EP0016961A1 - Powder-metallurgical process for producing a superconducting-fibre composite material - Google Patents

Powder-metallurgical process for producing a superconducting-fibre composite material Download PDF

Info

Publication number
EP0016961A1
EP0016961A1 EP80100955A EP80100955A EP0016961A1 EP 0016961 A1 EP0016961 A1 EP 0016961A1 EP 80100955 A EP80100955 A EP 80100955A EP 80100955 A EP80100955 A EP 80100955A EP 0016961 A1 EP0016961 A1 EP 0016961A1
Authority
EP
European Patent Office
Prior art keywords
powder
oxygen
components
starting powder
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80100955A
Other languages
German (de)
French (fr)
Other versions
EP0016961B1 (en
Inventor
Hans Wilhelm Prof. Dr. Bergmann
Rüdiger Dr. Bormann
Herbert C. Prof.Dr. Freyhardt
Barry Leslie Prof. Dr. Mordike
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FREYHARDT HERBERT C DR
MORDIKE BARRY L
Original Assignee
MORDIKE BARRY L
FREYHARDT HERBERT C DR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MORDIKE BARRY L, FREYHARDT HERBERT C DR filed Critical MORDIKE BARRY L
Publication of EP0016961A1 publication Critical patent/EP0016961A1/en
Application granted granted Critical
Publication of EP0016961B1 publication Critical patent/EP0016961B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1078Alloys containing non-metals by internal oxidation of material in solid state
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/80Material per se process of making same
    • Y10S505/801Composition
    • Y10S505/807Powder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/80Material per se process of making same
    • Y10S505/815Process of making per se
    • Y10S505/823Powder metallurgy

Definitions

  • the invention relates to a process for the powder-metallurgical production of a composite material deformed in at least one dimension from at least one, preferably two or more starting powder components, at least one of which is contaminated in volume or on the surface with oxygen or an oxygen compound, and being at least one starting powder component a cubic body-centered metal is used.
  • the powder metallurgical production of composite materials is known.
  • two starting powder components preferably two metal powders
  • This fiber composite is deformed in two dimensions. If the composite material is deformed in only one dimension, the powder particles are drawn out into unrelated bands.
  • the two starting powder components are generally mixed, compacted, sintered and then subsequently subjected to the shaping process in which the powder grains are drawn out into long fibers.
  • oxygen is interstitially dissolved in volume by reaction with atmospheric oxygen and / or already during the production process of the powder and / or bound to the surface as a corresponding oxide.
  • the interstitially dissolved oxygen increases both the hardness of the powder of the starting powder component and the critical temperature of the ductile-brittle transition. The consequence of this is that a multi-phase structure produced by powder sintering by powder metallurgy cannot be converted into the desired fiber structure during cold forming, because the hardened starting powder components do not allow this deformation to the desired extent and are practically as undeformed particles or as multiply torn fiber pieces in the other starting powder component.
  • the invention has for its object to develop a method of the type described above so that a ductile composite material can be produced.
  • the ductility of the starting powder components should be matched to one another.
  • the oxygen is no longer interstitially dissolved, as an oxide of the additional component it can no longer have a disadvantageous effect on the ductility of the starting powder components, in particular those with the body-centered cubic lattice.
  • the additional component which has a comparatively higher enthalpy of binding to the oxygen, a successful and complete purification of the starting powder component or components of oxygen is possible.
  • the method can be used with particular advantage when two or more starting powder components are used.
  • the reduction in solids is generally carried out at elevated temperature, this process taking place during the annealing treatment during sintering as an internal reduction in solids. A renewed reaction of the cleaned starting powder components with atmospheric oxygen is avoided. With this method it is possible to compress starting powder components hardened by oxygen and - after the solid reduction - to convert them into a fiber structure by cold working. Additional components can also be used which have little or no solubility in the starting powder component or components.
  • the amount of the additional component is added in a small proportion, the proportion advantageously being so small that the composite material is only insignificantly dispersion-cured.
  • the reduction in solids is carried out in the volume of the mixture of starting powder components and the additional component.
  • the method according to the invention captivates primarily through the simplicity of producing a fiber composite material, in particular with high density (extremely) thin fibers and a high strength associated therewith. This applies in particular to materials that, due to their high affinity for oxygen, could not be converted into a fiber structure due to deformation.
  • Lanthanum, a lanthanide, calcium, beryllium, magnesium, lithium, hafnium, titanium, zirconium and / or aluminum can be used as one or more additional components be used. Particularly good work results are also achieved if copper and the body-centered cubic niobium are used as starting powder components and 0.5 to 2.0% by weight aluminum powder are used as additional components. Excellent properties have also been achieved if copper and the body-centered cubic vanadium are used as the starting powder components and 2 to 10% by weight of copper calcium powder are used as the additional component.
  • a niobium-copper fiber composite material is produced.
  • Commercially available niobium powder (grain size ⁇ 20 / ⁇ m) and copper powder as starting powder components in a weight ratio of 1: 4 with the addition of 0.5 to 2.0% by weight aluminum powder (grain size ⁇ 10 / ⁇ m) are mixed and extruded at approx. 1050 ° C .
  • the aluminum reacts with the powder metallurgically introduced oxygen to form A1 2 0 3 , whereby the microhardness H of the niobium powder is reduced from 3500 to 1000 to 1200 N / mm 2 .
  • Excess aluminum dissolves substitutionally in the copper. This balances the hardness and ductility of the niobium and copper.
  • the composite material can then be cold-formed (rolling, hammering, wire drawing) into a band-shaped or a fiber structure.
  • fiber thicknesses of less than 100 nm are achieved. A breakage of the fibers during the deformation is not observed.
  • magnesium powder or calcium alloy Find powder use instead of aluminum powder as an additional component, magnesium powder or calcium alloy Find powder use.
  • a vanadium-copper fiber composite material is to be produced.
  • vanadium powder (grain size ⁇ 20 / um) is mixed with copper powder in a ratio of 1: 2 and 2 to 10% by weight of copper-calcium powder is added.
  • the mixture is then extruded at 1000 ° C., the oxygen content in the vanadium being reduced from approximately 3 at% to less than 0.1 at%.
  • Unoxidized calcium is excreted as Cu 5 Ca.
  • the subsequent deformation of the structure then leads to a vanadium-copper fiber composite wire.
  • Aluminum and / or magnesium powder can also be used here as an additional component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

Ein in mindestens einer Dimension verformtes Verbundmaterial läßt sich auf pulvermetallurgischem Wege aus mindestens einer, vorzugsweise zwei oder mehr Ausgangspulverkomponenten herstellen. Mindestens eine dieser Ausgangspulverkomponenten ist dabei im Volumen oder an der Oberfläche mit Sauerstoff oder einer Sauerstoffverbindung verunreinigt. Außerdem soll als mindestens eine Ausgangspulverkomponente ein kubisch raumzentriertes Metall eingesetzt werden. Wegen interstitiell gelöstem Sauerstoff ist dieses Verbundmaterial wenig duktil. Die Erfindung sieht deshalb vor, daß der oder den Ausgangspulverkomponenten eine oder mehrere vergleichsweise unedlere Zusatzkomponenten mit einer vergleichsweise größeren Bindungsenthalpie für den Sauerstoff in Pulverform oder als Legierungszusatz zu einer oder mehreren Ausgangspulverkomponenten hinzugefügt und der Sauerstoff durch eine innere Festkörperreduktion an diese Zusatzkomponente gebunden wird. Insbesondere kann man dabei die Festkörperreduktion im Volumen des Gemisches aus Ausgangspulverkomponenten und der Zusatzkomponente durchführen.A composite material deformed in at least one dimension can be produced by powder metallurgy from at least one, preferably two or more starting powder components. At least one of these starting powder components is contaminated in volume or on the surface with oxygen or an oxygen compound. In addition, a body-centered cubic metal is to be used as at least one starting powder component. Because of interstitially dissolved oxygen, this composite material is not very ductile. The invention therefore provides that one or more comparatively less noble additional components with a comparatively greater enthalpy of binding for the oxygen in powder form or as an alloy additive are added to the starting powder component (s) and the oxygen is bound to this additional component by an internal solids reduction. In particular, one can carry out the solid reduction in the volume of the mixture of starting powder components and the additional component.

Description

Die Erfindung bezieht sich auf ein Verfahren zur pulvermetallurgischen Herstellung eines in mindestens einer Dimension verformten Verbundmaterials aus mindestens einer, vorzugsweise zwei oder mehr Ausgangspulverkomponenten, von denen mindestens eine im Volumen oder an der Oberfläche mit Sauerstoff oder einer Sauerstoffverbindung verunreinigt ist und wobei als mindestens eine Ausgangspulverkomponente ein kubisch raumzentriertes Metall eingesetzt wird.The invention relates to a process for the powder-metallurgical production of a composite material deformed in at least one dimension from at least one, preferably two or more starting powder components, at least one of which is contaminated in volume or on the surface with oxygen or an oxygen compound, and being at least one starting powder component a cubic body-centered metal is used.

Die pulvermetallurgische Herstellung von Verbundmaterialien ist bekannt. Meist werden zwei Ausgangspulverkomponenten, vorzugsweise zwei Metallpulver, gemischt, verdichtet, stranggepreßt und durch eine Verformung zu Drähten ausgezogen. Auf diese Weise entsteht ein Verbundmaterial, in dem die Ausgangs- .pulverteilchen zu Fasern ausgezogen sind. Dieser Faserverbund ist in zwei Dimensionen verformt. Bei einer Verformung des Verbundmaterials nur in einer Dimension werden die Pulverteilchen zu nicht zusammenhängenden Bändern ausgezogen. Bei der Herstellung dieser Verbundmaterialien werden die beiden Ausgangspulverkomponenten im allgemeinen vermischt, kompaktiert, gesintert und dann anschließend dem Verformungsprozeß unterworfen, bei dem die Pulverkörner zu langen Fasern ausgezogen werden. Speziell bei kleinen Pulverkorngrößen (kleiner gleich 40 pm) der Ausgangspulverkomponenten ist jedoch durch Reaktion mit Luftsauerstoff und/oder schon während des Herstellungsprozesses des Pulvers Sauerstoff im Volumen interstitiell gelöst und/oder an der Oberfläche als entsprechendes Oxid gebunden. Der interstitiell gelöste Sauerstoff erhöht sowohl die Härte des Pulvers der Ausgangspulverkomponente als auch die kritische Temperatur des Duktil-Spröd-Überganges. Dies hat zur Folge, daß ein durch einen Sintervorgang pulvermetallurgisch hergestelltes mehrphasiges Gefüge während einer Kaltverformung nicht in die gewünschte Faserstruktur überführt werden kann, weil die gehärteten Ausgangspulverkomponenten diese Verformung nicht im gewünschten Maße zulassen und praktisch als unverformte Teilchen bzw. als mehrfach zerrissene Faserstücke in der anderen Ausgangspulverkomponente vorliegen. Die mechanischen Eigenschaften eines solchen Verbundmaterials sind ungünstig, d.h. insbesondere die Zerreißspannung ist niedrig. (W.D. Jones "Fundamental Priciples of Powder Metallurgy", Arnold, London, 1960; Metallische Verbundwerkstoffe, Festschrift der Fa. G. Rau, Pforzheim, 1977; Serie der Powder Metallurgy Joint Group of the Iron and Steel Institute and the Institute of Metalls, London).The powder metallurgical production of composite materials is known. Usually two starting powder components, preferably two metal powders, are mixed, compacted, extruded and drawn into wires by being deformed. This creates a composite material in which the starting powder particles are drawn into fibers. This fiber composite is deformed in two dimensions. If the composite material is deformed in only one dimension, the powder particles are drawn out into unrelated bands. In the manufacture of these composite materials, the two starting powder components are generally mixed, compacted, sintered and then subsequently subjected to the shaping process in which the powder grains are drawn out into long fibers. Especially in the case of small powder grain sizes (less than or equal to 40 pm) of the starting powder components, however, oxygen is interstitially dissolved in volume by reaction with atmospheric oxygen and / or already during the production process of the powder and / or bound to the surface as a corresponding oxide. The interstitially dissolved oxygen increases both the hardness of the powder of the starting powder component and the critical temperature of the ductile-brittle transition. The consequence of this is that a multi-phase structure produced by powder sintering by powder metallurgy cannot be converted into the desired fiber structure during cold forming, because the hardened starting powder components do not allow this deformation to the desired extent and are practically as undeformed particles or as multiply torn fiber pieces in the other starting powder component. The mechanical properties of such a composite material are unfavorable, ie in particular the tensile stress is low. (WD Jones "Fundamental Priciples of Powder Metallurgy", Arnold, London, 1960; Metallische Kompwerkstoffe, commemorative publication of G. Rau, Pforzheim, 1977; series of the Powder Metallurgy Joint Group of the Iron and Steel Institute and the Institute of Metalls, London).

Es ist bereits versucht worden, durch eine Reduktion mit Wasserstoff die mit Sauerstoff verunreinigte kubisch raumzentrierte Ausgangspulverkomponente, in Sonderheit Niob, bei Temperaturen um 1000 °C zu reinigen. Da jedoch die freien Bindungsenthalpien für interstitiell gelösten Sauerstoff und/oder für das entsprechende Oxid speziell bei Übergangsmetallen über 100 (kcal/g-Atom Sauerstoff), (bei 25 °C) betragen können, hat eine Reduktion des Metalles mit Wasserstoff, Kohlenmonoxid und ähnlichem bei Temperaturen bis 1000 °C keinen Erfolg (E.Fromm und E.Gebhardt "Gase und Kohlenstoff in Metallen, reine und angewandte Metallkunde in Einzeldarstellungen, Band 26, SpringerAttempts have already been made to use a reduction with hydrogen to clean the body-centered cubic starting powder component contaminated with oxygen, in particular niobium, at temperatures around 1000 ° C. However, since the free enthalpies of binding for interstitially dissolved oxygen and / or for the corresponding oxide, especially in the case of transition metals, can be over 100 (kcal / g-atom oxygen) (at 25 ° C.), the metal has to be reduced with hydrogen, carbon monoxide and the like unsuccessful at temperatures up to 1000 ° C (E. Fromm and E. Gebhardt "Gases and carbon in metals, pure and applied metallurgy in individual representations, volume 26, Springer

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs beschriebenen Art so weiterzubilden, daß damit ein duktiles Verbundmaterial herstellbar ist. Insbesondere soll beim Einsatz mehrerer Ausgangspulverkomponenten die Duktilität der Ausgangspulverkomponenten aneinander angeglichen werden.The invention has for its object to develop a method of the type described above so that a ductile composite material can be produced. In particular, when using several starting powder components, the ductility of the starting powder components should be matched to one another.

Erfindungsgemäß wird dies dadurch erreicht, daß der oder den Ausgangspulverkomponenten eine oder mehrere vergleichsweise unedlere Zusatzkomponenten mit einer vergleichsweise größeren Bindungsenthalpie für den Sauerstoff in Pulverform oder als Legierungszusatz zu einer oder mehreren Ausgangspulverkomponenten hinzugefügt und der Sauerstoff durch eine innere Festkörperreduktion an diese Zusatzkomponente gebunden wird. Die Erfindung wendet sich damit vom Stand der Technik ab, gemäß welchem immer versucht worden war, den Sauerstoff aus dem Verbundmaterial herauszuholen bzw. die Diffusion von weiterem Sauerstoff während der einzelnen Verarbeitungsschritte möglichst zu unterbinden. Die Erfindung bindet den interstitiell gelösten Sauerstoff und/oder den an der Oberfläche adsorbierten Sauerstoff durch eine innere Festkörperreduktion an die Zusatzkomponente. Der Sauerstoff verbleibt dann in dem Verbundmaterial. Da der Sauerstoff nicht mehr interstitiell gelöst ist, kann er als ein Oxid der Zusatzkomponente sich nicht mehr nachteilig auf die Duktilität der Ausgangspulverkomponenten, insbesondere derjenigen mit dem kubisch raumzentrierten Gitter, auswirken. Durch die Zusatzkomponente; die eine vergleichsweise höhere Bindungsenthalpie zu dem Sauerstoff hat, ist eine erfolgreiche und vollständige Reinigung des oder der Ausgangspulverkomponenten von Sauerstoff möglich. Das Verfahren läßt sich mit besonderem Vorteil dann einsetzen, wenn zwei oder mehrere Ausgangspulverkomponenten benutzt werden.This is achieved according to the invention in that one or more comparatively less noble additional components with a comparatively greater enthalpy of binding for the oxygen in powder form or as an alloy additive are added to one or more starting powder components and the oxygen is bound to this additional component by an internal solids reduction. The invention thus turns away from the prior art, according to which attempts have always been made to get the oxygen out of the composite material or to prevent the diffusion of further oxygen during the individual processing steps as far as possible. The invention binds the interstitially dissolved oxygen and / or the oxygen adsorbed on the surface to the additional component by an internal reduction in solids. The oxygen then remains in the composite material. Since the oxygen is no longer interstitially dissolved, as an oxide of the additional component it can no longer have a disadvantageous effect on the ductility of the starting powder components, in particular those with the body-centered cubic lattice. Through the additional component; which has a comparatively higher enthalpy of binding to the oxygen, a successful and complete purification of the starting powder component or components of oxygen is possible. The method can be used with particular advantage when two or more starting powder components are used.

Die Festkörperreduktion wird in der Regel unter erhöhter Temperatur durchgeführt, wobei dieser Vorgang bei der Herstellung während der Glühbehandlung des Sinterns als innere Festkörperreduktion stattfindet. Dabei wird eine erneute Reaktion der gereinigten Ausgangspulverkomponenten mit Luftsauerstoff vermieden. Durch dieses Verfahren ist es möglich, auch durch Sauerstoff gehärtete Ausgangspulverkomponenten zu verpressen und - nach der Festkörperreduktion - durch Kaltverformung in eine Faserstruktur zu überführen. Es können auch Zusatzkomponenten eingesetzt werden, die keine oder nur eine geringe Löslichkeit in der oder den Ausgangspulverkomponenten besitzen.The reduction in solids is generally carried out at elevated temperature, this process taking place during the annealing treatment during sintering as an internal reduction in solids. A renewed reaction of the cleaned starting powder components with atmospheric oxygen is avoided. With this method it is possible to compress starting powder components hardened by oxygen and - after the solid reduction - to convert them into a fiber structure by cold working. Additional components can also be used which have little or no solubility in the starting powder component or components.

Die Zusatzkomponente wird mengenmäßig in einem geringen Anteil zugesetzt, wobei der Anteil zweckmäßig so gering ist, daß das Verbundmaterial nur unwesentlich dispersionsgehärtet wird. Die Festkörperreduktion wird im Volumen des Gemisches aus Ausgangspulverkomponenten und der Zusatzkomponente durchgeführt.The amount of the additional component is added in a small proportion, the proportion advantageously being so small that the composite material is only insignificantly dispersion-cured. The reduction in solids is carried out in the volume of the mixture of starting powder components and the additional component.

Das erfindungsgemäße Verfahren besticht in erster Linie durch die Einfachheit der Herstellung eines Faserverbundwerkstoffes, insbesondere mit hoher Dichte (extrem) dünner Fasern und einer damit verbundenen hohen Festigkeit. In Sonderheit trifft dies auf solche Materialien zu, die sich bislang aufgrund ihrer hohen Affinität zum Sauerstoff,durch eine Verformung nicht in eine Faserstruktur überführen ließen.The method according to the invention captivates primarily through the simplicity of producing a fiber composite material, in particular with high density (extremely) thin fibers and a high strength associated therewith. This applies in particular to materials that, due to their high affinity for oxygen, could not be converted into a fiber structure due to deformation.

Erste erfolgreiche Anwendungen dieses Verfahrens führten zur Herstellung von supraleitenden Faserverbundmaterialien.The first successful applications of this process led to the production of superconducting fiber composite materials.

Als eine oder mehrere Zusatzkomponenten können Lanthan, ein Lanthanid, Kalzium, Beryllium, Magnesium, Lithium, Hafnium, Titan, Zirkon oder/und Aluminium eingesetzt werden. Besonders gute Arbeitsergebnisse werden auch erreicht, wenn als Ausgangspulverkomponenten Kupfer und das kubisch raumzentrierte Niob sowie als Zusatzkomponente 0,5 bis 2,0 Gew.% Aluminiumpulver eingesetzt werden. Hervorragende Eigenschaften wurden auch erzielt, wenn als Ausgangspulverkomponenten Kupfer und das kubisch raumzentrierte Vanadium sowie als Zusatzkomponente 2bis 10 Gew.% Kupferkalziumpulver eingesetzt werden.Lanthanum, a lanthanide, calcium, beryllium, magnesium, lithium, hafnium, titanium, zirconium and / or aluminum can be used as one or more additional components be used. Particularly good work results are also achieved if copper and the body-centered cubic niobium are used as starting powder components and 0.5 to 2.0% by weight aluminum powder are used as additional components. Excellent properties have also been achieved if copper and the body-centered cubic vanadium are used as the starting powder components and 2 to 10% by weight of copper calcium powder are used as the additional component.

Die Erfindung wird an zwei Ausführungsbeispielen weiter erläutert:The invention is further explained using two exemplary embodiments:

Beispiel 1:Example 1:

Es wird ein Niob-Kupfer-Faserverbundwerkstoff hergestellt. Dabei wird handelsübliches Niobpulver (Korngröße ≤ 20 /um) und Kupferpulver als Ausgangspulverkomponenten im Gewichtsverhältnis von 1 : 4 unter Zusatz von 0,5 bis2,0 Gew.% Aluminiumpulver (Korngröße ≤ 10 /um) vermengt und bei ca. 1050 °C stranggepreßt. Dabei reagiert das Aluminium mit dem pulvermetallurgisch eingebrachten Sauerstoff unter Bildung von A1203, wodurch die Mikrohärte H des Niob-Pulvers von 3500 auf 1000 bis 1200 N/mm2 erniedrigt wird. Überschüssiges Aluminium löst sich substitutionell in dem Kupfer. Dadurch wird die Härte und Duktilität des Niobs und des Kupfers aneinander angeglichen. Das Verbundmaterial kann anschließend durch eine Kaltverformung (Walzen, Hämmern, Drahtziehen) in eine bandförmige oder eine Faserstruktur überführt werden. Dabei werden je nach Pulvergröße und Verformungsgrad Faserdicken bis unter 100 nm erreicht. Ein Reißen der Fasern während der Verformung wird nicht beobachtet.A niobium-copper fiber composite material is produced. Commercially available niobium powder (grain size ≤ 20 / µm) and copper powder as starting powder components in a weight ratio of 1: 4 with the addition of 0.5 to 2.0% by weight aluminum powder (grain size ≤ 10 / µm) are mixed and extruded at approx. 1050 ° C . The aluminum reacts with the powder metallurgically introduced oxygen to form A1 2 0 3 , whereby the microhardness H of the niobium powder is reduced from 3500 to 1000 to 1200 N / mm 2 . Excess aluminum dissolves substitutionally in the copper. This balances the hardness and ductility of the niobium and copper. The composite material can then be cold-formed (rolling, hammering, wire drawing) into a band-shaped or a fiber structure. Depending on the powder size and degree of deformation, fiber thicknesses of less than 100 nm are achieved. A breakage of the fibers during the deformation is not observed.

Statt des Aluminiumpulvers als Zusatzkomponente können aber auch Magnesiumspulver oder Kalzium-Legierungs-Pulver Verwendung finden.Instead of aluminum powder as an additional component, magnesium powder or calcium alloy Find powder use.

Beispiel 2:Example 2:

Es soll ein Vanadium-Kupfer-Faserverbundwerkstoff hergestellt werden. Hierbei wird Vanadiumpulver (Korngröße ≤ 20 /um) mit Kupferpulver im Verhältnis von 1 : 2 vermengt und 2 bis 10 Gew.% Kupfer-Kalzium-Pulver beigefügt. Anschließend wird bei 1000 °C stranggepreßt, wobei der Sauerstoffgehalt im Vanadium von ca. 3 at% auf weniger als 0,1 at% verringert wird. Nicht oxidiertes Kalzium wird als Cu5Ca ausgeschieden. Die anschließende Verformung des Gefüges führt dann zu einem Vanadium-Kupfer-Faserverbunddraht.A vanadium-copper fiber composite material is to be produced. Here, vanadium powder (grain size ≤ 20 / um) is mixed with copper powder in a ratio of 1: 2 and 2 to 10% by weight of copper-calcium powder is added. The mixture is then extruded at 1000 ° C., the oxygen content in the vanadium being reduced from approximately 3 at% to less than 0.1 at%. Unoxidized calcium is excreted as Cu 5 Ca. The subsequent deformation of the structure then leads to a vanadium-copper fiber composite wire.

Auch hier können als Zusatzkomponente Aluminium- und/ oder Magnesiumpulver eingesetzt werden.Aluminum and / or magnesium powder can also be used here as an additional component.

Claims (6)

1. Verfahren zur pulvermetallurgischen Herstellung eines in mindestens einer Dimension verformten Verbundmaterials aus mindestens einer, vorzugsweise zwei oder mehr Ausgangspulverkomponenten, von denen mindestens eine im Volumen oder an der Oberfläche mit Sauerstoff oder einer Sauerstoffverbindung verunreinigt ist und wobei als mindestens eine Ausgangspulverkomponente ein kubisch raumzentriertes Metall eingesetzt wird, dadurch gekennzeichnet , daß der oder den Ausgangspulverkomponenten eine oder mehrere vergleichsweise unedlere Zusatzkomponenten mit einer vergleichsweise größeren Bindungsenthalpie für den Sauerstoff in Pulverform oder als Legierungszusatz zu einer oder mehreren Ausgangspulverkomponenten hinzugefügt und der Sauerstoff durch eine innere Festkörperreduktion an diese Zusatzkomponente gebunden wird.1. A process for the powder metallurgical production of a composite material deformed in at least one dimension from at least one, preferably two or more starting powder components, of which at least one is contaminated in volume or on the surface with oxygen or an oxygen compound, and wherein at least one starting powder component is a body-centered cubic metal is used, characterized in that one or more comparatively less noble additional components with a comparatively greater enthalpy of binding for the oxygen in powder form or as an alloy additive are added to one or more starting powder components and the oxygen is bound to this additional component by an internal solid reduction. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet , daß die Zusatzkomponente mengenmäßig in einem geringen Anteil zugesetzt wird.2. The method according to claim 1, characterized in that the additional component is added in a small amount. 3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet , daß die Festkörperreduktion im Volumen des Gemisches aus Ausgangspulverkomponenten und der Zusatzkomponente durchgeführt wird.3. The method according to claim 1 and 2, characterized in that the solid reduction in the volume of the mixture of starting powder components and the additional component is carried out. 4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet , daß als eine oder mehrere der Zusatzkomponenten Lanthan, ein Lanthanid, Kalzium, Beryllium, Magnesium, Lithium, Hafnium, Titan, Zirkon und/oder Aluminium eingesetzt werden.4. The method according to claim 1 to 3, characterized in that lanthanum, a lanthanide, calcium, beryllium, magnesium, lithium, hafnium, titanium, zirconium and / or aluminum are used as one or more of the additional components. 5. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet , daß als Ausgangspulverkomponenten Kupfer und das kubisch raumzentrierte Niob sowie als Zusatzkomponente 0,5 bis 2,0 Gew.% Aluminiumpulver eingesetzt werden.5. The method according to claim 1 to 3, characterized in that as the starting powder components copper and the cubic body-centered niobium and 0.5 to 2.0 wt.% Aluminum powder are used as additional component. 6. Verfahren nach Anspruch 1 bis 3, dadur gekennzeichnet , daß als Ausgangspulverkomponenten Kupfer und das kubisch raumzentrierte Vanadium sowie als Zusatzkomponente 2bis 10 Gew.% Kupferkalziumpulver eingesetzt wird.6. The method according to claim 1 to 3, characterized in that copper is used as the starting powder components and the cubic body-centered vanadium and as an additional component 2 to 10 wt.% Copper calcium powder.
EP80100955A 1979-03-09 1980-02-26 Powder-metallurgical process for producing a superconducting-fibre composite material Expired EP0016961B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2909290 1979-03-09
DE2909290A DE2909290C2 (en) 1979-03-09 1979-03-09 Process for the powder metallurgical production of a superconducting fiber composite material

Publications (2)

Publication Number Publication Date
EP0016961A1 true EP0016961A1 (en) 1980-10-15
EP0016961B1 EP0016961B1 (en) 1984-02-08

Family

ID=6064945

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80100955A Expired EP0016961B1 (en) 1979-03-09 1980-02-26 Powder-metallurgical process for producing a superconducting-fibre composite material

Country Status (3)

Country Link
US (1) US4336065A (en)
EP (1) EP0016961B1 (en)
DE (1) DE2909290C2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3531769A1 (en) * 1985-09-06 1987-03-19 Kernforschungsz Karlsruhe METHOD FOR THE PRODUCTION OF MULTIFILAMENT SUPRALE LADDER WIRE FROM NB (DOWN ARROW) 3 (DOWN ARROW) SN OR V (DOWN ARROW) 3 (DOWN ARROW) GA FILAMENTS, EMBEDDED IN A CU- OR METALLIC, ALLOY ALLOY INCLUDED, WITH SPECIFIC SUPERCONDUCTIVE PROPERTIES
DE3531770A1 (en) * 1985-09-06 1987-03-19 Kernforschungsz Karlsruhe MULTIFILAMENT SUPRALE LADDER WIRE, CONSTRUCTED FROM FILAMENTS OF NB (ARROW DOWN) 3 (ARROW DOWN) SN OR V (ARROW DOWN) 3 (ARROW DOWN) 3 (ARROW DOWN) GA WITH THE PROPELLATION
US4952554A (en) * 1987-04-01 1990-08-28 At&T Bell Laboratories Apparatus and systems comprising a clad superconductive oxide body, and method for producing such body
US5264293A (en) * 1992-01-02 1993-11-23 General Electric Company Composite structure with NbTiHf alloy matrix and niobium base metal
US5277990A (en) * 1992-01-02 1994-01-11 General Electric Company Composite structure with NbTiAl and high Hf alloy matrix and niobium base metal reinforcement
US5226947A (en) * 1992-02-17 1993-07-13 Wisconsin Alumni Research Foundation Niobium-titanium superconductors produced by powder metallurgy having artificial flux pinning centers
US5304427A (en) * 1992-07-02 1994-04-19 General Electric Company Composite structure with NBTIA1CRHF alloy matrix and niobium base metal reinforcement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1473618A (en) * 1966-03-30 1967-03-17 Sherritt Gordon Mines Ltd Manufacturing process of nickel and chromium alloys reinforced by a dispersion of refractory oxide
US3807968A (en) * 1969-09-03 1974-04-30 Copper Range Co Products involving copper composition materials and assemblages
DE2360129A1 (en) * 1973-12-03 1975-06-12 Battelle Institut E V Superconducting ductile copper-, silver- or aluminium-base alloy - prepared by powder metallurgy, and having good thermal and electrical conductivity
US4032301A (en) * 1973-09-13 1977-06-28 Siemens Aktiengesellschaft Composite metal as a contact material for vacuum switches

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3070440A (en) * 1960-04-27 1962-12-25 Grant Production of dispersion hardened metals
GB1152481A (en) * 1966-03-07 1969-05-21 Ass Elect Ind Copper Alloy Material
US3552954A (en) * 1968-09-20 1971-01-05 Handy & Harman Method of making internally oxidized dispersion hardened copper product
US3779714A (en) * 1972-01-13 1973-12-18 Scm Corp Dispersion strengthening of metals by internal oxidation
DE2357733A1 (en) * 1973-11-20 1975-05-22 United States Borax Chem Fibre reinforced ductile metal or alloy - prepd from a mixt of metal and fibre-forming substance which is compacted and hot deformed
DE2412022A1 (en) * 1974-03-13 1975-09-25 Krupp Gmbh Heat resistant, dispersion hardened, temperable alloys - made by milling powdered base metal, dispersate, and oxygen-refined metal in milling fluid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1473618A (en) * 1966-03-30 1967-03-17 Sherritt Gordon Mines Ltd Manufacturing process of nickel and chromium alloys reinforced by a dispersion of refractory oxide
US3807968A (en) * 1969-09-03 1974-04-30 Copper Range Co Products involving copper composition materials and assemblages
US4032301A (en) * 1973-09-13 1977-06-28 Siemens Aktiengesellschaft Composite metal as a contact material for vacuum switches
DE2360129A1 (en) * 1973-12-03 1975-06-12 Battelle Institut E V Superconducting ductile copper-, silver- or aluminium-base alloy - prepared by powder metallurgy, and having good thermal and electrical conductivity

Also Published As

Publication number Publication date
US4336065A (en) 1982-06-22
EP0016961B1 (en) 1984-02-08
DE2909290C2 (en) 1984-08-09
DE2909290A1 (en) 1980-09-11

Similar Documents

Publication Publication Date Title
DE69824185T2 (en) TITANIUM-LAYER BASED DISPERSION-CURED COMPOSITE
EP0299027B1 (en) Creep-resistant alloy of refractory metals and its production process
EP0362351B1 (en) Process for producing an ODS sintered alloy and alloy obtainable by this process
EP0035601B1 (en) Process for making a memory alloy
DE1558632C3 (en) Application of deformation hardening to particularly nickel-rich cobalt-nickel-chromium-molybdenum alloys
DE2630141C2 (en) Use of an iron alloy containing tungsten, silicon and / or titanium for the production of parts with high damping properties
DE2415035C3 (en) Process for the powder-metallurgical production of a sliding piece of high strength, in particular a crown seal for rotary piston machines
WO1981002587A1 (en) Memory allows with a copper,zinc and aluminum base and method for preparing them
DE2125534C3 (en) Use of sintered iron alloys as a material for valve seats in internal combustion engine construction
EP0232772B1 (en) Process for preparing a pulverulent amorphous material by way of a milling process
EP0016961B1 (en) Powder-metallurgical process for producing a superconducting-fibre composite material
DE2108420A1 (en) Tension band for the tension band suspension of a rotating measuring mechanism
DE2549298C2 (en) Process for the production of a sintered silver-cadmium oxide alloy
DE3326890A1 (en) Copper alloy with shape memory
EP0035070A1 (en) Memory alloy based on a highly cupriferous or nickelous mixed crystal
DE2617225A1 (en) PROCESS FOR MANUFACTURING MOLYBDA ALLOYS
DE2411324A1 (en) Process for the production of dispersion strengthened kneading nickel
DE2807602C2 (en) Powder mixture for soft magnetic sintered bodies
DE4301880A1 (en) Process for the production of a material based on a doped intermetallic compound
DE3535065C2 (en)
DE2004546B2 (en) TWO- AND MULTI-PHASE SILVER-BASED MATERIALS
DE2101185A1 (en) Material for extrusion dies
DE2825424C2 (en) Silicon-containing tantalum powder, process for its production and its use
DE2726939C2 (en) Composite body and method of making the same
DE1925742C (en) Process for the production of metals and metal alloys with embedded oxide particles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH FR GB

17P Request for examination filed

Effective date: 19810309

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH FR GB

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890222

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890524

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900122

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19900228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19901031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910226

GBPC Gb: european patent ceased through non-payment of renewal fee