. Alternativ oder zusätzlich kann durch Aufbringen einer äußeren Glasschicht, in diesem Fall auch auf den Stirnseiten 134, 234, 334, bzw. 144, 244 und 344 sowie den Umfangsflächen eine Abdichtung erhalten werden.The inserts 130, 140, 230, 240, 330 and 340 can also be pressed from powdered starting material. For this, e.g. water-atomized soft iron or water-atomized low-carbon steel can be used, which is cold isostatically pressed to the desired shape of the insert mentioned and then sintered. The pressing of the soft iron powder can be carried out cold isostatically in a plastic mold, the pressure preferably being chosen to be at least as high, if not higher, than the pressure for the cold isostatic pressing which is used for the production of the capsules. Subsequent hot sintering can result in a dense material. Alternatively or additionally, a seal can be obtained by applying an outer glass layer, in this case also on the end faces 134, 234, 334 or 144, 244 and 344 and the peripheral surfaces.

Die Ausführungsform gemäß Fig. 4 entspricht weitgehend derjenigen gemäß Fig. 3. Lediglich die Einsatzstücke weisen eine abgeänderte Form auf. Der vordere Einsatz 330' besteht aus zwei Ringen 380 und 381, die mittels mehrerer Punktschweißungen 382 zusammengehalten sind. Anstelle von zwei Ringen 380, 381 können natürlich auch drei und mehrere Ringe vorgesehen sein, deren äußere Kontur eine Annäherung an die ideale Kontur des vorderen Einsatzstückes darstellt, welche durch die Kurve 336 der Fig. 3 bzw. den kreisbogenförmigen Querschnitt 236 der Fig. 2 bzw. 136 der Fig. 1 gegeben ist. Bei der Ausführungsform gemäß Fig. 4 besteht der bodenseitige Einsatz 340' aus einer ringförmigen Platte. Auch hier können, falls erwünscht, zusätzliche Ringe mit abgestuftem Außendurchmesser und/oder abgestuftem Innendurchmesser vorgesehen sein, um eine Annäherung an das gewünschte ideale Profil, z.B. eine Annäherung an das Profil 346 gemäß Fig. 1 zu erzielen.The embodiment according to FIG. 4 largely corresponds to that according to FIG. 3. Only the insert pieces have a modified shape. The front insert 330 'consists of two rings 380 and 381, which are held together by means of several spot welds 382. Instead of two rings 380, 381, three or more rings can of course also be provided, the outer contour of which approximates the ideal contour of the front insert, which is represented by curve 336 of FIG. 3 or circular cross-section 236 of FIG. 2 or 136 of FIG. 1 is given. In the embodiment according to FIG. 4, the bottom-side insert 340 'consists of an annular plate. Here too, if desired, additional rings with a stepped outer diameter and / or stepped inner diameter can be provided in order to approximate the desired ideal profile, e.g. to achieve an approximation to the profile 346 according to FIG. 1.

Claims (10)

1. Annular capsule for blanks for the powder metallurgical production of tubes, the capsule comprising an outer and an inner wall of thin ductile metal sheet between which there is an inner space of annular cross-section for receiving metal or alloy powders to be isostatically pressed which is adapted to be sealingly closed at its end sides by means of annular covers, characterized in that at least the outer wall (102; 202; 302) comprises a periphery varying in the direction of the capsule longitudinal axis, the wall end portions (156, 166; 256, 266; 356, 366) adjacent the end sides of the capsule having the radial dimensions of the finished blank and the wall center portion (150; 250; 350) being provided with a bulge which compensates the shrinkage on isostatic pressing and is directed uniformly outwardly from the capsule axis and the wall center portion being connected to the end portions via wall intermediate portions (155, 165; 255, 265; 355, 365) widening conically from the latter and that at least at the front end of the capsule a funnel-shaped, hemispherical or conical tapering insert (130, 140; 230, 240; 330, 340; 330', 340') is provided which consists of solid material or is pressed from powder, has a planar outer end face and is provided with a central bore (132, 142; 232, 242; 332, 342) for receiving the inner wall (104; 204; 304), the tapering portion of the insert (130, 140; 230, 240; 330, 340; 330', 340') extending into the conically widening wall intermediate portion (155, 165; 255, 265; 355, 365).
2. Capsule according to claim 1, characterized in that the tapering portion of the insert (130, 140; 230, 240; 330, 340; 330', 340') extends into the conically widening wall intermediate portion (155, 165; 255, 265; 355, 365) substantially over the entire axial length of the latter.
3. Capsule according to claim 1 or 2, characterized in that the inserts (130, 140; 230, 240; 330, 340) have a cross-sectional profile (136, 146; 236, 246; 336, 339; 346, 349) which represents substantially a mirror image of the cross-sectional profile of the conically widening wall intermediate portions (155, 165; 255, 265; 355, 365) mirrored at the desired cylindrical form (170; 270; 370) but enlarged in the ratio of the diameter of the blank to the diameter shrinkage taking place in the isostatic pressing in the radial direction.
4. Capsule according to one or more of claims 1 to 3, characterized in that at least the insert (130; 230) at the front end of the capsule (101; 201) comprises between the wall of its central bore (132; 232) and its greatest outer diameter towards the capsule interior a boundary surface having a substantially arcuate cross-sectional profile (136; 236), the center point of the arcuate profile (136; 236) lying substantially in the region of the circular intersecting line between the planar end face of the insert and its central bore (132; 232) or within said circular intersecting lines.
5. Capsule according to one or more of claims 1 to 4, characterized in that the inserts (130, 140; 230, 240) consist of electrically conductive metal, preferably soft iron.
6. Capsule according to one or more of claims 1 to 5, characterized in that the inserts (330, 340) are constructed as covers closing the capsule (301) at the end faces and are welded to the outer wall (302) and inner wall (304).
7. Method of making annular capsules for the isostatic pressing of blanks for the powder metallurgical production of tubes, the capsules comprising an outer and an inner wall of thin ductile sheet metal between which a capsule interior of annular cross-section is present for receiving metal or alloy powders to be isostatically pressed and at least the outer wall comprises a periphery which varies in the direction of the capsule longitudinal axis and the wall end portions of which adjacent the ends of the capsule have the radial dimensions of the finished blank and the wall center portion of which is provided with a bulge which compensates the shrinkage in isostatic pressing and which is directed uniformly outwardly from the capsule axis, the wall center portion being connected to the end portions via wall intermediate portions widening conically from the latter and the capsule interior being sealingly closed at its ends by means of annular covers and at least at its front end a funnel-shaped, hermispherical or conical tapering insert consisting of solid material or pressed from powder, having a planar outer end face and provided with a central bore for receiving the inner wall is inserted in such a manner that the tapering portion of the insert extends into the conically widening wall intermediate portion, characterized in that the outer and inner walls are made from tubes and at least in the case of the tube serving for the production of the outer wall the tube diameter corresponds to the diameter of the bulge of the wall center portion and the two ends of the tube are constricted by rolling or rotary pressing to such an extent that at its ends the cylindrical wall end portions with a reduced diameter corresponding to the diameter of the finished blank and adjoining conically widening wall intermediate portions are formed.
8. Method according to claim 7, characterized in that the covers are coated with a glass layer at their side facing the interior of the capsule receiving the powder filling.
9. Method according to claim 7 or 8, characterized in that at least the tube of the outer wall of the capsule is produced by spiral welding or extruding.
10. Method for the powder metallurgical production of tubes, blanks being made by isostatic pressing of metal or alloy powders in annular capsules which have an outer and inner wall of thin ductile sheet metal between which a capsule interior of annular cross-section is present for receiving the powder to be pressed and in which at least the outer wall comprises a periphery which varies in the direction of the capsule longitudinal axis and the wall end portions of which adjacent the ends of the capsule have the radial dimensions of the finished blank and the wall center portion of which is provided with a bulge which compensates the shrinkage in isostatic pressing and which is directed uniformly outwardly from the capsule axis, the wall center portion being connected to the end portions via wall intermediate portions conically widening from the latter and the capsule interior being sealingly closed at its ends by means of annular covers and at least at its front end a funnel-shaped, hemispherical or conical tapering insert which consists of solid material or is pressed from powder, has a planar outer end face and is provided with a central bore for receiving the inner wall is inserted in such a manner that the tapering portion of the insert extends into the conically widening wall intermediate portion, characterized in that the planar outer end face of the insert provided at the front end of the capsule is provided at its outer periphery with a bevelled edge and for obtaining a good lubrication in the extrusion operation the glass serving for lubrication is placed in the form of a glass disk at the end of the blank in the container or receiver of the extrusion press and by the bevelled edge at the front end of the insert and by exact adaptation of the exactly cylindrical outer diameter of the blank to the cylindrical inner diameter of the container or receiver of the extrusion press during the entire extrusion operation is supplied distributed substantially uniformly in the peripheral direction between the tool and the surface of the extruded tube.
EP79901411A 1978-10-26 1980-05-07 Annular casings and process for the production of tubes by powder metallurgy and process for the manufacturing of such casings Expired EP0020536B1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE2846660 1978-10-26
DE19782846659 DE2846659A1 (en) 1978-10-26 1978-10-26 Powder filled capsule for use as extrusion blank - for making stainless steel or nickel-chromium alloy tubes, is isostatically pressed after filling
DE2846658 1978-10-26
DE19782846658 DE2846658C2 (en) 1978-10-26 1978-10-26 Metallic shell for the production of extrusion billets for the powder metallurgical production of pipes
DE2846659 1978-10-26
DE2846660A DE2846660C2 (en) 1978-10-26 1978-10-26 Annular casing for extrusion bolts for the powder metallurgical production of pipes

Publications (2)

Publication Number Publication Date
EP0020536A1 EP0020536A1 (en) 1981-01-07
EP0020536B1 true EP0020536B1 (en) 1985-02-20

Family

ID=27187716

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79901411A Expired EP0020536B1 (en) 1978-10-26 1980-05-07 Annular casings and process for the production of tubes by powder metallurgy and process for the manufacturing of such casings

Country Status (23)

Country Link
EP (1) EP0020536B1 (en)
AT (2) AT374387B (en)
BE (1) BE879623A (en)
BR (1) BR7906929A (en)
CA (1) CA1120005A (en)
CH (1) CH652054A5 (en)
CS (1) CS216687B2 (en)
DE (1) DE2967396D1 (en)
DK (1) DK153742C (en)
ES (3) ES485385A0 (en)
FI (1) FI61649C (en)
FR (1) FR2439639A1 (en)
GB (1) GB2034226B (en)
HU (1) HU179975B (en)
IT (1) IT1127798B (en)
MX (1) MX150474A (en)
NL (1) NL7907894A (en)
NO (1) NO151779C (en)
PL (1) PL132096B1 (en)
RO (1) RO79124A (en)
SE (1) SE441336B (en)
SU (1) SU1369666A3 (en)
WO (1) WO1980000803A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2492291A1 (en) * 1980-10-22 1982-04-23 Uk I Sp Container for hot extrusion of metal powder - with flow-modifying profiling element(s) to improve prod. yield
DE3530741C1 (en) * 1985-08-28 1993-01-14 Avesta Nyby Powder AB, Torshälla Process for the manufacture of powder metallurgical objects
US4640815A (en) * 1985-10-17 1987-02-03 Crucible Materials Corporation Method and assembly for producing extrusion-clad tubular product
US4640814A (en) * 1985-10-17 1987-02-03 Crucible Materials Corporation Method for producing clad tubular product
SE8603686D0 (en) * 1986-09-03 1986-09-03 Avesta Nyby Powder Ab HAUL
FR2704465B1 (en) * 1993-04-29 1995-06-23 Alsthom Intermagnetics Sa Mono or multifilament composite billet closure piece.
SE505247C2 (en) * 1994-12-07 1997-07-21 Sandvik Ab Process for manufacturing memory metal tubes
US5689976A (en) * 1996-10-24 1997-11-25 Ansell Edmont Industrial, Inc. Reinforced glove and method for forming the same
GB201119240D0 (en) * 2011-11-08 2011-12-21 Rolls Royce Plc A hot isostatic pressing tool and a method of manufacturing an article from powder material by hot isostatic pressing
GB201119238D0 (en) * 2011-11-08 2011-12-21 Rolls Royce Plc A hot isostatic pressing tool and a method of manufacturing an article from powder material by hot isostatic pressing
CZ308392B6 (en) * 2017-09-08 2020-07-22 UJP PRAHA a.s. Powder moulding for efficient sintering

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH316476A (en) * 1952-06-13 1956-10-15 Ici Ltd Process for protecting bodies formed from metal powder against oxidation
FR1164348A (en) * 1956-01-10 1958-10-08 Oerlikon Buehrle Ag Manufacturing process of extruded profiled bodies in ferrous powder
BE709814A (en) * 1968-01-24 1968-05-30
US3823463A (en) * 1972-07-13 1974-07-16 Federal Mogul Corp Metal powder extrusion process
DE2419014C3 (en) * 1974-04-19 1985-08-01 Nyby Bruks AB, Nybybruk Method of manufacturing stainless steel pipes and application of the method to the manufacture of composite pipes
US3892030A (en) * 1974-04-29 1975-07-01 Us Air Force Method of fabricating a billet from metal preforms and metal powder
DE2737248C2 (en) * 1977-08-18 1985-09-19 MTU Motoren- und Turbinen-Union München GmbH, 8000 München High strength component with a complex geometric shape and process for its manufacture

Also Published As

Publication number Publication date
DK153742C (en) 1989-01-23
FR2439639B1 (en) 1983-04-29
CA1120005A (en) 1982-03-16
FI61649B (en) 1982-05-31
NO793403L (en) 1980-04-29
ES251783U (en) 1981-05-01
ES8104027A1 (en) 1981-04-16
SU1369666A3 (en) 1988-01-23
DK153742B (en) 1988-08-29
ATA692379A (en) 1983-09-15
SE441336B (en) 1985-09-30
ES485385A0 (en) 1981-04-16
FI61649C (en) 1982-09-10
BR7906929A (en) 1980-06-24
ES251782Y (en) 1981-11-01
MX150474A (en) 1984-05-14
DK445879A (en) 1980-04-27
PL219241A1 (en) 1980-06-02
ES251783Y (en) 1981-11-01
FI793336A (en) 1980-04-27
ES251782U (en) 1981-05-01
CS216687B2 (en) 1982-11-26
NO151779B (en) 1985-02-25
WO1980000803A1 (en) 1980-05-01
RO79124A (en) 1982-06-25
IT1127798B (en) 1986-05-21
GB2034226A (en) 1980-06-04
FR2439639A1 (en) 1980-05-23
BE879623A (en) 1980-02-15
SE7908702L (en) 1980-04-27
ATE11881T1 (en) 1985-03-15
NO151779C (en) 1985-06-05
AT374387B (en) 1984-04-10
PL132096B1 (en) 1985-01-31
IT7984147A0 (en) 1979-10-26
GB2034226B (en) 1982-09-29
HU179975B (en) 1983-01-28
CH652054A5 (en) 1985-10-31
EP0020536A1 (en) 1981-01-07
DE2967396D1 (en) 1985-03-28
NL7907894A (en) 1980-04-29

Similar Documents

Publication Publication Date Title
DE2419014C3 (en) Method of manufacturing stainless steel pipes and application of the method to the manufacture of composite pipes
DE3009916C2 (en) Extruded billets for the powder metallurgical production of pipes and processes for their production
EP0020536B1 (en) Annular casings and process for the production of tubes by powder metallurgy and process for the manufacturing of such casings
CH677530A5 (en)
DE2846660C2 (en) Annular casing for extrusion bolts for the powder metallurgical production of pipes
DE4303588C2 (en) Extrusion device and its use
EP0281591B1 (en) Process device and sheath for producing pipes or similar elongated profiles by powder metallurgy
DE2038540B2 (en) DRUM WITH CYLINDRICAL CASE AND THE FACE SIDE BOTTOM OR LID FOLDED END PART, AS WELL AS PROCESS FOR ESTABLISHING THE JOINT JOINT BETWEEN THE CASE AND END PART
DE1943238B2 (en) Method and apparatus for producing tubular compacts
DE2846658C2 (en) Metallic shell for the production of extrusion billets for the powder metallurgical production of pipes
DE2211129A1 (en) Process for the production of pipes from compound material
EP3628646A1 (en) Composite crucible for drawing a glass rod, method for producing the crucible and vertical crucible drawing method
WO1980000804A1 (en) Casings and pressed parts utilized for the extrusion of articles,particularly pipes,and manufacturing process of such casings and pressed parts
DE10048870C2 (en) Housing for plastic, metal powder, ceramic powder or food processing machines and method for producing such a housing
DE2724524B2 (en) Container for hot-pressing molded bodies of entangled shape from powder
DE2745020A1 (en) PRESSING PROCESS FOR METAL POWDER
DE3009882C2 (en) Extruded billets for the powder metallurgical production of composite pipes
DE7831929U1 (en) RING-BODY SHELL FOR EXTRUSION BOLTS FOR THE POWDER METAL PRODUCTION OF TUBES
DE2308639B2 (en) Consumption electrode for the electroslag remelting process
DE2846659A1 (en) Powder filled capsule for use as extrusion blank - for making stainless steel or nickel-chromium alloy tubes, is isostatically pressed after filling
DE2556061A1 (en) Thin walled precision tube - made of metal powder by hot isostatic press forming inside autoclave in sheet metal mould
DE4313802A1 (en) METHOD FOR PRODUCING A DOUBLE TUBE CLOSED AT ONE END
DE2901700C2 (en) Method of manufacturing a magnetron anode
DE3722745A1 (en) Manufacturing process for hollow bodies of coated plates and an apparatus, in particular a superconductive high-frequency resonator
DE1777197C3 (en) Process for the production of composite material by hydrostatic extrusion and starting workpiece for carrying out the process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19801009

AK Designated contracting states

Designated state(s): AT CH DE FR GB LU NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH DE FR GB LU NL SE

REF Corresponds to:

Ref document number: 11881

Country of ref document: AT

Date of ref document: 19850315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 2967396

Country of ref document: DE

Date of ref document: 19850328

ET Fr: translation filed
ET1 Fr: translation filed ** revision of the translation of the patent or the claims
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19851031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19880701

EAL Se: european patent in force in sweden

Ref document number: 79901411.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950914

Year of fee payment: 17

Ref country code: CH

Payment date: 19950914

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950920

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950922

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950925

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19950926

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961026

Ref country code: AT

Effective date: 19961026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19961031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970501

EUG Se: european patent has lapsed

Ref document number: 79901411.3

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST