EP0016961B1 - Powder-metallurgical process for producing a superconducting-fibre composite material - Google Patents

Powder-metallurgical process for producing a superconducting-fibre composite material Download PDF

Info

Publication number
EP0016961B1
EP0016961B1 EP80100955A EP80100955A EP0016961B1 EP 0016961 B1 EP0016961 B1 EP 0016961B1 EP 80100955 A EP80100955 A EP 80100955A EP 80100955 A EP80100955 A EP 80100955A EP 0016961 B1 EP0016961 B1 EP 0016961B1
Authority
EP
European Patent Office
Prior art keywords
powder
oxygen
component
components
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80100955A
Other languages
German (de)
French (fr)
Other versions
EP0016961A1 (en
Inventor
Hans Wilhelm Prof. Dr. Bergmann
Rüdiger Dr. Bormann
Herbert C. Prof.Dr. Freyhardt
Barry Leslie Prof. Dr. Mordike
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BORMANN RUDIGER DR
Mordike Barry L Profdr
Original Assignee
BORMANN RUDIGER DR
Mordike Barry L Profdr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BORMANN RUDIGER DR, Mordike Barry L Profdr filed Critical BORMANN RUDIGER DR
Publication of EP0016961A1 publication Critical patent/EP0016961A1/en
Application granted granted Critical
Publication of EP0016961B1 publication Critical patent/EP0016961B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1078Alloys containing non-metals by internal oxidation of material in solid state
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/80Material per se process of making same
    • Y10S505/801Composition
    • Y10S505/807Powder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/80Material per se process of making same
    • Y10S505/815Process of making per se
    • Y10S505/823Powder metallurgy

Definitions

  • the invention relates to a process for the powder metallurgical production of a superconducting fiber composite material deformed in at least one dimension from at least two starting powder components, at least one of which is contaminated in volume or on the surface with oxygen or an oxygen compound, and wherein at least one starting powder component is a body-centered cubic component Metal, especially niobium or vanadium, is used.
  • two starting powder components preferably two metal powders
  • two metal powders are mixed, compacted, extruded and drawn out to form wires.
  • This fiber composite is deformed in two dimensions. If the composite material is deformed in only one dimension, the powder particles are drawn out into unrelated bands.
  • the two starting powder components are generally mixed, compacted, sintered and then subsequently subjected to the shaping process in which the powder grains are drawn out into long fibers.
  • the reaction with atmospheric oxygen and / or during the production process of the powder interstitially dissolves the volume and / or binds it to the surface as a corresponding oxide.
  • the interstitially dissolved oxygen increases both the hardness of the powder of the starting powder component and the critical temperature of the ductile-brittle transition.
  • the invention has for its object to develop the method of the type described above so that a ductile superconducting fiber composite material can be produced.
  • the ductility of the starting powder components should be matched to one another in a simple manner.
  • this is achieved in that one or more comparatively less noble additional components with a comparatively greater enthalpy of binding for the oxygen in powder form or as an alloy additive are added to the starting powder components and the oxygen is bound to this additional component by an internal solids reduction.
  • the invention thus turns away from the prior art, according to whichever attempts were made to get the oxygen out of the composite material or to prevent the diffusion of further oxygen during the individual processing steps as far as possible.
  • the invention binds the interstitially dissolved oxygen and / or the oxygen adsorbed on the surface to the additional component by an internal reduction in solids.
  • the oxygen then remains in the composite material. Since the oxygen is no longer interstitially dissolved, as an oxide of the additional component it can no longer have a disadvantageous effect on the ductility of the starting powder components, in particular those with the body-centered cubic lattice.
  • the additional component which has a comparatively higher enthalpy of binding to the oxygen, enables successful and complete purification of the starting powder component (s) from oxygen.
  • the reduction in solids is generally carried out at elevated temperature, this process taking place during the annealing treatment during sintering as an internal reduction in solids. A renewed reaction of the cleaned starting powder components with atmospheric oxygen is avoided.
  • the amount of the additional component is added in a small proportion, the proportion advantageously being so small that the composite material is only insignificantly dispersion-cured.
  • the reduction in solids is carried out in the volume of the mixture of starting powder components and the additional component.
  • the method according to the invention primarily impresses with the simplicity of producing a superconducting fiber composite material, in particular with high density (extremely) thin fibers and a high strength associated therewith. In particular, this applies to materials that, due to their high affinity for oxygen, have so far not been able to be converted into a fiber structure by deformation.
  • Lanthanum, a lanthanide, calcium, beryllium, magnesium, lithium, hafnium, titanium, zirconium and / or aluminum can be used as one or more additional components. Particularly good results are achieved if copper and the cubic body-centered niobium are used as the starting powder components and 0.5 to 2.0% by weight aluminum powder is used as the additional component. Excellent properties were achieved if copper and the cubic body-centered vanadium were used as the starting powder components and 2 to 10% by weight of copper-calcium powder as the additional component.
  • a niobium-copper fiber composite material is produced.
  • Commercial niobium powder (grain size ⁇ 20 ⁇ m) and copper powder as starting powder components are mixed in a weight ratio of 1: 4 with the addition of 0.5 to 2.0% by weight aluminum powder (grain size ⁇ 10 ⁇ m) and at approx. 1050 ° C. extruded.
  • the aluminum reacts with the powder metallurgically introduced oxygen to form Al z 0 3 , whereby the microhardness H v of the niobium powder is reduced from 3500 to 1000 to 1200 N / mm 2 .
  • Excess aluminum dissolves substitutionally in the copper. This balances the hardness and ductility of the niobium and copper.
  • the composite material can then be cold-formed (rolling, hammering, wire drawing) into a band-shaped or a fiber structure.
  • fiber thicknesses of less than 100 nm are achieved. A breakage of the fibers during the deformation is not observed.
  • magnesium powder or calcium alloy powder can also be used.
  • a vanadium-copper fiber composite material is to be produced.
  • vanadium powder (grain size ⁇ ZO, um) is mixed with copper powder in a ratio of 1: 2 and 2 to 10% by weight of copper-calcium powder is added. It is then extruded at 1000 ° C, the oxygen content in Vanadium is reduced from approximately 3 at% to less than 0.1 at%. Unoxidized calcium is excreted as CugCa. The subsequent deformation of the structure then leads to a vanadium-copper fiber composite wire.
  • Aluminum and / or magnesium powder can also be used here as an additional component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zur pulvermetallurgischen Herstellung eines in mindestens einer Dimension verformten supraleitenden Faserverbundmaterials aus mindestens zwei Ausgangspulverkomponenten, von denen mindestens eine im Volumen oder an der Oberfläche mit Sauerstoff oder einer Sauerstoffverbindung verunreinigt ist, und wobei als mindestens eine Ausgangspulverkomponente ein kubisch raumzentriertes Metall, insbesondere Niob oder Vanadium, eingesetzt wird.The invention relates to a process for the powder metallurgical production of a superconducting fiber composite material deformed in at least one dimension from at least two starting powder components, at least one of which is contaminated in volume or on the surface with oxygen or an oxygen compound, and wherein at least one starting powder component is a body-centered cubic component Metal, especially niobium or vanadium, is used.

Ein derartiges Verfahren ist aus der Veröffentlichung "Zeitschrift für Metallkunde", Band 65 (Mai 1974), Heft 5, Seiten 395 und 396 bekannt.Such a method is known from the publication "Zeitschrift für Metallkunde", volume 65 (May 1974), number 5, pages 395 and 396.

Im allgemeinen werden bei der pulvermetallurgischen Herstellung von Verbundmaterialien zwei Ausgangspulverkomponenten, vorzugsweise zwei Metallpulver, gemischt, verdichtet, stranggepreßt und durch eine Verformung zu Drähten ausgezogen. Auf diese Weise entsteht ein Verbundmaterial, in dem die Ausgangspulverteilchen zu Fasern ausgezogen sind. Dieser Faserverbund ist in zwei Dimensionen verformt. Bei einer Verformung des Verbundmaterials nur in einer Dimension werden die Pulverteilchen zu nicht zusammenhängenden Bändern ausgezogen. Bei der Herstellung dieser Verbundmaterialien werden die beiden Ausgangspulverkomponenten im allgemeinen vermischt, kompaktiert, gesintert und dann anschließend dem Verformungsprozeß unterworfen, bei dem die Pulverkörner zu langen Fasern ausgezogen werden. Speziell bei kleinen Pulverkorngrößen (kleiner gleich 40pm) der Ausgangspulverkomponenten ist jedoch durch Reaktion mit Luftsauerstoff und/oder schon während des Herstellungsprozesses des Pulvers Sauerstoff im Volumen interstitiell gelöst und/oder an der Oberfläche als entsprechendes Oxid gebunden. Der interstitiell gelöste Sauerstoff erhöht sowohl die Härte des Pulvers der Ausgangspulverkomponente als auch die kritische Temperatur des Duktil-Spröd-Überganges. Dies hat zur Folge, daß ein durch einen Sintervorgang pulvermetallurgisch hergestelltes mehrphasiges Gefüge während einer Kaltverformung nicht in die gewünschte Faserstruktur überführt werden kann, weil die gehärteten Ausgangspulverkomponenten diese Verformung nicht im gewünschten Maße zulassen und praktisch als unverformte Teilchen bzw. als mehrfach zerrissene Faserstücke in der anderen Ausgangspulverkomponente vorliegen. Die mechanischen Eigenschaften eines solchen Verbundmaterials sind ungünstig, d.h. insbesondere die Zerreißspannung ist niedrig (W. D. Jones "Fundamental Principles of Powder Metallurgy", Arnold, London. 1960; Metallische Verbundwerkstoffe, Festschrift der Fa. G. Rau, Pforzheim, 1977; Serie der Powder Metallurgy Joint Group of the Iron and Steel Institute and the Institute of Metalls, London).In general, in the powder-metallurgical production of composite materials, two starting powder components, preferably two metal powders, are mixed, compacted, extruded and drawn out to form wires. This creates a composite material in which the starting powder particles are drawn out into fibers. This fiber composite is deformed in two dimensions. If the composite material is deformed in only one dimension, the powder particles are drawn out into unrelated bands. In the manufacture of these composite materials, the two starting powder components are generally mixed, compacted, sintered and then subsequently subjected to the shaping process in which the powder grains are drawn out into long fibers. Especially in the case of small powder grain sizes (less than or equal to 40 pm) of the starting powder components, however, the reaction with atmospheric oxygen and / or during the production process of the powder interstitially dissolves the volume and / or binds it to the surface as a corresponding oxide. The interstitially dissolved oxygen increases both the hardness of the powder of the starting powder component and the critical temperature of the ductile-brittle transition. The result of this is that a multi-phase structure produced by powder sintering by powder metallurgy cannot be converted into the desired fiber structure during cold forming, because the hardened starting powder components do not allow this deformation to the desired extent and are practically as undeformed particles or as multiply torn fiber pieces in the other starting powder component. The mechanical properties of such a composite material are unfavorable, i.e. the tensile stress in particular is low (WD Jones "Fundamental Principles of Powder Metallurgy", Arnold, London. 1960; metallic composites, commemorative publication of G. Rau, Pforzheim, 1977; series of the Powder Metallurgy Joint Group of the Iron and Steel Institute and the Institute of Metalls, London).

Diese Schwierigkeiten treten auch bei dem in der genannten Veröffentlichung "Zeitschrift für Metallkunde" beschriebenen Verfahren auf. Auch bei diesem Verfahren, bei dem Niob- und Kupfer-Pulver als Ausgangskomponenten dienen, wird die unerwünschte Verunreinigung mit Sauerstoff beobachtet. Um die damit verbundene Erhöhung der Härte der Niob-Pulverkomponente auszugleichen, ist vorgeschlagen worden, statt des Kupfer-Pulvers ein Pulver einer Kupfer-Legierung mit entsprechender Härte zu verwenden.These difficulties also occur in the process described in the publication "Zeitschrift für Metallkunde". In this process, too, in which niobium and copper powder serve as starting components, the undesired contamination with oxygen is observed. In order to compensate for the associated increase in the hardness of the niobium powder component, it has been proposed to use a powder of a copper alloy with a corresponding hardness instead of the copper powder.

Eine weitere Möglichkeit ist, die Sauerstoffverunreinigung rückgängig zu machen. So ist bereits versucht worden, durch eine Reduktion mit Wasserstoff die mit Sauerstoff verunreinigte kubisch raumzentrierte Ausgangspulverkomponente, in Sonderheit Niob, bei Temperaturen um 1000°C zu reinigen. Da jedoch die freien Bindungsenthalpien für interstitiell gelösten Sauerstoff und/oder für das entsprechende Oxid speziell bei Übergangsmetallen über 100 (kcal/g-Atom Sauerstoff), (bei 25°C) betragen können, hat eine Reduktion des Metalles mit Wasserstoff, Kohlenmonoxid und ähnlichem bei Temperaturen bis 1000°C keinen Erfolg (E. Fromm und E. Gebhardt "Gase und Kohlenstoff in Metallen, reine und angewandte Metallkunde in Einzeldarstellungen, Band 26, Springer Verlag, Berlin, 1976).Another option is to undo the oxygen contamination. Attempts have already been made to use a reduction with hydrogen to clean the body-centered cubic starting powder component contaminated with oxygen, in particular niobium, at temperatures around 1000 ° C. However, since the free enthalpies of binding for interstitially dissolved oxygen and / or for the corresponding oxide, especially in the case of transition metals, can be over 100 (kcal / g-atom oxygen) (at 25 ° C.), the metal has to be reduced with hydrogen, carbon monoxide and the like unsuccessful at temperatures up to 1000 ° C (E. Fromm and E. Gebhardt "Gases and Carbon in Metals, Pure and Applied Metallurgy in Individual Representations, Volume 26, Springer Verlag, Berlin, 1976).

Aus der DE-A-2 360 129 ist ein weiteres Verfahren zur pulvermetallurgischen Herstellung duktiler supraleitender Verbindungen vom Typ A3B bekannt. Bei diesem Verfahren wird von einer Legierung von Niob oder Vanadium als Komponente A mit einem Basismetall wie z.B. Kupfer sowie von einer Legierung des Basismetalls mit der restlichen Komponente B, z.B. Zinn, ausgegangen, die jeweils in Pulverform vorliegen.From DE-A-2 360 129 a further process for the powder metallurgical production of ductile superconducting compounds of the type A 3 B is known. In this process, an alloy of niobium or vanadium as component A with a base metal such as copper, for example, and an alloy of the base metal with the remaining component B, such as tin, are used, each of which is in powder form.

Der Erfindung liegt die Aufgabe zugrunde, das Verfahren der eingangs beschriebenen Art so weiterzubilden, daß damit ein duktiles supraleitendes Faserverbundmaterial herstellbar ist. Dabei soll insbesondere die Duktilität der Ausgangspulverkomponenten auf einfache Weise aneinander angeglichen werden.The invention has for its object to develop the method of the type described above so that a ductile superconducting fiber composite material can be produced. In particular, the ductility of the starting powder components should be matched to one another in a simple manner.

Erfindungsgemäß wird dies dadurch erreicht, daß den Ausgangspulverkomponenten eine oder mehrere vergleichsweise unedlere Zusatzkomponenten mit einer vergleichsweise größeren Bindungsenthalpie für den Sauerstoff in Pulverform oder als Legierungszusatz zu einer oder mehreren Ausgangspulverkomponenten hinzugefügt und der Sauerstoff durch eine innere Festkörperreduktion an diese Zusatzkomponente gebunden wird.According to the invention, this is achieved in that one or more comparatively less noble additional components with a comparatively greater enthalpy of binding for the oxygen in powder form or as an alloy additive are added to the starting powder components and the oxygen is bound to this additional component by an internal solids reduction.

Die Erfindung wendet sich damit vom Stand der Technik ab, gemäß welchem immer versucht worden war, den Sauerstoff aus dem Verbundmaterial herauszuholen bzw. die Diffusion von weiterem Sauerstoff während der einzelnen Verarbeitungsschritte möglichst zu unterbinden. Die Erfindung bindet den interstitiell gelösten Sauerstoff und/oder den an der Oberfläche adsorbierten Sauerstoff durch eine innere Festkörperreduktion an die Zusatzkomponente. Der Sauerstoff verbleibt dann in dem Verbundmaterial. Da der Sauerstoff nicht mehr interstitiell gelöst ist, kann er als ein Oxid der Zusatzkomponente sich nicht mehr nachteilig auf die Duktilität der Ausgangspulverkomponenten, insbesondere derjenigen mit dem kubisch raumzentrierten Gitter, auswirken. Durch die Zusatzkomponente, die eine vergleichsweise höhere Bindungsenthalpie zu dem Sauerstoff hat, ist eine erfolgreiche und vollständige Reinigung des oder der Ausgangspulverkomponenten von Sauerstoff möglich.The invention thus turns away from the prior art, according to whichever attempts were made to get the oxygen out of the composite material or to prevent the diffusion of further oxygen during the individual processing steps as far as possible. The invention binds the interstitially dissolved oxygen and / or the oxygen adsorbed on the surface to the additional component by an internal reduction in solids. The oxygen then remains in the composite material. Since the oxygen is no longer interstitially dissolved, as an oxide of the additional component it can no longer have a disadvantageous effect on the ductility of the starting powder components, in particular those with the body-centered cubic lattice. The additional component, which has a comparatively higher enthalpy of binding to the oxygen, enables successful and complete purification of the starting powder component (s) from oxygen.

Die Festkörperreduktion wird in der Regel unter erhöhter Temperatur durchgeführt, wobei dieser Vorgang bei der Herstellung während der Glühbehandlung des Sinterns als innere Festkörperreduktion stattfindet. Dabei wird eine erneute Reaktion der gereinigten Ausgangspulverkomponenten mit Luftsauerstoff vermieden.The reduction in solids is generally carried out at elevated temperature, this process taking place during the annealing treatment during sintering as an internal reduction in solids. A renewed reaction of the cleaned starting powder components with atmospheric oxygen is avoided.

Durch dieses Verfahren ist es möglich, auch durch Sauerstoff gehärtete Ausgangspulverkomponenten zu verpressen und - nach der Festkörperreduktion - durch Kaltverformung in eine Faserstruktur zu überführen. Es können auch Zusatzkomponenten eingesetzt werden, die keine oder nur eine geringe Löslichkeit in der oder den Ausgangspulverkomponenten besitzen.With this method it is possible to compress starting powder components hardened by oxygen and - after the solid reduction - to convert them into a fiber structure by cold working. Additional components can also be used which have little or no solubility in the starting powder component or components.

Die Zusatzkomponente wird mengenmäßig in einem geringen Anteil zugesetzt, wobei der Anteil zweckmäßig so gering ist, daß das Verbundmaterial nur unwesentlich dispersionsgehärtet wird. Die Festkörperreduktion wird im Volumen des Gemisches aus Ausgangspulverkomponenten und der Zusatzkomponente durchgeführt.The amount of the additional component is added in a small proportion, the proportion advantageously being so small that the composite material is only insignificantly dispersion-cured. The reduction in solids is carried out in the volume of the mixture of starting powder components and the additional component.

Das erfindungsgemäße Verfahren besticht in erster Linie durch die Einfachheit der Herstellung eines supraleitendes Faserverbundwerkstoffes, insbesondere mit hoher Dichte (extrem) dünner Fasern und einer damit verbundenen hohen Festigkeit. In Sonderheit trifft dies auf solche Materialien zu, die sich bislang aufgrund ihrer hohen Affinität zum Sauerstoff durch eine Verformung nicht in eine Faserstruktur überführen ließen.The method according to the invention primarily impresses with the simplicity of producing a superconducting fiber composite material, in particular with high density (extremely) thin fibers and a high strength associated therewith. In particular, this applies to materials that, due to their high affinity for oxygen, have so far not been able to be converted into a fiber structure by deformation.

Aus der FR-A-1 473 618 ist zwar ein Verfahren zur pulvermetallurgischen Herstellung eines Verbundmaterials bekannt, bei dem an eine Ausgangspulverkomponente gebundener Sauerstoff ebenfalls durch Zugabe eines bestimmten Zusatzstoffes von dieser Komponente abgezogen und an den Zusatzstoff gebunden wird. Diese Veröffentlichung beschäftigt sich jedoch ausschließlich mit Nickel-Chrom-Legierungen und deren Hochtemperatureigenschaften. Weder diese Materialien noch deren Eigenschaften spielen aber auf dem Gebiet der Supraleitungstechnik, auf dem das Verfahren nach der Erfindung liegt, eine Rolle. Beide Verfahren sind deshalb nicht ohne weiteres vergleichbar.From FR-A-1 473 618, a method for powder metallurgical production of a composite material is known, in which oxygen bound to a starting powder component is also drawn off from this component by adding a certain additive and bound to the additive. However, this publication deals exclusively with nickel-chromium alloys and their high-temperature properties. Neither these materials nor their properties play a role in the field of superconductivity, on which the method according to the invention is based. Both methods are therefore not easily comparable.

Erste erfolgreiche Anwendungen des Verfahrens nach der Erfindung führten zur Herstellung von supraleitenden Faserverbundmaterialien.The first successful applications of the method according to the invention led to the production of superconducting fiber composite materials.

Als eine oder mehrere Zusatzkomponenten können Lanthan, ein Lanthanid, Kalzium, Beryllium, Magnesium, Lithium, Hafnium, Titan, Zirkon und/oder Aluminium eingesetzt werden. Besonders gute Arbeitsergebnisse werden erreicht, wenn als Ausgangspulverkomponenten Kupfer und das kubisch raumzentrierte Niob sowie als Zusatzkomponente 0,5 bis 2,0 Gew.% Aluminiumpulver eingesetzt werden. Hervorragende Eigenschaften wurden erzielt, wenn als Ausgangspulverkomponenten Kupfer und das kubisch raumzentrierte Vanadium sowie als Zusatzkomponente 2 bis 10 Gew.% Kupferkalziumpulver eingesetzt werden.Lanthanum, a lanthanide, calcium, beryllium, magnesium, lithium, hafnium, titanium, zirconium and / or aluminum can be used as one or more additional components. Particularly good results are achieved if copper and the cubic body-centered niobium are used as the starting powder components and 0.5 to 2.0% by weight aluminum powder is used as the additional component. Excellent properties were achieved if copper and the cubic body-centered vanadium were used as the starting powder components and 2 to 10% by weight of copper-calcium powder as the additional component.

Die Erfindung wird an zwei Ausführungsbeispielen weiter erläutert:The invention is further explained using two exemplary embodiments:

Beispiel 1example 1

Es wird ein Niob-Kupfer-Faserverbundwerkstoff hergestellt. Dabei wird handelsübliches Niobpulver (Korngröße < 20 ,um) und Kupferpulver als Ausgangspulverkomponenten im Gewichtsverhältnis von 1:4 unter Zusatz von 0,5 bis 2,0 Gew.% Aluminiumpulver (Korngröße < 10,um) vermengt und bei ca. 1050°C stranggepreßt. Dabei reagiert das Aluminium mit dem pulvermetallurgisch eingebrachten Sauerstoff unter Bildung von AIz03, wodurch die Mikrohärte Hv des Niob-Pulvers von 3500 auf 1000 bis 1200 N/mm2 erniedrigt wird. Überschüssiges Aluminium löst sich substitutionell in dem Kupfer. Dadurch wird die Härte und Duktilität des Niobs und des Kupfers aneinander angeglichen. Das Verbundmaterial kann anschließend durch eine Kaltverformung (Walzen, Hämmern, Drahtziehen) in eine bandförmige oder eine Faserstruktur überführt werden. Dabei werden je nach Pulvergröße und Verformungsgrad Faserdicken bis unter 100 nm erreicht. Ein Reißen der Fasern während der Verformung wird nicht beobachtet.A niobium-copper fiber composite material is produced. Commercial niobium powder (grain size <20 μm) and copper powder as starting powder components are mixed in a weight ratio of 1: 4 with the addition of 0.5 to 2.0% by weight aluminum powder (grain size <10 μm) and at approx. 1050 ° C. extruded. The aluminum reacts with the powder metallurgically introduced oxygen to form Al z 0 3 , whereby the microhardness H v of the niobium powder is reduced from 3500 to 1000 to 1200 N / mm 2 . Excess aluminum dissolves substitutionally in the copper. This balances the hardness and ductility of the niobium and copper. The composite material can then be cold-formed (rolling, hammering, wire drawing) into a band-shaped or a fiber structure. Depending on the powder size and degree of deformation, fiber thicknesses of less than 100 nm are achieved. A breakage of the fibers during the deformation is not observed.

Statt des Aluminiumpulvers als Zusatzkomponente können aber auch Magnesiumpulver oder Kalzium-Legierungs-Pulver Verwendung finden.Instead of the aluminum powder as an additional component, magnesium powder or calcium alloy powder can also be used.

Beispiel 2Example 2

Es soll ein Vanadium-Kupfer-Faserverbundwerkstoff hergestellt werden. Hierbei wird Vanadiumpulver (Korngröße < ZO,um) mit Kupferpulver in Verhältnis von 1:2 vermengt und 2 bis 10 Gew.% Kupfer-Kalzium-Pulver beigefügt. Anschließend wird bei 1000°C stranggepreßt, wobei der Sauerstoffgehalt im Vanadium von ca. 3 at% auf weniger als 0,1 at% verringert wird. Nicht oxidiertes Kalzium wird als CugCa ausgeschieden. Die anschließende Verformung des Gefüges führt dann zu einem Vanadium-Kupfer-Faserverbunddraht.A vanadium-copper fiber composite material is to be produced. Here, vanadium powder (grain size <ZO, um) is mixed with copper powder in a ratio of 1: 2 and 2 to 10% by weight of copper-calcium powder is added. It is then extruded at 1000 ° C, the oxygen content in Vanadium is reduced from approximately 3 at% to less than 0.1 at%. Unoxidized calcium is excreted as CugCa. The subsequent deformation of the structure then leads to a vanadium-copper fiber composite wire.

Auch hier können als Zusatzkomponente Aluminium- und/oder Magnesiumpulver eingesetzt werden.Aluminum and / or magnesium powder can also be used here as an additional component.

Claims (6)

1. A process for the powder-metallurgical production of a superconductive fibrous compound material which is formed in at least one dimension and which consists of at least two initial powder components, one of which is contaminated with oxygen, or an oxygen compound in volume or on the surface, and in which a body-centred cubic metal, in particular niobium or vanadium, is used as at least one initial powder component, characterised in that one or more relatively baser additional components which have a relatively greater enthalpy of combination for oxygen, is/are added to one or more initial powder components in the form of powder, or as an alloy addition, and the oxygen is combined with the additional component by an internal solid state reduction.
2. A process according to Claim 1, characterised in that the additional component is quantitatively added in a small proportion.
3. A process according to Claim 1 and Claim 2, characterised in that the solid state reduction is carried out in the volume of mixture consisting of the initial powder components and the additional component.
4. A process according to Claim 1 to 3, characterised in that lanthanum, a lanthanide, calcium, beryllium, magnesium, lithium, hafnium, titanium, zirconium and/or aluminium are used as one or more additional components.
5. A process according to Claim 1 to 3, characterised in that, in addition to body- centered cubic niobium, copper is used as a further initial powder component, and 0.5 to 2.0% by weight of aluminium powder is used as additional component.
6. A process according to Claim 1 to 3, characterised in that, in addition to body-centered cubic vanadium, copper is used as a further initial powder component, and 2 to 10% by weight of copper-calcium powder is used as additional component.
EP80100955A 1979-03-09 1980-02-26 Powder-metallurgical process for producing a superconducting-fibre composite material Expired EP0016961B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2909290 1979-03-09
DE2909290A DE2909290C2 (en) 1979-03-09 1979-03-09 Process for the powder metallurgical production of a superconducting fiber composite material

Publications (2)

Publication Number Publication Date
EP0016961A1 EP0016961A1 (en) 1980-10-15
EP0016961B1 true EP0016961B1 (en) 1984-02-08

Family

ID=6064945

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80100955A Expired EP0016961B1 (en) 1979-03-09 1980-02-26 Powder-metallurgical process for producing a superconducting-fibre composite material

Country Status (3)

Country Link
US (1) US4336065A (en)
EP (1) EP0016961B1 (en)
DE (1) DE2909290C2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3531769A1 (en) * 1985-09-06 1987-03-19 Kernforschungsz Karlsruhe METHOD FOR THE PRODUCTION OF MULTIFILAMENT SUPRALE LADDER WIRE FROM NB (DOWN ARROW) 3 (DOWN ARROW) SN OR V (DOWN ARROW) 3 (DOWN ARROW) GA FILAMENTS, EMBEDDED IN A CU- OR METALLIC, ALLOY ALLOY INCLUDED, WITH SPECIFIC SUPERCONDUCTIVE PROPERTIES
DE3531770A1 (en) * 1985-09-06 1987-03-19 Kernforschungsz Karlsruhe MULTIFILAMENT SUPRALE LADDER WIRE, CONSTRUCTED FROM FILAMENTS OF NB (ARROW DOWN) 3 (ARROW DOWN) SN OR V (ARROW DOWN) 3 (ARROW DOWN) 3 (ARROW DOWN) GA WITH THE PROPELLATION
US4952554A (en) * 1987-04-01 1990-08-28 At&T Bell Laboratories Apparatus and systems comprising a clad superconductive oxide body, and method for producing such body
US5264293A (en) * 1992-01-02 1993-11-23 General Electric Company Composite structure with NbTiHf alloy matrix and niobium base metal
US5277990A (en) * 1992-01-02 1994-01-11 General Electric Company Composite structure with NbTiAl and high Hf alloy matrix and niobium base metal reinforcement
US5226947A (en) * 1992-02-17 1993-07-13 Wisconsin Alumni Research Foundation Niobium-titanium superconductors produced by powder metallurgy having artificial flux pinning centers
US5304427A (en) * 1992-07-02 1994-04-19 General Electric Company Composite structure with NBTIA1CRHF alloy matrix and niobium base metal reinforcement

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3070440A (en) * 1960-04-27 1962-12-25 Grant Production of dispersion hardened metals
GB1152481A (en) * 1966-03-07 1969-05-21 Ass Elect Ind Copper Alloy Material
FR1473618A (en) * 1966-03-30 1967-03-17 Sherritt Gordon Mines Ltd Manufacturing process of nickel and chromium alloys reinforced by a dispersion of refractory oxide
US3552954A (en) * 1968-09-20 1971-01-05 Handy & Harman Method of making internally oxidized dispersion hardened copper product
US3807968A (en) * 1969-09-03 1974-04-30 Copper Range Co Products involving copper composition materials and assemblages
US3779714A (en) * 1972-01-13 1973-12-18 Scm Corp Dispersion strengthening of metals by internal oxidation
DE2346179A1 (en) * 1973-09-13 1975-06-26 Siemens Ag COMPOSITE METAL AS CONTACT MATERIAL FOR VACUUM SWITCHES
DE2357733A1 (en) * 1973-11-20 1975-05-22 United States Borax Chem Fibre reinforced ductile metal or alloy - prepd from a mixt of metal and fibre-forming substance which is compacted and hot deformed
DE2360129A1 (en) * 1973-12-03 1975-06-12 Battelle Institut E V Superconducting ductile copper-, silver- or aluminium-base alloy - prepared by powder metallurgy, and having good thermal and electrical conductivity
DE2412022A1 (en) * 1974-03-13 1975-09-25 Krupp Gmbh Heat resistant, dispersion hardened, temperable alloys - made by milling powdered base metal, dispersate, and oxygen-refined metal in milling fluid

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HANDBOOK of Chemistry and Physics, 60th Edition, D-67, D-70, D-72 *
Zeitschrift für Metallkunde, Band 65, Mai 1974, Heft 5, Seiten 395 and 396 *

Also Published As

Publication number Publication date
US4336065A (en) 1982-06-22
DE2909290C2 (en) 1984-08-09
EP0016961A1 (en) 1980-10-15
DE2909290A1 (en) 1980-09-11

Similar Documents

Publication Publication Date Title
DE69824185T2 (en) TITANIUM-LAYER BASED DISPERSION-CURED COMPOSITE
EP0195965B1 (en) Hard metal and process for its manufacture
DE10211538B4 (en) Process for the production of superconducting wires and tapes based on the compound MgB2
EP0299027A1 (en) Creep-resistant alloy of refractory metals and its production process.
EP0044351B1 (en) Hard alloy consisting of one or several hard substances and a binding metal alloy, and process for producing this alloy
DE3531769C2 (en)
DE3531770C2 (en)
DE1558632C3 (en) Application of deformation hardening to particularly nickel-rich cobalt-nickel-chromium-molybdenum alloys
DE2415035C3 (en) Process for the powder-metallurgical production of a sliding piece of high strength, in particular a crown seal for rotary piston machines
WO1981002587A1 (en) Memory allows with a copper,zinc and aluminum base and method for preparing them
EP0016961B1 (en) Powder-metallurgical process for producing a superconducting-fibre composite material
DE3700659A1 (en) FINE-GRAINED PROBLEM TANTALO WIRE
DE2125534C3 (en) Use of sintered iron alloys as a material for valve seats in internal combustion engine construction
EP0232772B1 (en) Process for preparing a pulverulent amorphous material by way of a milling process
DE2108420A1 (en) Tension band for the tension band suspension of a rotating measuring mechanism
DE1812144B2 (en) Process for the production of a high-strength nickel-aluminum material
EP0035070B1 (en) Memory alloy based on a highly cupriferous or nickelous mixed crystal
DE19607355C2 (en) Process for producing tungsten wire, tungsten wire and incandescent lamp with such a tungsten wire
DE2411324A1 (en) Process for the production of dispersion strengthened kneading nickel
DE3535065C2 (en)
DE2825424C2 (en) Silicon-containing tantalum powder, process for its production and its use
DE2004546B2 (en) TWO- AND MULTI-PHASE SILVER-BASED MATERIALS
DE1608760A1 (en) Process for the production of pseudo-alloys
DE1925742C (en) Process for the production of metals and metal alloys with embedded oxide particles
DE1533347B1 (en) Tungsten-based ductile alloys

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH FR GB

17P Request for examination filed

Effective date: 19810309

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH FR GB

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890222

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890524

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900122

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19900228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19901031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910226

GBPC Gb: european patent ceased through non-payment of renewal fee