EP0545145B1 - Manufacture of a porous copper-based material as a preform for a machining process - Google Patents

Manufacture of a porous copper-based material as a preform for a machining process Download PDF

Info

Publication number
EP0545145B1
EP0545145B1 EP92119677A EP92119677A EP0545145B1 EP 0545145 B1 EP0545145 B1 EP 0545145B1 EP 92119677 A EP92119677 A EP 92119677A EP 92119677 A EP92119677 A EP 92119677A EP 0545145 B1 EP0545145 B1 EP 0545145B1
Authority
EP
European Patent Office
Prior art keywords
copper
maximum
accordance
alloy
optional constituents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92119677A
Other languages
German (de)
French (fr)
Other versions
EP0545145A1 (en
Inventor
Wolfgang Dr. rer. nat. Dürrschnabel
Isabell Dr. Rer. Nat.-Dipl.-Ing. Buresch
Dieter Dr.-Ing. Stock
Hilmar R. Dr.-Ing. Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wieland Werke AG
Original Assignee
Wieland Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wieland Werke AG filed Critical Wieland Werke AG
Publication of EP0545145A1 publication Critical patent/EP0545145A1/en
Application granted granted Critical
Publication of EP0545145B1 publication Critical patent/EP0545145B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/115Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by spraying molten metal, i.e. spray sintering, spray casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys

Definitions

  • the invention relates to a method for producing a semi-finished product from a copper material suitable for machining work, in particular a semi-finished product with improved machinability.
  • Semi-finished products made of copper alloys are widely used for the production of parts in which machining work such as turning, drilling and milling must be carried out. These alloys usually contain additives such as lead or tellurium, which act as chip breakers and at the same time facilitate the economic processing of semi-finished products in the form of tubes, rods, sheets or strips made of the alloys mentioned into small parts.
  • Porous copper materials are also known; So far, however, the efforts of the professional world have always been directed towards the pores as far as possible to be completely eliminated in order to achieve the best possible properties of the copper material (cf. for example WO 90/11 852).
  • the invention has for its object to provide a method for producing semi-finished products suitable for machining work from copper materials without adding the harmful chip breaker additives such as lead or tellurium.
  • the method enables in particular the economical production of semi-finished products with improved machinability.
  • the basic idea leading to the solution of the problem is to use the pores contained in a porous preform made of copper material as chip breakers.
  • This object is achieved according to the invention in a method of the type mentioned at the outset by producing and sintering a porous preform from copper powder or copper alloy powder by powder metallurgy and by using cold and / or hot forming to produce the semifinished product from this preform in the form of rods, tubes, Profiles, wires, sheets or strips with a volume fraction of pores of 0.05 to 10% is produced.
  • a preferred embodiment is characterized in that the average particle size of the copper or. Copper alloy powder is 2 to 3000 microns.
  • the pores generated in the copper material serve as chip breakers.
  • the pores mean localized weakening of the material, which leads to the chips breaking during the cutting process.
  • the pores can have three-dimensional dimensions; however, they can also be pressed into almost two-dimensional structures by mechanical deformation of the matrix.
  • the pores take the place of additives acting as chip breakers, which are opposed to hygienic or technical concerns.
  • the invention thus provides a semi-finished product which is hygienically perfect and very well suited for machining work is.
  • a suitable bronze alloy contains in particular 0.1 to 12% tin, zinc (maximum 6%), nickel (maximum 5%), iron (maximum 4%) as additional components individually or in combination are recommended as well as further optional components for setting special properties the elements phosphorus, chromium, zirconium, titanium, magnesium (maximum 1% each).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Fodder In General (AREA)
  • Radiation-Therapy Devices (AREA)

Description

Die Erfindung betrifft ein Verfaharen zur Herstellung eines Halbzeugs aus einem für Zerspanungsarbeiten geeigneten Kupferwerkstoff, insbesondere eines Halbzeugs mit verbesserter Zerspanbarkeit.The invention relates to a method for producing a semi-finished product from a copper material suitable for machining work, in particular a semi-finished product with improved machinability.

Halbzeuge aus Kupferlegierungen werden verbreitet für die Herstellung von solchen Teilen eingesetzt, bei welchen Zerspanungsarbeiten, wie Drehen, Bohren und Fräsen durchgeführt werden müssen. Diese Legierungen enthalten in der Regel Zusätze von beispielsweise Blei oder Tellur, die als Spanbrecher wirken und gleichzeitig die wirtschaftliche Bearbeitung von Halbzeug in Form von Rohren, Stangen, Blechen oder Bändern aus den genannten Legierungen zu Kleinteilen erleichtern.Semi-finished products made of copper alloys are widely used for the production of parts in which machining work such as turning, drilling and milling must be carried out. These alloys usually contain additives such as lead or tellurium, which act as chip breakers and at the same time facilitate the economic processing of semi-finished products in the form of tubes, rods, sheets or strips made of the alloys mentioned into small parts.

Aus hygienischen Gründen wird versucht, den Bleigehalt bei solchen Teilen zu begrenzen, welche z. B. mit Trinkwasser in Versorgungsleitungen usw. in Berührung kommen.For hygienic reasons, attempts are made to limit the lead content in those parts which, for. B. come into contact with drinking water in supply lines, etc.

Andererseits stößt die Zugabe der beschriebenen Spanbrecher auf Schwierigkeiten, weil hierdurch auch die Erzeugung der Vorerzeugnisse, wie z. B. Stangen, Rohre und Profile, durch die üblichen Fertigungsschritte Warm- und Kaltumformung eingeschränkt wird. Grund hierfür ist die unvermeidliche Nebenwirkung dieser Spanbrecher-Zusätze, welche eine versprödende Wirkung auf den Grundwerkstoff ausüben.On the other hand, the addition of the chip breaker described is difficult because this also means the production of the preliminary products, such as. B. rods, tubes and profiles, is restricted by the usual manufacturing steps hot and cold forming. The reason for this is the inevitable side effect of these chip breaker additives, which have an embrittling effect on the base material.

Weiter sind poröse Kupferwerkstoffe bekannt; die bisherigen Anstrengungen der Fachwelt sind allerdings bisher stets darauf gerichtet gewesen, die Poren möglichst vollständig zu beseitigen, um möglichst gute Eigenschaften des Kupferwerkstoffs zu erzielen (vgl. beispielsweise WO 90/11 852).Porous copper materials are also known; So far, however, the efforts of the professional world have always been directed towards the pores as far as possible to be completely eliminated in order to achieve the best possible properties of the copper material (cf. for example WO 90/11 852).

Die Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung von für Zerspanungsarbeiten geeignetem Halbzeug aus Kupferwerkstoffen bereitzustellen, ohne die schädlichen Spanbrecher-Zusätze wie Blei oder Tellur zuzusetzen. Das Verfahren ermoglicht insbesondere die wirtschaftliche Herstellung von Halbzeug mit verbesserter Zerspanbarkeit.Der zur Lösung der Aufgabe führende Grundgedanke besteht erfindungsgemäß darin, die in einem porösen Vorform aus Kupferwerkstoff enthaltenen Poren als Spanbrecher zu verwenden.The invention has for its object to provide a method for producing semi-finished products suitable for machining work from copper materials without adding the harmful chip breaker additives such as lead or tellurium. The method enables in particular the economical production of semi-finished products with improved machinability. According to the invention, the basic idea leading to the solution of the problem is to use the pores contained in a porous preform made of copper material as chip breakers.

Diese Aufgabe wird bei einem Verfahren der eingangs genannten Art erfindungsgemäß dadurch gelöst, daß pulvermetallurgisch eine poröse Vorform aus Kupferpulver oder Kupferlegierungspulver hergestellt und gesintert wird und daß aus dieser Vorform durch Schritte der Kalt- und/oder Warmumformung das Halbzeug in Form von Stangen, Rohren, Profilen, Drähten, Blechen oder Bändern mit einem Volumenanteil an Poren von 0,05 bis 10 % erzeugt wird. Eine bevorzugte Ausführungsform ist dadurch gekennzeichnet, daß die mittlere Teilchengröße des Kupfer-bzw. Kupferlegierungspulvers 2 bis 3000 µm beträgt.This object is achieved according to the invention in a method of the type mentioned at the outset by producing and sintering a porous preform from copper powder or copper alloy powder by powder metallurgy and by using cold and / or hot forming to produce the semifinished product from this preform in the form of rods, tubes, Profiles, wires, sheets or strips with a volume fraction of pores of 0.05 to 10% is produced. A preferred embodiment is characterized in that the average particle size of the copper or. Copper alloy powder is 2 to 3000 microns.

Eine weitere Lösung der Aufgabe besteht bei einem Verfahren der eingangs genannten Art erfindungsgemäß darin, daß eine poröse Vorform nach dem Sprühkompaktierverfahren hergestellt wird, indem eine Metallschmelze aus Kupfer oder einer Kupferlegierung mittels Zerstäubung in Metalltröpfchen zerlegt wird und die Metalltröpfchen auf eine Unterlage aufgesprüht werden, wobei ein Gas-Metall-Verhältnis von 0,05 Nm3/kg - 1,5 Nm3/kg eingehalten wird, und daß aus dieser Vorform durch Schritte der Kalt- und/oder Warmumformung das Halbzeug in Form von Stangen, Rohren, Profilen, Drähten, Blechen oder Bändern mit einem Volumenanteil an Poren von 0,05 bis 10 % erzeugt wird. Vorzugsweise beträgt der mittlere Tröpfchendurchmesser 5 bis 200 µm.A further solution to the problem in a method of the type mentioned at the outset according to the invention is that a porous preform is produced by the spray compacting process, in that a metal melt made of copper or a copper alloy is broken down into metal droplets by atomization and the metal droplets are sprayed onto a base, whereby a gas-metal ratio of 0.05 Nm 3 / kg - 1.5 Nm 3 / kg is maintained, and that from this preform by means of cold and / or hot forming, the semi-finished product in the form of bars, tubes, profiles, Wires, sheets or strips with a volume fraction of pores 0.05 to 10% is generated. The mean droplet diameter is preferably 5 to 200 μm.

Weiterhin ist es vorteilhaft, wenn die Poren gasgefüllt sind, da bei der Weiterverarbeitung des porösen Kupferwerkstoffs die zurückbleibenden Poren zwar ihre Form verändern, sich jedoch nicht vollständig verschließen, weil die Hohlräume durch das Gas stabilisiert sind. Insbesondere empfiehlt es sich, wenn die Poren mit einem in Kupfer oder einer Kupferlegierung nicht löslichen Gas, wie etwa Stickstoff, Edelgas, Helium oder Kohlendioxyd, gefüllt sind. Weitere bevorzugte Ausführungsformen der erfindungsgemäßen Verfahren sind daher dadurch gekennzeichnet, daß im Fall eines pulvermetallurgischen Verfahrens die Vorform in einer Atmosphäre gesintert wird, welche in Kupfer und Kupferlegierungen nichtlösliche, gasförmige Anteile enthält, und im Fall eines Sprühkompaktierverfahrens als Sprühgas ein in Kupfer oder in der Kupferlegierung nichtlösbares Gas eingesetzt wird.Furthermore, it is advantageous if the pores are gas-filled, since while the porous copper material is being processed, the remaining pores change their shape, but do not close completely because the cavities are stabilized by the gas. It is particularly advisable if the pores are filled with a gas which is insoluble in copper or a copper alloy, such as nitrogen, noble gas, helium or carbon dioxide. Further preferred embodiments of the method according to the invention are therefore characterized in that, in the case of a powder metallurgical method, the preform is sintered in an atmosphere which contains gaseous components which are insoluble in copper and copper alloys, and in the case of a spray compacting method as a spray gas in copper or in the copper alloy insoluble gas is used.

Nach beiden erfindungsgemäßen Lösungen dienen die im Kupferwerkstoff erzeugten Poren als Spanbrecher. Die Poren bedeuten lokal begrenzte Schwächungen des Materials, welche zu einem Zerbrechen der Späne während des Zerspanungsvorgangs führen. Die Poren können, wie üblich, dreidimensionale Ausdehnung besitzen; sie können jedoch auch durch mechanische Verformung der Matrix zu nahezu zweidimensionalen Gebilden verdrückt sein. Die Poren treten an die Stelle von als Spanbrecher wirkenden Zusätzen, denen Bedenken hygienischer oder technischer Art entgegen stehen. Durch die Erfindung wird somit ein Halbzeug zur Verfügung gestellt, das hygienisch einwandfrei und für Zerspanungsarbeiten sehr gut geeignet ist.According to both solutions according to the invention, the pores generated in the copper material serve as chip breakers. The pores mean localized weakening of the material, which leads to the chips breaking during the cutting process. As usual, the pores can have three-dimensional dimensions; however, they can also be pressed into almost two-dimensional structures by mechanical deformation of the matrix. The pores take the place of additives acting as chip breakers, which are opposed to hygienic or technical concerns. The invention thus provides a semi-finished product which is hygienically perfect and very well suited for machining work is.

Zwar ist aus US-A-2 881 511 ein Verfahren bekannt, bei dem pulvermetallurgisch eine poröse Vorform aus Kupferlegierungspulver hergestellt und gesintert und aus dieser Vorform durch Schritte der Kalt- und/oder Warmumformung das gewünschte Werkstück mit einer Porosität zwischen 2 % und 13 % erhalten wird. Jedoch dient dieses bekannte Verfahren zur Herstellung von durch Zugaben von Nickel und Titan besonders verschleißfesten Gegenständen, die möglichst selbstschmierende Eigenschaften besitzen und zu keiner weiteren spanabhebenden Bearbeitung mehr bestimmt sind. Das bekannte Verfahren ist daher nicht darauf gerichtet, die Zerspanbarkeit des so hergestellten Kupferwerkstoffs zu verbessern.A method is known from US Pat. No. 2,881,511 in which a porous preform is made from copper alloy powder by powder metallurgy and sintered and the desired workpiece with a porosity between 2% and 13% is formed from this preform by steps of cold and / or hot forming. is obtained. However, this known method is used to produce objects which are particularly wear-resistant by adding nickel and titanium and which, if possible, have self-lubricating properties and are no longer intended for further machining. The known method is therefore not aimed at improving the machinability of the copper material produced in this way.

In SU-A-511 362 ist eine pulvermetallurgisch hergestellte, Wolfram und Kalziumfluorid enthaltende Kupferlegierung mit einem Porenanteil von 15 bis 20 % beschrieben, die gegen Erosion besonders stabil und spanabhebend bearbeitbar ist. Jedoch fehlen jegliche Schritte einer an den Sinterprozess anschließenden Kalt- und/oder Warmverformung.SU-A-511 362 describes a powder-metallurgically produced tungsten and calcium fluoride-containing copper alloy with a pore content of 15 to 20%, which is particularly stable and machinable against erosion. However, there are no steps involved in cold and / or hot forming following the sintering process.

Das Dokument Metals Handbook 1984, ASM, Bd. 7: "Powder Metallurgy" beschreibt zwar auf den Seiten 735 bis 740 pulvermetallurgisch hergestellte Kupferwerkstoffe verschiedenster Arten, enthält aber keinen Hinweis auf eine Kalt- und/oder Warmumformung der gesinterten Vorform auf einen bestimmten Porenanteil und auf eine dadurch erreichbare Verbesserung der Zerspanbarkeit. - Auf Seite 742 des Dokuments wird zwar im Zusammenhang mit Fig. 1 die gute Zerspanbarkeit von P/M-Aluminium gegenüber "wrought" Aluminium betont, jedoch handelt es sich bei dem angesprochenen P/M-Aluminium um eine lediglich pulvermetallurgisch gewonnene Vorform, die anschließend keiner Kalt- und/oder Warmverformung unterworfen worden ist. - Aus den Seiten 620, 667, 725 und 735 des Dokuments ergibt sich speziell aus Fig. 13 auf Seite 620 zwar die Möglichkeit einer spanabhebenden Bearbeitung gesinterter Teile, jedoch fehlt bei Fig. 13 zwischen den Bearbeitungsstufen des Sinterns und der spanabhebenden Bearbeitung offensichtlich ein Schritt der Kalt- und/oder Warmverformung. Zur Herstellung des aus Fig. 1 auf Seite 667 ersichtlichen Werkstücks dienen zwar mehrere aufeinander folgende Stufen des Sinterns und verdichtenden Pressens, jedoch endet die Herstellung der danach nur noch spanabhebend bearbeiteten Vorform mit einem Sintervorgang, so daß auch hier die erfindungsgemäß erforderlichen Schritte der Kalt- und/oder Warmverformung fehlen. Weiter ist es aus Seite 725, Fig. 21 bekannt, eine pulvermetallurgisch hergestellte Vorform warm zu walzen und anschließend erneut einer Warmbehandlung zu unterwerfen, ehe das so erhaltene Halbzeug spanabhebend bearbeitet wird. Jedoch dient hier, wie die Beschreibung auf Seite 724 erkennen läßt, das Warmwalzen und die anschließende Warmbehandlung gerade der Beseitigung der vorhandenen Poren, so daß diese Entgegenhaltung ebensowenig die Erfindung beschreibt, wie dies eingangs am Beispiel der WO 90/11 852 bereits ausgeführt ist, wonach poröse Kupferwerkstoffe als solche zwar vorbekannt sind, die Bemühungen der Fachwelt aber darauf gerichtet waren, die Poren möglichst vollständig zu beseitigen, um möglichst gute Werkstoffeigenschaften zu erzielen. - Gleiches gilt für das aus den Seiten 530 bis 532 des Dokuments bekannte Sprühkompaktierverfahren, bei dem das anschließende Warmschmieden der porösen Vorform ebenfalls der möglichsten Porenbeseitigung dient; jedenfalls enthält diese Stelle des Dokuments keinen Hinweis darauf, durch das Warmschmieden die Poren in der erfindungsgemäßen Weise nur soweit zu reduzieren, daß eine deutliche Verbesserung der Zerspanbarkeit eintritt.The document Metals Handbook 1984, ASM, Vol. 7: "Powder Metallurgy" describes on pages 735 to 740 copper materials of various types produced by powder metallurgy, but contains no reference to cold and / or hot forming of the sintered preform to a specific pore fraction and for an improvement in machinability that can be achieved. On page 742 of the document, the good machinability of P / M aluminum compared to "wrought" aluminum is emphasized in connection with FIG. 1, but this is the case P / M aluminum referred to is only a preform obtained by powder metallurgy, which has subsequently not been subjected to any cold and / or hot deformation. - From pages 620, 667, 725 and 735 of the document, especially from Fig. 13 on page 620, there is the possibility of machining sintered parts, but in Fig. 13 there is obviously a step missing between the processing stages of sintering and machining cold and / or hot forming. 1 on page 667 are used for producing the workpiece, several successive stages of sintering and compacting pressing are used, but the production of the preform, which is then only machined, ends with a sintering process, so that the steps of cold and / or hot working are missing. Furthermore, it is known from page 725, FIG. 21 to hot-roll a preform produced by powder metallurgy and then to subject it to a heat treatment again before the semi-finished product thus obtained is machined. However, as can be seen from the description on page 724, hot rolling and the subsequent hot treatment serve precisely to remove the existing pores, so that this citation does not describe the invention, as was already explained at the beginning of WO 90/11 852, According to which porous copper materials are known as such, the efforts of the experts were directed towards removing the pores as completely as possible in order to achieve the best possible material properties. - The same applies to the spray compacting method known from pages 530 to 532 of the document, in which the subsequent hot forging of the porous preform likewise serves the most possible pore removal; in any case, this section of the document contains no indication that the hot forging only reduces the pores in the manner according to the invention to such an extent that the machinability is significantly improved.

Schließlich ist aus EP-A-0 456 591 bekannt, daß Enderzeugnisse aus Kupferwerkstoff durch Zerspanung hergestellt werden, und zwar ausgehend von Stabmaterial, das mittels Sprühkompaktieren/Warmumformung bereitgestellt worden ist. Jedoch findet sich auch hier kein Hinweis, daß die Warmumformung nicht zur weitgehenden oder vollständigen Porenbeseitigung gedient hat und daß sich die Zerspanbarkeit verbessern könnte, wenn die Warmumformung ein der Erfindung gemäßen Porenanteil im Halbzeug belassen hätte.Finally, it is known from EP-A-0 456 591 that end products made of copper material are produced by machining, starting from rod material which has been provided by means of spray compacting / hot forming. However, here too there is no indication that the hot forging did not serve to largely or completely remove the pores and that the machinability could improve if the hot forging had left a proportion of pores in the semifinished product according to the invention.

Für die erfindungsgemäßen Verfahren kommen vorzugsweise Messing- und Bronzelegierungen zum Einsatz, jedoch ist die Anwendung der Erfindung auf andere Kupfer legierungen bei Bedarf ohne weiteres möglich.Brass and bronze alloys are preferably used for the processes according to the invention, but the application of the invention to other copper alloys is readily possible if required.

Eine geeignete Messinglegierung enthält insbesondere 1 bis 45 % Zink, als Wahlkomponenten einzeln oder in Kombination empfehlen sich Aluminium (maximal 10 %), Nickel (maximal 20 %), Zinn (maximal 6 %), Silizium (maximal 4 %), Eisen (maximal 2 %), Mangan (maximal 8 %). Weitere Wahlkomponenten, welche zur Erzielung besonderer Festigkeitseigenschaften einzeln und in Kombination zugegeben werden können, sind Titan, Chrom, Zirkon, Beryllium, Magnesium, Phosphor, Antimon bis jeweils maximal 1 %.A suitable brass alloy contains in particular 1 to 45% zinc, aluminum (maximum 10%), nickel (maximum 20%), tin (maximum 6%), silicon (maximum 4%), iron (maximum) are recommended as individual components or in combination 2%), manganese (maximum 8%). Other optional components that can be added individually and in combination to achieve special strength properties are titanium, chromium, zirconium, beryllium, magnesium, phosphorus, antimony, each up to a maximum of 1%.

Eine geeignete Bronzelegierung enthält insbesondere 0,1 bis 12 % Zinn, als Wahlkomponenten einzeln oder in Kombination empfehlen sich hier Zink (maximal 6 %), Nickel (maximal 5 %), Eisen (maximal 4 %) sowie als weitere Wahlkomponenten zur Einstellung besonderer Eigenschaften die Elemente Phosphor, Chrom, Zirkon, Titan, Magnesium (jeweils maximal 1 %).A suitable bronze alloy contains in particular 0.1 to 12% tin, zinc (maximum 6%), nickel (maximum 5%), iron (maximum 4%) as additional components individually or in combination are recommended as well as further optional components for setting special properties the elements phosphorus, chromium, zirconium, titanium, magnesium (maximum 1% each).

Eine ebenfalls für die erfindungsgemäßen Verfahren geeignete Aluminiumbronzelegierung enthält insbesondere 1 bis 10 % Aluminium sowie als Wahlkomponenten einzeln oder in Kombination Eisen (maximal 5 %), Nickel (maximal 8 %), Silizium (maximal 4 %), Mangan (maximal 5 %), Zinn (maximal 3 %) sowie als weitere Wahlkomponenten Chrom, Titan, Zirkon, Magnesium, Phosphor, bis maximal 1 % einzeln oder im Kombination.An aluminum bronze alloy which is also suitable for the processes according to the invention contains in particular 1 to 10% aluminum and, as optional components, individually or in combination iron (maximum 5%), nickel (maximum 8%), silicon (maximum 4%), manganese (maximum 5%), Tin (maximum 3%) and as additional optional components chrome, titanium, zircon, magnesium, phosphorus, up to a maximum of 1% individually or in combination.

Eine für die erfindungsgemäßen Verfahren geeignete niedriglegierte Kupferlegierung enthält als Wahlkomponenten einzeln oder in Kombination Phosphor (maximal 0,5 %), Eisen (maximal 4 %), Zinn (maximal 3 %), Nickel (maximal 4 %), Silizium (maximal 2 %), Chrom (maximal 2 %), Kobalt (maximal 2 %), Beryllium (maximal 2 %) sowie als weitere Wahlkomponenten Titan, Zirkon, Magnesium, Mangan, Arsen, Zink bis maximal 1 % einzeln oder in Kombination.A low-alloy copper alloy suitable for the processes according to the invention contains, as optional components, individually or in combination phosphorus (maximum 0.5%), iron (maximum 4%), tin (maximum 3%), nickel (maximum 4%), silicon (maximum 2%). ), Chrome (maximum 2%), cobalt (maximum 2%), beryllium (maximum 2%) and as further optional components titanium, zirconium, magnesium, manganese, arsenic, zinc up to a maximum of 1% individually or in combination.

Die Erfindung wird anhand der folgenden Ausführungsbeispiele näher erläutert. Es zeigt

Fig. 1a
den Längsschliff einer gesinterten Kupferprobe,
Fig. 1b
den Querschnitt einer gesinterten Kupferprobe,
Fig. 2
Spanformen der gesinterten Kupferprobe nach Fig. 1,
Fig. 3
Spanformen von einer konventionell hergestellten Kupferprobe,
Fig. 4
den Querschliff einer weiteren, gesinterten Kupferprobe und
Fig. 5
Spanformen der gesinterten Kupferprobe dre Fig. 4.
The invention is explained in more detail using the following exemplary embodiments. It shows
Fig. 1a
the longitudinal grinding of a sintered copper sample,
Fig. 1b
the cross section of a sintered copper sample,
Fig. 2
Chip shapes of the sintered copper sample according to FIG. 1,
Fig. 3
Chip forms from a conventionally produced copper sample,
Fig. 4
the cross section of another sintered copper sample and
Fig. 5
Chip shapes of the sintered copper sample dre Fig. 4.

Beispiel 1:Example 1:

Durch Zerstäuben gewonnenes Pulver aus Kupfer mit einer Korngröße von 25 µm wird in üblicher Weise mit einem Schmiermittel (Stearinsäure) versetzt und zu einem Grünling von 95 % Dichte verpreßt. Der Grünling wird nach einem Temperaturprogramm so bis zur Sintertemperatur geführt, daß das Schmiermittel ausgetrieben wird. Die Sintertemperatur beträgt 1000°C, die Sinterzeit 2,5 h.A powder of copper with a grain size of 25 µm obtained by atomization is mixed with a lubricant (stearic acid) in the usual way and pressed to a green body of 95% density. The green body becomes after one Temperature program led up to the sintering temperature so that the lubricant is expelled. The sintering temperature is 1000 ° C, the sintering time 2.5 h.

Als Sinteratmosphäre wird aus Ammoniak gewonnenes Spaltgas bei Atmosphärendruck verwendet. Nach dem Sintern hat der Körper jetzt eine Dichte von 98,5 % der theoretischen und enthält geschlossene Poren.Fission gas obtained from ammonia at atmospheric pressure is used as the sintering atmosphere. After sintering, the body now has a density of 98.5% of the theoretical and contains closed pores.

Der Sinterkörper wird bei Raumtemperatur durch Walzen um etwa 30 % kaltverformt, wobei die Poren verstreckt werden. Hierdurch entsteht ein Gefüge wie es in Fig. 1a an einem Längsschliff und in Fig. 1b an einem Querschliff charakterisiert ist (Vergrößerung 200:1). Das Material ist von gleichmäßig feinen Porenkanälchen durchsetzt.The sintered body is cold worked at room temperature by rolling by about 30%, the pores being stretched. This creates a structure as is characterized in FIG. 1a on a longitudinal section and in FIG. 1b on a transverse section (magnification 200: 1). The material is interspersed with evenly fine pore tubules.

Beim Drehversuch auf einer Drehbank entstehen wesentlich kürzere Späne (Fig. 2 / L: Längsdrehversuch, P: Stirndrehversuch) als bei solchen Stangen, welche aus vollkommen dichten, stranggegossenen Bolzen durch Pressen und Ziehen gefertigt wurden (Fig. 3).The turning test on a lathe produces much shorter chips (Fig. 2 / L: longitudinal turning test, P: face turning test) than those of bars that were made from completely tight, continuously cast bolts by pressing and pulling (Fig. 3).

Beispiel 2: Example 2 :

Die Vorgehensweise ist ebenso wie bei Beispiel 1, mit der Abweichung, daß jetzt gröberes Pulver mit einer Korngröße von 25 bis 50 µm eingesetzt wird. Hierdurch entsteht nach dem Kaltverformen eine etwas gröbere Porenstruktur, wie sie aus dem Querschliff in Fig. 4 hervorgeht. Beim Drehversuch auf einer Drehbank entstehen auch in diesem Fall günstige kurze Späne, wie Fig. 5 (L: Längsdrehversuch, P: Stirndrehversuch) zeigt.The procedure is the same as in Example 1 , with the difference that now coarser powder with a grain size of 25 to 50 µm is used. This results in a somewhat coarser pore structure after cold forming, as can be seen from the cross section in FIG. 4. When turning on a lathe, low-cost chips are produced in this case, as shown in Fig. 5 (L: longitudinal turning, P: face turning).

Beispiel 3: Example 3 :

Eine Schmelze aus CuFe2P mit der Zusammensetzung 2,3 % Eisen, 0,022 % Phosphor, Rest Kupfer und übliche Verunreinigungen wird mit Hilfe des Sprühkompaktierverfahrens (OSPREY-Verfahren) zu einer ca 30 mm dicken Platte gesprüht. Als Sprühgas wird Reinstickstoff eingesetzt. Durch geeignete Wahl der Sprühverfahren insbesondere des Gas-Metall-Verhältnisses 0,42 in der Verdüsungsstufe, wird erreicht, daß die konsolidierte Platte eine Dichte von 85 % der theoretischen aufweist.A melt of CuFe2P with the composition 2.3% iron, 0.022% phosphorus, the rest copper and usual impurities is sprayed with the help of the spray compacting process (OSPREY process) to an approximately 30 mm thick plate. Pure nitrogen is used as the spray gas. By suitable Selection of the spraying method, in particular the gas-metal ratio of 0.42 in the atomization stage, ensures that the consolidated plate has a density of 85% of the theoretical.

Die Platte wird auf der Außenseite überfräst, anschließend auf 930°C aufgeheizt und um 40 % warm abgewalzt. Aus dem gewalzten Blech wird ein Stück für Drehversuche herausgearbeitet. Dieser Stab hat eine Dichte von 98,5 % der theoretischen.The plate is milled on the outside, then heated to 930 ° C and cold rolled by 40%. A piece for turning tests is worked out from the rolled sheet. This rod has a density of 98.5% of the theoretical.

Beim Stirndrehversuch ergibt die Stange wieder wesentlich kürzere Späne als solche, welche nach dem üblichen Verfahren von einer Probe aus gegossener und warmgewalzter Platte erzeugt wurden.In the face turning test, the bar again produces much shorter chips than those which were produced from a sample of cast and hot-rolled plate using the usual method.

Claims (18)

  1. Process for the production of a semi-finished article from a copper material with improved machinability, wherein a porous preform of copper powder or copper alloy powder is first produced by powder metallurgy and sintered, characterized in that from this preform, by cold forming or hot forming steps the semi-finished article is produced in the form of bars, pipes, sections, wires, sheets or bands with a pore proportion of between 0.05 and 10% by volume.
  2. Process according to Claim 1, characterized in that the average size of the particles in the copper powder or copper alloy powder is 2 to 3000 µm.
  3. Process according to Claim 1 or 2, characterized in that the preform is sintered in an atmosphere containing gaseous constituents soluble in copper and copper alloys.
  4. Process for the production of a semi-finished article with improved machinability, wherein a porous preform is first of all produced by the spray compacting method in which a metal welt of copper or of a copper alloy is sub-divided into metal droplets by atomization, the metal droplets being sprayed onto a base, characterized in that a gas-to-metal ratio of 0.5 Nm3/kg - 1.5 Nm3/kg is maintained and that, by cold and/or hot forming operations, the semi-finished articles are produced in the form of bars, pipes, sections, wires, sheets or bands with a pore proportion of between 0.05 and 10% by volume.
  5. Process in accordance with Claim 4, characterized in that the average diameter of the droplets amounts to between 5 and 200 µm.
  6. Process in accordance with any one of Claims 1 to 5, characterized in that the copper material contains gas-filled pores.
  7. Process in accordance with Claim 6, characterized in that the pores contain a gas insoluble in copper or in a copper alloy.
  8. Process in accordance with any one of Claims 1 to 7, characterized in that the copper material consists of a brass alloy with between 1 and 45% of zinc.
  9. Process in accordance with Claim 8, characterized in that the brass alloy contains, as optional constituents, maximum proportions of 10% of aluminium, 20% of nickel, 6% of tin, 4% of silicon and 8% of manganese, as well as a maximum of 2% of iron, either separately or in combination with one another.
  10. Process in accordance with Claim 9, characterized in that the brass alloy contains, as further optional constituents, one or more of the elements titanium, chromium, zirconium, beryllium, magnesium, phosphorus and antimony, in each case up to a maximum of 1%.
  11. Process in accordance with any one of Claims 1 to 7, characterized in that the copper material consists of a bronze alloy with between 0.1% and 12% of tin.
  12. Process in accordance with Claim 11, characterized in that the bronze alloy contains, as optional constituents, a maximum of 6% of zinc, a maximum of 5% of nickel and a maximum of 4% of iron, either separately or in combination with one another.
  13. Process in accordance with any one of Claims 1 to 12, characterized in that the bronze alloy contains, as further optional constituents, one or more of the elements phosphorus, chromium, zurconium, titanium or magnesium, in each case up to a maximum of 1%.
  14. Process in accordance with any one of Claims 1 to 7, characterized in that the copper material consists of an aluminium bronze with between 0.1 and 10% of aluminium.
  15. Process in accordance with any one of Claims 1 to 14, characterized in that the aluminium bronze contains, as optional constituents, maximum proportions of 5% of iron, 8% of nickel, 4% of silicon and 5% of manganese as well as a maximum of 3% of tin, either separately or in combination with one another.
  16. Process in accordance with Claim 15, characterized in that the aluminium bronze contains, as further optional constituents, one or more of the elements chromium, titanium, zirconium, magnesium or phosphorus, in each case up to a maximum of 1%.
  17. Process in accordance with any one of Claims 1 to 7, characterized in that the copper material consists of a low-alloy copper alloy containing, as optional constituents, maximum proportions of 0.5% of phosphorus, 4% of iron, 3% of tin, 4% of nickel, 2% of silicon, 2% of chromium, 2% of cobalt and 2% of beryllium, either separately or in combination with one another.
  18. Process in accordance with Claim 17, characterized in that the copper alloy contains, as further optional constituents, one or more of the elements titanium, zirconium, magnesium, manganese, arsenic or zinc, in each case up to a maximum of 1%.
EP92119677A 1991-11-28 1992-11-19 Manufacture of a porous copper-based material as a preform for a machining process Expired - Lifetime EP0545145B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4139063A DE4139063C2 (en) 1991-11-28 1991-11-28 Process for improving the machinability of semi-finished products made of copper materials
DE4139063 1991-11-28

Publications (2)

Publication Number Publication Date
EP0545145A1 EP0545145A1 (en) 1993-06-09
EP0545145B1 true EP0545145B1 (en) 1996-07-31

Family

ID=6445728

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92119677A Expired - Lifetime EP0545145B1 (en) 1991-11-28 1992-11-19 Manufacture of a porous copper-based material as a preform for a machining process

Country Status (4)

Country Link
EP (1) EP0545145B1 (en)
JP (1) JPH06192772A (en)
DE (2) DE4139063C2 (en)
ES (1) ES2090462T3 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7056396B2 (en) 1998-10-09 2006-06-06 Sambo Copper Alloy Co., Ltd. Copper/zinc alloys having low levels of lead and good machinability
US8506730B2 (en) 1998-10-09 2013-08-13 Mitsubishi Shindoh Co., Ltd. Copper/zinc alloys having low levels of lead and good machinability
DE10043278A1 (en) * 2000-09-02 2002-03-28 Berkenhoff Gmbh Alloy, especially wire for eyeglass frames
CN101098976B (en) 2005-09-22 2014-08-13 三菱伸铜株式会社 Free-cutting copper alloy containing very low lead
JP2007211325A (en) * 2006-02-13 2007-08-23 Sanbo Copper Alloy Co Ltd Raw material aluminum bronze alloy for casting half-melted alloy
US8273192B2 (en) * 2008-06-11 2012-09-25 Xiamen Lota International Co., Ltd. Lead-free, bismuth-free free-cutting phosphorous brass alloy
DE102009002894A1 (en) * 2009-05-07 2010-11-18 Federal-Mogul Wiesbaden Gmbh plain bearing material
MX370072B (en) 2012-10-26 2019-11-29 Sloan Valve Co White antimicrobial copper alloy.
WO2015054252A2 (en) * 2013-10-07 2015-04-16 Sloan Valve Company White antimicrobial copper alloy
DE102015004221A1 (en) * 2015-03-31 2016-10-06 Wieland-Werke Ag Copper-zinc alloy, strip-shaped material thereof, method for producing a semi-finished product from a copper-zinc alloy and sliding elements made from a copper-zinc alloy

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2393906A (en) * 1943-09-04 1946-01-29 Mallory & Co Inc P R Metal composition and bearing
US2881511A (en) * 1956-08-14 1959-04-14 Gen Motors Corp Highly wear-resistant sintered powdered metal
BE790453A (en) * 1971-10-26 1973-02-15 Brooks Reginald G MANUFACTURE OF METAL ARTICLES
US4604259A (en) * 1983-10-11 1986-08-05 Scm Corporation Process for making copper-rich metal shapes by powder metallurgy
GB9008957D0 (en) * 1990-04-20 1990-06-20 Shell Int Research Copper alloy and process for its preparation
FR2661922B1 (en) * 1990-05-11 1992-07-10 Trefimetaux COPPER ALLOYS WITH SPINODAL DECOMPOSITION AND PROCESS FOR OBTAINING SAME.
US5167726A (en) * 1990-05-15 1992-12-01 At&T Bell Laboratories Machinable lead-free wrought copper-containing alloys

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Metals Handbook, 1984, ASM, Band 7, Pulvermetallurgie, Seiten 530-532, 620, 627, 725, 735 *

Also Published As

Publication number Publication date
ES2090462T3 (en) 1996-10-16
EP0545145A1 (en) 1993-06-09
DE4139063A1 (en) 1993-06-03
JPH06192772A (en) 1994-07-12
DE4139063C2 (en) 1993-09-30
DE59206853D1 (en) 1996-09-05

Similar Documents

Publication Publication Date Title
EP0464366B1 (en) Process for producing a work piece from an alloy based on titanium aluminide containing a doping material
DE69915797T2 (en) METHOD FOR PRODUCING SEALED PARTS THROUGH UNIAXIAL PRESSING AGGLOMERED BALL-MOLDED METAL POWDER.
EP0035601B1 (en) Process for making a memory alloy
DE1775322A1 (en) Plain bearings with finely divided aluminum as the basic material and process and for its production
DE2362499C2 (en) Process for the powder-metallurgical production of extruded bodies
EP0035602B1 (en) Process for the production of a copper, zinc and aluminium base memory alloy by powder metallurgy technique
DE1283547B (en) Process for increasing the tensile strength, yield strength and creep rupture strength and for stabilizing the grain orientation of dispersion-hardened alloys
DE2625213C2 (en) Process for the production of a metal powder suitable for sintering
EP0545145B1 (en) Manufacture of a porous copper-based material as a preform for a machining process
DE2060605C3 (en) Powder metallurgy produced by sintering, precipitation hardenable, corrosion and high temperature resistant nickel-chromium alloy
DE112007002016T5 (en) High strength non-flammable magnesium alloy
DE1558805C3 (en) Process for the production of deformed workpieces from dispersion-reinforced metals or alloys
DE2001341A1 (en) Alloy or mixed metal based on molybdenum
DE3113733C2 (en) Process for the recovery of high quality materials
EP0035070B1 (en) Memory alloy based on a highly cupriferous or nickelous mixed crystal
DE2511095A1 (en) METHOD FOR PRODUCING AN ALLOY
DE3919107A1 (en) METHOD FOR SHAPING AND IMPROVING THE MECHANICAL PROPERTIES OF POWDER METALLICALLY PRODUCED BLANKS FROM AN ALLOY WITH INCREASED RESISTANCE TO HEAT BY EXTRACTION
EP0338401B1 (en) Powder-metallurgical process for the production of a semi-finished product for electrical contacts made from a composite material based on silver and iron
DE738536C (en) Process for the production of moldings from materials with different melting points
AT345569B (en) PROCESS FOR PRODUCING A DISPERSION STRENGTHENED METAL
DE4126219C2 (en)
EP1217086A2 (en) Use of a tungsten heavy metal alloy
DE1925742C (en) Process for the production of metals and metal alloys with embedded oxide particles
DE1533349C3 (en) Process for deformation hardening of Co-Ni-Cr-Mo alloys
DE2128639A1 (en) Process for the production of nickel-chromium alloy compositions containing elements for dispersion and precipitation strengthening

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR IT LI SE

17P Request for examination filed

Effective date: 19930421

17Q First examination report despatched

Effective date: 19950303

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR IT LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

REF Corresponds to:

Ref document number: 59206853

Country of ref document: DE

Date of ref document: 19960905

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2090462

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2090462

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20071008

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20071129

Year of fee payment: 16

Ref country code: IT

Payment date: 20071129

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20071113

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070808

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071228

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081119

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090603

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20081120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130