EP0035070B1 - Memory alloy based on a highly cupriferous or nickelous mixed crystal - Google Patents

Memory alloy based on a highly cupriferous or nickelous mixed crystal Download PDF

Info

Publication number
EP0035070B1
EP0035070B1 EP80200185A EP80200185A EP0035070B1 EP 0035070 B1 EP0035070 B1 EP 0035070B1 EP 80200185 A EP80200185 A EP 80200185A EP 80200185 A EP80200185 A EP 80200185A EP 0035070 B1 EP0035070 B1 EP 0035070B1
Authority
EP
European Patent Office
Prior art keywords
nickel
weight
powder
memory alloy
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80200185A
Other languages
German (de)
French (fr)
Other versions
EP0035070A1 (en
Inventor
Keith Dr. Melton
Olivier Dr. Mercier
Helmut Dr. Riegger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Priority to DE8080200185T priority Critical patent/DE3070639D1/en
Priority to EP80200185A priority patent/EP0035070B1/en
Priority to US06/239,646 priority patent/US4389250A/en
Priority to JP2850281A priority patent/JPS56136943A/en
Publication of EP0035070A1 publication Critical patent/EP0035070A1/en
Application granted granted Critical
Publication of EP0035070B1 publication Critical patent/EP0035070B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/006Resulting in heat recoverable alloys with a memory effect

Definitions

  • the invention is based on a memory alloy according to the preamble of claim 1.
  • Copper-rich memory alloys are known and have been described in various publications (e.g., U.S. Patent No. 3,783,037). Such memory alloys, which belong to the general type with the ⁇ high-temperature phase, are generally produced by melt metallurgy.
  • the invention has for its object to provide memory alloys based on Cu / Al, Cu / Al / Ni and NiAI, which form dense, compact bodies with good mechanical properties and at the same time to reproducible values of the transition temperature and others related to the memory effect Have sizes processed.
  • the essence of the invention consists in the presence of metal oxides which are embedded in the form of finely divided dispersoids in the metallic matrix of the alloys.
  • Metal oxides of this type can be introduced into the end product both as separate powders and as natural contents of the starting substances, the production of which is advantageously carried out by powder metallurgy.
  • An essential feature of the process consists in neither starting from elementary powders nor from a starting powder corresponding to the final alloy, but instead using a mixture of pre-alloyed powders and specially composed powder mixtures. This allows the required ductility to be optimally adapted to the processing process with extensive freedom in terms of composition.
  • the grain size of the crystallite of the finished body can largely be predetermined. Grain growth is not to be feared thanks to the presence of the dispersoids. Coherent oxide skins that prevent homogenization and impair mechanical properties are avoided.
  • the dispersoids are Y 2 0 3 and Ti0 2 or any mixtures of these oxides. Their content is 0.5 to 2% by weight of the total mass of the alloy and their particles have an average diameter of 10 ⁇ (1 nm) to 1 ⁇ m.
  • Y 2 0 3 and Ti0 2 are separately mixed into the metal powders in the form of very fine particles and ground and mechanically alloyed under an organic solvent (toluene, ethyl alcohol) which keeps out atmospheric oxygen in a ball mill or attritor.
  • organic solvent toluene, ethyl alcohol
  • a round rod was made from a memory alloy with the following final composition:
  • the powder mixture was dried and then 240 g were poured into a soft annealed copper tube with an inside diameter of 18 mm and a wall thickness of 2 mm and completely encapsulated by covering the ends and soldering under an argon atmosphere.
  • the tube and powder were then isostatically pressed at a pressure of 10,000 bar and the compact was reduced and presintered in a hydrogen / nitrogen stream at a temperature of 750 ° C. for 2 hours and then in a stream of argon at a temperature of 800 ° C. for 25 hours finish sintered.
  • the workpiece was then alternately subjected to 2 round hammer operations and a homogenization anneal at 900 ° C each.
  • the rod hammered down to 6 mm was subjected to a final annealing at 1000 ° C. for 10 minutes in a stream of argon and quenched in water.
  • the density of the matrix was 99.5% of the theoretical value.
  • the martensitic transformation temperature Mg was 150 ° C.
  • the average crystallite diameter was 28 ⁇ m.
  • a square bar was made from a memory alloy of the following final composition:
  • the powders A, B, C and D * (100% titanium dioxide) were weighed out as follows and mixed, ground and mechanically alloyed in a ball mill for 12 hours under ethyl alcohol:
  • the reduction ratio (decrease in cross-section) was 11: 1.
  • the rod was then homogenized at a temperature of 920 ° C. for 30 minutes and then pulled down in 2 passes on a warm drawing bench at a temperature of 750 ° C. to an edge length of 6 mm. After the final annealing at 900 ° C. for 15 minutes in a stream of argon, the rod was quenched in water. The density of the matrix of the finished rod was 99.8% of the theoretical value.
  • the transition temperature M s was 170 ° C.
  • the average crystallite diameter was 26 ⁇ m with a Vickers hardness (HV10) of 280 units.
  • a round plate was made from a memory alloy of the following final composition:
  • the raw sintered body was turned to a diameter of 58 mm, introduced into a soft-annealed can made of soft iron with an outside diameter of 64 mm and completely encapsulated by placing the lid on and soldering in an argon atmosphere.
  • the workpiece produced in this way was subjected to thermomechanical processing under a hot press, interrupted by homogenization annealing. By alternating upsetting and annealing at 1200 ° C, the height of the cylinder was successively reduced to approximately 32 mm, the material condensing to approximately 95% of the theoretical density and now having a diameter of 70 mm corresponding to the die.
  • the preformed circular plate with parallel flat end faces was inserted in a forging die with a reduced diameter and in several operations, which were interrupted by intermediate annealing, at temperatures between 1 220 ° C and 1 100 ° C forged to the finished shape.
  • the 20 mm thick plate had a radial bead of 5 x 5 mm on the upper side and a central recess of 20 mm diameter and 5 mm axial depth on the lower side.
  • the plate was quenched in water.
  • the density of the matrix was 99.2-99.5% of the theoretical value.
  • the temperature Mg of the martensitic transformation was 130 ° C.
  • a sheet was made from a memory alloy of the following final composition:
  • the raw sintered body was turned to a diameter of 58 mm, inserted into a soft-annealed tube made of corrosion-resistant steel with an outside diameter of 64 mm and completely encapsulated by putting on lids and soldering in an argon atmosphere.
  • the workpiece produced in this way was subjected to thermomechanical processing under a hot press, interrupted by homogenization annealing. By alternating upsetting and annealing at 1,180 ° C, the height of the cylinder was successively reduced to approx. 64 mm, the material condensing to approx. 95% of the theoretical density and now having a diameter of 70 mm corresponding to the recipient of the extrusion press . After an additional homogenization annealing at 1200 ° C.
  • the preformed circular body was inserted into an extrusion press and pressed at a temperature of 1200 ° C. to form a flat bar of rectangular cross section of 10 ⁇ 50 mm.
  • the reduction ratio (decrease in cross section) was 7.8: 1.
  • the rod was then homogenized at a temperature of 1,300 ° C. for 30 minutes and then a piece of 250 mm in length was cut out. This piece was rolled down in several successive hot rolling operations with corresponding intermediate annealing at 1,250 to 1,150 ° C. to a sheet of 2 mm thickness.
  • Each 2 stitches of cross rolls, each with a 20% reduction in cross-section were interrupted by 1 stitch each of longitudinal rolls with a 5% reduction in cross-section (stitch for straightening the sheet).
  • the dispersion memory alloys according to the invention produced by the aforementioned processes have a fine-grained structure with a crystallite diameter of at most 100 ⁇ m.
  • a crystallite diameter of at most 100 ⁇ m In general - depending on the choice of the starting powder - an average crystallite diameter of 30 I Lm and less can be achieved.
  • the invention is not restricted to the parameters specified in the examples. In general, the powder compositions and mixtures can be varied and substituted in such a way that the following material limits for the metallic matrix are reached:
  • Nickel can also be partially or completely replaced by at least one of the following elements:
  • Nickel can also be partially or completely replaced by cobalt.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Conductive Materials (AREA)

Description

Die Erfindung geht aus von einer Gedächtnislegierung nach der Gattung des Anspruchs 1.The invention is based on a memory alloy according to the preamble of claim 1.

Kupferreiche Gedächtnislegierungen sind bekannt und in verschiedenen Veröffentlichungen beschrieben worden (z. B. US-PS 3 783 037). Derartige Gedächtnislegierungen, die dem allgemeinen Typ mit der ß-Hochtemperaturphase angehören, werden allgemein schmelzmetallurgisch hergestellt.Copper-rich memory alloys are known and have been described in various publications (e.g., U.S. Patent No. 3,783,037). Such memory alloys, which belong to the general type with the β high-temperature phase, are generally produced by melt metallurgy.

Beim Giessen dieser Legierungen wird in der Regel ein grobkörniges Gefüge erhalten, welches durch die anschliessende Glühung im Bereich der β-Mischkristalle durch Kornwachstum noch weiter vergr- öbert wird und durch thermomechanische Behandlung nicht mehr rückgängig gemacht werden kann. Dementsprechend sind die mechanischen Eigenschaften, vor allem die Dehnung und Kerbzähigkeit solcherweise hergestellter Gedächtnislegierungen verhältnismässig schlecht und ihr Anwendungsbereich begrenzt.When these alloys are cast, a coarse-grained structure is generally obtained, which is further coarsened by grain growth due to the subsequent annealing in the region of the β mixed crystals and cannot be reversed by thermomechanical treatment. Accordingly, the mechanical properties, especially the elongation and notch toughness of memory alloys produced in this way are relatively poor and their field of application is limited.

Es besteht daher ein Bedürfnis, diese Gedächtnislegierungen metallurgisch derart zu verbessern, dass für sie weitere praktische Anwendungsgebiete erschlossen werden können. Es ist bereits vorgeschlagen worden, Gedächtnisiegierungen des Typs Cu/Zn/AI pulvermetallurgisch, ausgehend von fertigen, der Endzusammensetzung entsprechenden Ausgangslegierungen herzustellen (z. B. M. Follon, E. Aernoudt, Powder-metallurgically processed shape-memory alloys, 5th European Symposium on Powder Metallurgy, Stockholm 1978, S. 275-281 ; DE-A-2856082). Dabei wird das fertige Pulver eingekapselt, kaltverdichtet, warmverdichtet und stranggepresst.There is therefore a need to metallurgically improve these memory alloys in such a way that further practical fields of application can be opened up for them. It has already been proposed to produce memory alloys of the Cu / Zn / AI type by powder metallurgy, starting from finished starting alloys corresponding to the final composition (e.g. BM Follon, E. Aernoudt, Powder-metallurgically processed shape-memory alloys, 5th European Symposium on Powder Metallurgy , Stockholm 1978, pp. 275-281; DE-A-2856082). The finished powder is encapsulated, cold compressed, hot compressed and extruded.

Diese Methode ist jedoch zur Herstellung von kompakten und dichten Fertigkörpern aus Cu/AI/Ni, Cu/AI und NiAI ungeeignet, da sich das Pulver nicht verdichten lässt und wieder zerfällt.However, this method is unsuitable for the production of compact and dense finished parts made of Cu / Al / Ni, Cu / Al and NiAI, since the powder cannot be compacted and disintegrates again.

Der Erfindung liegt die Aufgabe zugrunde, Gedächtnislegierungen auf der Basis von Cu/AI, Cu/AI/Ni und NiAI anzugeben, die sich zu dichten, kompakten Körpern mit guten mechanischen Eigenschaften und gleichzeitig zu genau reproduzierbaren Werten der Umwandlungstemperatur und anderen mit dem Gedächtniseffekt zusammenhängenden Grössen verarbeiten lassen.The invention has for its object to provide memory alloys based on Cu / Al, Cu / Al / Ni and NiAI, which form dense, compact bodies with good mechanical properties and at the same time to reproducible values of the transition temperature and others related to the memory effect Have sizes processed.

Diese Aufgabe wird erfindungsgemäss durch die Merkmale des Anspruchs 1 gelöst.According to the invention, this object is achieved by the features of claim 1.

Der Kern der Erfindung besteht im Vorhandensein von Metalloxyden, welche in Form feinverteilter Dispersoide in der metallischen Matrix der Legierungen eingebettet sind. Derartige Metalloxyde können sowohl als separate Pulver wie auch als natürliche Gehalte der Ausgangssubstanzen in das Endprodukt eingebracht werden, dessen Herstellung in vorteilhafter Weise pulvermetallurgisch erfolgt. Ein wesentliches Merkmal des Verfahrens besteht darin, weder' von Elementarpulvern noch von einem der Endlegierung entsprechenden Ausgangspulver auszugehen, sondern eine Mischung aus vorlegierten Pulvern und speziell zusammengesetzter Pulvermischungen zu benutzen. Damit kann die erforderliche Duktilität bei weitgehender Freiheit bezüglich Zusammensetzung dem Verarbeitungsprozess optimal angepasst werden. Die Korngrösse der Kristallite des fertigen Körpers kann weitgehend vorausbestimmt werden. Ein Kornwachstum ist dank des Vorhandenseins der Dispersoide nicht zu befürchten. Zusammenhängende, die Homogenisierung behindernde und die mechanischen Eigenschaften beeinträchtigende Oxydhäute werden vermieden.The essence of the invention consists in the presence of metal oxides which are embedded in the form of finely divided dispersoids in the metallic matrix of the alloys. Metal oxides of this type can be introduced into the end product both as separate powders and as natural contents of the starting substances, the production of which is advantageously carried out by powder metallurgy. An essential feature of the process consists in neither starting from elementary powders nor from a starting powder corresponding to the final alloy, but instead using a mixture of pre-alloyed powders and specially composed powder mixtures. This allows the required ductility to be optimally adapted to the processing process with extensive freedom in terms of composition. The grain size of the crystallite of the finished body can largely be predetermined. Grain growth is not to be feared thanks to the presence of the dispersoids. Coherent oxide skins that prevent homogenization and impair mechanical properties are avoided.

Die Dispersoide sind Y203 und Ti02 oder beliebige Mischungen dieser Oxyde. Ihr Gehalt beträgt 0,5 bis 2 Gew.-% der Gesamtmasse der Legierung und ihre Partikel weisen einen mittleren Durchmesser um 10 Ä (1 nm) bis 1 µm auf.The dispersoids are Y 2 0 3 and Ti0 2 or any mixtures of these oxides. Their content is 0.5 to 2% by weight of the total mass of the alloy and their particles have an average diameter of 10 Å (1 nm) to 1 µm.

Y203 uns Ti02 werden den Metallpulvern separat in Form sehr feiner Partikel zugemischt und unter einem den Luftsauerstoff fernhaltenden organischen Lösungsmittel (Toluol, Aethylalkohol) in einer Kugelmühle oder einem Attritor gemahlen und mechanisch legiert.Y 2 0 3 and Ti0 2 are separately mixed into the metal powders in the form of very fine particles and ground and mechanically alloyed under an organic solvent (toluene, ethyl alcohol) which keeps out atmospheric oxygen in a ball mill or attritor.

Die Erfindung wird anhand der nachfolgenden Ausführungsbeispiele beschrieben :The invention is described using the following exemplary embodiments:

Ausführungsbeispiel IEmbodiment I

Es wurde ein Rundstab aus einer Gedächtnislegierung folgender Endzusammensetzung hergestellt :

Figure imgb0001
A round rod was made from a memory alloy with the following final composition:
Figure imgb0001

Als Ausgangsmaterialien wurden folgende Pulver verwendet:

  • Pulver A : Cupro-Aluminium : 93 Gew.-% Cu ; 7 Gew.-% Al, erschmolzen, atomisiert ; Korngrösse 40-100 wm. Hersteller Baudier.
  • Pulver B : Aluminium premixe 202 AC : 96 Gew.-% AI ; 4 Gew.-% Cu, Korngrösse 23-28 µm. Hersteller Alcoa.
  • Pulver C : Reinnickel : 100 Gew.-% Ni, Korngrösse 44 µm. Mond-Nickel (z. B. Int. Nickel Co.).
  • Pulver D : Yttriumoxyd : 100 Gew.-% Y203, Korngrösse < 1 µm.
The following powders were used as starting materials:
  • Powder A: Cupro aluminum: 93% by weight Cu; 7% by weight Al, melted, atomized; Grain size 40-100 wm. Manufacturer Baudier.
  • Powder B: aluminum premixe 202 AC: 96% by weight AI; 4% by weight of Cu, grain size 23-28 µm. Manufacturer Alcoa.
  • Powder C: pure nickel: 100% by weight Ni, grain size 44 µm. Moon nickel (e.g. Int.Nickel Co.).
  • Powder D: yttrium oxide: 100% by weight Y 2 0 3 , grain size <1 µm.

Folgende Einwaage wurde während 8 h unter Toluol im Attritor gemischt, gemahlen und mechanisch legiert :

Figure imgb0002
The following sample was mixed, milled and mechanically alloyed for 8 hours under toluene in the attritor:
Figure imgb0002

Zur Verflüchtigung des Toluols wurde die Pulvermischung getrocknet und anschliessend 240 g in ein weichgeglühtes Kupferrohr von 18 mm Innendurchmesser und 2 mm Wandstärke abgefüllt und durch Abdecken der Enden und Verlöten unter Argonatmosphäre vollständig eingekapselt. Hierauf wurde das Rohr samt Pulver bei einem Druck von 10000 bar isostatisch gepresst und der Pressling im Wasserstoff/Stickstoff-Strom bei einer Temperatur von 750 °C während 2 h reduziert und vorgesintert und anschliessend im Argonstrom bei einer Temperatur von 800 °C während 25 h fertiggesintert. Daraufhin wurde das Werkstück abwechslungsweise je 2 Rundhämmeroperationen und einer Homogenisierungsglühung bei je 900 °C unterworfen. Der auf 6 mm heruntergehämmerte Stab wurde einer abschliessenden Glühung bei 1000°C während 10 min im Argonstrom unterzogen und in' Wasser abgeschreckt. Die Dichte der Matrix betrug 99,5 % des theoretischen Wertes. Die Temperatur Mg der martensitischen Umwandlung lag bei 150 °C. Der mittlere Kristallitdurchmesser betrug 28 µm.In order to volatilize the toluene, the powder mixture was dried and then 240 g were poured into a soft annealed copper tube with an inside diameter of 18 mm and a wall thickness of 2 mm and completely encapsulated by covering the ends and soldering under an argon atmosphere. The tube and powder were then isostatically pressed at a pressure of 10,000 bar and the compact was reduced and presintered in a hydrogen / nitrogen stream at a temperature of 750 ° C. for 2 hours and then in a stream of argon at a temperature of 800 ° C. for 25 hours finish sintered. The workpiece was then alternately subjected to 2 round hammer operations and a homogenization anneal at 900 ° C each. The rod hammered down to 6 mm was subjected to a final annealing at 1000 ° C. for 10 minutes in a stream of argon and quenched in water. The density of the matrix was 99.5% of the theoretical value. The martensitic transformation temperature Mg was 150 ° C. The average crystallite diameter was 28 µm.

Ausführungsbeispiel IIEmbodiment II

Es wurde ein Vierkantstab aus einer Gedächtnislegierung folgender Endzüsammensetzung hergestellt :

Figure imgb0003
A square bar was made from a memory alloy of the following final composition:
Figure imgb0003

Die Pulver A, B, C und D* (100 % Titandioxyd) wurden wie folgt eingewogen und während 12 h unter Aethylalkohol in einer Kugelmühle gemischt, gemahlen und mechanisch legiert :

Figure imgb0004
The powders A, B, C and D * (100% titanium dioxide) were weighed out as follows and mixed, ground and mechanically alloyed in a ball mill for 12 hours under ethyl alcohol:
Figure imgb0004

Nach der Verflüchtigung des Aethylalkohols wurden 250 g dieser Pulvermischung in einen Gummischlauch von 35 mm Innendurchmesser abgefüllt und bei einem Druck von 14 000 bar isostatisch zu einem Zylinder von 31 mm Durchmesser und 80 mm Höhe verpresst. Der Grünling wurde im Wasserstoffstrom bei einer Temperatur von 920°C während 1 h reduziert und vorgesintert und anschliessend im Argonstrom bei einer Temperatur von 950 °C während 20 h fertiggesintert. Der rohe Sinterkörper wurde auf einen Durchmesser von 30 mm abgedreht, in den Rezipienten einer Strangpresse eingesetzt und bei einer Temperatur von 780 °C zu einem Vierkantstab quadratischen Querschnitts von 8 mm Kantenlänge verpresst. Das Reduktionsverhältnis (Querschnittsabnahme) betrug dabei 11:1. Daraufhin wurde der Stab bei einer Temperatur von 920 °C während 30 min homogenisiert und anschliessend in 2 Stichen auf einer Warmziehbank bei einer Temperatur von 750 °C auf eine Kantenlänge von 6 mm heruntergezogen. Nach der abschliessenden Glühung bei 900 °C während 15 min im Argonstrom wurde der Stab in Wasser abgeschreckt. Die Dichte der Matrix des fertigen Stabes betrug 99,8 % des theoretischen Wertes. Die Umwandlungstemperatur Ms lag bei 170 °C. Der mittlere Kristallitdurchmesser betrug 26 µm bei einer Vickershärte (HV10) von 280 Einheiten.After the volatilization of the ethyl alcohol, 250 g of this powder mixture were poured into a rubber tube with an inner diameter of 35 mm and pressed isostatically to a cylinder with a diameter of 31 mm and a height of 80 mm at a pressure of 14,000 bar. The green body was reduced in a hydrogen stream at a temperature of 920 ° C. for 1 h and presintered and then sintered in a stream of argon at a temperature of 950 ° C. for 20 h. The raw sintered body was turned to a diameter of 30 mm, inserted in the recipient of an extrusion press and pressed at a temperature of 780 ° C. to a square bar with a square cross section and an edge length of 8 mm. The reduction ratio (decrease in cross-section) was 11: 1. The rod was then homogenized at a temperature of 920 ° C. for 30 minutes and then pulled down in 2 passes on a warm drawing bench at a temperature of 750 ° C. to an edge length of 6 mm. After the final annealing at 900 ° C. for 15 minutes in a stream of argon, the rod was quenched in water. The density of the matrix of the finished rod was 99.8% of the theoretical value. The transition temperature M s was 170 ° C. The average crystallite diameter was 26 µm with a Vickers hardness (HV10) of 280 units.

Ausführungsbeispiel IIIEmbodiment III

Es wurde eine runde Platte aus einer Gedächtnislegierung folgender Endzusammensetzung hergestellt :

Figure imgb0005
A round plate was made from a memory alloy of the following final composition:
Figure imgb0005

Als Ausgangsmaterialien wurden folgende Pulver verwendet:

  • Pulver A1 : Nickel/Aluminium-Vorlegierung : 50 Gew.-% Ni ; 50 Gew.-% Al, erschmolzen, atomisiert, Korngrösse 44-100 µm.
  • Pulver B, : Reinnickel : 100 Gew.-% Ni, Korngrösse 44 µm. Mond-Nickel (z. B. Int. Nickel Co.).
  • Pulver C1 : Yttriumoxyd : 100 Gew.-% Y203, Korngrösse < 1 µm.
The following powders were used as starting materials:
  • Powder A 1 : nickel / aluminum master alloy: 50% by weight Ni; 50% by weight Al, melted, atomized, grain size 44-100 µm.
  • Powder B: Nickel: 100 wt .-% Ni, particle size 44 microns. Moon nickel (e.g. Int.Nickel Co.).
  • Powder C 1 : yttrium oxide: 100% by weight Y 2 0 3 , grain size <1 µm.

Folgende Einwaage wurde während 20 h unter Toluol im Attritor gemischt, gemahlen und mechanisch legiert :

Figure imgb0006
The following sample was mixed, milled and mechanically alloyed under toluene in the attritor for 20 h:
Figure imgb0006

Nach der Entfernung des Toluols durch Trocknen wurden 1 000 g dieser Pulvermischung in einen Kunststoffschlauch von 66 mm Innendurchmesser abgefüllt und bei einem Druck von 12000 bar isostatisch zu einem Zylinder von 60 mm Durchmesser und 80 mm Höhe zusammengepresst. Der Grünling wurde im Wasserstoff/Stickstoff-Strom bei einer Temperatur von 1 200 °C während 1 h reduziert und vorgesintert und anschliessend im Argonstrom bei einer Temperatur von 1 250 °C während 25 h fertiggesintert. Der rohe Sinterkörper wurde auf einen Durchmesser von 58 mm abgedreht, in eine weichgeglühte Dose aus Weicheisen von 64 mm Aussendurchmesser eingeführt und durch Aufsetzen des Deckels und Verlöten in Argonatmosphäre vollständig eingekapselt. Das derart hergestellte Werkstück wurde einer thermomechanischen Bearbeitung unter einer Warmpresse, unterbrochen von Homogenisierungsglühungen, unterzogen. Durch abwechslungsweises Stauchen und Glühen bei 1 200 °C wurde die Höhe des Zylinders sukzessive auf ca. 32 mm reduziert, wobei sich das Material bis auf ca. 95 % der theoretischen Dichte verdichtete und nun einen dem Gesenk entsprechenden Durchmesser von 70 mm aufwies. Nach einer zusätzlichen Homogenisierungsglühung bei 1 230 °C während 1 h wurde die vorgeformte kreisrunde Platte mit parallelen ebenen Stirnflächen in ein in ihren Durchmessern abgesetztes Schmiedegesenk eingesetzt und in mehreren Arbeitsgängen, welche durch Zwischenglühungen unterbrochen waren, bei Temperaturen zwischen 1 220 °C und 1 100 °C auf die fertige Form heruntergeschmiedet. Die 20 mm dicke Platte wies bei einem maximalen Aussendurchmesser von 90 mm auf der oberen Seite einen radialen Wulst von 5 x 5 mm und auf der unteren Seite eine zentrale Ausnehmung von 20 mm Durchmesser und 5 mm axialer Tiefe auf. Nach einer abschliessenden Glühung bei 1 300 °C während 15 min wurde die Platte in Wasser abgeschreckt. Die Dichte der Matrix betrug 99,2-99,5 % des theoretischen Wertes. Die Temperatur Mg der martensitischen Umwandlung lag bei 130 °C.After the toluene had been removed by drying, 1,000 g of this powder mixture were poured into a plastic tube with an internal diameter of 66 mm and compressed isostatically at a pressure of 12,000 bar to a cylinder with a diameter of 60 mm and a height of 80 mm. The green compact was reduced and presintered in a hydrogen / nitrogen stream at a temperature of 1200 ° C. for 1 h and then sintered in a stream of argon at a temperature of 1200 ° C. for 25 hours. The raw sintered body was turned to a diameter of 58 mm, introduced into a soft-annealed can made of soft iron with an outside diameter of 64 mm and completely encapsulated by placing the lid on and soldering in an argon atmosphere. The workpiece produced in this way was subjected to thermomechanical processing under a hot press, interrupted by homogenization annealing. By alternating upsetting and annealing at 1200 ° C, the height of the cylinder was successively reduced to approximately 32 mm, the material condensing to approximately 95% of the theoretical density and now having a diameter of 70 mm corresponding to the die. After an additional homogenization annealing at 1 230 ° C for 1 h, the preformed circular plate with parallel flat end faces was inserted in a forging die with a reduced diameter and in several operations, which were interrupted by intermediate annealing, at temperatures between 1 220 ° C and 1 100 ° C forged to the finished shape. With a maximum outer diameter of 90 mm, the 20 mm thick plate had a radial bead of 5 x 5 mm on the upper side and a central recess of 20 mm diameter and 5 mm axial depth on the lower side. After a final annealing at 1,300 ° C. for 15 minutes, the plate was quenched in water. The density of the matrix was 99.2-99.5% of the theoretical value. The temperature Mg of the martensitic transformation was 130 ° C.

Ausführungsbeispiel IVEmbodiment IV

Es wurde ein Blech aus einer Gedächtnislegierung folgender Endzusammensetzung hergestellt :

Figure imgb0007
A sheet was made from a memory alloy of the following final composition:
Figure imgb0007

Als Ausgangsmaterialien wurden folgende Pulver verwendet :

  • Pulver A2: Nickel/Aluminium-Vorlegierung : 50 Gew.-% Ni ; 50 Gew.-% Al, erschmolzen, atomisiert, Korngrösse 44-100 µm.
  • Pulver B2 : Reinaluminium : 100 Gew.-% Al, Korngrösse 44 µm. Hersteller Alcoa.
  • Pulver C2: Nickel/Kobalt-Vormischung ; 98,03 Gew.-% Ni ; 1,97 Gew.-% Co ; Korngrösse < 44 µm.
  • Pulver D2: Titandioxyd : 100 Gew.-% Ti02, Korngrösse < 1 µm.
The following powders were used as starting materials:
  • Powder A 2 : nickel / aluminum master alloy: 50% by weight Ni; 50% by weight Al, melted, atomized, grain size 44-100 µm.
  • Powder B 2 : pure aluminum: 100% by weight Al, grain size 44 µm. Manufacturer Alcoa.
  • Powder C 2 : nickel / cobalt premix; 98.03 wt% Ni; 1.97 wt% Co; Grain size <44 µm.
  • Powder D 2 : titanium dioxide: 100% by weight Ti0 2 , grain size <1 µm.

Folgende Einwaage wurde während 25 h unter Aethylalkohol in einer Kugelmühle gemischt, gemahlen und mechanisch legiert :

Figure imgb0008
The following initial weight was mixed, ground and mechanically alloyed in a ball mill under ethyl alcohol for 25 h:
Figure imgb0008

Nach der Verflüchtigung des Aethylalkohols wurden 2 000 g dieser Pulvermischung in einen Kunststoffschlauch von 66 mm Innendurchmesser abgefüllt und bei einem Druck von 12000 bar isostatisch zu einem Zylinder von 60 mm Durchmesser und 160 mm Höhe zusammengepresst. Der Grünling wurde im Wasserstoff/Stickstoff-Strom bei einer Temperatur von 1 180 °C während 1 h reduziert und vorgesintert und anschliessend im Argonstrom bei einer Temperatur von 1 220 °C während 25 h fertiggesintert. Der rohe Sinterkörper wurde auf einen Durchmesser von 58 mm abgedreht, in ein weichgeglühtes Rohr aus korrosionsbeständigem Stahl von 64 mm Aussendurchmesser eingeführt und durch Aufsetzen von Deckeln und Verlöten in Argonatmosphäre vollständig eingekapselt. Das derart hergestellte Werkstück wurde einer thermomechanischen Bearbeitung unter einer Warmpresse, unterbrochen von Homogenisierungsglühungen, unterzogen. Durch abwechslungsweises Stauchen und Glühen bei 1 180 °C wurde die Höhe des Zylinders sukzessive auf ca. 64 mm reduziert, wobei sich das Material bis auf ca. 95% der theoretischen Dichte verdichtete und nun einen dem Rezipienten der Strangpresse entsprechenden Durchmesser von 70 mm aufwies. Nach einer zusätzlichen Homogenisierungsglühung bei 1 200 °C während 1 h wurde der vorgeformte kreisrunde Körper in eine Strangpresse eingesetzt und bei einer Temperatur von 1 250 °C zu einem Flachstab rechteckigen Querschnitts von 10 x 50 mm verpresst. Das Reduktionsverhältnis (Querschnittsabnahme) betrug dabei 7,8 : 1. Daraufhin wurde der Stab bei einer Temperatur von 1 300 °C während 30 min homogenisiert und anschliessend ein Stück von 250 mm Länge herausgeschnitten. Dieses Stück wurde in mehreren aufeinanderfolgenden Warmwalzoperationen mit entsprechenden Zwischenglühungen bei jeweils 1 250 bis 1 150 °C zu einem Blech von 2 mm Dicke heruntergewalzt. Je 2 Stiche Querwalzen mit je 20 % Querschnittsabnahme wurden durch je 1 Stich Längswalzen mit 5 % Querschnittsabnahme (Stich zum Richten des Bleches) unterbrochen. Auf je zwei Quer- und einen Längsstich kam eine Zwischenglühung von 15 min. Nach einer abschliessenden Glühung bei 1 320 °C während 10 min wurde das Blech in Wasser abgeschreckt. Die Dichte der Matrix des fertigen Bleches betrug 99,8 %. Die Temperatur Ms der martensitischen Umwandlung lag bei 200 °C.After the volatilization of the ethyl alcohol, 2,000 g of this powder mixture were filled into a plastic tube with an inner diameter of 66 mm and compressed isostatically at a pressure of 12,000 bar to a cylinder with a diameter of 60 mm and a height of 160 mm. The green compact was reduced in a hydrogen / nitrogen stream at a temperature of 1,180 ° C. for 1 hour and presintered and then sintered in a stream of argon at a temperature of 1,220 ° C. for 25 hours. The raw sintered body was turned to a diameter of 58 mm, inserted into a soft-annealed tube made of corrosion-resistant steel with an outside diameter of 64 mm and completely encapsulated by putting on lids and soldering in an argon atmosphere. The workpiece produced in this way was subjected to thermomechanical processing under a hot press, interrupted by homogenization annealing. By alternating upsetting and annealing at 1,180 ° C, the height of the cylinder was successively reduced to approx. 64 mm, the material condensing to approx. 95% of the theoretical density and now having a diameter of 70 mm corresponding to the recipient of the extrusion press . After an additional homogenization annealing at 1200 ° C. for 1 hour, the preformed circular body was inserted into an extrusion press and pressed at a temperature of 1200 ° C. to form a flat bar of rectangular cross section of 10 × 50 mm. The reduction ratio (decrease in cross section) was 7.8: 1. The rod was then homogenized at a temperature of 1,300 ° C. for 30 minutes and then a piece of 250 mm in length was cut out. This piece was rolled down in several successive hot rolling operations with corresponding intermediate annealing at 1,250 to 1,150 ° C. to a sheet of 2 mm thickness. Each 2 stitches of cross rolls, each with a 20% reduction in cross-section, were interrupted by 1 stitch each of longitudinal rolls with a 5% reduction in cross-section (stitch for straightening the sheet). There was an intermediate annealing of 15 minutes for every two cross and one longitudinal stitch. After a final annealing at 1,320 ° C. for 10 minutes, the sheet was quenched in water. The density of the matrix of the finished sheet was 99.8%. The temperature M s of the martensitic transformation was 200 ° C.

Die nach den vorgenannten Verfahren hergestellten erfindungsgemässen Dispersions-Gedächtnislegierungen weisen ein feinkörniges Gefüge mit einem Kristallitdurchmesser von höchstens 100 µm auf. Im allgemeinen lässt sich - je nach Wahl der Ausgangspulver - ein mittlerer Kristallitdurchmesser von 30 ILm und weniger erzielen. Die Erfindung ist nicht auf die in den Beispielen angegebenen Kenngrössen beschränkt. Ganz allgemein können die Pulverzusammensetzungen und Mischungen derart variiert und substituiert werden, dass die folgenden Werkstoffgrenzen für die metallische Matrix erreicht werden :

Figure imgb0009
The dispersion memory alloys according to the invention produced by the aforementioned processes have a fine-grained structure with a crystallite diameter of at most 100 μm. In general - depending on the choice of the starting powder - an average crystallite diameter of 30 I Lm and less can be achieved. The invention is not restricted to the parameters specified in the examples. In general, the powder compositions and mixtures can be varied and substituted in such a way that the following material limits for the metallic matrix are reached:
Figure imgb0009

Nickel kann ferner teilweise oder ganz durch mindestens eines der nachfolgenden Elemente ersetzt sein :

Figure imgb0010
Nickel can also be partially or completely replaced by at least one of the following elements:
Figure imgb0010

Nickel kann ferner teilweise oder ganz durch Kobalt ersetzt sein.Nickel can also be partially or completely replaced by cobalt.

Im System Cu/AI/Ni wirkt sich die Substitution des Nickels durch Eisen im Bereich von 2-3 % kaum auf die Höhe der Umwandlungstemperatur aus, während in darüber liegenden Bereichen Mg merklich erhöht wird. Durch die Substitution des Nickels durch Mangan wird Ms im ganzen Bereich deutlich erniedrigt (für sonst gleiche Gehalte an Aluminium von ca. 11 bis 14 %). In allen Systemen (sowohl im Originalsystem Cu/AI/Ni wie in den substituierten Systemen) zeigt Ms eine ausgesprochen starke Abhängigkeit vom Aluminium, dergestalt, dass mit steigendem Aluminiumgehalt Ms sinkt. Es ergibt sich also ein sehr weiter Spielraum für den Punkt der martensitischen Umwandlung, welcher von - 200 °C bis + 300 °C reichen kann. Dank der Möglichkeit, in diesen Legierungen sowohl den Einweg- wie den Zweiweg-Gedächtniseffekt zu induzieren, ergeben sich zusammen mit der grossen Variationsbreite der Temperatur Ms und den ausgezeichneten mechanischen Eigenschaften weite Anwendungsgebiete, die sich von der Tempe- raturkontrolle über thermomechanische Energiewandler bis zum Ueberstromschutz elektrischer Anlagen erstrecken.In the Cu / Al / Ni system, the substitution of nickel by iron in the range of 2-3% has hardly any effect on the level of the transition temperature, while Mg is noticeably increased in areas above. The substitution of nickel with manganese significantly reduces Ms over the entire range (for otherwise the same aluminum content of approx. 11 to 14%). In all systems (both in the original Cu / AI / Ni system and in the substituted systems), M s shows an extremely strong dependence on aluminum, in such a way that M s decreases with increasing aluminum content. So there is a very wide margin for the point of martensitic transformation, which can range from - 200 ° C to + 300 ° C. With the ability in these alloys both the one-way to induce such as the two-way memory effect, the temperature Ms and the excellent mechanical properties result together with the g Rossen variation wide application areas of the Te m p e itself - raturkontrolle thermomechanical Extend energy converters to overcurrent protection of electrical systems.

Claims (2)

1. Memory alloy containing a dispersoid and based on a mixed crystal present as a β-phase, characterised in that it has been prepared by powder metallurgy from prealloys and premixes, that its matrix, formed by the ß-phase, consists of 10.5 to 15 % by weight of aluminium and 0 to 6 % by weight of nickel, the remainder being copper, it being possible for the nickel to be replaced partially or wholly by at least one of the elements manganese, iron or cobalt, or of 17 to 26 % by weight of aluminium, the remainder being nickel plus cobalt, that it has a fine-grained structure with a crystallite diameter of at most 100 µm, and that 0.5 to 2 % by weight of Y 03 and/or Ti02 are present as a finely distributed dispersoid having a mean particle diameter from 10 Å (1 nm) to 1 µm in the matrix formed by the β-phase.
2. Memory alloy according to Claim 1, characterised in that its structure has a mean crystallite diameter of 30 µm, which is preserved even after any length of annealing time at a temperature of up to 950 °C.
EP80200185A 1980-03-03 1980-03-03 Memory alloy based on a highly cupriferous or nickelous mixed crystal Expired EP0035070B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE8080200185T DE3070639D1 (en) 1980-03-03 1980-03-03 Memory alloy based on a highly cupriferous or nickelous mixed crystal
EP80200185A EP0035070B1 (en) 1980-03-03 1980-03-03 Memory alloy based on a highly cupriferous or nickelous mixed crystal
US06/239,646 US4389250A (en) 1980-03-03 1981-03-02 Memory alloys based on copper or nickel solid solution alloys having oxide inclusions
JP2850281A JPS56136943A (en) 1980-03-03 1981-03-02 Memory alloy based on solid solution rich in copper or nickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP80200185A EP0035070B1 (en) 1980-03-03 1980-03-03 Memory alloy based on a highly cupriferous or nickelous mixed crystal

Publications (2)

Publication Number Publication Date
EP0035070A1 EP0035070A1 (en) 1981-09-09
EP0035070B1 true EP0035070B1 (en) 1985-05-15

Family

ID=8186967

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80200185A Expired EP0035070B1 (en) 1980-03-03 1980-03-03 Memory alloy based on a highly cupriferous or nickelous mixed crystal

Country Status (4)

Country Link
US (1) US4389250A (en)
EP (1) EP0035070B1 (en)
JP (1) JPS56136943A (en)
DE (1) DE3070639D1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752334A (en) * 1983-12-13 1988-06-21 Scm Metal Products Inc. Dispersion strengthened metal composites
US5320800A (en) * 1989-12-05 1994-06-14 Arch Development Corporation Nanocrystalline ceramic materials
AUPN317095A0 (en) * 1995-05-24 1995-06-22 Unisearch Limited Manufacture of intermetallic compounds
US6106642A (en) * 1998-02-19 2000-08-22 Boston Scientific Limited Process for the improved ductility of nitinol
JP4709296B2 (en) 2009-04-17 2011-06-22 日立電線株式会社 Method for manufacturing diluted copper alloy material
JP5077416B2 (en) * 2010-02-08 2012-11-21 日立電線株式会社 Soft dilute copper alloy material, soft dilute copper alloy wire, soft dilute copper alloy plate, soft dilute copper alloy twisted wire and cables, coaxial cables and composite cables using these
JP5589754B2 (en) 2010-10-20 2014-09-17 日立金属株式会社 Dilute copper alloy material and method for producing diluted copper alloy material excellent in hydrogen embrittlement resistance
CN103547691B (en) * 2011-05-26 2016-08-17 泰尔茂株式会社 Medical instruments composite and manufacture method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0035601A1 (en) * 1980-03-03 1981-09-16 BBC Aktiengesellschaft Brown, Boveri & Cie. Process for making a memory alloy
EP0035602A1 (en) * 1980-03-03 1981-09-16 BBC Aktiengesellschaft Brown, Boveri & Cie. Process for the production of a copper, zinc and aluminium base memory alloy by powder metallurgy technique

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD2444A (en) *
US2947068A (en) * 1958-04-18 1960-08-02 John S Nachtman Aluminum base powder products
DE1433100A1 (en) * 1961-04-25 1968-10-10 Grant Nicholas John Dispersion strengthened metals and processes for their manufacture
US3143789A (en) * 1962-08-31 1964-08-11 Du Pont Dispersion strengthened metal composition
BE758862A (en) * 1969-11-12 1971-04-16 Fulmer Res Inst Ltd Improvements relating to the treatment of alloys
US3909309A (en) * 1973-09-11 1975-09-30 Int Nickel Co Post working of mechanically alloyed products
JPS5619393B2 (en) * 1974-01-24 1981-05-07
JPS53925B2 (en) * 1974-05-04 1978-01-13
JPS5319109A (en) * 1976-08-06 1978-02-22 Nok Corp Sintered c# alloy for sliding material
JPS5393107A (en) * 1977-01-26 1978-08-15 Hiroyasu Mitani Soun arresting and vibration dampening aluminium and bronze sintered alloy
JPS5393115A (en) * 1977-01-26 1978-08-15 Hiroyasu Mitani Method of making aluminum bronze with sound insulating and vibration absorbing property
NL7714494A (en) * 1977-12-28 1979-07-02 Leuven Res & Dev Vzw METHOD FOR MAKING SOLID BODIES FROM COPPER-ZINC ALUMINUM ALLOYS
US4292079A (en) * 1978-10-16 1981-09-29 The International Nickel Co., Inc. High strength aluminum alloy and process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0035601A1 (en) * 1980-03-03 1981-09-16 BBC Aktiengesellschaft Brown, Boveri & Cie. Process for making a memory alloy
EP0035602A1 (en) * 1980-03-03 1981-09-16 BBC Aktiengesellschaft Brown, Boveri & Cie. Process for the production of a copper, zinc and aluminium base memory alloy by powder metallurgy technique

Also Published As

Publication number Publication date
DE3070639D1 (en) 1985-06-20
US4389250A (en) 1983-06-21
EP0035070A1 (en) 1981-09-09
JPS56136943A (en) 1981-10-26

Similar Documents

Publication Publication Date Title
EP0035601B1 (en) Process for making a memory alloy
DE69734515T2 (en) SINTERED HARD ALLOY
EP0464366B1 (en) Process for producing a work piece from an alloy based on titanium aluminide containing a doping material
DE602004005976T2 (en) PRODUCTION METHOD FOR RIVETS FROM CRYOGEN CRUSHED ALUMINUM ALLOYS AND RIVETS MADE THEREFOR
DE1909781A1 (en) Metal powder made from kneaded composite particles and method for their production
EP0035602B1 (en) Process for the production of a copper, zinc and aluminium base memory alloy by powder metallurgy technique
DE2303802B2 (en) PROCESS FOR INCREASING THE STRENGTH AND TOUGHNESS OF DISPERSION-STRENGTHEN WEDNES
DE2625213C2 (en) Process for the production of a metal powder suitable for sintering
DE2542094A1 (en) METAL POWDER, METAL POWDER TREATMENT METHOD, AND METAL POWDER MANUFACTURING METHOD
DE1298293B (en) Highly wear-resistant, machinable and hardenable sintered steel alloy and process for their production
DE1125459C2 (en) Process for producing alloyed iron-based powder for powder metallurgical purposes
DE1283547B (en) Process for increasing the tensile strength, yield strength and creep rupture strength and for stabilizing the grain orientation of dispersion-hardened alloys
EP0035070B1 (en) Memory alloy based on a highly cupriferous or nickelous mixed crystal
DE2060605A1 (en) Sintered, heat- and corrosion-resistant, precipitation hardenable nickel-chromium alloy with a content of a hard-to-melt carbide produced by powder metallurgy
EP0214679B1 (en) Oxidation-resistant hard metal alloy
DE4001799C2 (en) Process for producing an intermetallic compound
DE2324937A1 (en) DURABLE DISPERSION HARDENED NICKEL-IRON-CHROME ALLOY
EP0545145B1 (en) Manufacture of a porous copper-based material as a preform for a machining process
DE2049546A1 (en)
DE4019305A1 (en) POWDER AND PRODUCTS OF TANTAL, NIOB AND THEIR ALLOYS
EP0207268B1 (en) Aluminium alloy suitable for the rapid cooling of a melt supersaturated with alloying elements
DE2063181B2 (en)
EP0016961B1 (en) Powder-metallurgical process for producing a superconducting-fibre composite material
DE3736350A1 (en) FE-BASED SINTER ALLOY WITH CARBIDES DISPERSED IN IT
DE3043321C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT SE

RBV Designated contracting states (corrected)

Designated state(s): BE CH DE FR GB IT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BBC AKTIENGESELLSCHAFT BROWN, BOVERI & CIE.

17P Request for examination filed

Effective date: 19820213

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT SE

REF Corresponds to:

Ref document number: 3070639

Country of ref document: DE

Date of ref document: 19850620

ET Fr: translation filed
EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890222

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890224

Year of fee payment: 10

Ref country code: BE

Payment date: 19890224

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890228

Year of fee payment: 10

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19890331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19891201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19900331

BERE Be: lapsed

Owner name: BBC A.G. BROWN BOVERI & CIE

Effective date: 19900331

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19901130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 80200185.9

Effective date: 19910109