EP0006953A1 - Alliage acier-coule non magnetisable, utilisation et procede de fabrication - Google Patents

Alliage acier-coule non magnetisable, utilisation et procede de fabrication

Info

Publication number
EP0006953A1
EP0006953A1 EP78900291A EP78900291A EP0006953A1 EP 0006953 A1 EP0006953 A1 EP 0006953A1 EP 78900291 A EP78900291 A EP 78900291A EP 78900291 A EP78900291 A EP 78900291A EP 0006953 A1 EP0006953 A1 EP 0006953A1
Authority
EP
European Patent Office
Prior art keywords
max
alloys
alloy
cast steel
alloy according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP78900291A
Other languages
German (de)
English (en)
Other versions
EP0006953A4 (fr
Inventor
Walter Gysel
Adolf Trautwein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Georg Fischer AG
Original Assignee
Georg Fischer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Georg Fischer AG filed Critical Georg Fischer AG
Publication of EP0006953A4 publication Critical patent/EP0006953A4/fr
Publication of EP0006953A1 publication Critical patent/EP0006953A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S376/00Induced nuclear reactions: processes, systems, and elements
    • Y10S376/90Particular material or material shapes for fission reactors
    • Y10S376/904Moderator, reflector, or coolant materials
    • Y10S376/906Metal

Definitions

  • Non-magnetizable cast steel alloy its use and manufacturing process
  • the invention relates to a non-magnetizable cast steel alloy, the use thereof and a method for producing the alloy.
  • Structural stability at low temperatures down to -196 ° C and temperature changes homogeneous magnetic permeability with large solidification cross sections in the range of 100 - 500 mm also in the residual solidification zone, - machinability and weldability, which is at least as good as for the standardized stainless steel cast alloys stanchions, e.g. Material number. 4308 or 4408 (DIN 17 445), yield strength or 0.2 proof strength of at least 250 N / mm. 2, weldable without micro-cracks.
  • high-alloy CrNiMn steel castings can be fully austenitic or, with a corresponding increase in the Cr content or lowering of the Ni and / or Mn content, can also contain more or less large amounts of ferrite in the austenitic basic structure.
  • the austenitic phase is non-magnetic with a very low magnetic permeability ( ⁇ i 4- 1.001), while the ferritic phase is ferro-magnetic with correspondingly high permeability values. For this reason, in two-phase austenitic ferritic alloys, the magnetic permeability increases very strongly with the ferrite content (FIG. 5).
  • the object of the invention is to avoid the above disadvantages and to fulfill the property package listed above.
  • a non-magnetizable and at the same time crack-proof weldable cast steel alloy is to be created.
  • the alloy according to the invention can advantageously be used for plant parts in nuclear fusion reactor plants where field strengths H of more than 10 3 Oersted prevail, but is also suitable for uses at temperatures below -150 ° C. It was found that the reason for the remarkably favorable behavior during welding of alloys' in An ⁇ essentially standardized on certain of ferrite in erstarrungsmorpholo ⁇ cal peculiarities of the alloy system FeCrNiMn should be sought. In the alloy range up to 20% Cr, up to 15% Ni and up to 20% Mn, a peritectic melting surface separates the austenitic primary solidification from the ferritic primary solidification. Starting from the partially known three-substance systems FeCrNi and FeCrMn and supported by alloy tests, the following relationship was found for the peritectic melting surface :
  • Quaternary FeCrNiMn alloys with a CrNiMn equivalence factor f> 2 solidify primarily austenitic and are therefore fully austenitic at room temperature. Alloys with f ⁇ 2 solidify primarily ferritic. The ferritic solidification is replaced by a binary peritectic reaction if the f values are not too low. If f ⁇ . 0, the solidification of the alloys ends with the peritectic reaction. For alloys with 0. ⁇ F ⁇ T 2 there is an austenitic residual solidification after the ferritic primary solidification and the binary peritectic reaction, which likewise leads to full austenites. The important peritectic reaction causes austenite to be formed by dissolving primarily formed ferrite, in contrast to the primary austenitic or. austenitic residual solidification, where austenite is formed from the melt without the participation of ferrite.
  • Stahlgusslegie ⁇ tion succeeds in raising the yield point, compared to conventional pure austenitic chromium-nickel steels, without accepting porosities due to nitrogen excretions, which can occur in the case of strong segregation in large casting cross-sections due to insufficient nitrogen solubility.
  • the cast steel alloy according to the invention is preferably used with a carbon content of C 0.06% according to claim 2, to limit the carbide deposits and to avoid embrittlement, in particular during stress relief annealing. Further advantages of the low carbon content are the better machinability and the Protection against intergranular corrosion. The decrease in the yield strength associated with a lower carbon content is compensated for by a correspondingly increased nitrogen content. The crack resistance during welding is significantly increased if an S content is selected according to claim 4.
  • the chromium and nickel content in the cast alloy according to the invention depends on the operating temperature of the system parts. At low operating temperatures, high chromium / nickel contents should be selected to ensure austenite stability.
  • compositions always being given in percentages by weight.
  • the machinability of the steel casting alloy according to the invention is also superior to that of CF 20 or other comparable iron-carbon steel casting alloys.
  • CF 20 is also not weldable without micro-cracks.
  • FIGS. 1 to 4. 1 shows the graphical comparisons between the alloy A according to the invention (filled circles) and other alloys (filled triangles and quadrilaterals) when turning.
  • the cutting speed is V (m / min.) On the abscissa and the tool life on the ordinate T VB 0.4 (min) discontinued.
  • Fig. 2 relates to milling.
  • the cutting material here is Widia TT 40.
  • the board dimension is TNAF 2504 ZZR.
  • the feed s z 0.11 mm / tooth and it was not cooled.
  • the cutting speed V (m / min.) Is plotted on the abscissa and the tool life L (mm / tooth) is plotted on the ordinate.
  • _O PI Fig. 3 refers to the comparisons when drilling.
  • the material is CF 20.
  • the tool is an HSS twist drill with a diameter of 5 mm.
  • the feed s 0.06 mm / rev. It was cooled with an oil emulsion.
  • the cutting speed V (m / min.) Is plotted on the abscissa and the tool life L (mm) is plotted on the ordinate.
  • FIG. 4 shows the relationship between the CrNiMn equivalence factor f of the alloys according to the invention on the abscissa and the ferrite content (Fer) in% on the ordinate, where
  • V “" "” "” represents 650 ° C
  • the favorable magnetic permeability of the cast steel alloy according to the invention also remains in components of large cross section in the range from 100 to 500 mm, preferably from 200 - 300 mm, also obtained in the residual solidification zone by a high austenite stability and a large one. Homogeneity of properties is achieved even with a modest amount of alloying. Particularly in the case of extremely strong magnetic fields of, for example, 10 ** Oersted field strength, as are required in fusion reactors for shaping the plasma, the alloy according to the invention has clear advantages over conventional alloys.
  • particularly advantageous cast steel alloys have the composition: in% by weight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

Un alliage acier-coule non magnetisable ayant la composition C max. 0,30%, Si max. 2,00%, Mn 4,00 - 20,00%, Cr 10,00 - 20,00%, Ni 4,00 - 12,00%, Mo max. 3,00%, N2 0,02 - 0,20%, le reste etant du fer, avec une permeabilite magnetique (Alpha) <= 1,20 et un facteur d'equivalence CrNiMn f = 6,5 -% Cr - 0,4.% Ni + 0,1.% Mn + 0,075.% Cr .% Ni + 0.013.% Cr.% Mn - 0,02.% Ni.% Mn ou - 6 <= f <= + 2 remplit de maniere optimale l'ensemble des proprietes suivantes: basse permeabilite; resistance et durete homogenes, flexibilite stable a basse temperature; permeabilite magnetique homogene dans les grandes sections solidifiees; bonne aptitude a former des copeaux et bonne soudabilite sans microfissure et une limite a l'allongement suffisante. D'autres objets de l'invention portent sur l'utilisation de ces alliages en presence de champs magnetiques intenses et sur un procede selon lequel, apres soudure, l'alliage est traite thermiquement.
EP78900291A 1977-11-30 1979-06-21 Alliage acier-coule non magnetisable, utilisation et procede de fabrication Withdrawn EP0006953A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH14647/77 1977-11-30
CH1464777 1977-11-30
CH726/78 1978-01-24
CH72678 1978-01-24

Publications (2)

Publication Number Publication Date
EP0006953A4 EP0006953A4 (fr) 1980-01-09
EP0006953A1 true EP0006953A1 (fr) 1980-01-23

Family

ID=25685492

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78900291A Withdrawn EP0006953A1 (fr) 1977-11-30 1979-06-21 Alliage acier-coule non magnetisable, utilisation et procede de fabrication

Country Status (4)

Country Link
US (1) US4285725A (fr)
EP (1) EP0006953A1 (fr)
IT (1) IT1108126B (fr)
WO (1) WO1979000328A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10130089A1 (de) * 2001-06-21 2003-01-02 Tenovis Gmbh & Co Kg Telekommunikationsanlage und Betriebsverfahren einer solchen mit Nachrichtenein-/-ausgabe über ein angeschlossenes Endgerät

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3176034D1 (en) * 1980-06-17 1987-04-30 Toshiba Kk A high cavitation erosion resistance stainless steel and hydraulic machines being made of the same
US4911884A (en) * 1989-01-30 1990-03-27 General Electric Company High strength non-magnetic alloy
SE506550C2 (sv) * 1994-11-02 1998-01-12 Sandvik Ab Användning av ett omagnetiskt, rostfritt stål vid supraledande lågtemperaturapplikationer
AU2012362827B2 (en) 2011-12-30 2016-12-22 Scoperta, Inc. Coating compositions
US9419504B2 (en) 2012-04-20 2016-08-16 Louis J. Finkle Hybrid induction motor with self aligning permanent magnet inner rotor
US9484794B2 (en) 2012-04-20 2016-11-01 Louis J. Finkle Hybrid induction motor with self aligning permanent magnet inner rotor
US9738959B2 (en) * 2012-10-11 2017-08-22 Scoperta, Inc. Non-magnetic metal alloy compositions and applications
US10476363B2 (en) 2014-01-09 2019-11-12 Louis J. Finkle Hybrid electric motor with self aligning permanent magnet and squirrel cage dual rotors magnetically coupled with permeant magnets and bars at synchronous speed
US9923440B2 (en) 2014-01-09 2018-03-20 Motor Generator Technology, Inc. Hybrid electric motor with self aligning permanent magnet and squirrel cage rotors
US9923439B2 (en) 2014-01-09 2018-03-20 Motor Generator Technology, Inc. Hybrid electric motor with self aligning permanent magnet and squirrel cage rotors
US10998802B2 (en) 2017-02-21 2021-05-04 Louis J. Finkle Hybrid induction motor with self aligning hybrid induction/permanent magnet rotor
US10105796B2 (en) 2015-09-04 2018-10-23 Scoperta, Inc. Chromium free and low-chromium wear resistant alloys
CA3117043A1 (fr) 2018-10-26 2020-04-30 Oerlikon Metco (Us) Inc. Alliages a base de nickel resistants a la corrosion et a l'usure
CN111020373B (zh) * 2019-11-12 2021-06-01 江阴康瑞成型技术科技有限公司 长疲劳寿命耐腐蚀304m2辐条用不锈钢丝及其制造工艺

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1408269A1 (de) * 1958-07-09 1968-10-24 Linde Ag Verfahren und Einrichtung zur Erzeugung und Sicherstellung derselben Zaehigkeitseigenschaften in den benachbarten Zonen eines metallischen Werkstuecks,vorzugsweise Stahls
US2955034A (en) * 1958-12-12 1960-10-04 Union Carbide Corp Austenitic alloy steel
AT214466B (de) * 1959-06-04 1961-04-10 Schoeller Bleckmann Stahlwerke Stahllegierungen zur Herstellung von Schwerstangen für Tiefbohrgestänge
US3081164A (en) * 1959-11-04 1963-03-12 Westinghouse Electric Corp Nonmagnetic iron-base alloys
US3082083A (en) * 1960-12-02 1963-03-19 Armco Steel Corp Alloy of stainless steel and articles
SU158918A1 (fr) * 1961-11-15 1963-11-22
US3192041A (en) * 1962-12-13 1965-06-29 Crane Co Corrosion resistant steels
DE1194587B (de) * 1963-06-06 1965-06-10 Phoenix Rheinrohr Ag Verwendung von austenitischen Stahllegierungen als Werkstoff fuer geschweisste Bauteile, die dem Angriff von Seewasser und/oder Meeres-atmosphaere ausgesetzt sind
US3574605A (en) * 1968-06-24 1971-04-13 Albert M Hall Weldable,nonmagnetic austenitic manganese steel
US3645725A (en) * 1969-05-02 1972-02-29 Armco Steel Corp Austenitic steel combining strength and resistance to intergranular corrosion
DE1942131A1 (de) * 1969-08-19 1971-03-04 United States Steel Corp Metastabiler,austenitischer,rostfreier Stahl
US3854938A (en) * 1971-04-27 1974-12-17 Allegheny Ludlum Ind Inc Austenitic stainless steel
GB1432396A (en) * 1973-07-09 1976-04-14 Armco Steel Corp Chromium-nickel-manganese-nitrogen austenitic stainless steel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10130089A1 (de) * 2001-06-21 2003-01-02 Tenovis Gmbh & Co Kg Telekommunikationsanlage und Betriebsverfahren einer solchen mit Nachrichtenein-/-ausgabe über ein angeschlossenes Endgerät

Also Published As

Publication number Publication date
US4285725A (en) 1981-08-25
WO1979000328A1 (fr) 1979-06-14
IT7868152A0 (it) 1978-05-19
EP0006953A4 (fr) 1980-01-09
IT1108126B (it) 1985-12-02

Similar Documents

Publication Publication Date Title
DE602004000140T2 (de) Rostfreier austenitischer Stahl
DE60203865T2 (de) Ferritischer wärmebeständiger stahl
DE60023699T2 (de) Warmfester rostfreier austenitischer stahl
DE60110861T2 (de) Wärmebeständiger Stahl
DE2265684C2 (de) Nickel-Chrom-Legierung
EP0006953A1 (fr) Alliage acier-coule non magnetisable, utilisation et procede de fabrication
DE3445056C2 (fr)
CH637696A5 (de) Eisenlegierung.
DE2853582A1 (de) Nichtmagnetische stahllegierung mit verbesserter spanender bearbeitbarkeit
DE2525395C3 (de) Verwendung eines Stahles für Gegenstände, die mit einer Wärmezufuhr von mehr als 60000 J/cm geschweißt werden
DE2927091A1 (de) Nichtmagnetischer manganhartstahl mit ausgezeichneter schweissbarkeit und verarbeitbarkeit und verwendung dieses stahls
EP3850114A1 (fr) Acier résistant à la corrosion et à durcissement par précipitation, procédé de production d&#39;un composant d&#39;acier, et composant d&#39;acier
DE60029364T2 (de) Automatenlegierung
EP3899063A1 (fr) Matériau superausténitique
DE1967005B2 (de) Verfahren zum herstellen eines nickel-chrom-kobalt-werkstoffs
DE69909718T2 (de) Bn-auscheidungsverstärkter, ferritischer hitzebeständiger stahl mit niedrigem kohlenstoffgehalt und hohen schweisseigenschaften
EP0136998B1 (fr) Alliage forgeable à base de nickel et procédé pour son traitement thermique
DE3407305A1 (de) Verwendung einer korrosionsbestaendigen austenitischen legierung fuer mechanisch hoch beanspruchte, schweissbare bauteile
WO1995025826A1 (fr) Produit moule en coquille resistant a la corrosion et a l&#39;usure
DE69838879T2 (de) Martensitischer rostfreier stahl mit hohem korrosionswiderstand
WO2020127786A1 (fr) Composants de train de tiges à résistance élevée à la corrosion et leur procédé de fabrication
EP2478988B1 (fr) Matériau d&#39;apport de soudage basé sur le fer
DE60007961T2 (de) Rostfreie stähle
JPH11279684A (ja) 超大入熱溶接熱影響部の靱性に優れた溶接用高張力鋼
DE2105745A1 (de) Aushärtbare Nickel-Chrom-Stahllegierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

110E Request filed for conversion into a national patent application [according to art. 135 epc]
18D Application deemed to be withdrawn
RIN1 Information on inventor provided before grant (corrected)

Inventor name: GYSEL, WALTER

Inventor name: TRAUTWEIN, ADOLF