EP0015535B1 - Process for the interstage cooling, without condensation, of compressed gases - Google Patents

Process for the interstage cooling, without condensation, of compressed gases Download PDF

Info

Publication number
EP0015535B1
EP0015535B1 EP80101077A EP80101077A EP0015535B1 EP 0015535 B1 EP0015535 B1 EP 0015535B1 EP 80101077 A EP80101077 A EP 80101077A EP 80101077 A EP80101077 A EP 80101077A EP 0015535 B1 EP0015535 B1 EP 0015535B1
Authority
EP
European Patent Office
Prior art keywords
gas
temperature
compression
compressor stage
intake side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80101077A
Other languages
German (de)
French (fr)
Other versions
EP0015535A1 (en
Inventor
Wilfried Dipl.-Ing. Blotenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN AG
Original Assignee
MAN Maschinenfabrik Augsburg Nuernberg AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Maschinenfabrik Augsburg Nuernberg AG filed Critical MAN Maschinenfabrik Augsburg Nuernberg AG
Publication of EP0015535A1 publication Critical patent/EP0015535A1/en
Application granted granted Critical
Publication of EP0015535B1 publication Critical patent/EP0015535B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger
    • F04D29/5833Cooling at least part of the working fluid in a heat exchanger flow schemes and regulation thereto

Definitions

  • the invention relates to a method for the condensate-free intercooling of compressed gases, wherein an essential, the state of the gas to be compressed, an essential, the state of the gas to be compressed measured value is determined before the first compressor stage and the setpoint for the state of the gas on the Suction side of each of the first following compressor stage is calculated using a linearized function.
  • DE-B-2 132 141 also describes a method for the condensate-free operation of multi-stage turbo compressors, in which the setpoint temperature difference of a stage is determined by a logarithmic equation.
  • equations can be calculated by analog computers which not only require a very high outlay but also work relatively slowly.
  • analog computers in particular first have to detect a trend in order to be able to carry out an exact calculation, and as a result the computing time becomes impermissibly long.
  • Such operating methods have therefore not yet been able to be implemented.
  • dew point temperature Ta of the gas to be compressed on the suction side of the first compressor stage and the pressure b ; of the gas to be compressed is measured on the suction side of each of the first following compressor stages and from these measured values using an equation the permissible cooler temperature T ; is calculated as the setpoint and the temperature of each of the first subsequent compressor stages is also determined as the actual value, with a i , b ; and c ; have a fixed value for each level.
  • the desired cooler temperature is a safety margin above the dew point temperature should be, the desired temperature T, results
  • the constants can be easily calculated by taking the exact dew point temperatures from the vapor pressure tables for three working points from the approximation area and inserting them into the straight line equations.
  • FIG. 2 shows a control arrangement for carrying out the method according to the invention:
  • the method according to the invention makes it possible to regulate the temperature of the gas in intercoolers of gas compressors with simple means in such a way that the effective range of the compressor system is not reduced, the suction power is retained and permanent, corrosion-free operation is ensured. Linearization in the respective work area enables the control to be carried out reliably with little expenditure on equipment. Furthermore, the above statements all relate to temperatures which are measured in degrees Celsius.

Description

Die Erfindung betrifft ein Verfahren zur kondensatfreien Zwischenkühlung verdichteter Gase, wobei ein wesentlicher, den Zustand des zu verdichtenden Gases, wobei ein wesentlicher, den Zustand des zu verdichtenden Gases bestimmender Meßwert vor der ersten Verdichterstufe ermittelt wird und der Sollwert für den Zustand des Gases auf der Saugseite jeder der der ersten folgenden Verdichterstufe mit Hilfe einer linearisierten Funktion berechnet wird.The invention relates to a method for the condensate-free intercooling of compressed gases, wherein an essential, the state of the gas to be compressed, an essential, the state of the gas to be compressed measured value is determined before the first compressor stage and the setpoint for the state of the gas on the Suction side of each of the first following compressor stage is calculated using a linearized function.

Ein derartiges Verfahren, wie es z.B. aus der DE-AS 2 113 038 bekannt ist, ermöglicht zwar bereits eine gewisse Berechnung der zulässigen Temperaturen des zu verdichtenden Gases in den Zwischenkühlern, da bei dem bekannten Verfahren aber die Ansaugtemperatur gemessen wird und von einer relativen Feuchte von 100% ausgegangen wird, sind die berechneten Temperaturwerte nicht exakt genug, um optimale Meßwerte zu erhalten. Außerdem bleibt dort der recht beachtliche Einfluß des Kühlerdrucks unberücksichtigt. Die ermittelten Temperaturen sind also bei Betriebsdrücken, die unterhalb des maximal möglichen Kühlerdrucks liegen und bei relativen Ansaugfeuchten, die unter 100% liegen, nicht unwesentlich zu hoch. In Figur 1 der Auslegeschrift ist dabei das Verhältnis der Temperatur bei 100% relativer Feuchtigkeit zu der zu jeder Verdichterstufe gehörenden und vom Enddruck abhängigen zulässigen Temperatur angegeben. Diese Kurvenschar weist aber den angegebenen Mangel der ungenügend berücksichtigten Ausgangsfeuchte auf.Such a method as e.g. is known from DE-AS 2 113 038, although it already allows a certain calculation of the permissible temperatures of the gas to be compressed in the intercoolers, since in the known method the intake temperature is measured and a relative humidity of 100% is assumed the calculated temperature values are not precise enough to obtain optimal measured values. In addition, the quite considerable influence of the radiator pressure is not taken into account there. The temperatures determined are therefore not insignificantly too high at operating pressures which are below the maximum possible cooler pressure and at relative intake humidities which are below 100%. In Figure 1 of the specification, the ratio of the temperature at 100% relative humidity to the permissible temperature belonging to each compressor stage and dependent on the final pressure is given. However, this family of curves has the stated lack of insufficiently taken into account the initial moisture.

Der Wirkungsgrad der Anlage ist damit geringer als maximal möglich.The efficiency of the system is therefore less than the maximum possible.

In der DE-B-2 132 141 wird weiterhin ein Verfahren zum kondensatfreien Betrieb von mehrstufigen Turbokompressoren beschrieben, bei welchem die Soll-Temperaturdifferenz einer Stufe durch eine logarithmische Gleichung festgelegt wird. Nachteilig hat es sich aber gezeigt, daß solche Gleichungen durch Analogrechner zu berechnen sind, die nicht nur einen sehr hohen Aufwand erfordern, sondern die auch relativ langsam arbeiten. Solche Analogrechner müssen insbesondere erst einen Trend erfassen, um eine exakte Berechnung vornehmen zu können und dadurch wird die Rechenzeit unzulässig hoch. Derartige Betriebsverfahren haben sich daher bisher noch nicht realisieren lassen.DE-B-2 132 141 also describes a method for the condensate-free operation of multi-stage turbo compressors, in which the setpoint temperature difference of a stage is determined by a logarithmic equation. However, it has been shown to be disadvantageous that such equations can be calculated by analog computers which not only require a very high outlay but also work relatively slowly. Such analog computers in particular first have to detect a trend in order to be able to carry out an exact calculation, and as a result the computing time becomes impermissibly long. Such operating methods have therefore not yet been able to be implemented.

Es ist jetzt Aufgabe der Erfindung, das eingangs genannte Verfahren dahingehend zu verbessern, daß die zulässige Kühlertemperatur jedes der Zwischenkühler mit geringem Aufwand nahezu exakt berechnet und kontrolliert werden kann, um so zum einen die bekannten Nachteile durch die Unterschreitung der zulässigen Taupunkttemperatur zu vermeiden, andererseits aber den Wirkungsgrad der Verdichtungsanlage so gut wie möglich zu halten. Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Taupunkttemperatur Ta des zu verdichtenden Gases auf der Saugseite der ersten Verdichterstufe und der Druck b; des zu verdichtenden Gases auf der Saugseite jeder der der ersten folgenden Verdichterstufe gemessen wird und aus diesen Meßwerten an Hand einer Gleichung

Figure imgb0001
die zulässige Kühlertemperatur T; als Sollwert berechnet wird und weiterhin die Temperatur jeder der ersten folgenden Verdichterstufe als Istwert bestimmt wird, wobei ai, b; und c; für jede Stufe einen Festwert haben.It is an object of the invention to improve the method mentioned at the outset such that the permissible cooler temperature of each of the intercoolers can be calculated and controlled almost exactly with little effort, in order to avoid the known disadvantages by falling below the permissible dew point temperature, on the one hand, and on the other hand but to keep the efficiency of the compression system as good as possible. This object is achieved in that the dew point temperature Ta of the gas to be compressed on the suction side of the first compressor stage and the pressure b ; of the gas to be compressed is measured on the suction side of each of the first following compressor stages and from these measured values using an equation
Figure imgb0001
the permissible cooler temperature T ; is calculated as the setpoint and the temperature of each of the first subsequent compressor stages is also determined as the actual value, with a i , b ; and c ; have a fixed value for each level.

Im folgenden wird ein Ausführungsbeispiel der Erfindung an Hand einer Schemazeichnung näher erläutert. Die Konstanten a und ci, die in der Größenordnung 1-5 liegen, können mit handelsüblichen Regelsystemen durch mehrfache Addition der Meßgrößen zu sich selbst und anschließender Abschwächung in einem Spannungsteiler realisiert werden.An exemplary embodiment of the invention is explained in more detail below with the aid of a schematic drawing. The constants a and c i , which are in the order of 1-5, can be achieved with standard control systems by multiple addition of the measured variables to themselves and subsequent weakening in a voltage divider.

Es zeigen:

  • Figur 1 die Abhängigkeit des Taupunktes τ2 nach der zweiten Verdichterstufe vom Taupunkt des Ausgangsgases τa für verschiedene Drücke (dargestellt sind der tatsächliche Verlauf und die dem erfindungsgemäßen Verfahren zugrunde liegende Näherung) und
  • Figur 2 ein Regelschema zur Durchführung des erfindungsgemäßen Verfahrens.
Show it:
  • 1 shows the dependence of the dew point τ 2 after the second compressor stage on the dew point of the starting gas τ a for different pressures (the actual course and the approximation underlying the method according to the invention are shown) and
  • Figure 2 is a control scheme for performing the method according to the invention.

Bei den verwendeten Symbolen kennzeichnen der Index a den Anfangszustand vor der ersten Verdichterstufe und der Index i = 1, 2, 3 ... die Zahl der erfolgten Verdichtungen.In the symbols used, the index a indicates the initial state before the first compressor stage and the index i = 1, 2, 3 ... the number of compressions that have taken place.

Für Temperaturen bis etwa 60°C und Drücke bis 10 bar kann feuchte Luft näherungsweise als ideales Gasgemisch von Luft- und Wasserdampf betrachtet werden. Es gilt dann folgender Zusammenhang:

Figure imgb0002
For temperatures up to about 60 ° C and pressures up to 10 bar, moist air can be considered approximately as the ideal gas mixture of air and water vapor. The following relationship then applies:
Figure imgb0002

Um den Taupunkt bei einem willkürlichen anderen Druck P zu erhalten, benötigt man den Taupunkt τ1 beim Druck Pj, liest aus der Gasdruckkurve den zugehörigen Partieldruck PD1, errechnet mit Formel (1) den Partialdruck PD2 und erhält aus dem zugehörigen Punkt auf der Gasdruckkurve den Taupunkt T2.In order to obtain the dew point at an arbitrary different pressure P, one needs the dew point τ 1 at the pressure P j , reads the associated partial pressure P D1 from the gas pressure curve, calculates the partial pressure P D2 using formula (1) and obtains from the associated point the gas pressure curve the dew point T2 .

Für den Fachmann überraschend hat sich gezeigt, daß sich die Taupunkttemperatur τi auf beliebigem Druckniveau durch folgende Geradenapproximation hinreichend genau beschreiben läßt:

Figure imgb0003
Surprisingly for the person skilled in the art, it has been shown that the dew point temperature τ i at any pressure level can be described with sufficient accuracy by the following straight line approximation:
Figure imgb0003

Da die gewünschte Kühlertemperatur um eine Sicherheitsspanne oberhalb der Taupunkttemperatur liegen soll, ergibt sich die gewünschte Temperatur T, zu

Figure imgb0004
Because the desired cooler temperature is a safety margin above the dew point temperature should be, the desired temperature T, results
Figure imgb0004

Diese Linearisierung hat der Vorteil daß man nur Temperaturänderungen zu berücksichtigen braucht. Wie eine Beispielrechnung zeigt, ergeben sich bei einem Approximationsbereich zwischen τa = 0 ... 30°C und P, = 4 ... 6 bar maximale Fehler von 1,5°C.This linearization has the advantage that only temperature changes need to be taken into account. As an example calculation shows, an approximation range between τ a = 0 ... 30 ° C and P, = 4 ... 6 bar results in maximum errors of 1.5 ° C.

In der Figur 1 ist der Zusammenhang zwischen exaktem und angenähertem Verlauf graphisch dargestellt.The relationship between the exact and approximated course is shown graphically in FIG.

Die Konstanten können einfach berechnet werden, indem für drei Arbeitspunkte aus dem Approximationsbereich die exakten Taupunkttemperaturen aus den Dampfdrucktafeln entnommen und in die Geradengleichungen eingesetzt werden.The constants can be easily calculated by taking the exact dew point temperatures from the vapor pressure tables for three working points from the approximation area and inserting them into the straight line equations.

In Fig. 2, in der eine Regelanordnung zur Durchführung des erfindungsgemäßen Verfahrens dargestellt ist, wurden folgende Symbole verwendet:

Figure imgb0005
The following symbols have been used in FIG. 2, which shows a control arrangement for carrying out the method according to the invention:
Figure imgb0005

Das erfindungsgemäße Verfahren ermöglicht es, die Temperatur des Gases in Zwischenkühlern von Gasverdichtern mit einfachen Mitteln so zu regeln, daß der Wirkungskreis der Verdichteranlage nicht gemindert, die Ansaugleistung erhalten bleibt und ein dauerhafter korrosionsfreier Betrieb gesichert ist. Durch eine Linearisierung im jeweiligen Arbeitsbereich läßt sich die Regelung mit geringem Geräteaufwand zuverlässig durchführen. Weiterhin beziehen sich die vorstehenden Ausführungen sämtlich auf Temperaturen, die in Grad Celsius gemessen werden.The method according to the invention makes it possible to regulate the temperature of the gas in intercoolers of gas compressors with simple means in such a way that the effective range of the compressor system is not reduced, the suction power is retained and permanent, corrosion-free operation is ensured. Linearization in the respective work area enables the control to be carried out reliably with little expenditure on equipment. Furthermore, the above statements all relate to temperatures which are measured in degrees Celsius.

Claims (1)

  1. A process for the intermediate cooling of compressed gases without condensate forming, in which process a basic quantity defining the condition of the gas for compression is measured before the first compressor stage and the set-value for the condition of the gas on the intake side of each of the compressor stages following the first is calculated by means of a linearized function, characterised in that the dewpoint temperature τa of the gas for compression on the intake side of the first compressor stage and the pressure pi of the gas for compression on the intake side of each compressor stage following the first are measured and these measurements are used, by reference to the equation:
    Figure imgb0007
    to calculate the permissible cooler temperature Ti as the set-value, and the temperature of the gas for compression on the intake side of each compressor stage following the first is determined as the actual value, a,, bi and c, having fixed values for each stage.
EP80101077A 1979-03-12 1980-03-04 Process for the interstage cooling, without condensation, of compressed gases Expired EP0015535B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2909675A DE2909675C3 (en) 1979-03-12 1979-03-12 Process for condensate-free intermediate cooling of compressed gases
DE2909675 1979-03-12

Publications (2)

Publication Number Publication Date
EP0015535A1 EP0015535A1 (en) 1980-09-17
EP0015535B1 true EP0015535B1 (en) 1984-06-13

Family

ID=6065169

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80101077A Expired EP0015535B1 (en) 1979-03-12 1980-03-04 Process for the interstage cooling, without condensation, of compressed gases

Country Status (4)

Country Link
US (1) US4362462A (en)
EP (1) EP0015535B1 (en)
JP (1) JPS55128694A (en)
DE (1) DE2909675C3 (en)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4417847A (en) * 1981-08-14 1983-11-29 Exxon Research & Engineering Co. Separate quench and evaporative cooling of compressor discharge stream
JPS6043189A (en) * 1983-08-17 1985-03-07 Kobe Steel Ltd Controlling method of discharge temperature in oil- cooled positive displacement type rotary compressor
US4618310A (en) * 1984-06-07 1986-10-21 Exxon Research & Engineering Co. Method of multi-stage compressor surge control
US4893983A (en) * 1988-04-07 1990-01-16 General Electric Company Clearance control system
US4949544A (en) * 1988-12-06 1990-08-21 General Electric Company Series intercooler
US4968219A (en) * 1989-06-22 1990-11-06 Sundstrand Corporation Multi-stage compressor with seal heating
US5282726A (en) * 1991-06-21 1994-02-01 Praxair Technology, Inc. Compressor supercharger with evaporative cooler
SE469042B (en) * 1991-09-13 1993-05-03 Abb Carbon Ab PROCEDURES AND DEVICES TO REGULATE AND LIMIT AIR TEMPERATURE AT A HIGH PRESSURE COMPRESSORS IN AND OUT OF A PFBC PLANT
IT1255836B (en) * 1991-10-01 1995-11-17 PROCEDURE FOR THE SURVEILLANCE OF THE PUMPING LIMIT OF MULTI-STAGE TURBOCHARGERS AND INTERMEDIATE REFRIGERATION
DE19531562A1 (en) * 1995-08-28 1997-03-06 Abb Management Ag Process for operating a power plant
US5885060A (en) * 1996-06-03 1999-03-23 Westinghouse Air Brake Company Thermostatically controlled intercooler system for a multiple stage compressor and method
KR19990075384A (en) * 1998-03-20 1999-10-15 이헌석 Compact Turbo Compressor
US6305313B1 (en) * 1998-11-10 2001-10-23 Westinghouse Air Brake Company Pop-up temperature indicator for use in a 3-CD type air compressor or similar device
US6318066B1 (en) 1998-12-11 2001-11-20 Mark J. Skowronski Heat exchanger
KR100530757B1 (en) * 1999-07-15 2005-11-23 삼성테크윈 주식회사 Turbo compressor
DE19933989A1 (en) * 1999-07-20 2001-01-25 Linde Gas Ag Method and compressor module for compressing a gas stream
GB2367332B (en) * 2000-09-25 2003-12-03 Compair Uk Ltd Improvements in multi-stage screw compressor drive arrangements
BE1013865A3 (en) * 2000-12-06 2002-10-01 Atlas Copco Airpower Nv Method for controlling a compressor installation.
US7905722B1 (en) 2002-02-08 2011-03-15 Heath Rodney T Control of an adjustable secondary air controller for a burner
US6698234B2 (en) 2002-03-20 2004-03-02 Carrier Corporation Method for increasing efficiency of a vapor compression system by evaporator heating
US6658888B2 (en) 2002-04-10 2003-12-09 Carrier Corporation Method for increasing efficiency of a vapor compression system by compressor cooling
US6647742B1 (en) 2002-05-29 2003-11-18 Carrier Corporation Expander driven motor for auxiliary machinery
AU2003273532A1 (en) * 2002-06-04 2003-12-19 Alstom Technology Ltd Method for operating a compressor
GB0400986D0 (en) * 2004-01-16 2004-02-18 Cryostar France Sa Compressor
US9353315B2 (en) 2004-09-22 2016-05-31 Rodney T. Heath Vapor process system
CN101268281A (en) * 2005-09-19 2008-09-17 英格索尔-兰德公司 Multi-stage compression system including variable speed motors
CN101421519B (en) * 2006-02-13 2012-07-04 英格索尔-兰德公司 Multi-stage compression system and method of operating the same
JP5141269B2 (en) * 2008-01-30 2013-02-13 ダイキン工業株式会社 Refrigeration equipment
US8529215B2 (en) * 2008-03-06 2013-09-10 Rodney T. Heath Liquid hydrocarbon slug containing vapor recovery system
US20100040989A1 (en) * 2008-03-06 2010-02-18 Heath Rodney T Combustor Control
AT506086B1 (en) 2008-03-11 2009-06-15 Bhdt Gmbh COOLING DEVICE FOR A WORKFLUID
US8128379B2 (en) * 2008-11-19 2012-03-06 Wabtec Holding Corp. Temperature management system for a 2CD type air compressor
WO2011079267A1 (en) 2009-12-24 2011-06-30 General Compression Inc. System and methods for optimizing efficiency of a hydraulically actuated system
BE1018598A3 (en) 2010-01-25 2011-04-05 Atlas Copco Airpower Nv METHOD FOR RECYCLING ENRGIE.
CA2754279C (en) 2010-09-30 2018-03-27 Rodney T. Heath High efficiency slug containing vapor recovery
WO2012078606A1 (en) 2010-12-07 2012-06-14 General Compression, Inc. Compressor and/or expander device with rolling piston seal
WO2012096938A2 (en) 2011-01-10 2012-07-19 General Compression, Inc. Compressor and/or expander device
WO2012097215A1 (en) 2011-01-13 2012-07-19 General Compression, Inc. Systems, methods and devices for the management of heat removal within a compression and/or expansion device or system
EP2663758A1 (en) 2011-01-14 2013-11-20 General Compression Inc. Compressed gas storage and recovery system and method of operation systems
JP5773697B2 (en) * 2011-03-25 2015-09-02 三菱重工業株式会社 Multistage compressor
CA2870437A1 (en) * 2011-04-15 2012-10-18 Rodney T. Heath Compressor inter-stage temperature control
DE102011102169A1 (en) * 2011-05-20 2013-05-16 Linde Aktiengesellschaft Compacting media
US8849604B2 (en) 2011-05-24 2014-09-30 Clark Equipment Company Method for calculating the probability of moisture build-up in a compressor
US8522538B2 (en) 2011-11-11 2013-09-03 General Compression, Inc. Systems and methods for compressing and/or expanding a gas utilizing a bi-directional piston and hydraulic actuator
US8387375B2 (en) 2011-11-11 2013-03-05 General Compression, Inc. Systems and methods for optimizing thermal efficiency of a compressed air energy storage system
US9494281B2 (en) * 2011-11-17 2016-11-15 Air Products And Chemicals, Inc. Compressor assemblies and methods to minimize venting of a process gas during startup operations
US10052565B2 (en) 2012-05-10 2018-08-21 Rodney T. Heath Treater combination unit
US9527786B1 (en) 2013-03-15 2016-12-27 Rodney T. Heath Compressor equipped emissions free dehydrator
US9291409B1 (en) 2013-03-15 2016-03-22 Rodney T. Heath Compressor inter-stage temperature control
US9932989B1 (en) 2013-10-24 2018-04-03 Rodney T. Heath Produced liquids compressor cooler
US9951763B2 (en) * 2014-05-09 2018-04-24 Westinghouse Air Brake Technologies Corporation Compressor cooled by a temperature controlled fan
US10619462B2 (en) * 2016-06-18 2020-04-14 Encline Artificial Lift Technologies LLC Compressor for gas lift operations, and method for injecting a compressible gas mixture
ES2718742T3 (en) * 2016-02-19 2019-07-04 Linde Ag Procedure for gradual compression of a gas
DE102017107602B3 (en) 2017-04-10 2018-09-20 Gardner Denver Deutschland Gmbh Compressor system with internal air-water cooling
DE102017107599A1 (en) 2017-04-10 2018-10-11 Gardner Denver Deutschland Gmbh Pulsation silencer for compressors
DE102017107601B4 (en) * 2017-04-10 2019-11-07 Gardner Denver Deutschland Gmbh Method for controlling a screw compressor
US11204025B2 (en) * 2018-02-22 2021-12-21 Pc3 Technologies, Llc Gas compression cooling system
US11639824B2 (en) * 2020-04-30 2023-05-02 Air Products And Chemicals, Inc. Process for enhanced closed-circuit cooling system
CN114810332B (en) * 2022-03-30 2023-08-22 江铃汽车股份有限公司 Intercooling system regulation and control method, system, terminal equipment and storage medium
DE202022002369U1 (en) 2022-11-04 2024-02-06 Dirk Gros Device for supporting the provision of intake gas for fluid-injected compressors with an optimizing influence on the final compression temperature

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1400813A (en) * 1920-11-03 1921-12-20 Graemiger Benjamin Process of compressing vapor in multistage centrifugal compressors
DE1428047B2 (en) * 1962-07-13 1970-11-12 Badische Anilin- & Soda-Fabrik AG, 67OO Ludwigshafen Control arrangement for the condensate-free operation of multi-stage turbo compressors cooled in each intermediate stage
US3666771A (en) * 1970-07-06 1972-05-30 Parke Davis & Co M-(amino-s-triazolyl)benzene-sulfonamides and their production
CH533768A (en) * 1971-01-20 1973-02-15 Bbc Sulzer Turbomaschinen Multi-stage compressor
DE2113038C3 (en) * 1971-03-18 1975-10-02 Chemische Werke Huels Ag, 4370 Marl Measurement and control arrangement for the condensate-free operation of gas compressors
DE2132141C3 (en) * 1971-06-29 1979-08-16 Gutehoffnungshuette Sterkrade Ag, 4200 Oberhausen Process for the condensate-free operation of multi-stage turbo compressors
DE2352561C2 (en) * 1973-10-19 1983-02-17 Linde Ag, 6200 Wiesbaden Method for dissipating the compression heat that arises when compressing a gas mixture

Also Published As

Publication number Publication date
DE2909675A1 (en) 1980-09-25
EP0015535A1 (en) 1980-09-17
DE2909675B2 (en) 1981-04-02
DE2909675C3 (en) 1981-11-19
US4362462A (en) 1982-12-07
JPS55128694A (en) 1980-10-04
JPS6330520B2 (en) 1988-06-17

Similar Documents

Publication Publication Date Title
EP0015535B1 (en) Process for the interstage cooling, without condensation, of compressed gases
EP0752531B1 (en) Apparatus for rapid evacuation of a vacuum chamber
DE1428260A1 (en) Procedure and device for the protection of a centrifugal compressor
DE2932436A1 (en) MASS CURRENT GAS ANALYZER WITH FLOW CONTROL IN VACUUM OPERATION
EP0335105B1 (en) Method to prevent surge of a centrifugal compressor by vent control
DE2913960A1 (en) Vacuum system for power station condenser - has steam separator on outlet of liquid ring pump liquid separator
DE10304063A1 (en) Method for the safe operation of turbo compressors with a surge limit control and a surge limit control valve
DE2132141C3 (en) Process for the condensate-free operation of multi-stage turbo compressors
EP0486726B1 (en) Liquid ring pump
DE1428033B2 (en) PROCEDURE FOR THE CONTROL OF CONDENSATE-FREE INTERCOOLING OF COMPRESSED GASES
DE2113038C3 (en) Measurement and control arrangement for the condensate-free operation of gas compressors
CH525376A (en) Process for the production of double glass panes
DE2656565A1 (en) Baking oven with cooling air conduits - has fume discharge in cooling air outlet above casing
DE2708568C2 (en) Steam jet refrigeration system
DE1428047B2 (en) Control arrangement for the condensate-free operation of multi-stage turbo compressors cooled in each intermediate stage
DE3813591C2 (en)
DE423142C (en) Method for determining the constituents of gas mixtures, in which the gas mixture is sent through two capillaries located one behind the other and brought to different temperatures
DE2522967C2 (en) Refrigeration cycle process
DE1023854B (en) Multi-stage liquid ring gas pump
DE2431138C3 (en) Arrangement for air cooling of electronic assemblies
DE1004357B (en) Steam extraction device for baking and roasting tubes of stoves
EP0429947A1 (en) Control process for wood drying
DE1006346B (en) Temperature-controlled hot steam drying with reversing operation
DE102019108608A1 (en) Cheese chips and processes for making cheese chips
DE1501029C (en) Process for drying encapsulated motor compressors for refrigerating machines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH FR GB IT

ITCL It: translation for ep claims filed

Representative=s name: BARZANO' E ZANARDO MILANO S.P.A.

17P Request for examination filed

Effective date: 19801002

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH FR GB IT

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940211

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940215

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940218

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19950331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19951130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST