EP0013003A1 - Procédé d'examen au moyen d'un faisceau d'électrons et spectromètre à choc électronique permettant la mise en oeuvre du procédé - Google Patents

Procédé d'examen au moyen d'un faisceau d'électrons et spectromètre à choc électronique permettant la mise en oeuvre du procédé Download PDF

Info

Publication number
EP0013003A1
EP0013003A1 EP79105288A EP79105288A EP0013003A1 EP 0013003 A1 EP0013003 A1 EP 0013003A1 EP 79105288 A EP79105288 A EP 79105288A EP 79105288 A EP79105288 A EP 79105288A EP 0013003 A1 EP0013003 A1 EP 0013003A1
Authority
EP
European Patent Office
Prior art keywords
capacitor
monochromator
electron
detector
cylinder axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP79105288A
Other languages
German (de)
English (en)
Other versions
EP0013003B1 (fr
Inventor
Hermann Dr. Froitzheim
Harald Prof. Dr. Ibach
Heinz-Dieter Bruchmann
Sieghard Dr. Lehwald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Kernforschungsanlage Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH, Kernforschungsanlage Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP0013003A1 publication Critical patent/EP0013003A1/fr
Application granted granted Critical
Publication of EP0013003B1 publication Critical patent/EP0013003B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/44Energy spectrometers, e.g. alpha-, beta-spectrometers
    • H01J49/46Static spectrometers
    • H01J49/48Static spectrometers using electrostatic analysers, e.g. cylindrical sector, Wien filter

Definitions

  • the invention relates to electron beam guidance, in which cathodically emitted and electron-optically bundled electrons are subjected to at least one energy selection in a cylindrical capacitor deflection unit and are subsequently detected with a detector. It also includes an electron impact spectrometer with electrostatic cylindrical capacitor deflection units as energy-dispersive units, in which a beam guidance according to the invention is provided and which is designed in particular for impact energies between 1 and 1000 eV.
  • Electron impact spectrometers for the applications described have been implemented using various energy-dispersive elements.
  • cylindrical capacitors, spherical capacitors and so-called cylinder mirrors have become known.
  • the corresponding values for g and the best half-width achieved (as a measure of the resolution) are listed in the table below, provided information on the current at the detector has been made in previous work.
  • This goal is achieved according to the invention by a Beam guidance of cathodically emitted and electron-optically bundled electrons, which are subjected to at least one energy selection in a cylinder capacitor deflection unit and are subsequently detected with a detector, is achieved, which is characterized by such a design of the emission and bundling systems that the electrons are perpendicular to the plane Cylinder capacitor axis in a known manner to be focused on the input aperture of the capacitor, but perpendicular to the detector.
  • Such a beam guidance electron impact spectrometer with an emission system comprising a cathode and a lens system for an electron current focused on the input aperture of the monochromator, which enters the cylindrical capacitor monochromator for energy selection of the electrons, which come from the monochromator and fall onto the sample after reflection and after reflection on the same via a lens system into a cylinder capacitor analyzer and after energy selection and passage through the output impingement of the analyzer on a detector
  • a differently designed emission system perpendicular or parallel to the monochromator cylinder axis that the electrons are focused perpendicularly to the cylinder axis in a known manner on the input aperture of the monochromator, while focusing parallel to the cylinder axis the detector and a lens system between the monochromator and analyzer with a focusing effect perpendicular to the cylinder axis, but without a focusing effect parallel to the cylinder axis.
  • the emission system preferably comprises a repeller on the cathode, the focusing surface of which has different radii of curvature parallel and perpendicular to the monochromator cylinder axis, the radius of the curvature profile being greater in the plane passing through the monochromator cylinder axis than perpendicular to it.
  • the invention is the system-related A disadvantage of cylindrical capacitors, which consists in the fact that these energy-dispersive elements focus only in one plane.
  • the values for g and ⁇ E min achieved, as shown in the exemplary embodiment are better than in the previously known designs, with the additional advantage of the comparatively simple manufacture of cylinder capacitor systems.
  • An electron impact spectrometer also contains a system for beam generation 5 (hereinafter referred to as an emission system) (with an emitting cathode 6, repeller 7 and possibly focusing elements 8), and a lens system 9 or 10 between monochromator 1 and sample 11 or sample 11 and analyzer 2, which is used for beam guidance and for imaging the electrons (which are otherwise reflected on the target 11) from the exit slit 4 of the honochromator 1 into the entry slit 3 'of the analyzer 2. The electrons are then detected in the detector 12. 13 denotes a supply unit.
  • a parallel rotating lens bundle is practically formed by the above-defined formation of the emission system perpendicular to the spectrometer plane, in which lens systems are also used, which in the spectrometer plane map the exit slit of the monochromator onto the entry gap of the analyzer, but not the beam perpendicular to the spectrometer plane influence, whereby the focus formed by the cathode system in this direction in the detector remains unaffected.
  • the prescribed beam guidance not only leads to a good current yield at the detector, as explained above, but also brings advantages for the resolution of the system.
  • the energetic resolution of a cylindrical capacitor is given by where s and h slot width and height of the input and output aperture (3, 3 'and 4, 4' in Figure 4), r the radius of the cylindrical capacitor, E the energy of the electrons in the cylindrical capacitor (1, 2) and ⁇ the angular divergence are perpendicular to the cylinder axis.
  • the second term of the equation is obtained when rays pass through the cylindrical capacitor in such a way that they can get from a point at the top of the input slot (3) to a point at the bottom of the output slot (4). Due to the beam guidance according to the invention, such
  • Electron orbits excluded which eliminates the second term, with the result of a correspondingly improved resolution for a given energy of the electrons in the monochromator. Since, as is known to the skilled person, this energy can not be arbitrarily lowered due to the local inhomogeneity of the surfaces of p otentials, the elimination of the term means 2 in equation (2) is also a fundamental advantage in respect of the maximum achievable resolution. This theoretical finding can be confirmed experimentally. In order to achieve maximum resolution, local inhomogeneities in the surface potential should also be kept as small as possible. For this purpose, heating devices or coatings with precious metals were additionally provided in some of the spectrometers which have become known (Phys. Rev. 173, 222 (1968)). To avoid charging the electrodes and to reduce secondary electron production, coating with acetylene black has also become known (JAPrested, J.Phys.E. Scientific Instruments 6, 661 (1973)).
  • Such a coating with carbon also proves to be expedient in the spectrometer according to the invention, and surprisingly a particularly favorable behavior of the system is achieved if the carbon coating is provided in the form of graphite, as is particularly the case by immersing the electrodes in a suspension of colloidal graphite and brief "baking" of the coating is obtained.
  • the electron impact spectrometer sketched in FIG. 4 and described above comprises an emission system, the different focal lengths of which are realized by appropriate shaping of the electrodes, as can be seen from FIG. 1, which shows a vertical section above and a horizontal section through the system below.
  • FIG. 1 shows a vertical section above and a horizontal section through the system below.
  • the spectrometer between the monochromator 1 and the analyzer 2 lenses 9, 10 used have an elongated lens profile with blunted corners, as can be seen from FIG.
  • the lenses 8 of the emission system have an analog profile.
  • the properties of the spectrometer were used to measure the current in the sample position and at the detector as a function of the energy width ⁇ E (half-value width) in direct penetration (see FIG. 3).
  • the energy of the electrons on the sample was kept fixed at 5 eV.
  • the energy resolution of the monochromator and analyzer was the same in each case.
  • the g factor resulting from the curve is 3.5 ⁇ 10 -6 A / (eV) 5/2 .
  • a maximum resolution of ⁇ E min 5 meV was achieved.
  • Table 1 shows that, as a result of the described invention, resolutions in the range of 5 meV with acceptable current (g factor) were realized for the first time.
  • the invention enables the use of particularly simple to manufacture cylindrical capacitors as energy-dispersive elements without loss of current and resolution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)
EP79105288A 1978-12-27 1979-12-20 Procédé d'examen au moyen d'un faisceau d'électrons et spectromètre à choc électronique permettant la mise en oeuvre du procédé Expired EP0013003B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2856244 1978-12-27
DE19782856244 DE2856244A1 (de) 1978-12-27 1978-12-27 Elektronenstosspektrometer

Publications (2)

Publication Number Publication Date
EP0013003A1 true EP0013003A1 (fr) 1980-07-09
EP0013003B1 EP0013003B1 (fr) 1982-12-08

Family

ID=6058440

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79105288A Expired EP0013003B1 (fr) 1978-12-27 1979-12-20 Procédé d'examen au moyen d'un faisceau d'électrons et spectromètre à choc électronique permettant la mise en oeuvre du procédé

Country Status (4)

Country Link
US (1) US4300045A (fr)
EP (1) EP0013003B1 (fr)
JP (1) JPS5590848A (fr)
DE (2) DE2856244A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0276731A2 (fr) * 1987-01-30 1988-08-03 Forschungszentrum Jülich Gmbh Procédé de guidage de faisceau d'électrons avec sélection d'énergie et spectromètre d'électrons
FR2666171A1 (fr) * 1990-08-24 1992-02-28 Cameca Spectrometre de masse stigmatique a haute transmission.

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8322017D0 (en) * 1983-08-16 1983-09-21 Vg Instr Ltd Charged particle energy spectrometer
US4659926A (en) * 1984-05-23 1987-04-21 Indiana University Foundation High resolution particle spectrometer
US4559449A (en) * 1984-05-23 1985-12-17 Indiana University Foundation High resolution particle spectrometer
US4742223A (en) * 1984-05-23 1988-05-03 Indiana University Foundation High resolution particle spectrometer
GB8604256D0 (en) * 1986-02-20 1986-03-26 Univ Manchester Electron spectrometer
JP3514070B2 (ja) * 1997-04-25 2004-03-31 株式会社日立製作所 走査電子顕微鏡
US8761335B2 (en) * 2005-09-30 2014-06-24 Hazardscan, Inc. Multi-energy cargo inspection system based on an electron accelerator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH219503A (de) * 1940-07-03 1942-02-15 Philips Nv Elektrische Entladungsröhre mit gerichtetem Elektronenbündel.
US3480774A (en) * 1967-05-26 1969-11-25 Minnesota Mining & Mfg Low-energy ion scattering apparatus and method for analyzing the surface of a solid
DE2458025A1 (de) * 1973-12-20 1975-07-03 Philips Nv Vorrichtung fuer massenanalyse und strukturanalyse einer oberflaechenschicht durch ionenstreuung
DE2556694A1 (de) * 1974-12-20 1976-07-01 Watkins Johnson Co Elektronenschleuder
GB1454641A (en) * 1973-02-02 1976-11-03 Philips Electronic Associated Device for analysing a surface layer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3313936A (en) * 1964-01-06 1967-04-11 Varian Associates Low energy electron diffraction apparatus having three concentric tubular focusing elctrodes
US3806728A (en) * 1970-05-27 1974-04-23 C Lindholm Electron impact spectrometer with an improved source of monochromatic electrons
JPS5117439A (en) * 1974-08-02 1976-02-12 Ono Gijutsu Kenkyusho Jugen Genzoekitono shunotanku
US4126782A (en) * 1976-02-09 1978-11-21 Hitachi, Ltd. Electrostatic charged-particle analyzer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH219503A (de) * 1940-07-03 1942-02-15 Philips Nv Elektrische Entladungsröhre mit gerichtetem Elektronenbündel.
US3480774A (en) * 1967-05-26 1969-11-25 Minnesota Mining & Mfg Low-energy ion scattering apparatus and method for analyzing the surface of a solid
GB1454641A (en) * 1973-02-02 1976-11-03 Philips Electronic Associated Device for analysing a surface layer
DE2458025A1 (de) * 1973-12-20 1975-07-03 Philips Nv Vorrichtung fuer massenanalyse und strukturanalyse einer oberflaechenschicht durch ionenstreuung
DE2556694A1 (de) * 1974-12-20 1976-07-01 Watkins Johnson Co Elektronenschleuder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0276731A2 (fr) * 1987-01-30 1988-08-03 Forschungszentrum Jülich Gmbh Procédé de guidage de faisceau d'électrons avec sélection d'énergie et spectromètre d'électrons
EP0276731A3 (en) * 1987-01-30 1990-01-24 Kernforschungsanlage Julich Gesellschaft Mit Beschrankter Haftung Method for electron beam guidance with energy selection, and electron spectrometer
FR2666171A1 (fr) * 1990-08-24 1992-02-28 Cameca Spectrometre de masse stigmatique a haute transmission.
EP0473488A2 (fr) * 1990-08-24 1992-03-04 Cameca Spectromètre de masse stigmatique à haute transmission
EP0473488A3 (en) * 1990-08-24 1992-07-08 Cameca High transmission stigmatic mass spectrometer
US5189304A (en) * 1990-08-24 1993-02-23 Cameca High transmission mass spectrometer with improved optical coupling

Also Published As

Publication number Publication date
DE2856244A1 (de) 1980-07-03
DE2964232D1 (en) 1983-01-13
EP0013003B1 (fr) 1982-12-08
US4300045A (en) 1981-11-10
JPS5590848A (en) 1980-07-09

Similar Documents

Publication Publication Date Title
DE102006050600B4 (de) Spektrometer zur Oberflächenanalyse und Verfahren dafür
DE102015007027A1 (de) Verbessertes bildgebendes Massenspektrometrieverfahren und Vorrichtung
EP0218920B1 (fr) Filtre d'énergie électronique de type Oméga
DE69402283T2 (de) Energiefilter mit Korrektur von chromatischen Aberrationen zweiter ordnung
DE1798021A1 (de) Mikroanalysenvorrichtung
EP0617451A1 (fr) Filtre en énergie d'électrons, produisant une image
DE69118492T2 (de) Massenspektrometer mit elektrostatischem Energiefilter
EP3712924B1 (fr) Dispositif et procédé de transfert d'électrons d'un échantillon à un analyseur d'énergie et dispositif spectromètre d'électrons
DE112015001235B4 (de) Vorrichtung und verfahren zur abbildung mittels eines elektronenstrahls unter verwendung eines monochromators mit doppeltem wien-filter sowie monochromator
DE2043323C3 (de) Vorrichtung für die Elektronenspektroskopie zur chemischen Analyse (ESCA)
EP3392650A1 (fr) Dispositif et procédé d'analyse spectroscopique
DE1937482B2 (de) Mikrostrahlsonde
DE69117347T2 (de) Energie-Analysatoren für Ladungsträgerpartikel
EP0013003B1 (fr) Procédé d'examen au moyen d'un faisceau d'électrons et spectromètre à choc électronique permettant la mise en oeuvre du procédé
DE102007024353A1 (de) Monochromator und Strahlquelle mit Monochromator
DE19929185A1 (de) Vorrichtung und Verfahren zur energie- und winkelaufgelösten Elektronenspektroskopie
DE102020123567A1 (de) Vielzahl-Teilchenstrahl-System mit Kontrast-Korrektur-Linsen-System
DE3045013A1 (de) Elektronenspektrometer
EP1559126B9 (fr) Filtre d'energie generateur d'images pour particules chargees electriquement et utilisation de ce filtre
DE19752209A1 (de) Ionendetektor
DE102016009809A1 (de) Quantitative messungen von element- und molekülspezies unter verwendung von massenspektrometrie mit hoher massenauflösung
DE102020104151B3 (de) Abbildungsvorrichtung für Elektronen und ein Abbildungsverfahren zur Reduktion des Untergrundsignals in abbildenden elektronenoptischen Geräten
EP0276731B1 (fr) Procédé de guidage de faisceau d'électrons avec sélection d'énergie et spectromètre d'électrons
DE2659385A1 (de) Analysator mit ionen-mikrosonde
DE2922128C2 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19801030

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 2964232

Country of ref document: DE

Date of ref document: 19830113

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19931014

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19931206

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19931231

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940128

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950831

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19950701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT