EP0335105B1 - Method to prevent surge of a centrifugal compressor by vent control - Google Patents

Method to prevent surge of a centrifugal compressor by vent control Download PDF

Info

Publication number
EP0335105B1
EP0335105B1 EP89103056A EP89103056A EP0335105B1 EP 0335105 B1 EP0335105 B1 EP 0335105B1 EP 89103056 A EP89103056 A EP 89103056A EP 89103056 A EP89103056 A EP 89103056A EP 0335105 B1 EP0335105 B1 EP 0335105B1
Authority
EP
European Patent Office
Prior art keywords
flow
blow
delivery
minimum
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89103056A
Other languages
German (de)
French (fr)
Other versions
EP0335105A3 (en
EP0335105A2 (en
Inventor
Wilfried Dr.-Ing. Blotenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions SE
Original Assignee
MAN Gutehoffnungshutte GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Gutehoffnungshutte GmbH filed Critical MAN Gutehoffnungshutte GmbH
Publication of EP0335105A2 publication Critical patent/EP0335105A2/en
Publication of EP0335105A3 publication Critical patent/EP0335105A3/en
Application granted granted Critical
Publication of EP0335105B1 publication Critical patent/EP0335105B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids

Definitions

  • the invention relates to a method for avoiding the pumping of a turbocompressor supplying a downstream process via a discharge line with a gaseous pressure medium, according to the preamble of patent claim 1.
  • a method of the type mentioned is known from DE-B-11 07 887.
  • This method uses two independent control devices, namely a conventional, slow-acting and an additional, fast-acting control device.
  • the conventional control device works in a known manner in accordance with a control difference, which is determined as a function of the intake volume flow and the final pressure of the compressor.
  • the additional control device operates in accordance with values for the pressure or flow of the compressed medium which are recorded close to the downstream process and, if necessary, brings about a rapid partial or complete opening of the single blow-off valve or an additional, parallel blow-off valve.
  • a disadvantage of this method is that it requires two independent, juxtaposed control devices to carry it out, which represents a high technical outlay.
  • the new control method requires only one control device for the blow-off control to be carried out, to which one of two control differences is supplied, which first signals a fault or the larger fault.
  • the additional effort for the implementation of the new control method is therefore advantageously low; however, it is ensured that both malfunctions, the cause of which lies in the area of the turbocompressor, and malfunctions resulting from a downstream process, are recognized at an early stage and converted into corresponding control processes. This ensures safe operation of the turbocompressor without pumps and without pressure drops in the downstream process.
  • the discharge flow can either be measured directly by a corresponding measuring device in a pressure line for the pressure medium led to the process or in a simulation from parameters of the downstream process, such as the position of one or more valves and / or the pressure at one or more points in the process, be calculated.
  • the first method variant is particularly expedient if, for other reasons, a flow measuring device is already available at a suitable point, the measurement results of which can be used for the new method.
  • the calculation of the flow is to be preferred if a flow measuring device would have to be installed especially for the method. This avoids unnecessarily high investment costs. Regardless of the type of recording of the discharge flow, be it by measurement or by calculation, this can be done with one for both ways the procedure can be obtained with sufficient accuracy.
  • the discharge flow is measured as a mass flow, ie as a mass per unit of time, a conversion must be carried out in order to arrive at the same units for the intake volume flow and the discharge flow.
  • the mass flow is in a fixed relationship with the volume flow via the density of the compressed gas and the density in turn is a function of the pressure.
  • a pressure measurement at the input of the process and a subsequent conversion are required to calculate the discharge flow as volume flow.
  • the minimum intake volume flow that is just permissible is a function of the compressor end pressure.
  • the same minimum flow value, supplied by a common function generator as a function of the compressor pressure, is used for the minimum intake volume flow and for the minimum discharge flow.
  • Another, somewhat more complex process variant provides, in order to enable a higher accuracy and greater influence on the process, that for the minimum intake volume flow and for the minimum discharge flow, independently calculated minimum flow values, each supplied by a separate function generator, are used, the minimum intake volume flow as a function of the compressor end pressure and Minimum discharge flow is determined as a function of pressure at the discharge flow detection point near the entrance of the process.
  • blow-off flow through the blow-off valve is additionally detected and added to the discharge flow.
  • the blow-off flow rate is recorded either by a measurement in the blow-off line upstream and downstream of the blow-off valve or by a calculation which saves its own measuring device.
  • the blow-off flow is calculated by means of a simulation calculation from the position of the blow-off valve and the pressure in front of the blow-off valve. This requires a position indicator on the relief valve, which in practice is often already available for other reasons.
  • the blow-off flow can also be calculated from a control variable for the adjustment of the blow-off valve generated in the blow-off control by simulating the dynamic behavior of the blow-off valve and from the pressure in front of the blow-off valve.
  • a simulation of the dynamic behavior of the valve is no problem with the electronic data processing options available today.
  • the temperature of the medium flowing through the blow-off valve and / or the pressure behind the blow-off valve are additionally measured and included in the calculation of the blow-off flow.
  • other variables influencing the flow through the blow-off valve can also be recorded and included in the calculation.
  • the blow-off valve would be primarily controlled by the changes in the blow-off flow or the sum of this and the discharge flow. This causes the compressor to operate at an unnecessarily large distance from the surge limit.
  • the value for the discharge flow or the sum of this and the value for the blow-off flow before entry into the control can be multiplied by a predeterminable factor which is greater than 1.
  • a predeterminable constant can be added to the value for the discharge flow or to the sum of this and the value for the blow-off flow before entering the control. The result of this is that an undesirable increase in the safety distance from the surge limit only occurs if the error in the discharge flow determination becomes greater than the predetermined factor, which can be 1.1, for example, or as the added size.
  • Another embodiment of the method provides that a correction quantity is added to the value for the discharge flow or the sum of the values for the discharge flow and blow-off flow in an additional device with a large time constant, which is changed until the sum corresponds exactly to the intake volume flow .
  • a suitable choice of the time constant of the additional device which can be implemented by an integrator, for example, can ensure that the compensating effect takes place so slowly that temporary dynamic imbalances between the intake volume flow and the discharge flow rate and between the associated control differences can pass unhindered.
  • the integrator can be limited to certain values, in particular negative values, which prevents the setting of an excessively large safety distance from the surge limit.
  • a further embodiment of the method provides that the values for the discharge flow or the sum of this and the word for the blow-off flow are given as an input signal to a compliant reference, the reference essentially consisting of an integrator with an adjustable time constant, the output signal of which this time constant follows the input signal, and the difference between the input and output signals which occurs temporarily after sudden changes in the input signal as a correction variable for one of the intake volume flow and the minimum intake volume flow formed, used in the normal relief control first control difference.
  • This control difference can be changed directly or by applying the correcting variable with the correct sign to the setpoint or actual value for the calculation of the control difference.
  • Such an earlier reaction is not necessary in the event of disturbances in the direction of an increase in the discharge flow, which is why this regulation is expediently designed to act only in the first-mentioned direction of decrease by means of a flexible reference.
  • FIG. 1 A sequence example of the method according to the invention is explained below with reference to a drawing.
  • the single figure of the drawing shows a schematic representation of a turbocompressor along with associated lines, valves and the like elements together with a control scheme of the method.
  • a turbocompressor 1 is shown, the suction side with an intake line 10 and is connected on the pressure side to an output line 11.
  • a blow-off line 20 branches off from the discharge line 11, into which a blow-off valve 2 is switched on. With the blow-off valve 2 open, part of the gaseous medium conveyed into the discharge line 11 by the compressor 1 can be blown off into the atmosphere by the blow-off line 20.
  • the relief valve 2 is adjustable for this purpose by means of a valve actuation device 21.
  • a non-return valve 3 is inserted into this, as usual. After this check valve 3, the discharge line 11 leads to a process downstream of the compressor 1, which is to be supplied with the compressed gaseous medium.
  • a measuring device 4 is used in the intake line 10, which serves to measure the intake volume flow V ⁇ A flowing through the line 10 to the compressor 1.
  • a further measuring device 5 is arranged in the discharge line 11, which serves to measure the compressor end pressure P E.
  • Another measuring device 6 is finally inserted into the discharge line 11 before the process downstream of the compressor 1. This measuring device 6 is used to measure the discharge flow V ⁇ P to the process, with a conversion into volume per unit of time possibly taking place via the density of the medium at the measuring point if the discharge flow is measured as a mass flow, ie as a mass per unit of time.
  • x d1 is defined as the difference between the minimum flow, here the minimum intake volume flow V ⁇ Amin , and the intake volume flow V ⁇ A.
  • the measured values for the discharge flow V ⁇ P are used to calculate a second control difference x d2 , where x d2 is defined as the difference between the minimum flow, here the minimum discharge flow V ⁇ Pmin and the measured discharge flow V ⁇ P.
  • x d2 is defined as the difference between the minimum flow, here the minimum discharge flow V ⁇ Pmin and the measured discharge flow V ⁇ P.
  • the same minimum flow rate is used for both control difference formation in the present example, ie here the minimum intake volume flow rate Vstrom amine is equal to the minimum discharge flow rate V ⁇ Pmin .
  • a separate minimum delivery flow can also be calculated.
  • the two control differences x d1 and x d2 are fed to a maximum value selection. In this maximum value selection, the larger of the two control difference values is selected and fed to the blow-off control as control difference x d .
  • the blow-off control calculates a control variable y from the control difference x d supplied to it, which is applied to the already mentioned valve actuation device 21 for adjusting the blow-off valve 2 and there causes a corresponding adjustment of the blow-off valve 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

In the case of known control methods the intake volume flow to the compressor and the compressor final pressure measured after the compressor are included in the venting control. Disturbances in the through-flow which have their cause in a process downstream from the compressor are thereby only detected once they have spread through the compressor to the intake side. Under unfavourable conditions intervention by the venting control may therefore already be too late to prevent surging of the compressor. The new method is intended to rectify this drawback. <??>The new method proposes that in addition the delivery flow to the process downstream from the compressor be detected and taken account of in the venting control. This results in prompt reaction of the venting control to changes in the through-flow which are caused by the downstream process. <??>The new method is particularly suitable for the control of turbocompressors on which the downstream process is a possible cause of disturbances with changes in the through-flow. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zur Vermeidung des Pumpens eines einen nachgeschalteten Prozeß über eine Abgabeleitung mit einem gasförmigen Druckmedium versorgenden Turboverdichters, gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a method for avoiding the pumping of a turbocompressor supplying a downstream process via a discharge line with a gaseous pressure medium, according to the preamble of patent claim 1.

Ein Verfahren der genannten Art ist aus der DE-B- 11 07 887 bekannt. Dieses Verfahren benutzt zwei voneinander unabhängige Regelvorrichtungen, nämlich eine übliche, langsam wirkende und eine zusätzliche, schnell wirkende Regelvorrichtung. Die übliche Regelvorrichtung arbeitet in bekannter Weise nach Maßgabe einer Regeldifferenz, die in Abhängigkeit von Ansaugvolumenstrom und Enddruck des Verdichters bestimmt wird. Die zusätzliche Regelvorrichtung arbeitet nach Maßgabe von nahe dem nachgeschalteten Prozeß erfaßten Werten für Druck oder Durchfluß des verdichteten Mediums und bewirkt bedarfsweise eine rasche teilweise oder vollständige Öffnung des einzigen Abblaseventils oder eines zusätzlichen, parallelen Abblaseventils.A method of the type mentioned is known from DE-B-11 07 887. This method uses two independent control devices, namely a conventional, slow-acting and an additional, fast-acting control device. The conventional control device works in a known manner in accordance with a control difference, which is determined as a function of the intake volume flow and the final pressure of the compressor. The additional control device operates in accordance with values for the pressure or flow of the compressed medium which are recorded close to the downstream process and, if necessary, brings about a rapid partial or complete opening of the single blow-off valve or an additional, parallel blow-off valve.

Als nachteilig wird bei diesem Verfahren angesehen, daß es zu seiner Durchführung zwei unabhängige, nebeneinander arbeitende Regelvorrichtungen erfordert, was einen hohen technischen Aufwand darstellt.A disadvantage of this method is that it requires two independent, juxtaposed control devices to carry it out, which represents a high technical outlay.

Es stellt sich daher die Aufgabe, ein Verfahren der eingangs genannten Art zu schaffen, welches bei vergleichsweise geringem zusätzlichen Aufwand auch bei aus einem dem Verdichter nachgeschalteten Prozeß herrührenden Störungen eine sehr sichere, sowohl ein Pumpen des Verdichters als auch Druckeinbrüche auf der Druckseite des Verdichters verhindernde Regelung des Verdichters gewährleistet.It is therefore an object of the invention to provide a method of the type mentioned which, with comparatively little additional outlay, even in the event of faults resulting from a process downstream of the compressor, prevents very well both pumping of the compressor and pressure drops on the pressure side of the compressor Regulation of the compressor guaranteed.

Die Lösung dieser Aufgabe gelingt erfindungsgemäß durch ein Verfahren der eingangs genannten Art mit den kennzeichnenden Merkmalen des Patentanspruchs 1.This object is achieved according to the invention by a method of the type mentioned at the outset with the characterizing features of patent claim 1.

Das neue Regelverfahren erfordert für seine Durchführung nur eine Regelvorrichtung für die Abblaseregelung, der diejenige von zwei Regeldifferenzen zugeführt wird, die zuerst eine Störung oder die die größere Störung signalisiert. Der zusätzliche Aufwand für die Durchführung des neuen Regelverfahrens ist also vorteilhaft gering; es wird aber dennoch sichergestellt, daß sowohl Störungen, deren Ursache im Bereich des Turboverdichters liegt, als auch Störungen, die aus einem nachgeschalteten Prozeß herrühren, frühzeitig erkannt und in entsprechende Regelvorgänge umgesetzt werden. Hierdurch wird ein sicherer Betrieb des Turboverdichters ohne Pumpen und ohne Druckeinbrüche im nachgeschalteten Prozeß gewährleistet.The new control method requires only one control device for the blow-off control to be carried out, to which one of two control differences is supplied, which first signals a fault or the larger fault. The additional effort for the implementation of the new control method is therefore advantageously low; however, it is ensured that both malfunctions, the cause of which lies in the area of the turbocompressor, and malfunctions resulting from a downstream process, are recognized at an early stage and converted into corresponding control processes. This ensures safe operation of the turbocompressor without pumps and without pressure drops in the downstream process.

Der Abgabedurchfluß kann entweder durch eine entsprechende Meßeinrichtung in einer zum Prozeß geführten Druckleitung für das Druckmedium unmittelbar gemessen oder in einer Simulation aus Parametern des nachgeschalteten Prozesses, wie z.B. der Stellung eines oder mehrerer Ventile und/oder des Druckes an einer oder mehreren Stellen des Prozesses, berechnet werden. Die erste Verfahrensvariante ist besonders dann zweckmäßig, wenn aus anderen Gründen bereits eine Durchflußmeßeinrichtung an geeigneter Stelle vorhanden ist, deren Meßergebnisse für das neue Verfahren genutzt werden können. Die Berechnung des Durchflusses ist dann zu bevorzugen, wenn eigens für das Verfahren eine Durchflußmeßeinrichtung installiert werden müßte. Hierdurch werden unnötig hohe Investitionskosten vermieden. Unabhängig von der Art der Erfassung des Abgabedurchflusses, sei es durch Messung oder durch Berechnung, kann dieser auf beiden Wegen mit einer für das Verfahren ausreichenden Genauigkeit gewonnen werden. Wird der Abgabedurchfluß als Massenstrom, d.h. als Masse je Zeiteinheit, gemessen, muß noch eine Umrechnung erfolgen, um zu gleichen Einheiten bei Ansaugvolumenstrom und Abgabedurchfluß zu kommen. Der Massenstrom steht über die Dichte des verdichteten Gases mit dem Volumenstrom in einer festen Beziehung und die Dichte wiederum ist eine Funktion des Druckes. In diesem Fall ist also zur Berechnung des Abgabedurchflusses als Volumenstrom neben der Erfassung des Massenstroms auch eine Druckmessung am Eingang des Prozesses sowie eine anschließende Umrechnung erforderlich.The discharge flow can either be measured directly by a corresponding measuring device in a pressure line for the pressure medium led to the process or in a simulation from parameters of the downstream process, such as the position of one or more valves and / or the pressure at one or more points in the process, be calculated. The first method variant is particularly expedient if, for other reasons, a flow measuring device is already available at a suitable point, the measurement results of which can be used for the new method. The calculation of the flow is to be preferred if a flow measuring device would have to be installed especially for the method. This avoids unnecessarily high investment costs. Regardless of the type of recording of the discharge flow, be it by measurement or by calculation, this can be done with one for both ways the procedure can be obtained with sufficient accuracy. If the discharge flow is measured as a mass flow, ie as a mass per unit of time, a conversion must be carried out in order to arrive at the same units for the intake volume flow and the discharge flow. The mass flow is in a fixed relationship with the volume flow via the density of the compressed gas and the density in turn is a function of the pressure. In this case, in addition to recording the mass flow, a pressure measurement at the input of the process and a subsequent conversion are required to calculate the discharge flow as volume flow.

Wie im Oberbegriff des Anspruchs 1 angegeben, ist der gerade noch zulässige Minimalansaugvolumenstrom eine Funktion des Verdichterenddruckes. Das gleiche gilt für den Minimalabgabedurchfluß unter der oft erfüllten Voraussetzung, daß der Druck des Druckmediums auf dessen weiterem Weg zum Prozeß im wesentlichen konstant bleibt. In dieser einfachen Verfahrensvariante ist daher vorgesehen, daß für den Minimalansaugvolumenstrom und für den Minimalabgabedurchfluß der gleiche, von einem gemeinsamen Funktionsgeber in Abhängigkeit vom Verdichterendruck gelieferte Minimaldurchflußwert verwendet wird. Eine andere, etwas aufwendigere Verfahrensvariante sieht zur Ermöglichung einer höheren Genauigkeit und größeren Beeinflußbarkeit des Verfahrens vor, daß für den Minimalansaugvolumenstrom und für den Minimalabgabedurchfluß unabhängig voneinander berechnete, von je einem eigenen Funktionsgeber gelieferte Minimaldurchflußwerte verwendet werden, wobei der Minimalansaugvolumenstrom als Funktion des Verdichterenddrucks und der Minimalabgabedurchfluß als Funktion des Drucks an der Abgabedurchfluß-Erfassungsstelle nahe dem Eingang des Prozesses bestimmt wird.As stated in the preamble of claim 1, the minimum intake volume flow that is just permissible is a function of the compressor end pressure. The same applies to the minimum discharge flow under the often fulfilled requirement that the pressure of the printing medium remains essentially constant as it continues to the process. In this simple variant of the method it is therefore provided that the same minimum flow value, supplied by a common function generator as a function of the compressor pressure, is used for the minimum intake volume flow and for the minimum discharge flow. Another, somewhat more complex process variant provides, in order to enable a higher accuracy and greater influence on the process, that for the minimum intake volume flow and for the minimum discharge flow, independently calculated minimum flow values, each supplied by a separate function generator, are used, the minimum intake volume flow as a function of the compressor end pressure and Minimum discharge flow is determined as a function of pressure at the discharge flow detection point near the entrance of the process.

Um das neue Verfahren auch bei Betriebszuständen des Verdichters mit geöffnetem Abblaseventil mit ausreichender Genauigkeit anwenden zu können, ist vorgesehen, daß zusätzlich der Abblasedurchfluß durch das Abblaseventil erfaßt und zu dem Abgabedurchfluß addiert wird. Die Erfassung des Abblasedurchflusses erfolgt entweder durch eine Messung in der dem Abblaseventil vor- und nachgeschalteten Abblaseleitung oder durch eine eine eigene Meßeinrichtung einsparende Berechnung. Eine Möglichkeit der Berechnung besteht darin, daß der Abblasedurchfluß durch eine Simulationsrechnung aus der Stellung des Abblaseventils und dem Druck vor dem Abblaseventil berechnet wird. Hierzu ist ein Stellungsmelder am Abblaseventil erforderlich, der in der Praxis häufig schon aus anderen Gründen vorhanden ist. Wenn ein derartiger Stellungsmelder eingespart werden soll, kann der Abblasedurchfluß auch aus einer in der Abblaseregelung erzeugten Regelgröße für die Verstellung des Abblaseventils durch Simulation des dynamischen Verhaltens des Abblaseventils und aus dem Druck vor dem Abblaseventil berechnet werden. Eine solche Simulation des dynamischen Verhaltens des Ventils ist mit den heute verfügbaren Möglichkeiten der elektronischen Datenverarbeitung kein Problem.In order to be able to use the new method with sufficient accuracy even in the operating states of the compressor with the blow-off valve open, it is provided that the blow-off flow through the blow-off valve is additionally detected and added to the discharge flow. The blow-off flow rate is recorded either by a measurement in the blow-off line upstream and downstream of the blow-off valve or by a calculation which saves its own measuring device. One possibility of the calculation is that the blow-off flow is calculated by means of a simulation calculation from the position of the blow-off valve and the pressure in front of the blow-off valve. This requires a position indicator on the relief valve, which in practice is often already available for other reasons. If such a position indicator is to be saved, the blow-off flow can also be calculated from a control variable for the adjustment of the blow-off valve generated in the blow-off control by simulating the dynamic behavior of the blow-off valve and from the pressure in front of the blow-off valve. Such a simulation of the dynamic behavior of the valve is no problem with the electronic data processing options available today.

Zwecks Erzielung einer höheren Genauigkeit bei der Bestimmung des Abblasedurchflusses ist vorgesehen, daß zusätzlich die Temperatur des durch das Abblaseventil strömenden Mediums und/oder der Druck hinter dem Abblaseventil gemessen und in die Berechnung des Abblasedurchflusses einbezogen werden. Außer Temperatur und/oder Druck können auch noch weitere, den Durchfluß durch das Abblaseventil beeinflussende Größen erfaßt und in die Berechnung einbezogen werden.In order to achieve a higher accuracy in the determination of the blow-off flow, it is provided that the temperature of the medium flowing through the blow-off valve and / or the pressure behind the blow-off valve are additionally measured and included in the calculation of the blow-off flow. In addition to temperature and / or pressure, other variables influencing the flow through the blow-off valve can also be recorded and included in the calculation.

Aufgrund von verbleibenden Ungenauigkeiten bei der Messung oder Berechnung des Abgabedurchflusses und gegebenenfalls des Abblasedurchflusses kann es vorkommen, daß der ermittelte Durchfluß kleiner ist als der tatsächliche Durchfluß. In diesem Fall würde das Abblaseventil primär durch die Änderungen des Abblasdurchflusses bzw. der Summe aus diesem und dem Abgabedurchfluß gesteuert. Dadurch kommt es zu einem Betrieb des Verdichters mit einem unnötig großen Abstand von der Pumpgrenze. Um dies zu vermeiden, kann der Wert für den Abgabedurchfluß oder die Summe aus diesem und dem Wert für den Abblasedurchfluß vor Eingang in die Regelung mit einem vorgebbarem Faktor, der größer als 1 ist, multipliziert werden. Alternativ kann mit dem gleichen Ziel zu dem Wert für den Abgabedurchfluß bzw. zu der Summe aus diesem und dem Wert für den Abblasedurchfluß vor Eingang in die Regelung eine vorgebbare Konstante addiert werden. Dies hat zur Folge, daß eine unerwünschte Vergrößerung des Sicherheitsabstandes zur Pumpgrenze nur noch dann eintritt, wenn der Fehler in der Abgabedurchflußbestimmung größer wird als der vorgegebene Faktor, der z.B. 1,1 sein kann, oder als die addierte Größe.Due to remaining inaccuracies in the measurement or calculation of the discharge flow and possibly the blow-off flow, it can happen that the determined flow is smaller than the actual flow. In this case, the blow-off valve would be primarily controlled by the changes in the blow-off flow or the sum of this and the discharge flow. This causes the compressor to operate at an unnecessarily large distance from the surge limit. To avoid this, the value for the discharge flow or the sum of this and the value for the blow-off flow before entry into the control can be multiplied by a predeterminable factor which is greater than 1. Alternatively, with the same goal, a predeterminable constant can be added to the value for the discharge flow or to the sum of this and the value for the blow-off flow before entering the control. The result of this is that an undesirable increase in the safety distance from the surge limit only occurs if the error in the discharge flow determination becomes greater than the predetermined factor, which can be 1.1, for example, or as the added size.

Eine andere Ausgestaltung des Verfahrens sieht vor, daß in einer Zusatzeinrichtung mit großer Zeitkonstante eine Korrekturgröße auf den Wert für den Abgabedurchfluß oder die Summe aus den Werten für den Abgabedurchfluß und Abblasedurchfluß addiert wird, die so lange verändert wird, bis die Summe genau dem Ansaugvolumenstrom entspricht. Durch geeignete Wahl der Zeitkonstanten der Zusatzeinrichtung, die z.B. durch einen Integrierer realisierbar ist, kann gewährleistet werden, daß die kompensierende Wirkung so langsam erfolgt, daß vorübergehende dynamische Ungleichgewichte zwischen Ansaugvolumenstrom und Abgabedurchfluß sowie zwischen den zugehörigen Regeldifferenzen ungehindert passieren können. Ergänzend kann der Integrierer auf bestimmte Werte, insbesondere negative Werte begrenzt werden, wodurch die Einstellung eines zu großen Sicherheitsabstandes von der Pumpgrenze verhindert wird.Another embodiment of the method provides that a correction quantity is added to the value for the discharge flow or the sum of the values for the discharge flow and blow-off flow in an additional device with a large time constant, which is changed until the sum corresponds exactly to the intake volume flow . A suitable choice of the time constant of the additional device, which can be implemented by an integrator, for example, can ensure that the compensating effect takes place so slowly that temporary dynamic imbalances between the intake volume flow and the discharge flow rate and between the associated control differences can pass unhindered. In addition, the integrator can be limited to certain values, in particular negative values, which prevents the setting of an excessively large safety distance from the surge limit.

Eine weitere Ausgestaltung des Verfahrens sieht vor, daß die Werte für den Abgabedurchfluß oder die Summe aus diesem und dem Wort für den Abblasedurchfluß als Eingangssignal auf eine nachgebende Referenz gegeben werden, wobei die Referenz im wesentlichen aus einem Integrierer mit einstellbarer Zeitkonstante besteht, dessen Ausgangssignal mit dieser Zeitkonstante dem Eingangssignal folgt, und wobei die nach plötzlichen Änderungen des Eingangssignals vorübergehend auftretende Differenz zwischen Eingangs- und Ausgangssignal als Korrekturgröße für eine aus Ansaugvolumenstrom und Minimalansaugvolumenstrom gebildete, in die normale Abblaseregelung eingehende erste Regeldifferenz verwendet wird. Hierdurch wird bei plötzlicher Abnahme des Abgabedurchflusses ein früheres und/oder verstärktes Eingreifen der normalen Abblaseregelung bewirkt. Diese Regeldifferenz kann dabei unmittelbar selbst oder auch durch vorzeichenrichtige Aufschaltung der Korrekturgröße auf den Soll- oder Istwert für die Berechnung der Regeldifferenz verändert werden. Eine derartige frühere Reaktion ist bei Störungen in Richtung einer Zunahme des Abgabedurchflusses nicht erforderlich, weshalb zweckmäßig diese Regelung mittels nachgebender Referenz als nur in der erstgenannten Abnahme-Richtung wirkend ausgestaltet ist.A further embodiment of the method provides that the values for the discharge flow or the sum of this and the word for the blow-off flow are given as an input signal to a compliant reference, the reference essentially consisting of an integrator with an adjustable time constant, the output signal of which this time constant follows the input signal, and the difference between the input and output signals which occurs temporarily after sudden changes in the input signal as a correction variable for one of the intake volume flow and the minimum intake volume flow formed, used in the normal relief control first control difference. In the event of a sudden decrease in the discharge flow rate, this results in earlier and / or increased intervention by the normal blow-off control. This control difference can be changed directly or by applying the correcting variable with the correct sign to the setpoint or actual value for the calculation of the control difference. Such an earlier reaction is not necessary in the event of disturbances in the direction of an increase in the discharge flow, which is why this regulation is expediently designed to act only in the first-mentioned direction of decrease by means of a flexible reference.

Schließlich besteht noch die Möglichkeit, daß der Abgabedurchfluß in Form mehrerer einzelner Teil-Abgabedurchflüsse an unterschiedlichen, möglichen Störstellen benachbarten Punkten des dem Verdichter nachgeschalteten Prozesses erfaßt wird und daß für jeden Teil-Abgabedurchfluß unabhängig voneinander von je einem eigenen Funktionsgeber in Abhängigkeit vom herrschenden Verdichterenddruck eigene Minimaldurchflußwerte berechnet werden. Hier ist zwar ein höherer Verfahrensaufwand in Kauf zu nehmen, es wird jedoch ein frühestmögliches Reagieren der Abblaseregelung auf Störungen aus dem nachgeschalteten Prozeß gewährleistet.Finally, there is the possibility that the discharge flow is recorded in the form of several individual partial discharge flows at different, possible fault points adjacent points of the process downstream of the compressor and that for each partial discharge flow independently of one another, each with its own function generator depending on the prevailing compressor end pressure Minimum flow values can be calculated. Although a higher outlay in terms of process must be accepted here, an early reaction of the blow-off control to faults from the downstream process is guaranteed.

Ein Ablaufbeispiel des erfindungsgemäßen Verfahrens wird im folgenden anhand einer Zeichnung erläutert. Die einzige Figur der Zeichnung zeigt in schematischer Darstellung einen Turboverdichter nebst zugehörigen Leitungen, Ventilen und dergleichen Elementen zusammen mit einem Regelschema des Verfahrens.A sequence example of the method according to the invention is explained below with reference to a drawing. The single figure of the drawing shows a schematic representation of a turbocompressor along with associated lines, valves and the like elements together with a control scheme of the method.

Im oberen Teil der Figur ist ein Turboverdichter 1 dargestellt, der saugseitig mit einer Ansaugleitung 10 und druckseitig mit einer Abgabeleitung 11 verbunden ist. Von der Abgabeleitung 11 zweigt eine Abblaseleitung 20 ab, in die ein Abblaseventil 2 eingeschaltet ist. Durch die Abblaseleitung 20 kann bei geöffnetem Abblaseventil 2 ein Teil des vom Verdichter 1 in die Abgabeleitung 11 geförderten gasförmigen Mediums in die Atmosphäre abgeblasen werden. Das Abblaseventil 2 ist hierzu mittels einer Ventilbetätigungseinrichtung 21 verstellbar. Im weiteren Verlauf der Abgabeleitung 11 ist in diese, wie üblich, eine Rückschlagklappe 3 eingesetzt. An diese Rückschlagklappe 3 anschließend führt die Abgabeleitung 11 zu einem dem Verdichter 1 nachgeschalteten Prozeß, der mit dem komprimierten gasförmigen Medium zu versorgen ist.In the upper part of the figure, a turbocompressor 1 is shown, the suction side with an intake line 10 and is connected on the pressure side to an output line 11. A blow-off line 20 branches off from the discharge line 11, into which a blow-off valve 2 is switched on. With the blow-off valve 2 open, part of the gaseous medium conveyed into the discharge line 11 by the compressor 1 can be blown off into the atmosphere by the blow-off line 20. The relief valve 2 is adjustable for this purpose by means of a valve actuation device 21. In the further course of the discharge line 11, a non-return valve 3 is inserted into this, as usual. After this check valve 3, the discharge line 11 leads to a process downstream of the compressor 1, which is to be supplied with the compressed gaseous medium.

Vor dem Verdichter 1 ist in die Ansaugleitung 10 eine Meßeinrichtung 4 eingesetzt, die dazu dient, den durch die Leitung 10 zum Verdichter 1 strömenden Ansaugvolumenstrom V̇A zu messen. In Strömungsrichtung hinter dem Verdichter 1 ist in der Abgabeleitung 11 eine weitere Meßeinrichtung 5 angeordnet, die dazu dient, den Verdichterenddruck PE zu messen. Eine weitere Meßeinrichtung 6 ist schließlich noch vor dem dem Verdichter 1 nachgeschalteten Prozeß in die Abgabeleitung 11 eingesetzt. Diese Meßeinrichtung 6 dient zur Messung des Abgabedurchflusses V̇P zum Prozeß, wobei ggf. noch über die Dichte des Mediums an der Meßstelle eine Umrechnung in Volumen je Zeiteinheit erfolgt, wenn der Abgabedurchfluß als Massenstrom, d. h. als Masse je Zeiteinheit, gemessen wird.In front of the compressor 1, a measuring device 4 is used in the intake line 10, which serves to measure the intake volume flow V̇ A flowing through the line 10 to the compressor 1. In the flow direction behind the compressor 1, a further measuring device 5 is arranged in the discharge line 11, which serves to measure the compressor end pressure P E. Another measuring device 6 is finally inserted into the discharge line 11 before the process downstream of the compressor 1. This measuring device 6 is used to measure the discharge flow V̇ P to the process, with a conversion into volume per unit of time possibly taking place via the density of the medium at the measuring point if the discharge flow is measured as a mass flow, ie as a mass per unit of time.

Wie aus dem Regelschema in der Figur ersichtlich ist, werden die gemessenen Werte des Verdichterenddrucks PE zur Berechnung des bei dem jeweiligen Druck PE gerade noch zulässigen Minimaldurchflusses V̇Amin verwendet. Hieran schließt sich die Berechnung einer ersten Regeldifferenz xd1 an, wobei xd1 als Differenz aus dem Minimaldurchfluß, hier dem Minimalansaugvolumenstrom V̇Amin, und dem Ansaugvolumenstrom V̇A definiert ist.As can be seen from the control scheme in the figure, the measured values of the E Verdichterenddrucks P are used to calculate the pressure P E in the respective just permissible minimum flow V amine. This is followed by the calculation of a first control difference x d1 , where x d1 is defined as the difference between the minimum flow, here the minimum intake volume flow V̇ Amin , and the intake volume flow V̇ A.

Die gemessenen Werte für den Abgabedurchfluß V̇P werden zur Berechnung einer zweiten Regeldifferenz xd2 verwendet, wobei xd2 definiert ist als Differenz aus dem Minimaldurchfluß, hier dem Minimalabgabedurchfluß V̇Pmin und dem gemessenen Abgabedurchfluß V̇P. Für beide Regeldifferenzbildungen wird im vorliegenden Beispiel jeweils derselbe Minimaldurchfluß verwendet, d. h. daß hier der Minimalansaugvolumenstrom V̇Amin gleich dem Minimalabgabedurchfluß V̇Pmin ist. Alternativ kann auch ein gesonderter Minimalabgabedurchfluß berechnet werden.The measured values for the discharge flow V̇ P are used to calculate a second control difference x d2 , where x d2 is defined as the difference between the minimum flow, here the minimum discharge flowPmin and the measured discharge flow V̇ P. The same minimum flow rate is used for both control difference formation in the present example, ie here the minimum intake volume flow rate Vstrom amine is equal to the minimum discharge flow rate V̇ Pmin . Alternatively, a separate minimum delivery flow can also be calculated.

Die beiden Regeldifferenzen xd1 und xd2 werden einer Maximalwertauswahl zugeführt. In dieser Maximalwertauswahl wird der größere der beiden Regeldifferenzwerte ausgewählt und als Regeldifferenz xd der Abblaseregelung zugeführt. Die Abblaseregelung berechnet aus der ihr zugeführten Regeldifferenz xd eine Stellgröße y, die auf die bereits erwähnte Ventilbetätigungseinrichtung 21 zur Verstellung des Abblaseventils 2 gegeben wird und dort eine entsprechende Verstellung des Abblaseventils 2 bewirkt.The two control differences x d1 and x d2 are fed to a maximum value selection. In this maximum value selection, the larger of the two control difference values is selected and fed to the blow-off control as control difference x d . The blow-off control calculates a control variable y from the control difference x d supplied to it, which is applied to the already mentioned valve actuation device 21 for adjusting the blow-off valve 2 and there causes a corresponding adjustment of the blow-off valve 2.

Aus diesem ein einfaches Ablaufbeispiel des Verfahrens darstellenden Regelschema ist ersichtlich, daß bei einer Durchflußänderung, die ihre Ursache in dem dem Verdichter 1 nachgeschalteten Prozeß hat, zunächst eine Änderung des Abgabedurchflusses V̇P erfolgt, bevor sich der Ansaugvolumenstrom V̇A ändert. Diese Änderung wird frühzeitig von der Meßeinrichtung 6 erfaßt, was über die Regeldifferenzbildung, die Maximalwertauswahl und die Abblaseregelung zu einer frühen und damit rechtzeitigen Reaktion des Abblaseventils 2 führt, auch wenn die Meßeinrichtung 4 für den Ansaugvolumenstrom V̇A noch keine Veränderung des Durchflusses feststellt. Ein Pumpen des Verdichters wird so sicher vermieden.From this control scheme, which represents a simple example of the procedure, it can be seen that in the event of a change in flow which is caused by the process downstream of the compressor 1, there is first a change in the discharge flow V̇ P before the intake volume flow V̇ A changes. This change is detected at an early stage by the measuring device 6, which leads to an early and therefore timely reaction of the relief valve 2 via the control difference formation, the maximum value selection and the blow-off control, even if the measuring device 4 for the intake volume flow V A does not yet detect any change in the flow. Pumping of the compressor is safely avoided.

Claims (15)

  1. A process for preventing the pumping of a turbo blower (1) supplying a downstream process by way of a delivery line (11) with a gaseous pressure medium by means of blow-off adjustment, in which the intake volume flow (V A) and the final blower pressure (P E) are continuously detected and in which a first adjustment differential (X d1) is formed from the intake volume flow (V A) and from a still permissible minimum intake volume flow (V Amin) above the pump limit volume flow and dependent upon the final blower pressure (P E), which adjustment differential is ensured by means of a blow-off adjustment by controlled opening of at least one blow-off valve (2), that the intake volume flow (V A) is maintained by the blower (1) above the pump limit thereof, and wherein in the proximity of the inlet of the process downstream of the blower (1), the delivery through flow (V P) to the process downstream of the blower (1) is detected, and, when a limiting value of this delivery through flow (V P) is exceeded, the blow-off valve (2) is also opened
    characterised in that,
    the limiting value is a still permissible minimum delivery through flow (V Pmin) which is variable dependent upon pressure and which is determined in dependence upon pressure on the delivery line (11), wherein a second adjustment differential (X d2)is formed from the delivery through flow (V P) and the minimum delivery through flow (V Pmin), wherein the two adjustment differentials (X d1, X d2) are fed to a maximum value selection and wherein the larger of the two adjustment differential values is selected and fed to the blow-off adjustment.
  2. A process according to claim 1, characterised in that the delivery through flow (V P) is measured.
  3. A process according to claim 1, characterised in that the delivery through flow (V P) is calculated in a simulation from parameters of the downstream process such as the position of one or more valves and/or of the pressure at one or more points of the process.
  4. A process according to one of claims 1 to 3, characterised in that, for the minimum intake volume flow (V Amin) and for the minimum delivery through flow (V Pmin), the same minimum through flow value, supplied by a common function generator in dependence upon the final blower pressure (P E), is used.
  5. A process according to one of claims 1 to 3, characterised in that, for the minimum intake volume flow (V Amin) and for the minimum delivery through flow (V Pmin), minimum through flow values which are calculated independently of each other and are each supplied by their own function generator are used, wherein the minimum intake volume flow (V Amin) is determined as a function of the final blower pressure (P E) and of the minimum delivery through flow (V Pmin) as a function of the pressure at the delivery through flow detection point close to the inlet to the process.
  6. A process according to one of claims 1 to 5, characterised in that the blow-off through flow (V B) through the blow-off valve (2) is additionally detected and is added to the delivery through flow (V P).
  7. A process according to claim 6, characterised in that the blow-off through flow (V B) is measured.
  8. A process according to claim 6, characterised in that the blow-off through flow (V B) is calculated by means of a simulation calculation from the position of the blow-off valve (2) and the pressure in advance of the blow-off valve (2).
  9. A process according to claim 6, characterised in that the blow-off through flow (V B) is calculated from a control variable (y), produced in the blow-off adjustment, for the adjustment of the blow-off valve (2) and from the pressure in advance of the blow-off valve (2) by simulation of the dynamic behaviour of the blow-off valve (2).
  10. A process according to one of claims 8 or 9, characterised in that the temperature of the medium flowing through the blow-off valve (2) and/or the pressure behind the blow-off valve (2) are additionally measured and included in the calculation of the blow-off through flow (V B).
  11. A process according to one of claims 1 to 10, characterised in that the value of the delivery through flow (V P) or the sum of this and the value for the blow-off through flow (V B) is multiplied, before input into the adjustment, by a predeterminable factor which is greater than 1.
  12. A process according to one of claims 1 to 10, characterised in that, before input into the adjustment, a predeterminable constant is added to the value for the delivery through flow (V P) or to the sum of this and the value for the blow-off through flow (V B).
  13. A process according to one of claims 1 to 10, characterised in that, in an additional device with a large time constant, a correction variable is added to the value for the delivery through flow (V P) or the sum of the values for the delivery through flow (V P) and blow-off through flow (V B), which is altered until the sum corresponds precisely to the intake volume flow (V A).
  14. A process according to one of claims 1 to 10, characterised in that the values for the delivery through flow (V P) or the sum of this and the value for the blow-off through flow (V B) are given as input signals to a compliant reference, wherein the reference consists substantially of an integrator with an adjustable time constant, of which the output signal with this time constant follows the input signal, and wherein the differential, which arises temporarily after sudden changes in the input signal, between the input and output signals is used as a correction variable for a first adjustment differential (X d1) formed from an intake volume flow (V A) and a minimum intake volume flow (V Amin) and being included in the normal blow-off adjustment.
  15. A process according to one of claims 1 to 13, characterised in that the delivery through flow (V P) is detected in the form of a plurality of individual part delivery through flows at different points of the process connected downstream of the blower (1) which adjoin possible disturbance sites, and that, for each part delivery through flow, minimum through flow values are calculated independently of each other each by their own function generator in dependence upon the prevailing final blower pressure (P E).
EP89103056A 1988-03-30 1989-02-22 Method to prevent surge of a centrifugal compressor by vent control Expired - Lifetime EP0335105B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3810717 1988-03-30
DE3810717A DE3810717A1 (en) 1988-03-30 1988-03-30 METHOD FOR PREVENTING THE PUMPING OF A TURBO COMPRESSOR BY MEANS OF A BLOW-OFF CONTROL

Publications (3)

Publication Number Publication Date
EP0335105A2 EP0335105A2 (en) 1989-10-04
EP0335105A3 EP0335105A3 (en) 1990-08-22
EP0335105B1 true EP0335105B1 (en) 1994-11-09

Family

ID=6351007

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89103056A Expired - Lifetime EP0335105B1 (en) 1988-03-30 1989-02-22 Method to prevent surge of a centrifugal compressor by vent control

Country Status (5)

Country Link
US (1) US4948332A (en)
EP (1) EP0335105B1 (en)
JP (1) JPH01300093A (en)
AT (1) ATE114021T1 (en)
DE (2) DE3810717A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10012380A1 (en) * 2000-03-14 2001-09-20 Man Turbomasch Ag Ghh Borsig Process for protecting a turbo compressor from operation in an unstable work area

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5195875A (en) * 1991-12-05 1993-03-23 Dresser-Rand Company Antisurge control system for compressors
US5306116A (en) * 1992-04-10 1994-04-26 Ingersoll-Rand Company Surge control and recovery for a centrifugal compressor
JP3658415B2 (en) * 1993-12-28 2005-06-08 株式会社 日立インダストリイズ Gas turbine equipment
DE19528253C2 (en) * 1995-08-01 1997-10-16 Gutehoffnungshuette Man Method and device for avoiding controller instabilities in surge limit controls when operating turbomachines with controllers with high proportional gain
DE19726547A1 (en) * 1997-06-23 1999-01-28 Babcock Bsh Gmbh Method for determining the operating point of a fan and fan
DE19828368C2 (en) * 1998-06-26 2001-10-18 Man Turbomasch Ag Ghh Borsig Method and device for operating two-stage or multi-stage compressors
CN100557249C (en) * 2006-11-08 2009-11-04 财团法人工业技术研究院 The pre-judging method of compressor surge
EP2101240B1 (en) * 2008-03-10 2013-06-26 Karl Morgenbesser Regulating organ for fluids
IT1402481B1 (en) * 2010-10-27 2013-09-13 Nuovo Pignone Spa METHOD AND DEVICE THAT PERFORM AN COMPENSATION OF THE DEAD TIME OF ANTI-PUMPING BASED ON MODEL
JP6501380B2 (en) * 2014-07-01 2019-04-17 三菱重工コンプレッサ株式会社 Multistage compressor system, control device, abnormality determination method and program
RU2016112469A (en) * 2016-04-01 2017-10-04 Фишер-Роузмаунт Системз, Инк. METHODS AND DEVICE FOR DETECTING AND PREVENTING COMPRESSOR DIVERSION
KR101989588B1 (en) * 2018-11-27 2019-06-14 터보윈 주식회사 Turbo blower
CN117704286B (en) * 2023-12-25 2024-06-14 玉得气体有限责任公司 Medium-low pressure nitrogen press cooperation control method

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1107887B (en) * 1957-04-16 1961-05-31 Power Jets Res & Dev Ltd Controller to prevent pumping in flow compressors
US3276674A (en) * 1963-03-06 1966-10-04 Shell Oil Co Method for preventing surging of compressors
DE1428066A1 (en) * 1963-08-30 1968-11-28 Continental Elektro Ind Ag Limit quantity control on turbo compressors
US3994623A (en) * 1975-02-11 1976-11-30 Compressor Controls Corporation Method and apparatus for controlling a dynamic compressor
DE2623899C3 (en) * 1976-05-28 1989-06-08 MAN Gutehoffnungshütte GmbH, 4200 Oberhausen Method for operating turbo compressors near the surge limit
US4139328A (en) * 1977-05-25 1979-02-13 Gutehoffnungshitte Sterkrade Ag Method of operating large turbo compressors
DE2735246C2 (en) * 1977-08-04 1985-07-18 Siemens AG, 1000 Berlin und 8000 München Control device for a turbo compressor
US4486142A (en) * 1977-12-01 1984-12-04 Naum Staroselsky Method of automatic limitation for a controlled variable in a multivariable system
DE3105376C2 (en) * 1981-02-14 1984-08-23 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen Procedure for operating turbo compressors
US4464720A (en) * 1982-02-12 1984-08-07 The Babcock & Wilcox Company Centrifugal compressor surge control system
US4560319A (en) * 1983-08-01 1985-12-24 MAN Maschinenfabrik Unternehmensbereich GHH Sterkrade Method and apparatus for controlling at least two parallel-connected turbocompressors
US4697980A (en) * 1984-08-20 1987-10-06 The Babcock & Wilcox Company Adaptive gain compressor surge control system
DE3540088A1 (en) * 1985-11-12 1987-05-14 Gutehoffnungshuette Man METHOD FOR DETECTING PUMPS IN TURBO COMPRESSORS
DE3540285A1 (en) * 1985-11-13 1987-05-14 Gutehoffnungshuette Man METHOD AND DEVICE FOR REGULATING TURBO COMPRESSORS
DE3544822A1 (en) * 1985-12-18 1987-06-19 Gutehoffnungshuette Man METHOD FOR CONTROLLING PUMP LIMITS OF TURBO COMPRESSORS
DE3544821A1 (en) * 1985-12-18 1987-06-19 Gutehoffnungshuette Man METHOD FOR REGULATING TURBO COMPRESSORS TO AVOID THE PUMP
DE3620614A1 (en) * 1986-06-20 1987-12-23 Gutehoffnungshuette Man METHOD FOR FILTERING A NOISY SIGNAL
US4781524A (en) * 1987-02-12 1988-11-01 Man Gutehoffnungshuette Gmbh Method and apparatus for detecting pressure surges in a turbo-compressor
JP2585324B2 (en) * 1987-12-09 1997-02-26 株式会社日立製作所 Gas turbine control method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10012380A1 (en) * 2000-03-14 2001-09-20 Man Turbomasch Ag Ghh Borsig Process for protecting a turbo compressor from operation in an unstable work area

Also Published As

Publication number Publication date
DE3810717A1 (en) 1989-10-19
DE58908615D1 (en) 1994-12-15
ATE114021T1 (en) 1994-11-15
US4948332A (en) 1990-08-14
EP0335105A3 (en) 1990-08-22
EP0335105A2 (en) 1989-10-04
JPH01300093A (en) 1989-12-04
DE3810717C2 (en) 1992-06-04

Similar Documents

Publication Publication Date Title
EP0335105B1 (en) Method to prevent surge of a centrifugal compressor by vent control
DE68910467T2 (en) Mode and device to avoid pumping in a dynamic compressor.
EP1134422B1 (en) Turbo compressor surge control method
DE69618140T2 (en) Method and device for load balancing between several compressors
EP2033057B1 (en) Device and method for performing a functional test on a control element of a turbo engine
EP0132487B1 (en) Process for controlling at least two turbo compressors mounted in parallel
DE3023550C2 (en)
EP0058305B1 (en) Surge preventing turbocompressor control
DE19828368C2 (en) Method and device for operating two-stage or multi-stage compressors
DE2838650A1 (en) PRESSURE IMPACT CONTROL SYSTEM FOR COMPRESSORS
DE102012105951A1 (en) Pump system for evacuating gas from a plurality of chambers and methods for controlling the pump system
DE2838700A1 (en) PRESSURE IMPACT CONTROL SYSTEM FOR COMPRESSORS
EP1069314A1 (en) Control of a compressor unit
EP1016787A2 (en) Operating method of a compressor having a downstream user, and system operating according to this method
DE2605025A1 (en) METHOD AND APPARATUS FOR CONTROLLING A DYNAMIC COMPRESSOR
EP0243675B1 (en) Method of pulsation damping at piston compressors
DE3540284A1 (en) DEVICE FOR CONTROLLING A TURBO COMPRESSOR TO PREVENT THE PUMP
DE1274852B (en) Compensation device for several gas turbine systems working in parallel
EP0334034B1 (en) Control method to prevent surge of a centrifugal compressor
EP0222382B1 (en) Regulation process of turbo compressors
WO2007087907A1 (en) Method for the operation of a firing plant
DE2503525A1 (en) AIR DRAIN DEVICE FOR THE COMPRESSOR OF A GAS TURBINE ENGINE
DE102008005354B4 (en) Method for controlling a turbomachine
DE4316202C2 (en) Process for monitoring the surge line of a turbocompressor with a pre-guide and a post-guide
EP0757180B1 (en) Method and device for operating turbomachines with controllers having a high proportional gain

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE GB IT LI NL

17P Request for examination filed

Effective date: 19910218

17Q First examination report despatched

Effective date: 19920117

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE GB IT LI NL

REF Corresponds to:

Ref document number: 114021

Country of ref document: AT

Date of ref document: 19941115

Kind code of ref document: T

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 58908615

Country of ref document: DE

Date of ref document: 19941215

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950202

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: MAN GUTEHOFFNUNGSHUETTE AKTIENGESELLSCHAFT -DANN A

NLS Nl: assignments of ep-patents

Owner name: GHH BORSIG TURBOMASCHINEN GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20070213

Year of fee payment: 19

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: DR. WILFRIED BLOTENBERG

Free format text: MAN TURBO AG#STEINBRINKSTRASSE 1#46145 OBERHAUSEN (DE) -TRANSFER TO- DR. WILFRIED BLOTENBERG#IRKENSBUSCH 28#46535 DINSLAKEN (DE)

Ref country code: CH

Ref legal event code: PFA

Owner name: MAN TURBO AG

Free format text: GHH BORSIG TURBOMASCHINEN GMBH#BAHNHOFSTRASSE 66#46145 OBERHAUSEN (DE) -TRANSFER TO- MAN TURBO AG#STEINBRINKSTRASSE 1#46145 OBERHAUSEN (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080215

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080214

Year of fee payment: 20

Ref country code: DE

Payment date: 20080219

Year of fee payment: 20

Ref country code: GB

Payment date: 20080220

Year of fee payment: 20

Ref country code: IT

Payment date: 20080220

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080222

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20090221

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20090222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090221