EP0015535A1 - Process for the interstage cooling, without condensation, of compressed gases - Google Patents

Process for the interstage cooling, without condensation, of compressed gases Download PDF

Info

Publication number
EP0015535A1
EP0015535A1 EP80101077A EP80101077A EP0015535A1 EP 0015535 A1 EP0015535 A1 EP 0015535A1 EP 80101077 A EP80101077 A EP 80101077A EP 80101077 A EP80101077 A EP 80101077A EP 0015535 A1 EP0015535 A1 EP 0015535A1
Authority
EP
European Patent Office
Prior art keywords
gas
compressed
suction side
temperature
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80101077A
Other languages
German (de)
French (fr)
Other versions
EP0015535B1 (en
Inventor
Wilfried Dipl.-Ing. Blotenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN AG
Original Assignee
MAN Maschinenfabrik Augsburg Nuernberg AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Maschinenfabrik Augsburg Nuernberg AG filed Critical MAN Maschinenfabrik Augsburg Nuernberg AG
Publication of EP0015535A1 publication Critical patent/EP0015535A1/en
Application granted granted Critical
Publication of EP0015535B1 publication Critical patent/EP0015535B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger
    • F04D29/5833Cooling at least part of the working fluid in a heat exchanger flow schemes and regulation thereto

Definitions

  • the invention relates to a method for the condensate-free intercooling of compressed gases, an essential measured value determining the state of the gas to be compressed being determined before the first compressor stage and the setpoint for the state of the gas on the suction side of each of the first compressor stages following using a ix diagram linearized representing function is calculated.
  • Such a method as e.g. is known from DE-AS 2 113 038, although it already allows a certain calculation of the permissible temperatures of the gas to be compressed in the intercoolers, since in the known method the intake temperature is measured and a relative humidity of 100% is assumed the calculated temperature values are not precise enough to obtain optimal measured values. In addition, the quite considerable influence of the radiator pressure is not taken into account there. The temperatures determined are therefore not insignificantly too high at operating pressures which are below the maximum possible cooler pressure and at relative intake humidities which are below 100%.
  • This object is achieved in that the dew point temperature (absolute humidity) ⁇ a of the gas to be compressed is measured on the suction side of the first subsequent compressor stage and from these measured values using an equation the permissible cooler temperature T i is calculated as the target value and the temperature of each of the first following compressor stages is also determined as the actual value, where a i , b i and c i are constant.
  • the constants can be easily calculated by taking the exact dew point temperatures from the vapor pressure tables for three working points from the approximation area and inserting them into the straight line equations.
  • FIG. 2 shows a control arrangement for carrying out the method according to the invention:
  • the inventive method makes it possible to regulate the temperature of the gas in intercoolers of gas compressors with simple means so that the effective range of the compressor system is not reduced, the suction capacity is maintained and permanent, corrosion-free operation is ensured. Linearization in the respective work area enables the control to be carried out reliably with little expenditure on equipment. We can therefore speak of an excellent solution to the problems at hand.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Compressor (AREA)

Abstract

Verfahren, wobei ein wesentlicher, den Zustand des zu verdichtenden Gases bestimmender Messwert vor der ersten Verdichtungsstufe ermittelt wird und der Sollwert für den Zustand des Gases auf der Saugseite jeder der der ersten folgenden Verdichterstufen mit Hilfe einer das i-x Diagramm linearisiert darstellenden Funktion berechnet wird, wobei die Taupunkttemperatur (absolute Feuchte) τa des zu verdichtenden Gases auf der Saugseite der ersten Verdichterstufe und der Druck pi des zu verdichtenden Gases auf der Saugseite jeder der der ersten folgenden Verdichterstufe gemessen wird und aus diesen Messwerten anhand einer Gleichung Ti = ai · τa + bi · pi + ci die zulässige Kühlertemperatur Ti als Sollwert berechnet wird und weiterhin die Temperatur des zu verdichtenden Gases auf der Saugseite jeder der ersten folgenden Verdichterstufe als Istwert bestimmt wird, wobei ai, bi und ci Konstante sind.Method in which an essential measured value determining the state of the gas to be compressed is determined before the first compression stage and the setpoint for the state of the gas on the suction side of each of the first subsequent compressor stages is calculated with the aid of a function which represents the ix diagram in a linearized manner, wherein the dew point temperature (absolute humidity) τa of the gas to be compressed on the suction side of the first compressor stage and the pressure pi of the gas to be compressed on the suction side of each of the first compressor stage following is measured and from these measured values using an equation Ti = ai · τa + bi · Pi + ci the permissible cooler temperature Ti is calculated as the target value and the temperature of the gas to be compressed on the suction side of each of the first subsequent compressor stages is determined as the actual value, where ai, bi and ci are constants.

Description

Die Erfindung betrifft ein Verfahren zur kondensatfreien Zwischenkühlung verdichteter Gase, wobei ein wesentlicher, den Zustand des zu verdichtenden Gases bestimmender Meßwert vor der ersten Verdichterstufe ermittelt wird und der Sollwert für den Zustand des Gases auf der Saugseite jeder der der ersten folgenden Verdichterstufe mit Hilfe einer das i-x Diagramm linearisiert darstellenden Funktion berechnet wird.The invention relates to a method for the condensate-free intercooling of compressed gases, an essential measured value determining the state of the gas to be compressed being determined before the first compressor stage and the setpoint for the state of the gas on the suction side of each of the first compressor stages following using a ix diagram linearized representing function is calculated.

Ein derartiges Verfahren, wie es z.B. aus der DE-AS 2 113 038 bekannt ist, ermöglicht zwar bereits eine gewisse Berechnung der zulässigen Temperaturen des zu verdichtenden Gases in den Zwischenkühlern, da bei dem bekannten Verfahren aber die Ansaugtemperatur gemessen wird und von einer relativen Feuchte von 100 % ausgegangen wird, sind die berechneten Temperaturwerte nicht exakt genug, um optimale Meßwerte zu erhalten. Außerdem bleibt dort der recht beachtliche Einfluß des Kühlerdrucks unberücksichtigt. Die ermittelten Temperaturen sind also bei Betriebsdrücken, die unterhalb des maximal möglichen Kühlerdrucks liegen und bei relativen Ansaugfeuchten, die unter 100 % liegen, nicht unwesentlich zu hoch.Such a method as e.g. is known from DE-AS 2 113 038, although it already allows a certain calculation of the permissible temperatures of the gas to be compressed in the intercoolers, since in the known method the intake temperature is measured and a relative humidity of 100% is assumed the calculated temperature values are not precise enough to obtain optimal measured values. In addition, the quite considerable influence of the radiator pressure is not taken into account there. The temperatures determined are therefore not insignificantly too high at operating pressures which are below the maximum possible cooler pressure and at relative intake humidities which are below 100%.

Der Wirkungsgrad der Anlage ist damit geringer als maximal möglich.The efficiency of the system is therefore less than the maximum possible.

Es ist jetzt Aufgabe der Erfindung, das eingangs genannte Verfahren dahingehend zu verbessern, daß die zulässige Kühlertemperatur jedes der Zwischenkühler mit geringem Aufwand nahezu exakt berechnet und kontrolliert werden kann, um so zum einen die bekannten Nachteile durch die Unterschreitung der zulässigen Taupunkttemperatur zu vermeiden, andererseits aber den Wirkungsgrad der Verdichtungsanlage so gut wie möglich zu halten. Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Taupunkttemperatur (absolute Feuchte) τ a des zu verdichtenden Gases auf der Saugseite der ersten folgenden Verdichterstufe gemessen wird und aus diesen Meßwerten an Hand einer Gleichung

Figure imgb0001
die zulässige Kühlertemperatur Ti als Sollwert berechnet wird und weiterhin die Temperatur jeder der ersten folgenden Verdichterstufe als Istwert bestimmt wird, wobei ai, bi und ci Konstante sind.It is an object of the invention to improve the method mentioned at the outset such that the permissible cooler temperature of each of the intercoolers can be calculated and controlled almost exactly with little effort, in order to avoid the known disadvantages by falling below the permissible dew point temperature, on the one hand, and on the other hand but the efficiency of the compression system as good as possible to keep. This object is achieved in that the dew point temperature (absolute humidity) τ a of the gas to be compressed is measured on the suction side of the first subsequent compressor stage and from these measured values using an equation
Figure imgb0001
the permissible cooler temperature T i is calculated as the target value and the temperature of each of the first following compressor stages is also determined as the actual value, where a i , b i and c i are constant.

Im folgenden wird ein Ausführungsbeispiel der Erfindung an Hand einer Schemazeichnung näher erläutert. Die Konstanten ai und ci, die in der Größenordnung 1 - 5 liegen, können mit handelsüblichen Regelsystemen durch mehrfache Addition der Meßgrößen zu sich selbst und anschließender Abschwächung in einem Spannungsteiler realisiert werden.An exemplary embodiment of the invention is explained in more detail below with the aid of a schematic drawing. The constants a i and c i , which are in the order of magnitude 1-5, can be achieved with standard control systems by multiple addition of the measured variables to themselves and subsequent weakening in a voltage divider.

Es zeigen:

  • Figur 1 die Abhängigkeit des Taupunktes τ2 nach der zweiten Verdichterstufe vom Taupunkt des Ausgangsgases τa für verschiedene Drücke (dargestellt sind der tatsächliche Verlauf und die dem erfindungsgemäßen Verfahren zugrunde liegende Näherung) und
  • Figur 2 ein Regelschema zur Durchführung des erfindungsgemäßen Verfahrens.
Show it:
  • 1 shows the dependence of the dew point τ 2 after the second compressor stage on the dew point of the starting gas τ a for different pressures (the actual course and the approximation underlying the method according to the invention are shown) and
  • Figure 2 is a control scheme for performing the method according to the invention.

Bei den verwendeten Symbolen kennzeichnen der Index a den Anfangszustand vor der ersten Verdichterstufe und der Index i = 1, 2, 3 ... die Zahl der erfolgten Verdichtungen.In the symbols used, the index a indicates the initial state before the first compressor stage and the index i = 1, 2, 3 ... the number of compressions that have taken place.

Für Temperaturen bis etwa 60 °C und Drücke bis 10 bar kann feuchte Luft näherungsweise als ideales Gasgemisch von Luft- und Wasserdampf betrachtet werden. Es gilt dann folgender Zusammenhang:

Figure imgb0002
For temperatures up to about 60 ° C and pressures up to 10 bar, moist air can be considered approximately as the ideal gas mixture of air and water vapor. The following relationship then applies:
Figure imgb0002

Um den Taupunkt beim Druck Pz zu erhalten, benötigt man den Taupunkt τ1 beim Druck P1, liest aus der Gasdruckkurve den zugehörigen Partieldruck PD1, errechnet mit Formel (1) den Partialdruck PD2 und erhält aus dem zugehörigen Punkt auf der Gasdruckkurve den Taupunkt τ2.In order to obtain the dew point at pressure P z, one needs the dew point τ 1 at pressure P 1 , reads the associated partial pressure P D1 from the gas pressure curve, calculates the partial pressure P D2 using formula (1) and obtains the corresponding point on the gas pressure curve the dew point τ 2 .

Für den Fachmann überraschend hat sich gezeigt, daß sich die Taupunkttemperatur τ1 auf beliebigem Druckniveau durch folgende Geradenapproximation hinreichend genau beschreiben läßt:

Figure imgb0003
Surprisingly for the person skilled in the art, it has been shown that the dew point temperature τ 1 can be described with sufficient precision at any pressure level by the following straight line approximation:
Figure imgb0003

Da die gewünschte Kühlertemperatur um eine Sicherheitsspanne oberhalb der Taupunkttemperatur liegen soll, ergibt sich die gewünschte Temperatur Ti zu

Figure imgb0004
Durch die Linearisierung entfällt die Notwendigkeit, Absoluttemperaturen zu berücksichtigen. Wie eine Beispielrechnung zeigt, ergeben sich bei einem Approximationsbereich zwischen τa = 0 ... 30 °C und Pi = 4 ... 6 bar maximale Fehler von 1,5 C.Since the desired cooler temperature should be above the dew point temperature by a safety margin, the desired temperature T i results
Figure imgb0004
Linearization eliminates the need to take absolute temperatures into account. As an example calculation shows, an approximation range between τ a = 0 ... 30 ° C and P i = 4 ... 6 bar results in maximum errors of 1.5 C.

In der Figur 1 ist der Zusammenhang zwischen exaktem und angenähertem Verlauf graphisch dargestellt.The relationship between the exact and approximated course is shown graphically in FIG.

Die Konstanten können einfach berechnet werden, indem für drei Arbeitspunkte aus dem Approximationsbereich die exakten Taupunkttemperaturen aus den Dampfdrucktafeln entnommen und in die Geradengleichungen eingesetzt werden.The constants can be easily calculated by taking the exact dew point temperatures from the vapor pressure tables for three working points from the approximation area and inserting them into the straight line equations.

In Fig. 2, in der eine Regelanordnung zur Durchführung des erfindungsgemäßen Verfahrens dargestellt ist, wurden folgende Symbole verwendet:

Figure imgb0005
Figure imgb0006
Figure imgb0007
Figure imgb0008
Figure imgb0009
Figure imgb0010
Figure imgb0011
Figure imgb0012
The following symbols have been used in FIG. 2, which shows a control arrangement for carrying out the method according to the invention:
Figure imgb0005
Figure imgb0006
Figure imgb0007
Figure imgb0008
Figure imgb0009
Figure imgb0010
Figure imgb0011
Figure imgb0012

Das erfindungsgemäße Verfahren ermöglicht es, die Temperatur des Gases in Zwischenkühlern von Gasverdichtern mit einfachen Mitteln so zu regeln, daß der Wirkungskreis der Verdichteranlage nicht gemindert, die Ansaugleistung erhalten bleibt und ein dauerhafter korrosionsfreier Betrieb gesichert ist. Durch eine Linearisierung im jeweiligen Arbeitsbereich läßt sich die Regelung mit geringem Geräteaufwand zuverlässig durchführen. Es kann daher von einer hervorragenden Lösung der anstehenden Probleme gesprochen werden.The inventive method makes it possible to regulate the temperature of the gas in intercoolers of gas compressors with simple means so that the effective range of the compressor system is not reduced, the suction capacity is maintained and permanent, corrosion-free operation is ensured. Linearization in the respective work area enables the control to be carried out reliably with little expenditure on equipment. We can therefore speak of an excellent solution to the problems at hand.

Claims (1)

Verfahren zur kondensatfreien Zwischenkühlung verdichteter Gase, wobei ein wesentlicher, den Zustand des zu verdichtenden Gases bestimmender Meßwert vor der ersten Verdichterstufe ermittelt wird und der Sollwert für den Zustand des Gases auf der Saugseite jeder der der ersten folgenden Verdichterstufen mit Hilfe einer das i-x Diagramm linearisiert darstellenden Funktion berechnet wird, dadurch gekennzeichnet, daß die Taupunkttemperatur (absolute Feuchte) τa des zu verdichtenden Gases auf der Saugseite der ersten Verdichterstufe und der Druck pi des zu verdichtenden Gases auf der Saugseite jeder der der ersten folgenden Verdichterstufe gemessen wird und aus diesen Meßwerten an Hand einer Gleichung
Figure imgb0013
die zulässige Kühlertemperatur Ti als Sollwert berechnet wird und weiterhin die Temperatur des zu verdichtenden Gases auf der Saugseite jeder der ersten folgenden Verdichterstufe als Istwert bestimmt wird, wobei ai, bi und ci Konstante sind.
Process for the condensate-free intercooling of compressed gases, whereby an essential measured value determining the state of the gas to be compressed is determined before the first compressor stage and the setpoint for the state of the gas on the suction side of each of the first subsequent compressor stages using a linearized representation of the ix diagram Function is calculated, characterized in that the dew point temperature (absolute humidity) τ a of the gas to be compressed on the suction side of the first compressor stage and the pressure pi of the gas to be compressed on the suction side of each of the first compressor stage following is measured and from these measurements Hand of an equation
Figure imgb0013
the permissible cooler temperature T i is calculated as the desired value and the temperature of the gas to be compressed on the suction side of each of the first subsequent compressor stages is also determined as the actual value, with a i , b i and c i being constant.
EP80101077A 1979-03-12 1980-03-04 Process for the interstage cooling, without condensation, of compressed gases Expired EP0015535B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2909675 1979-03-12
DE2909675A DE2909675C3 (en) 1979-03-12 1979-03-12 Process for condensate-free intermediate cooling of compressed gases

Publications (2)

Publication Number Publication Date
EP0015535A1 true EP0015535A1 (en) 1980-09-17
EP0015535B1 EP0015535B1 (en) 1984-06-13

Family

ID=6065169

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80101077A Expired EP0015535B1 (en) 1979-03-12 1980-03-04 Process for the interstage cooling, without condensation, of compressed gases

Country Status (4)

Country Link
US (1) US4362462A (en)
EP (1) EP0015535B1 (en)
JP (1) JPS55128694A (en)
DE (1) DE2909675C3 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2219348A (en) * 1988-04-07 1989-12-06 Gen Electric Gas turbine engine cooling system for clearance control
EP2101064A1 (en) 2008-03-11 2009-09-16 BHDT GmbH Cooling device for a working fluid
EP2251622A1 (en) * 2008-01-30 2010-11-17 Daikin Industries, Ltd. Refrigeration device
BE1018598A3 (en) * 2010-01-25 2011-04-05 Atlas Copco Airpower Nv METHOD FOR RECYCLING ENRGIE.
EP3208465A1 (en) * 2016-02-19 2017-08-23 Linde Aktiengesellschaft Method for the stepwise compression of a gas

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4417847A (en) * 1981-08-14 1983-11-29 Exxon Research & Engineering Co. Separate quench and evaporative cooling of compressor discharge stream
JPS6043189A (en) * 1983-08-17 1985-03-07 Kobe Steel Ltd Controlling method of discharge temperature in oil- cooled positive displacement type rotary compressor
US4618310A (en) * 1984-06-07 1986-10-21 Exxon Research & Engineering Co. Method of multi-stage compressor surge control
US4949544A (en) * 1988-12-06 1990-08-21 General Electric Company Series intercooler
US4968219A (en) * 1989-06-22 1990-11-06 Sundstrand Corporation Multi-stage compressor with seal heating
US5282726A (en) * 1991-06-21 1994-02-01 Praxair Technology, Inc. Compressor supercharger with evaporative cooler
SE469042B (en) * 1991-09-13 1993-05-03 Abb Carbon Ab PROCEDURES AND DEVICES TO REGULATE AND LIMIT AIR TEMPERATURE AT A HIGH PRESSURE COMPRESSORS IN AND OUT OF A PFBC PLANT
IT1255836B (en) * 1991-10-01 1995-11-17 PROCEDURE FOR THE SURVEILLANCE OF THE PUMPING LIMIT OF MULTI-STAGE TURBOCHARGERS AND INTERMEDIATE REFRIGERATION
DE19531562A1 (en) * 1995-08-28 1997-03-06 Abb Management Ag Process for operating a power plant
US5885060A (en) * 1996-06-03 1999-03-23 Westinghouse Air Brake Company Thermostatically controlled intercooler system for a multiple stage compressor and method
KR19990075384A (en) * 1998-03-20 1999-10-15 이헌석 Compact Turbo Compressor
US6305313B1 (en) * 1998-11-10 2001-10-23 Westinghouse Air Brake Company Pop-up temperature indicator for use in a 3-CD type air compressor or similar device
AU2172500A (en) 1998-12-11 2000-06-26 Allied-Signal Inc. Power generation system, and heat exchanger and operating method for a power generation system
KR100530757B1 (en) * 1999-07-15 2005-11-23 삼성테크윈 주식회사 Turbo compressor
DE19933989A1 (en) * 1999-07-20 2001-01-25 Linde Gas Ag Method and compressor module for compressing a gas stream
GB2367332B (en) * 2000-09-25 2003-12-03 Compair Uk Ltd Improvements in multi-stage screw compressor drive arrangements
BE1013865A3 (en) * 2000-12-06 2002-10-01 Atlas Copco Airpower Nv Method for controlling a compressor installation.
US7905722B1 (en) 2002-02-08 2011-03-15 Heath Rodney T Control of an adjustable secondary air controller for a burner
US6698234B2 (en) 2002-03-20 2004-03-02 Carrier Corporation Method for increasing efficiency of a vapor compression system by evaporator heating
US6658888B2 (en) 2002-04-10 2003-12-09 Carrier Corporation Method for increasing efficiency of a vapor compression system by compressor cooling
US6647742B1 (en) 2002-05-29 2003-11-18 Carrier Corporation Expander driven motor for auxiliary machinery
WO2003102424A1 (en) * 2002-06-04 2003-12-11 Alstom Technology Ltd Method for operating a compressor
GB0400986D0 (en) * 2004-01-16 2004-02-18 Cryostar France Sa Compressor
US9353315B2 (en) 2004-09-22 2016-05-31 Rodney T. Heath Vapor process system
CN101268281A (en) * 2005-09-19 2008-09-17 英格索尔-兰德公司 Multi-stage compression system including variable speed motors
US20070189905A1 (en) * 2006-02-13 2007-08-16 Ingersoll-Rand Company Multi-stage compression system and method of operating the same
US20100040989A1 (en) * 2008-03-06 2010-02-18 Heath Rodney T Combustor Control
US8529215B2 (en) * 2008-03-06 2013-09-10 Rodney T. Heath Liquid hydrocarbon slug containing vapor recovery system
US8128379B2 (en) * 2008-11-19 2012-03-06 Wabtec Holding Corp. Temperature management system for a 2CD type air compressor
EP2516952A2 (en) 2009-12-24 2012-10-31 General Compression Inc. Methods and devices for optimizing heat transfer within a compression and/or expansion device
US8864887B2 (en) 2010-09-30 2014-10-21 Rodney T. Heath High efficiency slug containing vapor recovery
EP2649326A1 (en) 2010-12-07 2013-10-16 General Compression Inc. Compressor and/or expander device with rolling piston seal
US8997475B2 (en) 2011-01-10 2015-04-07 General Compression, Inc. Compressor and expander device with pressure vessel divider baffle and piston
WO2012097215A1 (en) 2011-01-13 2012-07-19 General Compression, Inc. Systems, methods and devices for the management of heat removal within a compression and/or expansion device or system
US9109512B2 (en) 2011-01-14 2015-08-18 General Compression, Inc. Compensated compressed gas storage systems
JP5773697B2 (en) * 2011-03-25 2015-09-02 三菱重工業株式会社 Multistage compressor
US20120261092A1 (en) * 2011-04-15 2012-10-18 Heath Rodney T Compressor inter-stage temperature control
DE102011102169A1 (en) * 2011-05-20 2013-05-16 Linde Aktiengesellschaft Compacting media
US8849604B2 (en) 2011-05-24 2014-09-30 Clark Equipment Company Method for calculating the probability of moisture build-up in a compressor
US8387375B2 (en) 2011-11-11 2013-03-05 General Compression, Inc. Systems and methods for optimizing thermal efficiency of a compressed air energy storage system
US8522538B2 (en) 2011-11-11 2013-09-03 General Compression, Inc. Systems and methods for compressing and/or expanding a gas utilizing a bi-directional piston and hydraulic actuator
US9494281B2 (en) * 2011-11-17 2016-11-15 Air Products And Chemicals, Inc. Compressor assemblies and methods to minimize venting of a process gas during startup operations
CA2875296C (en) 2012-05-10 2020-10-27 Rodney T. Heath Treater combination unit
US9291409B1 (en) 2013-03-15 2016-03-22 Rodney T. Heath Compressor inter-stage temperature control
US9527786B1 (en) 2013-03-15 2016-12-27 Rodney T. Heath Compressor equipped emissions free dehydrator
US9932989B1 (en) 2013-10-24 2018-04-03 Rodney T. Heath Produced liquids compressor cooler
US9951763B2 (en) * 2014-05-09 2018-04-24 Westinghouse Air Brake Technologies Corporation Compressor cooled by a temperature controlled fan
US10619462B2 (en) * 2016-06-18 2020-04-14 Encline Artificial Lift Technologies LLC Compressor for gas lift operations, and method for injecting a compressible gas mixture
DE102017107599A1 (en) 2017-04-10 2018-10-11 Gardner Denver Deutschland Gmbh Pulsation silencer for compressors
DE102017107601B4 (en) * 2017-04-10 2019-11-07 Gardner Denver Deutschland Gmbh Method for controlling a screw compressor
DE102017107602B3 (en) 2017-04-10 2018-09-20 Gardner Denver Deutschland Gmbh Compressor system with internal air-water cooling
US11204025B2 (en) * 2018-02-22 2021-12-21 Pc3 Technologies, Llc Gas compression cooling system
US11639824B2 (en) * 2020-04-30 2023-05-02 Air Products And Chemicals, Inc. Process for enhanced closed-circuit cooling system
CN114810332B (en) * 2022-03-30 2023-08-22 江铃汽车股份有限公司 Intercooling system regulation and control method, system, terminal equipment and storage medium
DE202022002369U1 (en) 2022-11-04 2024-02-06 Dirk Gros Device for supporting the provision of intake gas for fluid-injected compressors with an optimizing influence on the final compression temperature

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1428047A1 (en) * 1962-07-13 1968-11-28 Basf Ag Method and device for the condensation-free operation of multi-stage turbo compressors with intermediate cooling
DE2113038A1 (en) * 1971-03-18 1972-09-28 Huels Chemische Werke Ag Measurement and control arrangement for the condensate-free operation of gas compressors
DE2132141B2 (en) * 1971-06-29 1977-11-03 Gutehoffnungshütte Sterkrade AG, 4200 Oberhausen PROCESS FOR CONDENSATE-FREE OPERATION OF MULTI-STAGE TURBO COMPRESSORS

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1400813A (en) * 1920-11-03 1921-12-20 Graemiger Benjamin Process of compressing vapor in multistage centrifugal compressors
US3666771A (en) * 1970-07-06 1972-05-30 Parke Davis & Co M-(amino-s-triazolyl)benzene-sulfonamides and their production
CH533768A (en) * 1971-01-20 1973-02-15 Bbc Sulzer Turbomaschinen Multi-stage compressor
DE2352561C2 (en) * 1973-10-19 1983-02-17 Linde Ag, 6200 Wiesbaden Method for dissipating the compression heat that arises when compressing a gas mixture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1428047A1 (en) * 1962-07-13 1968-11-28 Basf Ag Method and device for the condensation-free operation of multi-stage turbo compressors with intermediate cooling
DE2113038A1 (en) * 1971-03-18 1972-09-28 Huels Chemische Werke Ag Measurement and control arrangement for the condensate-free operation of gas compressors
DE2132141B2 (en) * 1971-06-29 1977-11-03 Gutehoffnungshütte Sterkrade AG, 4200 Oberhausen PROCESS FOR CONDENSATE-FREE OPERATION OF MULTI-STAGE TURBO COMPRESSORS

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2219348A (en) * 1988-04-07 1989-12-06 Gen Electric Gas turbine engine cooling system for clearance control
GB2219348B (en) * 1988-04-07 1992-10-21 Gen Electric Clearance control system
EP2251622A1 (en) * 2008-01-30 2010-11-17 Daikin Industries, Ltd. Refrigeration device
EP2251622A4 (en) * 2008-01-30 2017-03-29 Daikin Industries, Ltd. Refrigeration device
EP2101064A1 (en) 2008-03-11 2009-09-16 BHDT GmbH Cooling device for a working fluid
RU2511816C2 (en) * 2010-01-25 2014-04-10 Атлас Копко Эрпауэр, Намлозе Веннотсхап Energy recovery method
WO2011088527A3 (en) * 2010-01-25 2012-01-12 Atlas Copco Airpower, Naamloze Vennootschap Method for recovering energy when commpressing gas by a compressor
AU2010343035B2 (en) * 2010-01-25 2015-01-29 Atlas Copco Airpower, Naamloze Vennootschap Method for recovering energy when commpressing gas by a compressor
BE1018598A3 (en) * 2010-01-25 2011-04-05 Atlas Copco Airpower Nv METHOD FOR RECYCLING ENRGIE.
US9976569B2 (en) 2010-01-25 2018-05-22 Atlas Copco Airpower, Naamloze Vennootschap Method for recovering energy
EP3208465A1 (en) * 2016-02-19 2017-08-23 Linde Aktiengesellschaft Method for the stepwise compression of a gas
WO2017140910A1 (en) * 2016-02-19 2017-08-24 Linde Aktiengesellschaft Method for gradual sealing of a gas
EA037004B1 (en) * 2016-02-19 2021-01-26 Линде Акциенгезельшафт Method for gradual sealing of a gas

Also Published As

Publication number Publication date
US4362462A (en) 1982-12-07
DE2909675C3 (en) 1981-11-19
JPS6330520B2 (en) 1988-06-17
DE2909675A1 (en) 1980-09-25
EP0015535B1 (en) 1984-06-13
JPS55128694A (en) 1980-10-04
DE2909675B2 (en) 1981-04-02

Similar Documents

Publication Publication Date Title
EP0015535A1 (en) Process for the interstage cooling, without condensation, of compressed gases
EP0088226B1 (en) Method of operating a liquid ring vacuum pump
DE3531310A1 (en) PURE AIR GENERATOR
CH677572A5 (en)
EP0335105B1 (en) Method to prevent surge of a centrifugal compressor by vent control
DE69002358T2 (en) Screw compressor and its operating method.
DE1483508B1 (en) Method for regulating the induced draft for sucking off exhaust gases sucked into a flue duct when refining metal melts
DE2132141C3 (en) Process for the condensate-free operation of multi-stage turbo compressors
DE1428033B2 (en) PROCEDURE FOR THE CONTROL OF CONDENSATE-FREE INTERCOOLING OF COMPRESSED GASES
Hilscher et al. Autoradiographische untersuchungen über den modus der proliferation und regeneration des samenepithels der Wistarratte
DE2256941C3 (en) Built-in oven
DE2113038A1 (en) Measurement and control arrangement for the condensate-free operation of gas compressors
DE10129885C1 (en) Process for regulating the heating power of a baking oven used in bakeries comprises integrating the difference between the theoretical temperature and the actual temperature over the baking time; and correcting the theoretical temperature
DE3201796C2 (en)
DE2947820C2 (en) Heat pump arrangement, in particular for heating buildings, with a motor-driven heat pump and a speed controller
DE1428047A1 (en) Method and device for the condensation-free operation of multi-stage turbo compressors with intermediate cooling
DE1428033C (en) Process for regulating condensate-free intermediate cooling of compressed gases
DE349964C (en) Fastening strip or plate-shaped precipitation electrodes for electrical dust separation systems
DE3135799A1 (en) Method of electric heating of cooled surfaces
DE3135091C2 (en) Process for vacuum drying of refrigeration machines
DE1004357B (en) Steam extraction device for baking and roasting tubes of stoves
DE808011C (en) Method for improving the work process in thermal power machines
DE744370C (en) Production of concentrated nitric acid by thermal decomposition of thin nitric acid
DE1956374A1 (en) Method and device for operating compressors
DE3200794A1 (en) Electric storage heating appliance

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH FR GB IT

ITCL It: translation for ep claims filed

Representative=s name: BARZANO' E ZANARDO MILANO S.P.A.

17P Request for examination filed

Effective date: 19801002

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH FR GB IT

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940211

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940215

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940218

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19950331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19951130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST