EP0001599B1 - Electrophotographic recording material and its application in a copying process - Google Patents

Electrophotographic recording material and its application in a copying process Download PDF

Info

Publication number
EP0001599B1
EP0001599B1 EP78101087A EP78101087A EP0001599B1 EP 0001599 B1 EP0001599 B1 EP 0001599B1 EP 78101087 A EP78101087 A EP 78101087A EP 78101087 A EP78101087 A EP 78101087A EP 0001599 B1 EP0001599 B1 EP 0001599B1
Authority
EP
European Patent Office
Prior art keywords
recording material
electrophotographic recording
transport layer
diphenylhydrazone
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78101087A
Other languages
German (de)
French (fr)
Other versions
EP0001599A1 (en
Inventor
Howard Warren Anderson
Michael Thomas Moore
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of EP0001599A1 publication Critical patent/EP0001599A1/en
Application granted granted Critical
Publication of EP0001599B1 publication Critical patent/EP0001599B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0666Dyes containing a methine or polymethine group
    • G03G5/0668Dyes containing a methine or polymethine group containing only one methine or polymethine group
    • G03G5/067Dyes containing a methine or polymethine group containing only one methine or polymethine group containing hetero rings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0616Hydrazines; Hydrazones
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0618Acyclic or carbocyclic compounds containing oxygen and nitrogen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0624Heterocyclic compounds containing one hetero ring
    • G03G5/0635Heterocyclic compounds containing one hetero ring being six-membered
    • G03G5/0637Heterocyclic compounds containing one hetero ring being six-membered containing one hetero atom
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0624Heterocyclic compounds containing one hetero ring
    • G03G5/0635Heterocyclic compounds containing one hetero ring being six-membered
    • G03G5/0638Heterocyclic compounds containing one hetero ring being six-membered containing two hetero atoms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0666Dyes containing a methine or polymethine group
    • G03G5/0668Dyes containing a methine or polymethine group containing only one methine or polymethine group

Definitions

  • the invention relates to an electrophotographic recording material comprising an electrically conductive layer support, a charge generation layer and a binder-containing charge transport layer and its use in a copying process.
  • Electrophotographic processes and materials are known. In these processes, a uniform electrostatic charge is applied to a normally insulating plate or element under so-called “dark" conditions. The element is then exposed imagewise, the areas of the element struck by the light becoming conductive and allowing the electrostatic charge to be dissipated from the surface of the element. This creates a latent image in the form of charged surface areas in the parts of the surface that have not been struck by light.
  • the electrostatic image on the surface of the element is then developed with an oppositely charged powder developer, a toner. This is held onto the charged areas of the element by its affinity for the opposite charge. The discharged areas of the element show no affinity of this kind for the toner.
  • the toner image thus formed is then transferred to another surface, for example on paper, and is fixed thereon by means of additives which are sensitive to pressure or heat or are admixed with the toner.
  • a particularly advantageous electrophotographic element is obtained when a layer which generates charge carriers and is sensitive to actinic radiation for forming electron-hole pairs is used in conjunction with a p-type charge carrier transport layer adjacent to it.
  • Numerous layers which generate charge carriers and are sensitive to certain wavelengths of actinic radiation are known.
  • the carrier transport layer is not sensitive to actinic radiation under the conditions used, but it serves to transfer positive charges from the carrier generation layer either to the surface of the negatively charged carrier transport layer on which the image is formed, or depending on the system used to be transported to the conductive base in a system with a positive charge.
  • US Pat. No. 3,837,851 describes an electrophotographic plate in which a tri-aryl-pyrazoline compound is used as the active material in the charge carrier transport layer.
  • Hydrazones have already been used as a radiation-sensitive material in photoconductive layers.
  • U.S. Patent 3,717,462 describes the corresponding use of a hydrazone compound. Similar uses of hydrazone compounds can be found, for example, in US Pat. No. 3,765,884.
  • an electrophotographic recording material comprising an electrically conductive layer support, a charge carrier-generating layer and a binder-containing charge carrier transport layer, which contains a charge carrier transport layer containing a hydrazone compound, as characterized in the claims.
  • p-diethylaminobenzaldehyde diphenylhydrazone
  • Other preferred charge carrier transport materials are o-ethoxy-p-diethylaminobenzaldehyde (diphenylhydrazone), o-methyl-p-diethylaminobenzaldehyde (diphenylhydrazone), o-methyl-p-dimethylaminobenzaldehyde (diphenylhydrazone), p-dipropylaminobenzaldehyde (diphenyl) p-diethylaminobenzaldehyde (benzylphenylhydrazone), p-dibutylaminobenzaldehyde (diphenylhydrazone) and p-dimethylaminobenzaldehyde (diphenylhydrazone).
  • Multi-layer electrophotographic recording materials are generally known.
  • the charge-generating layer which can consist of an organic or inorganic material, is resistant to actinic radiation that strikes the material to form Electron-hole pairs sensitive.
  • the charge carrier generating layer can be self-supporting, but a flexible base, such as a polymer film with a metallized surface, is preferably used. Biaxially oriented polyethylene terephthalate is preferably used as the flexible base.
  • the carrier generation layer must be in electrical contact with a conductor in order to facilitate the selective discharge of the recording material.
  • the charge carrier generating layer is preferably formed on the base and in contact with the conductive layer.
  • the layer thickness of the layer generating charge carriers is not critical, but is generally between 0.05 and 0.20 ⁇ m.
  • Materials generating inorganic charge carriers include selenium, tellurium and compounds of groups II b and VI a of the periodic system, for example cadmium sulfoselenide.
  • Materials which generate organic charge carriers include cyanine compounds, which are described, for example, in German Offenlegungsschrift 22 15 040, disazo compounds, which are described, for example, in German Offenlegungsschriften 2215968 and 26 35 887, or phthalocyanine compounds. Useful results are also obtained with charge generating materials that include methine dye derivatives of squaric acid. Materials of this type are discussed in German Offenlegungsschrift 2401 220.
  • Chlorodian blue, methylsquarylium and hydroxysquarylium dyes are particularly suitable charge-generating materials.
  • preferred materials of this type are 3,3'-dichloro-4,4'-diphenyl-bis [1 "-azo-2" -hydroxy-3 "-naphtanilide] 2,4-bis (2-methyl-4-dimethylaminophenyl) cyclobutenediylium-1,3-diolate 2,4-bis (2-hydroxy-4-dimethylaminophenyl) cyclobutenediylium 1,3-diolate
  • these dyes are referred to below as chlorodian blue, methylsquarylium and hydroxysquarylium.
  • the charge carrier transport material in most embodiments of the invention must be substantially transparent to the actinic radiation which activates the charge carrier generating material, it is preferred that the charge carrier generating material is sensitive to actinic radiation in the visible and longer-wave spectral range, i.e. sensitive to light with a wavelength greater than 390 nm. This requirement is essential for the preferred exemplary embodiment of the invention, in which the charge carrier transport layer is arranged between the charge carrier generating layer and the radiation source, which is the case with a system with negative charging.
  • the carrier generation material is directly exposed to actinic radiation and the carrier transport material is disposed between the carrier generation material and the conductive carrier.
  • charge generating materials and radiation sources that operate at shorter wavelengths than visible light are suitable for use with the charge transport material of the present invention.
  • organic charge generating materials are used, these materials are applied in a known manner to a metallized base, for example by meniscus coating, by means of a doctor blade or in a dip coating process.
  • An adhesive layer is preferably applied to the base in order to improve the adhesion of the charge carrier-generating layer thereon. Polyester resins are preferred as adhesives.
  • the charge carrier transport layer according to the invention is preferably applied to the charge carrier generating layer and forms the uppermost or exposed layer of the recording material.
  • the charge carrier transport layer has a thickness between about 7 and 35 ⁇ m, but can also be thicker or thinner, for example less than 7 ⁇ m, i.e. 5 ⁇ m.
  • the charge carrier transport layer can also be arranged between the charge carrier generating layer and the base, as indicated in two figures and the associated explanations.
  • the active material of the p-type charge transport layer according to the present invention is a hydrazone of the general formula in which the leftovers mean.
  • a particularly preferred charge carrier transport material is p-diethylaminobenzaldehyde (diphenylhydrazone);
  • charge carrier transport materials are o-ethoxy-p-diethylamino-benzaldehyde (diphenylhydrazone) o-methyl-p-diethylaminobenzaldehyde- (diphenylhydrazone) o-methyl p-dimethylaminobenzaldehyde- (diphenylhydrazone) p-dipropylaminobenzaldehyde (diphenylhydrazone) p-diethylaminobenzaldehyde (benzylphenylhydrazone) p-dibutylaminobenzaldehyde (diphenylhydrazone) p-dimethylaminobenzaldehyde (diphenylhydrazone)
  • the hydrazone material is mixed with a binder in an organic solvent, applied to the charge-generating layer and dried in a forced air oven.
  • binders are polycarbonate resins, for example a resin which is available under the name M-60 from Mobay Chemical Company, polyester resins, for example a resin which is available under the name PE-200 from Goodyear and Acrylic resins, for example a resin available under the designation A-1 from Rohm and Haas.
  • Various other resins are also suitable, as shown below.
  • the resins, which can be used individually or in mixtures, are mixed with one or more organic solvents, preferably with tetrahydrofuran and toluene, although other suitable solvents can also be used.
  • a silicone oil available under the trademark DC-200 from Dow Corning, is incorporated into the solution of the charge carrier transport material.
  • a multilayer electrophotographic recording material in Fig. 1 is generally designated by the reference numeral 10.
  • the recording material 10 comprises a charge generation layer 12 and a charge transport layer 14. As shown, there is a negative charge on the surface of the charge transport layer 14. A positive charge is on the opposite side of the charge generation layer 12, i.e. in a conductive layer, which is not shown. Actinic radiation 16 passes through the charge carrier transport layer 14 in the region 18, penetrates into the charge carrier generating layer 12 and generates electron-hole pairs. The hole is attracted to the negative charge on the surface of the carrier transport layer 14 and, as shown in Fig. 2, is injected into the carrier transport layer and migrates through the layer 14 to discharge the region 18.
  • the carrier transport layer 14 is essentially in view of that negative charge on it made of an insulating material. In this way, a localized discharge is obtained in the area 18. The electron is attracted to the positive charge in the conductive pad (not shown).
  • FIGS. 3 and 4 A similar result is shown in FIGS. 3 and 4.
  • the charge carrier-generating layer 12 is charged positively and irradiated directly with actinic radiation 16.
  • the charge carrier transport layer 14 is arranged between the charge carrier generating layer 12 and a negative charge, which is located in the conductive base, not shown.
  • Actinic radiation in turn creates 16 electron-hole pairs.
  • the area 18 of the charge carrier generating layer 12 is discharged by electrons, while the corresponding holes migrate through the charge carrier transport layer 14 and are attracted to the negative charges.
  • the recording material 10 ' has the advantage that actinic radiation 16 does not have to penetrate the charge carrier transport layer 14, on the other hand the charge carrier generating layer 12 is not protected.
  • Other exemplary embodiments are also possible, which are not shown.
  • the recording material 10 in Fig. 1 can also be viewed from the opposite side, e.g. through the support, exposed to actinic radiation.
  • a backing suitable for the present invention was prepared by coating an aluminized polyethylene terephthalate support with a solution of a polyester resin which was mixed in a tetrahydrofuran: toluene solvent mixture in a ratio of 9: 1 (0.7% to 1.4% solids content, weight : Weight) was solved.
  • the polyester coating was applied using a meniscus coating process and dried in a forced air oven.
  • chlorodian blue (0.73 g% solids content) was dissolved in a mixture of ethylene diamine, n-butylamine and tetrahydrofuran in a weight ratio of 1.2: 1.0: 2.2. Silicone oil was then added in an amount of 2.3% by weight based on the chlorordian blue.
  • the resulting solution was applied to the polyester-coated support by a meniscus coating method and the resulting coated base was dried in a forced air oven.
  • the production of the layer producing chlorine dian blue on a conventional polyester base is known per se.
  • the new charge carrier transport layer according to the invention was prepared by mixing a polycarbonate resin binder in an amount of 7.65 g, a polyester resin in an amount of 3.60 g and an acrylic resin in an amount of 2.25 g in 86.5 tetrahydrofuran and Toluene, the solvents being in a weight ratio of about 9: 1.
  • a polycarbonate resin binder in an amount of 7.65 g
  • a polyester resin in an amount of 3.60 g
  • an acrylic resin in an amount of 2.25 g in 86.5 tetrahydrofuran and Toluene
  • the solvents being in a weight ratio of about 9: 1.
  • p-diethylaminobenzaldehyde (diphenylhydrazone) is added in an amount of 9.0 g together with 0.02 g of silicone oil.
  • Further tetrahydrofuran can be added to adjust the viscosity, which is suitable for the chosen coating method.
  • the resulting solution was applied to the previously produced carrier generation layer and the entire film was again dried in a forced air oven to obtain a multilayer electrophotographic recording material.
  • the electrophotographic recording material was tested by charging the surface to -870 volts in the dark, exposing the charged electrophotographic recording material to light used in commercial electrophotographic equipment under various conditions of light intensity and by the light intensity required to achieve this Discharge of recording material to a voltage of - 150 volts within 454 ms under the specified conditions was determined. It was found that 1.10 pt / cm 2 was required to discharge the recording material of the present example. This value indicates excellent hole transport. Electrophotographic recording materials identical to those of the present examples were tested in commercial copying machines and gave excellent results in terms of charge transport, resistance to toner film formation, physical resistance to wear, long-term stability of electrical and physical properties and working at low temperature.
  • Multilayer electrophotographic recording materials similar to that made in Example 1 were made with different resins in different amounts in the charge transport layer.
  • a multilayer electrophotographic recording material similar to that in Example 1 was prepared except that the solution for preparing the charge carrier transport layer contained 14.5 g of acrylic resin as the sole binder and 14.5 g of p-diethylamino-benzaldehyde (diphenylhydrazone).
  • the recording material was tested as in Example 1, it was found that 3.0 ⁇ / cm2 of light energy was required to discharge the recording material from a voltage in the dark from -870 V to 150 V with a response time to exposure of 454 ms.
  • a multilayer electrophotographic recording material similar to that prepared in Example 1 was made except that a different acrylic resin was used. When tested as in Example 1, it was found that 1.16 ⁇ / cm 2 of light energy was required to discharge the recording material from a voltage in the dark from -870 V to -150 V with a response time to exposure of 454 ms ' .
  • Multilayer electrophotographic recording materials similar to that of Example 2 were prepared except that the following polyester resins were used in place of the polyester resin specified therein. Results similar to those of Example 2e were obtained in each case.
  • Multilayer electrophotographic recording materials similar to that in Example 1 were made, except that the adhesive layers applied first were made with resins other than the polyester specified there, but in similar amounts.
  • Each recording material was charged to -870 V and discharged to -150 V in 146 ms.
  • the exposure energies given below in ⁇ / cm 2 were required.
  • Multilayer electrophotographic recordings similar to that prepared in Example 2e were made except that 5.78 g of p-diethylamino-benzaldehyde (diphenylhydrazone) was used in the charge carrier sport layer solution in Example 7a and 7.27 g in Example 7b were.
  • p-diethylamino-benzaldehyde diphenylhydrazone
  • a multilayer electrophotographic recording medium similar to that of Example 2a was prepared except that 13.5 g of p-diethylaminobenzaldehyde (diphenylhydrazone) was used in the solution of the charge transport layer.
  • p-diethylaminobenzaldehyde diphenylhydrazone
  • 1.37 ⁇ / cm 2 of light energy was required to discharge the recording material from a dark voltage of -870 V to -150 V with a response time to exposure of 146 ms.
  • a multilayer electrophotographic recording medium similar to that in Example 2a was prepared except that 20.25 g of p-diethylaminobenzaldehyde (diphenylhydrazone) was used in the solution of the charge transport layer.
  • p-diethylaminobenzaldehyde diphenylhydrazone
  • Multilayer electrophotographic recordings similar to that in Example 1 were made except that the charge transport layer solution contained 6.75 g polyester resin, 6.75 g polycarbonate resin and 13.5 g of the hydrazone compounds shown below:
  • hydroxysquarylium in an amount of 1 g is dissolved in a mixed solvent of 1 ml of ethylenediamine, 5 ml of propylamine and 24 ml of tetrahydrofuran and applied to an aluminized polyester base by a meniscus coating method and dried to obtain a layer generating charge carriers.
  • a charge carrier transport layer according to the present invention was produced by meniscus coating the support-coated layer with a solution of 8.12 g of a polycarbonate resin and 8.12 g of p-diethylaminobenzaldehyde (diphenylhydrazone) in a 9: 1 mixture of tetrahydrofuran and toluene and drying to form a multilayer electrophotographic recording material.
  • a solution of 8.12 g of a polycarbonate resin and 8.12 g of p-diethylaminobenzaldehyde (diphenylhydrazone) in a 9: 1 mixture of tetrahydrofuran and toluene and drying to form a multilayer electrophotographic recording material.
  • 1.40 ⁇ / cm 2 of light energy was required to discharge the recording material from a voltage in the dark from -870 V to -150 V with a response time to exposure of 146 ms.
  • a multilayer electrophotographic recording material similar to that in Example 13 was made except that o-ethoxy-p-diethylaminobenzaldehyde (diphenylhydrazone) was used in the charge transport layer solution.
  • o-ethoxy-p-diethylaminobenzaldehyde diphenylhydrazone
  • a multilayer electrophotographic recording material similar to that in Example 13 was prepared except that the carrier generation layer solution contained 0.85 g of hydroxysquarylium and 0.15 g of methylsquarylium. When tested as in Example 1, it was found that 0.86 ⁇ / cm 2 of light energy was required to discharge the recording material from a voltage in the dark from -870 V to -150 V with a response time to exposure of 146 ms.
  • a multilayer electrophotographic recording material similar to that in Example 13 was prepared except that the solution of the carrier generation layer was 0.85 g of hydroxysquarylium and 0.15 g of methylsquarylium and the solution of the carrier transport layer was 8.12 g of polycarbonate resin and 5 , 42 g of p-diethylaminobenzaldehyde (diphenylhydrazone) contained.
  • the solution of the carrier generation layer was 0.85 g of hydroxysquarylium and 0.15 g of methylsquarylium and the solution of the carrier transport layer was 8.12 g of polycarbonate resin and 5 , 42 g of p-diethylaminobenzaldehyde (diphenylhydrazone) contained.
  • the solution of the carrier generation layer was 0.85 g of hydroxysquarylium and 0.15 g of methylsquarylium
  • the solution of the carrier transport layer was 8.12 g of polycarbonate resin and 5 , 42 g of p-diethylamin
  • a multilayer electrophotographic recording material was prepared by adding a charge transport layer composed of a solution of 6.75 g polyester resin, 6.75 g polycarbonate resin and 13.5 g p-diethylaminobenzaldehyde to a charge-generating layer which had been produced by vacuum deposition of selenium and tellurium - (Diphenylhydrazone) was applied.
  • a charge transport layer composed of a solution of 6.75 g polyester resin, 6.75 g polycarbonate resin and 13.5 g p-diethylaminobenzaldehyde
  • the p-type charge transport layer according to the present invention can be made with various types of resin binders as well as a variety of hydrazone compounds of the specified type.
  • Both organic and inorganic charge generation layers can be used with the charge transport layer according to the present invention, and various combinations of solvents, polymeric binders and the like known per se can be used.
  • Certain hydrazone compounds show when in relatively high concentrations a tendency to crystallize, thereby decreasing their charge transport function. However, if smaller amounts are used, useful results will be obtained. A selection in this direction can be made by a person skilled in the art.
  • the electrophotographic recording materials with the charge carrier transport layer according to the invention show an excellent ratio of sensitivity, in particular at low temperatures, adhesion to adjacent layers and resistance to mechanical wear, again at different temperatures.
  • the recording materials also show in terms of. Aging excellent properties and have considerable resistance to toner film formation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

Die Erfindung betrifft ein elektrophotographisches Aufzeichnungsmaterial aus einem elektrisch leitenden Schichtträger, einer Ladungsträger erzeugenden Schicht und einer bindemittelhaltigen Ladungsträgertransportschicht und dessen Verwendung in einem Kopierverfahren.The invention relates to an electrophotographic recording material comprising an electrically conductive layer support, a charge generation layer and a binder-containing charge transport layer and its use in a copying process.

Elektrophotographische Verfahren und Materialien sind bekannt. Bei diesen Prozessen wird eine gleichmäßige elektrostatische Ladung auf eine normalerweise isolierenden Platte oder ein Element unter sogenannten "Dunkel"-Bedingungen aufgetragen. Anschließend wird das Element bildmäßig belichtet, wobei die vom Licht getroffenen Bereiche des Elements leitend werden und eine Ableitung der elektrostatischen Ladung von der Oberfläche des Elements ermöglichen. Dadurch wird ein latentes Bild in Form geladener Oberflächenbereiche in den Teilen der Oberfläche, die nicht von Licht getroffen wurden, gebildet. Das elektrostatische Bild auf der Oberfläche des Elements wird dann mit einem entgegengesetzt geladenen Pulverentwickler, einem Toner, entwickelt. Dieser wird an den geladenen Bereichen des Elements durch seine Affinität zu der entgegengesetzten Ladung festgehalten. Die entladenen Bereiche des Elements zeigen keine Affinität dieser Art zu dem Toner. Das so gebildete Tonerbild wird anschließend auf eine andere Oberfläche, beispielsweise auf Papier übertragen und wird auf dieser durch druck- oder hitzeempfindliche oder ähnliche Zusatzstoffe, die dem Toner beigemischt sind, fixiert.Electrophotographic processes and materials are known. In these processes, a uniform electrostatic charge is applied to a normally insulating plate or element under so-called "dark" conditions. The element is then exposed imagewise, the areas of the element struck by the light becoming conductive and allowing the electrostatic charge to be dissipated from the surface of the element. This creates a latent image in the form of charged surface areas in the parts of the surface that have not been struck by light. The electrostatic image on the surface of the element is then developed with an oppositely charged powder developer, a toner. This is held onto the charged areas of the element by its affinity for the opposite charge. The discharged areas of the element show no affinity of this kind for the toner. The toner image thus formed is then transferred to another surface, for example on paper, and is fixed thereon by means of additives which are sensitive to pressure or heat or are admixed with the toner.

Ein besonders vorteilhaftes elektrophotographisches Element ergibt sich, wenn eine Ladungsträger erzeugende Schicht, welche gegenüber aktinischer Strahlung zur Ausbildung von Elektronen-Lochpaaren empfindlich ist, in Verbindung mit einer zu ihr benachbarten Ladungsträgertransportschicht vom p-Type verwendet wird. Zahlreiche Ladungsträger erzeugende Schichten, die gegenüber bestimmten Wellenlängen aktinischer Strahlung empfindlich sind, sind bekannt. Die Ladungsträgertransportschicht ist unter den angewendeten Bedingungen gegenüber aktinischer Strahlung nicht empfindlich, aber sie dient dazu, positive Ladungen von der Ladungsträger erzeugenden Schicht entweder, in Abhängigkeit von dem angewendeten System, an die Oberfläche der negativ geladenen Ladungsträgertransportschicht, auf der das Bild gebildet wird, oder in einem System mit positiver Aufladung zu der leitenden Unterlage zu transportieren. In der US-Patentschrift 3 837 851 wird eine elektrophotographische Platte beschrieben, bei der als aktives Material in der Ladungsträgertransportschicht eine Tri-aryl-pyrazolin-Verbindung verwendet wird.A particularly advantageous electrophotographic element is obtained when a layer which generates charge carriers and is sensitive to actinic radiation for forming electron-hole pairs is used in conjunction with a p-type charge carrier transport layer adjacent to it. Numerous layers which generate charge carriers and are sensitive to certain wavelengths of actinic radiation are known. The carrier transport layer is not sensitive to actinic radiation under the conditions used, but it serves to transfer positive charges from the carrier generation layer either to the surface of the negatively charged carrier transport layer on which the image is formed, or depending on the system used to be transported to the conductive base in a system with a positive charge. US Pat. No. 3,837,851 describes an electrophotographic plate in which a tri-aryl-pyrazoline compound is used as the active material in the charge carrier transport layer.

Hydrazone wurden bereits in photoleitfähigen Schichten als strahlungsempfindliches Material verwendet. In der US-Patentschrift 3 717 462 wird die entsprechende Verwendung einer Hydrazonverbindung beschrieben. Ähnliche Verwendungen von Hydrazonverbindungen können beispielsweise der US-Patentschrift 3 765 884 entnommen werden.Hydrazones have already been used as a radiation-sensitive material in photoconductive layers. U.S. Patent 3,717,462 describes the corresponding use of a hydrazone compound. Similar uses of hydrazone compounds can be found, for example, in US Pat. No. 3,765,884.

Versuche haben jedoch gezeigt, daß die in den US-Patentschriften 3 717 462 und 3 765 462 beschriebenen Hydrazone nicht für die Verwendung in Ladungsträgertransportschichten geeignet sind, denn bei den dort beschriebenen Verbindungen waren sehr viel höhere Entladungsenergien für die Entladung eines Elements beispielsweise von -870 V auf -150 V erforderlich als bei den Hydrazonen der vorliegenden Erfindung.Experiments have shown, however, that the hydrazones described in US Pat. Nos. 3,717,462 and 3,765,462 are not suitable for use in charge carrier transport layers, since the compounds described there had much higher discharge energies for discharging an element, for example, of -870 V to -150 V is required than for the hydrazone of the present invention.

Zusammenfassend kann gesagt werden, daß die Verwendung von Ladungsträgertransportschichten in Verbindung mit bestimmten Ladungsträger erzeugenden Schichten bekannt ist, daß aber die Verwendung von Hydrazonverbindungen im allgemeinen und insbesondere der Hydrazonverbindungen gemäß der vorliegenden Erfindung als aktives Material in einer Ladungsträgertransportschicht bisher nicht vorgeschlagen wurde. Andererseits wurden Hydrazonverbindungen, die sich von den spezifischen Verbindungen der vorliegenden Erfindung unterscheiden, bereits als lichtempfindliche Materialien, aber nicht als Ladungsträgertransportmaterialien verwendet.In summary, it can be said that the use of charge carrier transport layers in connection with certain charge carrier generating layers is known, but that the use of hydrazone compounds in general and in particular the hydrazone compounds according to the present invention as active material in a charge carrier transport layer has not previously been proposed. On the other hand, hydrazone compounds other than the specific compounds of the present invention have been used as photosensitive materials but not as charge transport materials.

Aufgabe der vorliegenden Erfindung ist die Bereitstellung eines elektrophotographischen Aufzeichnungsmaterials aus mehreren Schichten, das im Vergleich mit bisher bekannten mehrlagigen Aufzeichnungsmaterialien hinsichtlich seines Verhaltens bei niedriger Temperatur, der Haftung und der Widerstandsfähigkeit gegenüber Abnutzung, der Tonerfilmbildung und Alterung bei gleichzeitig vorhandener hoher Lichtempfindlichkeit verbesserte Eigenschaften aufweist.It is an object of the present invention to provide a multi-layer electrophotographic recording material which has improved properties compared to previously known multi-layer recording materials with regard to its behavior at low temperature, adhesion and resistance to wear, toner film formation and aging, while at the same time having high photosensitivity.

Die Aufgabe der Erfindung wird gelöst durch ein elektrophotographisches Aufzeichnungsmaterial aus einem elektrisch leitenden Schichtträger, einer Ladungsträger erzeugenden Schicht und einer bindemittelhaltigen Ladungsträgertransportschicht, das eine Ladungsträgertransportschicht mit einem Gehalt an einer Hydrazonverbindung, wie sie in den Ansprüchen gekennzeichnet ist, enthält.The object of the invention is achieved by an electrophotographic recording material comprising an electrically conductive layer support, a charge carrier-generating layer and a binder-containing charge carrier transport layer, which contains a charge carrier transport layer containing a hydrazone compound, as characterized in the claims.

Besonders vorteilhafte Ergebnisse werden bei Verwendung von p-Diäthylaminobenzaldehyd-(diphenylhydrazon) erhalten. Andere bevorzugte Ladungsträgertransportmaterialien sind o-Äthoxy-p-diäthylaminobenzaldehyd-(diphenylhydrazon), o-Methyl-p-diäthylaminobenzaldehyd-(diphenylhydra- zon), o-Methyl-p-dimethylaminobenzaldehyd-(diphenylhydrazon), p-Dipropylaminobenzaldehyd-(diphenylhydrazon), p-Diäthylaminobenzaldehyd-(benzylphenylhydrazon), p-Dibutylaminobenzaldehyd-(diphenylhydrazon) und p-Dimethylaminobenzaldehyd-(diphenylhydrazon).Particularly advantageous results are obtained when using p-diethylaminobenzaldehyde (diphenylhydrazone). Other preferred charge carrier transport materials are o-ethoxy-p-diethylaminobenzaldehyde (diphenylhydrazone), o-methyl-p-diethylaminobenzaldehyde (diphenylhydrazone), o-methyl-p-dimethylaminobenzaldehyde (diphenylhydrazone), p-dipropylaminobenzaldehyde (diphenyl) p-diethylaminobenzaldehyde (benzylphenylhydrazone), p-dibutylaminobenzaldehyde (diphenylhydrazone) and p-dimethylaminobenzaldehyde (diphenylhydrazone).

Mehrlagige elektrophotographische Aufzeichnungsmaterialien sind allgemein bekannt. Die Ladungsträger erzeugende Schicht, welche aus einem organischen oder anorganischen Material bestehen kann, ist gegenüber aktinischer Strahlung, die auf das Material auftrifft zur Ausbildung von Elektronen-Lochpaaren empfindlich. Die Ladungsträger erzeugende Schicht kann selbsttragend sein, es wird jedoch vorzugsweise eine biegsame Unterlage, wie ein Polymerfilm mit einer metallisierten Oberfläche, angewendet. Als biegsame Unterlage wird vorzugsweise biaxial orientiertes Polyäthylenterephthalat verwendet. Wie oben angegeben, muß die Ladungsträger erzeugende Schicht in elektrischem Kontakt mit einem Leiter sein, um die selektive Entladung des Aufzeichnungsmaterials zu erleichtern. Wiederum im Hinblick auf die bevorzugte, aber konventionelle Ausführungsform der Erfindung ist es am vorteilhaftesten, einen aluminisierten Polyäthylenterephthalat-Film zu verwenden, wobei das Aluminium die leitende Schicht ausmacht. Die Ladungsträger erzeugende Schicht wird vorzugsweise auf der Unterlage und in Kontakt mit der leitenden Schicht gebildet. Die Schichtdicke der Ladungsträger erzeugenden Schicht ist nicht kritisch, sie liegt jedoch im allgemeinen zwischen 0,05 und 0,20 µm. Anorganische Ladungsträger erzeugende Materialien schließen Selen, Tellur und Verbindungen der Gruppen II b und VI a des periodischen Systems, beispielsweise Cadmium-sulfoselenid ein. Organische Ladungsträger erzeugende Materialien schließen Cyaninverbindungen, die beispielsweise in der deutschen Offenlegungsschrift 22 15 040 beschrieben sind, Disazoverbindungen, die beispielsweise in den deutschen Offenlegungsschriften 2215968 und 26 35 887 beschrieben sind, oder Phthalocyaninverbindungen ein. Brauchbare Ergebnisse werden auch mit Ladungsträger erzeugenden Materialien erhalten, die Methinfarbstoffderivate der Quadratsäure umfassen. Materialien dieser Art werden in der deutschen Offenlegungsschrift 2401 220 diskutiert.Multi-layer electrophotographic recording materials are generally known. The charge-generating layer, which can consist of an organic or inorganic material, is resistant to actinic radiation that strikes the material to form Electron-hole pairs sensitive. The charge carrier generating layer can be self-supporting, but a flexible base, such as a polymer film with a metallized surface, is preferably used. Biaxially oriented polyethylene terephthalate is preferably used as the flexible base. As indicated above, the carrier generation layer must be in electrical contact with a conductor in order to facilitate the selective discharge of the recording material. Again in view of the preferred but conventional embodiment of the invention, it is most advantageous to use an aluminized polyethylene terephthalate film, the aluminum being the conductive layer. The charge carrier generating layer is preferably formed on the base and in contact with the conductive layer. The layer thickness of the layer generating charge carriers is not critical, but is generally between 0.05 and 0.20 μm. Materials generating inorganic charge carriers include selenium, tellurium and compounds of groups II b and VI a of the periodic system, for example cadmium sulfoselenide. Materials which generate organic charge carriers include cyanine compounds, which are described, for example, in German Offenlegungsschrift 22 15 040, disazo compounds, which are described, for example, in German Offenlegungsschriften 2215968 and 26 35 887, or phthalocyanine compounds. Useful results are also obtained with charge generating materials that include methine dye derivatives of squaric acid. Materials of this type are discussed in German Offenlegungsschrift 2401 220.

Chlordianblau, Methylsquarylium- und Hydroxysquaryliumfarbstoffe sind besonders geeignete Ladungsträger erzeugende Materialien. Im einzelnen sind bevorzugte Materialien dieser Art 3,3'-Dichlor-4,4'-diphenyl- bis [1"-azo-2"-hydroxy-3"-naphtanilid]

Figure imgb0001
2,4-Bis-(2-methyl-4-dimethylaminophenyl)-cyclobutendiylium-1,3-diolat
Figure imgb0002
2,4-Bis-(2-hydroxy-4-dimethylaminophenyl)-cyclobutendiylium-1,3-diolat
Figure imgb0003
Chlorodian blue, methylsquarylium and hydroxysquarylium dyes are particularly suitable charge-generating materials. In particular, preferred materials of this type are 3,3'-dichloro-4,4'-diphenyl-bis [1 "-azo-2" -hydroxy-3 "-naphtanilide]
Figure imgb0001
2,4-bis (2-methyl-4-dimethylaminophenyl) cyclobutenediylium-1,3-diolate
Figure imgb0002
2,4-bis (2-hydroxy-4-dimethylaminophenyl) cyclobutenediylium 1,3-diolate
Figure imgb0003

Diese Farbstoffe werden der Einfachheit halber nachfolgend mit Chlordianblau, Methylsquarylium und Hydroxysquarylium bezeichnet.For the sake of simplicity, these dyes are referred to below as chlorodian blue, methylsquarylium and hydroxysquarylium.

Zusammenfassend kann gesagt werden, daß eine Vielzahl anorganischer und organischer Ladungsträger erzeugender Materialien zusammen mit dem Ladungsträgertransportmaterial der vorliegenden Erfindung verwendet werden können. Da jedoch das Ladungsträgertransportmaterial in den meisten Ausführungsbeispielen der Erfindung für die aktinische Strahlung, welche das Ladungsträger erzeugende Material aktiviert, im wesentlichen tranparent sein muß, wird bevorzugt, daß das Ladungsträger erzeugende Material gegenüber aktinischer Strahlung im sichtbaren und längerwelligen Spektralbereich, d.h. gegenüber Licht mit einer Wellenlänge größer 390 nm, empfindlich eist. Diese Forderung ist wesentlich für das bevorzugte Ausführungsbeispiel der Erfindung, bei dem die Ladungsträgertransportschicht zwischen der Ladungsträger erzeugenden Schicht und der Strahlungsquelle angeordnet ist, was bei einem System mit negativer Aufladung der Fall ist. Bei einem System mit positiver Aufladung wird das Ladungsträger erzeugende Material direkt aktinischer Strahlung ausgesetzt, und das Ladungsträgertransportmaterial wird zwischen Ladungsträger erzeugendem Material und dem leitenden Träger angeordnet. Im letzteren Fall sind Ladungsträger erzeugende Materialien und Strahlungsquellen, die bei kürzeren Wellenlängen als sichtbarem Licht arbeiten, zur Verwendung mit dem Ladungsträgertransportmaterial gemäß der vorliegenden Erfindung geeignet.In summary, a variety of inorganic and organic carrier generation materials can be used in conjunction with the carrier transport material of the present invention. However, since the charge carrier transport material in most embodiments of the invention must be substantially transparent to the actinic radiation which activates the charge carrier generating material, it is preferred that the charge carrier generating material is sensitive to actinic radiation in the visible and longer-wave spectral range, i.e. sensitive to light with a wavelength greater than 390 nm. This requirement is essential for the preferred exemplary embodiment of the invention, in which the charge carrier transport layer is arranged between the charge carrier generating layer and the radiation source, which is the case with a system with negative charging. In a positive charge system, the carrier generation material is directly exposed to actinic radiation and the carrier transport material is disposed between the carrier generation material and the conductive carrier. In the latter case, charge generating materials and radiation sources that operate at shorter wavelengths than visible light are suitable for use with the charge transport material of the present invention.

In dem bevorzugten Ausführungsbeispiel gemäß der vorliegenden Erfindung, in dem organische Ladungsträger erzeugende Materialien verwendet werden, werden diese Materialien in bekannter Weise auf eine metallisierte Unterlage aufgetragen, beispielsweise durch Meniskusbeschichten, mittels einer Rakel oder in einem Tauchbeschichtungsverfahren. Es wird vorzugsweise eine Klebstoffschicht auf die Unterlage aufgetragen, um die Haftung der Ladungsträger erzeugenden Schicht auf dieser zu verbessern. Polyesterharze werden als Klebstoffe bevorzugt.In the preferred exemplary embodiment according to the present invention, in which organic charge generating materials are used, these materials are applied in a known manner to a metallized base, for example by meniscus coating, by means of a doctor blade or in a dip coating process. An adhesive layer is preferably applied to the base in order to improve the adhesion of the charge carrier-generating layer thereon. Polyester resins are preferred as adhesives.

Die Ladungsträgertransportschicht gemäß der Erfindung wird vorzugsweise auf die Ladungsträger erzeugende Schicht aufgetragen und bildet die oberste oder freiliegende Schicht des Aufzeichnungsmaterials. Die Ladungsträgertransportschicht weist eine Dicke zwischen etwa 7 und 35 ,um auf, kann aber auch dicker oder dünner sein, beispielsweise weniger als 7 ,um, d.h. 5 µm. Die nachfolgenden Ausführungen betreffen zwar das bevorzugte Ausführungsbeispiel gemäß der Erfindung, bei einem System mit positiver Aufladung kann jedoch die Ladungsträgertransportschicht auch zwischen der Ladungsträger erzeugenden Schicht und der Unterlage angeordnet sein, wie in zwei Abbildungen und den dazugehörigen Ausführungen angegeben ist.The charge carrier transport layer according to the invention is preferably applied to the charge carrier generating layer and forms the uppermost or exposed layer of the recording material. The charge carrier transport layer has a thickness between about 7 and 35 µm, but can also be thicker or thinner, for example less than 7 µm, i.e. 5 µm. Although the following explanations relate to the preferred exemplary embodiment according to the invention, in a system with positive charging, however, the charge carrier transport layer can also be arranged between the charge carrier generating layer and the base, as indicated in two figures and the associated explanations.

Das aktive Material der Ladungsträgertransportschicht vom p-Typ gemäß der vorliegenden Erfindung ist ein Hydrazon der allgemeinen Formel

Figure imgb0004
in der die Reste
Figure imgb0005
bedeuten.The active material of the p-type charge transport layer according to the present invention is a hydrazone of the general formula
Figure imgb0004
in which the leftovers
Figure imgb0005
mean.

Ein besonders bevorzugtes Ladungsträgertransportmaterial ist p-Diäthylaminobenzaldehyd-(diphenylhydrazon);

Figure imgb0006
A particularly preferred charge carrier transport material is p-diethylaminobenzaldehyde (diphenylhydrazone);
Figure imgb0006

Andere bevorzugte Ladungsträgertransportmaterialien sind o-Äthoxy-p-diäthylamino- benzaldehyd-(diphenylhydrazon)

Figure imgb0007
o-Methyl-p-diäthylaminobenzaldehyd-(diphenylhydrazon)
Figure imgb0008
o-Methyl p-dimethylaminobenzaldehyd-(diphenylhydrazon)
Figure imgb0009
p-Dipropylaminobenzaldehyd-(diphenylhydrazon)
Figure imgb0010
p-Diäthylaminobenzaldehyd-(benzylphenylhydrazon)
Figure imgb0011
p-Dibutylaminobenzaldehyd-(diphenylhydrazon)
Figure imgb0012
p-Dimethylaminobenzaldehyd-(diphenylhydrazon)
Figure imgb0013
Other preferred charge carrier transport materials are o-ethoxy-p-diethylamino-benzaldehyde (diphenylhydrazone)
Figure imgb0007
o-methyl-p-diethylaminobenzaldehyde- (diphenylhydrazone)
Figure imgb0008
o-methyl p-dimethylaminobenzaldehyde- (diphenylhydrazone)
Figure imgb0009
p-dipropylaminobenzaldehyde (diphenylhydrazone)
Figure imgb0010
p-diethylaminobenzaldehyde (benzylphenylhydrazone)
Figure imgb0011
p-dibutylaminobenzaldehyde (diphenylhydrazone)
Figure imgb0012
p-dimethylaminobenzaldehyde (diphenylhydrazone)
Figure imgb0013

Zur Anwendung wird das Hydrazonmaterial mit einem Bindemittel in einem organischen Lösungsmittel gemischt, auf die Ladungsträger erzeugende Schicht aufgetragen und in einem Umluftofen getrocknet. Zur Verwendung sind zahlreiche polymere Bindemittel geeignet, besonders geeignete Bindemittel sind Polycarbonatharze, beispielsweise ein Harz, das unter der Bezeichnung M-60 von Mobay Chemical Company erhältlich ist, Polyesterharze, beispielsweise ein Harz, das unter der Bezeichnung PE-200 von Goodyear erhältlich ist und Acrylharze, beispielsweise ein Harz, das unter der Bezeichnung A-1 von Rohm und Haas erhältlich ist, Es sind auch verschiedene andere Harze geeignet, wie nachfolgend gezeigt wird. Die Harze, die einzeln oder in Mischungen verwendet werden können, werden mit einem oder mehreren organischen Lösungsmitteln gemischt, vorzugsweise mit Tetrahydrofuran und Toluol, wobei auch andere geeignete Lösungsmittel verwendet werden können.For use, the hydrazone material is mixed with a binder in an organic solvent, applied to the charge-generating layer and dried in a forced air oven. Numerous polymeric binders are suitable for use, particularly suitable binders are polycarbonate resins, for example a resin which is available under the name M-60 from Mobay Chemical Company, polyester resins, for example a resin which is available under the name PE-200 from Goodyear and Acrylic resins, for example a resin available under the designation A-1 from Rohm and Haas. Various other resins are also suitable, as shown below. The resins, which can be used individually or in mixtures, are mixed with one or more organic solvents, preferably with tetrahydrofuran and toluene, although other suitable solvents can also be used.

Andere Bestandteile können zur Erhöhung der Gleitwirkung, der Stabilität, der Haftung, zur Beeinflussung der Überzugsqualität und ähnlichen Eigenschaften der Ladungsträgertransportschicht einverleibt werden. So wird beispielsweise ein Siliconöl, das unter dem Warenzeichen DC-200 von Dow Corning erhältlich ist, der Lösung des Ladungsträgertransportmaterials einverleibt.Other components can be incorporated to increase the sliding effect, the stability, the adhesion, to influence the coating quality and similar properties of the charge carrier transport layer. For example, a silicone oil, available under the trademark DC-200 from Dow Corning, is incorporated into the solution of the charge carrier transport material.

Die Erfindung wird anhand der nachfolgenden Figuren und der Beschreibung näher erläutert.

  • Fig. 1 stellt einen vereinfachten Querschnitt durch eine Ladungsträger erzeugende und eine Ladungsträgertransportschicht in einem bevorzugten Ausführungsbeispiel der Erfindung dar, wobei die Wirkungsweise bei Belichtung eines negativ geladenen Elements mit aktinischer Strahlung gezeigt wird;
  • Fig. 2 ist ein Schnittbild ähnlich Fig. 1, anhand dessen die resultierende negative Ladungsverteilung auf dem Aufzeichnungsmaterial gezeigt wird;
  • Fig. 3 ist ein Schnittbild, anhand dessen ein Aufzeichnungsmaterial für positive Aufladung gezeigt wird und
  • Fig. 4 ist ein Schnittbild ähnlich Fig. 3, anhand dessen die resultierende positive Ladungsverteilung auf der Oberfläche des positiv geladenen Aufzeichnungsmaterials gezeigt wird.
The invention is explained in more detail with reference to the following figures and the description.
  • 1 shows a simplified cross section through a charge carrier-generating and a charge carrier transport layer in a preferred exemplary embodiment of the invention, the mode of action being shown when a negatively charged element is exposed to actinic radiation;
  • Fig. 2 is a sectional view similar to Fig. 1, showing the resultant negative charge distribution on the recording material;
  • Fig. 3 is a sectional view showing a positive charge recording material, and
  • Fig. 4 is a sectional view similar to Fig. 3, showing the resultant positive charge distribution on the surface of the positively charged recording material.

In allen Figuren sind gleiche Komponenten und Bestandteile mit den gleichen Bezugszeichen bezeichnet, ein mehrlagiges elektrophotographisches Aufzeichnungsmaterial in Fig. 1 wird im allgemeinen mit dem Bezugszzeichen 10 gekennzeichnet.In all the figures, the same components and parts have the same reference numerals A multilayer electrophotographic recording material in Fig. 1 is generally designated by the reference numeral 10.

Das Aufzeichnungsmaterial 10 umfaßt eine Ladungsträger erzeugende Schicht 12 und eine Ladungsträgertransportschicht 14. Wie dargestellt, befindet sich eine negative Ladung auf der Oberfläche der Ladungsträgertransportschicht 14. Eine positive Ladung befindet sich auf der entgegengesetzten Seite der Ladungsträger erzeugenden Schicht 12, d.h. in einer leitenden Schicht, die nicht gezeigt ist. Aktinische Strahlung 16 passiert die Ladungsträgertransportschicht 14 im Bereich 18, dringt in die Ladungsträger erzeugende Schicht 12 ein und erzeugt Elektronen-Lochpaare. Das Loch wird von der negativen Ladung der Oberfläche der Ladungsträgertransportschicht 14 angezogen und wird, wie in Fig. 2 gezeigt ist, in die Ladungsträgertransportschicht injiziert und wandert durch die Schicht 14 zur Entladung des Bereichs 18. Die Ladungsträgertransportschicht 14 besteht im wesentlichen im Hinblick auf die sich darauf befindliche negative Ladung aus einem isolierenden Material. Auf diese Weise wird eine lokalisierte Entladung im Bereich 18 erhalten. Das Elektron wird durch die positive Ladung in der leitenden Unterlage (nicht gezeigt) angezogen.The recording material 10 comprises a charge generation layer 12 and a charge transport layer 14. As shown, there is a negative charge on the surface of the charge transport layer 14. A positive charge is on the opposite side of the charge generation layer 12, i.e. in a conductive layer, which is not shown. Actinic radiation 16 passes through the charge carrier transport layer 14 in the region 18, penetrates into the charge carrier generating layer 12 and generates electron-hole pairs. The hole is attracted to the negative charge on the surface of the carrier transport layer 14 and, as shown in Fig. 2, is injected into the carrier transport layer and migrates through the layer 14 to discharge the region 18. The carrier transport layer 14 is essentially in view of that negative charge on it made of an insulating material. In this way, a localized discharge is obtained in the area 18. The electron is attracted to the positive charge in the conductive pad (not shown).

Ein ähnliches Ergebnis ist in den Figuren 3 und 4 dargestellt. In dem Aufzeichnungsmaterial 10', in dem die gleichen Schichten enthalten sind, sind diese in anderer Reihenfolge angeordnet. Die Ladungsträger erzeugende Schicht 12 wird positiv geladen und direkt mit aktinischer Strahlung 16 bestrahlt. Die Ladungsträgertransportschicht 14 wird zwischen der Ladungsträger erzeugenden Schicht 12 und einer negativen Aufladung, die sich in der nicht gezeigten leitenden Unterlage befindet, angeordnet. Wiederum erzeugt aktinische Strahlung 16 Elektronen-Lochpaare. Der Bereicht 18 der Ladungsträger erzeugenden Schicht 12 wird durch Elektronen entladen, während die korrespondierenden Löcher durch die Ladungsträgertransportschicht 14 wandern und von den negativen Ladungen angezogen werden. Das Aufzeichnungsmaterial 10' weist den Vorteil auf, daß aktinische Strahlung 16 nicht die Ladungsträgertransportschicht 14 durchdringen muß, andererseits ist die Ladungsträger erzeugende Schicht 12 nicht geschützt. Es sind auch andere Ausführungsbeispiele möglich, die nicht dargestellt sind. So kann beispielsweise das Aufzeichnungsmaterial 10 in Fig. 1 auch von der entgegengesetzten Seite, d.h. durch den Schichtträger hindurch, mit aktinischer Strahlung belichtet werden.A similar result is shown in FIGS. 3 and 4. In the recording material 10 'in which the same layers are contained, these are arranged in a different order. The charge carrier-generating layer 12 is charged positively and irradiated directly with actinic radiation 16. The charge carrier transport layer 14 is arranged between the charge carrier generating layer 12 and a negative charge, which is located in the conductive base, not shown. Actinic radiation in turn creates 16 electron-hole pairs. The area 18 of the charge carrier generating layer 12 is discharged by electrons, while the corresponding holes migrate through the charge carrier transport layer 14 and are attracted to the negative charges. The recording material 10 'has the advantage that actinic radiation 16 does not have to penetrate the charge carrier transport layer 14, on the other hand the charge carrier generating layer 12 is not protected. Other exemplary embodiments are also possible, which are not shown. For example, the recording material 10 in Fig. 1 can also be viewed from the opposite side, e.g. through the support, exposed to actinic radiation.

Beispiel 1example 1

Eine Unterlage, die für die vorliegende Erfindung geeignet ist, wurde hergestellt durch Beschichten eines aluminisierten Polyäthylenterephthalatträgers mit einer Lösung eines Polyesterharzes, welches in einem Tetrahydrofuran:Toluol-Lösungsmittelgemisch im Verhältnis 9:1 (0,7% bis 1,4% Feststoffgehalt, Gewicht: Gewicht) gelöst wurde. Der Polyesterüberzug wurde mittels eines Meniskusbeschichtungsverfahrens aufgetragen und in einem Umluftofen getrocknet. Dann wurde Chlordianblau (0,73 G.% Feststoffgehalt) in einer Mischung von Äthylendiamin, n-Butylamin und Tetrahydrofuran im Gewichtsverhältnis 1,2:1,0:2,2 gelöst. Siliconöl wurde dann in einer Menge von 2,3 G.%, bezogen auf das Chlordianblau, zugegeben. Die resultierende Lösung wurde mittels eines Meniskusbeschichtungsverfahrens auf den mit Polyester beschichteten Träger aufgetragen, und die resultierende beschichtete Unterlage wurde in einem Umluftofen getrocknet. Die Herstellung der Ladungsträger erzeugenden Schicht aus Chlordianblau auf einer konventionellen Polyesterunterlage ist an sich bekannt.A backing suitable for the present invention was prepared by coating an aluminized polyethylene terephthalate support with a solution of a polyester resin which was mixed in a tetrahydrofuran: toluene solvent mixture in a ratio of 9: 1 (0.7% to 1.4% solids content, weight : Weight) was solved. The polyester coating was applied using a meniscus coating process and dried in a forced air oven. Then chlorodian blue (0.73 g% solids content) was dissolved in a mixture of ethylene diamine, n-butylamine and tetrahydrofuran in a weight ratio of 1.2: 1.0: 2.2. Silicone oil was then added in an amount of 2.3% by weight based on the chlorordian blue. The resulting solution was applied to the polyester-coated support by a meniscus coating method and the resulting coated base was dried in a forced air oven. The production of the layer producing chlorine dian blue on a conventional polyester base is known per se.

Die neue Ladungsträgertransportschicht gemäß der Erfindung wurde hergestellt durch Mischen eines Polycarbonatharz-Bindemittels in einer Menge von 7,65 g, eines Polyesterharzes in einer Menge von 3,60 g und eines Acrylharzes in einer Menge von 2,25 g in 86,5 Tetrahydrofuran und Toluol, wobei die Lösungsmittel in einem Gewichtsverhältnis von etwa 9:1 vorliegen. Als bevorzugtes Hydrazon gemäß vorliegender Erfindung wird p-Diäthylaminobenzaldehyd-(diphenylhydrazon) in einer Menge von 9,0 g zusammen mit 0,02 g Siliconöl zugegeben. Zur Einstellung der Viskosität, die für das gewählte Beschichtungsverfahren geeignet ist, kann weiteres Tetrahydrofuran zugegeben werden. In dem vorliegenden Beispiel wurde die resultierende Lösung auf die zuvor hergestellte Ladungsträger erzeugende Schicht aufgetragen und der gesamte Film wiederum im einem Umluftofen getrocknet unter Erhalt eines mehrschichtigen elektrophotographischen Aufzeichnungsmaterials. Das elektrophotographische Aufzeichnungsmaterial wurde getestet, indem die Oberfläche auf -870 Volt im Dunkeln aufgeladen wurde, das geladene elektrophotographische Aufzeichnungsmaterial mit Licht, das in kommerziellen elektrophotographischen Geräten angewendet wird, unter verschiedenen Bedingungen der Lichtintensität belichtet und indem die Lichintensität, die erforderlich ist, um das Aufzeichnungsmaterial auf eine Spannung von - 150 Volt innerhalb 454 ms unter den angegebenen Bedingungen zu entladen, bestimmt wurde. Es wurde festgestellt, daß zur Entladung des Aufzeichnungsmaterials des vorliegenden Beispiels 1, 10 pt/cm2 erforderlich waren. Dieser Wert zeigt einen ausgezeichneten Löchertransport an. Elektrophotographische Aufzeichnungsmaterialien, die mit denen der vorliegenden Beispiele identisch sind, wurden in kommerziellen Kopiergeräten getestet und ergaben ausgezeichnete Ergebnisse hinsichtlich des Ladungstransports, der Widerstandsfähigkeit gegen Tonerfilmbildung, der physikalischen Widerstandsfähigkeit gegen Abnutzung, der Langzeitstabilität elektrischer und physikalischer Eigenschaften und des Arbeitens bei niedriger Temperatur.The new charge carrier transport layer according to the invention was prepared by mixing a polycarbonate resin binder in an amount of 7.65 g, a polyester resin in an amount of 3.60 g and an acrylic resin in an amount of 2.25 g in 86.5 tetrahydrofuran and Toluene, the solvents being in a weight ratio of about 9: 1. As a preferred hydrazone according to the present invention, p-diethylaminobenzaldehyde (diphenylhydrazone) is added in an amount of 9.0 g together with 0.02 g of silicone oil. Further tetrahydrofuran can be added to adjust the viscosity, which is suitable for the chosen coating method. In the present example, the resulting solution was applied to the previously produced carrier generation layer and the entire film was again dried in a forced air oven to obtain a multilayer electrophotographic recording material. The electrophotographic recording material was tested by charging the surface to -870 volts in the dark, exposing the charged electrophotographic recording material to light used in commercial electrophotographic equipment under various conditions of light intensity and by the light intensity required to achieve this Discharge of recording material to a voltage of - 150 volts within 454 ms under the specified conditions was determined. It was found that 1.10 pt / cm 2 was required to discharge the recording material of the present example. This value indicates excellent hole transport. Electrophotographic recording materials identical to those of the present examples were tested in commercial copying machines and gave excellent results in terms of charge transport, resistance to toner film formation, physical resistance to wear, long-term stability of electrical and physical properties and working at low temperature.

Beispiele 2 a - fExamples 2 a - f

Mehrschichtige elektrophotographische Aufzeichnungsmaterialien, die dem in Beispiel 1 hergestellten ähnlich sind, wurden hergestellt mit unterschiedlichen Harzen in unterschiedlichen Mengen in der Ladungsträgertransportschicht.

Figure imgb0014
Multilayer electrophotographic recording materials similar to that made in Example 1 were made with different resins in different amounts in the charge transport layer.
Figure imgb0014

Versuche, die wie in Beispiel 1 angegeben durchgeführt wurden, ergaben folgende Ergebnisse:

Figure imgb0015
Experiments carried out as indicated in Example 1 gave the following results:
Figure imgb0015

Beispiel 3Example 3

Ein mehrschichtiges elektrophotographisches Aufzeichnungsmaterial, das dem im Beispiel 1 ähnlich ist, wurde hergestellt mit der Ausnahme, daß die Lösung zur Herstellung der Ladungsträgertransportschicht 14,5 g Acrylharz als einziges Bindemittel und 14,5 g p-Diäthylamino- benzaldehyd-(diphenylhydrazon) enthielt. Bei einer Prüfung des Aufzeichnungsmaterials wie in Beispiel 1 ergab sich, daß 3,0 µ/cm2 Lichtenergie erforderlich waren, um das Aufzeichnungsmaterial.von einer Spannung in Dunkeln von -870 Vauf 150 V bei einer Ansprechzeit auf Belichtung von 454 ms zu entladen.A multilayer electrophotographic recording material similar to that in Example 1 was prepared except that the solution for preparing the charge carrier transport layer contained 14.5 g of acrylic resin as the sole binder and 14.5 g of p-diethylamino-benzaldehyde (diphenylhydrazone). When the recording material was tested as in Example 1, it was found that 3.0 µ / cm2 of light energy was required to discharge the recording material from a voltage in the dark from -870 V to 150 V with a response time to exposure of 454 ms.

Beispiel 4Example 4

Ein mehrschichtiges elektrophotographisches Aufzeichnungsmaterial, das dem in Beispiel 1 hergestellten ähnlich ist, wurde hergestellt mit der Ausnahme, daß ein anderes Acrylharz verwendet wurde. Bei einer Prüfung wie in Beispiel 1 ergab sich, daß 1,16 µ/cm2 Lichtenergie erforderlich waren, um das Aufzeichnungsmaterial von einer Spannung im Dunkeln von -870 V auf -150 V bei einer Ansprechzeit auf Belichtung von 454 ms 'zu entladen.A multilayer electrophotographic recording material similar to that prepared in Example 1 was made except that a different acrylic resin was used. When tested as in Example 1, it was found that 1.16 µ / cm 2 of light energy was required to discharge the recording material from a voltage in the dark from -870 V to -150 V with a response time to exposure of 454 ms ' .

Beispiele 5 a - eExamples 5 a - e

Mehrschichtige elektrophotographische Aufzeichnungsmaterialien, die denen von Beispiel 2 ähnlich waren, wurden hergestellt mit der Ausnahme, daß die folgenden Polyesterharze anstelle des dort angegebenen Polyesterharzes verwendet wurden.

Figure imgb0016
Ergebnisse, die denen von Beispiel 2e ähnlich waren, wurden in jedem Fall erhalten.Multilayer electrophotographic recording materials similar to that of Example 2 were prepared except that the following polyester resins were used in place of the polyester resin specified therein.
Figure imgb0016
Results similar to those of Example 2e were obtained in each case.

Beispiele 6 a- kExamples 6 a- k

Mehrschichtige elektrophotographische Aufzeichnungsmaterialien, die dem in Beispiel 1 ähnlich sind, wurden hergestellt mit der Ausnahme, daß die zuerst aufgetragenen Klebstoffschichten mit anderen Harzen als dem dort angegebenen Polyester, aber in ähnlichen Mengen hergestellt wurden. Jedes Aufzeichnungsmaterial wurde auf -870 V aufgeladen und auf -150 V in 146 ms entladen. Die nachfolgend angegebenen Belichungsenergien in µ/cm2 waren erforderlich.

Figure imgb0017
Multilayer electrophotographic recording materials similar to that in Example 1 were made, except that the adhesive layers applied first were made with resins other than the polyester specified there, but in similar amounts. Each recording material was charged to -870 V and discharged to -150 V in 146 ms. The exposure energies given below in µ / cm 2 were required.
Figure imgb0017

Beispiele 7a und 7bExamples 7a and 7b

Mehrschichtige elektrophotographische Aufzeichnungsmaterialien, die dem im Beispiel 2e hergestellten ähnlich sind, wurden hergestellt mit der Ausnahme, daß 5,78 g p-Diäthylamino- benzaldehyd-(diphenylhydrazon) in der Lösung der Ladungsträgersportschicht in Beispiel 7a und 7,27 g in Beispiel 7b verwendet wurden. Bei einer Prüfung unter den gleichen Entladungsspannungen und den gleichen Ansprechzeiten auf Belichtung wie in Beispiel 1 wurde gefunden, daß für das elektrophotographische Aufzeichungsmaterial von Beispiel 7a 1,4 µ/cm2 Lichtenergie und für dasjenige von Beispiel 7b 1,3 ut/cm2 erforderlich waren.Multilayer electrophotographic recordings similar to that prepared in Example 2e were made except that 5.78 g of p-diethylamino-benzaldehyde (diphenylhydrazone) was used in the charge carrier sport layer solution in Example 7a and 7.27 g in Example 7b were. When tested under the same discharge voltages and exposure times as in Example 1, it was found that 1.4 µ / cm 2 of light energy was required for the electrophotographic recording material of Example 7a and 1.3 µ / cm2 for that of Example 7b .

Beispiel 8Example 8

Ein mehrschichtiges elektrophotographisches Aufzeichnungsmaterial, das dem von Beispiel 2a ähnlich war, wurde hergestellt mit der Ausnahme, daß 13,5 g p-Diäthylaminobenzaldehyd-(diphenyl- hydrazon) in der Lösung der Ladungsträgertransportportschicht verwendet wurden. Bei einer Prüfung, die wie im Beispiel 1 angegeben durchgeführt wurde, waren 1,37 µ/cm2 Lichtenergie erforderlich, um das Aufzeichnungsmaterial von einer Dunkelspannung von -870 V auf -150 V bei einer Ansprechzeit auf Belichtung von 146 ms zu entladen.A multilayer electrophotographic recording medium similar to that of Example 2a was prepared except that 13.5 g of p-diethylaminobenzaldehyde (diphenylhydrazone) was used in the solution of the charge transport layer. In a test carried out as indicated in Example 1, 1.37 μ / cm 2 of light energy was required to discharge the recording material from a dark voltage of -870 V to -150 V with a response time to exposure of 146 ms.

Beispiel 9Example 9

Ein mehrschichtiges elektrophotographisches Aufzeichnungsmaterial, das dem in Beispiel 2a ähnlich war, wurde hergestellt mit der Ausnahme, daß 20,25 g p-Diäthylaminobenzaldehyd-(diphenyl- hydrazon) in der Lösung der Ladungsträgertransportschicht verwendet wurden. Bei einer Prüfung, die wie in Beispiel 1 angegeben durchgeführt wurde, ergab sich, daß 1,37 µ/cm2 Lichtenergie erforderlich waren, um das Aufzeichnungsmaterial von einer Dunkelspannung von -870 V auf -150 V bei einer Ansprechzeit auf Belichtung von 146 ms zu entladen.A multilayer electrophotographic recording medium similar to that in Example 2a was prepared except that 20.25 g of p-diethylaminobenzaldehyde (diphenylhydrazone) was used in the solution of the charge transport layer. When tested as described in Example 1, it was found that 1.37 µ / cm 2 of light energy was required to switch the recording material from a dark voltage of -870 V to -150 V with a response time to exposure of 146 ms to unload.

Beispiele 10 a - dExamples 10 a - d

Mehrschichtige elektrophotographische Aufzeichnungsmaterialien, die dem in Beispiel 2a angegebenen ähnlich waren, wurden hergestellt mit der Ausnahme, daß alternativ die folgenden Hydrazonverbindungen in den gleichen Mengen in der Lösung der Ladungsträgertransportschicht verwendet wurden:Multilayer electrophotographic recordings similar to that given in Example 2a were made except that alternatively the following hydrazone compounds were used in the same amounts in the charge transport layer solution:

Beispielexample

  • 10a o-Methyl-p-dimethylaminobenzaldehyd-(diphenylhydrazon)10a o-methyl-p-dimethylaminobenzaldehyde (diphenylhydrazone)
  • 10b o-Äthoxy p-diäthylaminobenzaldehyd-(diphenylhydrazon)10b o-ethoxy p-diethylaminobenzaldehyde- (diphenylhydrazone)
  • 10c o-Methyl-p-diäthylaminobenzaldehyd-(diphenylhydrazon)10c o-methyl-p-diethylaminobenzaldehyde (diphenylhydrazone)
  • 10d p-Dimethylaminobenzaldehyd-(diphenylhydrazon)10d p-dimethylaminobenzaldehyde (diphenylhydrazone)

Die folgenden Ergebnisse wurden erhalten:

Figure imgb0018
The following results were obtained:
Figure imgb0018

Beispiele 11 a - cExamples 11 a - c

Mehrschichtige elektrophotographische Aufzeichnungsmaterialien, die dem in Beispiel 2a angegebenen ähnlich waren, wurden hergestellt mit der Ausnahme, daß 13,5 g der folgenden Hydrazone in der Lösung der Ladungsträgertransportschicht verwendet wurden:Multilayer electrophotographic recordings similar to that given in Example 2a were made except that 13.5 g of the following hydrazones were used in the charge transport layer solution:

Beispielexample

  • 11 a o-Methyl-p-dimethylaminobenzaldehyd-(diphenylhydrazon)11 a o-methyl-p-dimethylaminobenzaldehyde (diphenylhydrazone)
  • 1 1 b o-Äthoxy-p-diäthylaminobenzaldehyd-(diphenylhydrazon)1 1 b o-ethoxy-p-diethylaminobenzaldehyde (diphenylhydrazone)
  • 1 1 c o-Methyl-p-diäthylaminobenzaldehyd-(diphenylhydrazon)1 1 c o-methyl-p-diethylaminobenzaldehyde (diphenylhydrazone)

Die folgenden Ergebnisse wurden' erhalten:

Figure imgb0019
The following results were 'received:
Figure imgb0019

Beispiele 12 a - cExamples 12 a - c

Mehrschichtige elektrophotographische Aufzeichnungsmaterialien, die dem in Beispiel 1 ähnlich waren, wurden hergestellt mit der Ausnahme, daß die Lösung der Ladungsträgertransportschicht 6,75 g Polyesterharz, 6,75 g Polycarbonatharz und 13,5 g der nachfolgend angegebenen Hydrazonverbindungen enthielt:Multilayer electrophotographic recordings similar to that in Example 1 were made except that the charge transport layer solution contained 6.75 g polyester resin, 6.75 g polycarbonate resin and 13.5 g of the hydrazone compounds shown below:

Beispielexample

  • 12a p-Dimethylaminobenzaldehyd-(diphenylhydrazon)12a p-dimethylaminobenzaldehyde (diphenylhydrazone)
  • 12b p-Dipropylaminobenzaldehyd-(diphenylhydrazon)12b p-dipropylaminobenzaldehyde (diphenylhydrazone)
  • 12c p-Dibutylaminobenzaldehyd-(diphenylhydrazon)12c p-dibutylaminobenzaldehyde (diphenylhydrazone)

Die folgenden Ergebnisse wurden erhalten:

Figure imgb0020
The following results were obtained:
Figure imgb0020

Beispiel 13Example 13

Auf eine Art, die der in Beispiel 1 angegebenen ähnlich ist, wird Hydroxysquarylium in einer Menge von 1 g in einem Lösungsmittelgemisch aus 1 ml Äthylendiamin, 5 ml Propylamin und 24 ml Tetrahydrofuran gelöst und mittels eines Meniskusbeschichtungsverfahrens auf eine aluminisierte Polyesterunterlage aufgetragen und getrocknet unter Erhalt einer Ladungsträger erzeugenden Schicht. Eine Ladungsträgertransportschicht gemäß der vorliegenden Erfindung wurde hergestellt durch Meniskusbeschichten der mit der Ladungsträger erzeugenden Schicht beschichteten Unterlage mit einer Lösung von 8,12 g eines Polycarbonatharzes und 8,12 g p-Diäthylaminobenzaldehyd-(diphenyl- hydrazon) in einer 9:1-Mischung Tetrahydrofuran und Toluol und Trocknen unter Ausbildung eines mehrschichtigen elektrophotographichsen Aufzeichnungsmaterials. Bei einer Prüfung wie in Beispiel 1 ergab sich, daß 1,40 µ/cm2 Lichtenergie erforderlich waren, um das Aufzeichnungsmaterial von einer Spannung im Dunkeln von -870 V auf -150 V bei einer Ansprechzeit auf Belichtung von 146 ms zu entladen.In a manner similar to that given in Example 1, hydroxysquarylium in an amount of 1 g is dissolved in a mixed solvent of 1 ml of ethylenediamine, 5 ml of propylamine and 24 ml of tetrahydrofuran and applied to an aluminized polyester base by a meniscus coating method and dried to obtain a layer generating charge carriers. A charge carrier transport layer according to the present invention was produced by meniscus coating the support-coated layer with a solution of 8.12 g of a polycarbonate resin and 8.12 g of p-diethylaminobenzaldehyde (diphenylhydrazone) in a 9: 1 mixture of tetrahydrofuran and toluene and drying to form a multilayer electrophotographic recording material. When tested as in Example 1, it was found that 1.40 µ / cm 2 of light energy was required to discharge the recording material from a voltage in the dark from -870 V to -150 V with a response time to exposure of 146 ms.

Beispiel 14Example 14

Ein mehrschichtiges elektrophotographisches Aufzeichnungsmaterial, das dem in Beispiel 13 ähnlich ist, wurde hergestellt mit der Ausnahme, daß o-Äthoxy-p-diäthylaminobenzaldehyd-(diphenyl- hydrazon) in der Lösung der Ladungsträgertransportschicht verwendet wurde. Bei einer prüfung wie in Beispiel 1 ergab sich, daß 1,02 µ/cm2 Lichtenergie erforderlich waren, um das Aufzeichnungsmaterial von einer Spannung im Dunkeln von -870 V auf -150 V bei einer Ansprechzeit auf Belichtung von 146 ms zu entladen.A multilayer electrophotographic recording material similar to that in Example 13 was made except that o-ethoxy-p-diethylaminobenzaldehyde (diphenylhydrazone) was used in the charge transport layer solution. When tested as in Example 1, it was found that 1.02 µ / cm 2 of light energy was required to discharge the recording material from a voltage in the dark from -870 V to -150 V with a response time to exposure of 146 ms.

Beispiel 15Example 15

Es wurde ein mehrschichtiges elektrophotographisches Aufzeichnungsmaterial, das dem in Beispiel 13 ähnlich ist, hergestellt mit der Ausnahme, daß die Lösung der Ladungsträger erzeugenden Schicht 0,85 g Hydroxysquarylium und 0,15 g Methylsquarylium enthielt. Bei einer Prüfung wie in Beispiel 1 ergab sich, daß 0,86 µ/cm2 Lichtenergie erforderlich waren, um das Aufzeichnungsmaterial von einer Spannung im Dunkeln von -870 V auf -150 V bei einer Ansprechzeit auf Belichtung von 146 ms zu entladen.A multilayer electrophotographic recording material similar to that in Example 13 was prepared except that the carrier generation layer solution contained 0.85 g of hydroxysquarylium and 0.15 g of methylsquarylium. When tested as in Example 1, it was found that 0.86 µ / cm 2 of light energy was required to discharge the recording material from a voltage in the dark from -870 V to -150 V with a response time to exposure of 146 ms.

Beispiel 16Example 16

Ein mehrschichtiges elektrophotographisches Aufzeichnungsmaterial, das dem in Beispiel 13. ähnlich war, wurde hergestellt mit der Ausnahme, daß die Lösung der Ladungsträger erzeugenden Schicht 0,85 g Hydroxysquarylium und 0,15 g Methylsquarylium und die Lösung der Ladungsträgertransportschicht 8,12 g Polycarbonatharz und 5,42 g p-Diäthylaminobenzaldehyd-(diphenylhydrazon) enthielt. Bei einer Prüfung wie in Beispiel 1 ergab sich, daß 1,10 µ/cm2 Lichtenergie erforderlich waren, um das Aufzeichnungsmaterial von einer Spannung in Dunkeln von -870 V auf -150 V bein einer Ansprechzeit auf Belichtung von 146 ms zu entladen.A multilayer electrophotographic recording material similar to that in Example 13 was prepared except that the solution of the carrier generation layer was 0.85 g of hydroxysquarylium and 0.15 g of methylsquarylium and the solution of the carrier transport layer was 8.12 g of polycarbonate resin and 5 , 42 g of p-diethylaminobenzaldehyde (diphenylhydrazone) contained. When tested as in Example 1, it was found that 1.10 µ / cm 2 of light energy was required to discharge the recording medium from a voltage in the dark from -870 V to -150 V with a response time to exposure of 146 ms.

Beispiel 17Example 17

Ein mehrschichtiges elektrophotographisches Aufzeichnungsmaterial wurde hergestellt, indem auf eine Ladungsträger erzeugende Schicht, welche durch Vakuumabscheidung von Selen und Tellur hergestellt worden war, eine Ladungsträgertransportschicht aus einer Lösung von 6,75 g Polyesterharz, 6,75 g Polycarbonatharz und 13,5 g p-Diäthylaminobenzaldehyd-(diphenylhydrazon) aufgetragen wurde. Bei einer Prüfung wie in Beispiel 1 ergab sich, daß 2,0 pt/cml Lichtenergie erforderlich waren, um das Aufzeichnungsmaterial von einer Spannung im Dunkeln von -800 V auf -300 V bein einer Ansprechzeit auf Belichtung von 454 ms zu entladen.A multilayer electrophotographic recording material was prepared by adding a charge transport layer composed of a solution of 6.75 g polyester resin, 6.75 g polycarbonate resin and 13.5 g p-diethylaminobenzaldehyde to a charge-generating layer which had been produced by vacuum deposition of selenium and tellurium - (Diphenylhydrazone) was applied. When tested as in Example 1, it was found that 2.0 pt / cml of light energy was required to discharge the recording material from a voltage in the dark from -800 V to -300 V with a response time to exposure of 454 ms.

Aus den zuvor angegebenen Beispielen ist ersichtlich, daß die Ladungsträgertransportschicht vom p-Typ gemäß der vorliegenden Erfindung mit verschiedenen Typen von Harzbindemitteln wie auch einer Vielzahl von Hydrazonverbindungen des angegebenen Typs hergestellt werden kann. Sowohl organische wie auch anorganische Ladungsträger erzeugende Schichten sind mit der Ladungsträgertransportschicht gemäß der vorliegenden Erfindung verwendbar, und an sich bekannte verschiedene Kombinationen von Lösungsmitteln, polymeren Bindemitteln und dergleichen können verwendet werden. Bestimmte Hydrazonverbindungen zeigen, wenn sie in relativ hohen Konzentrationen verwendet werden, eine Tendenz zur Kristallisation, wodurch ihre Ladungsträgertransportfunktion abnimmt. Wenn jedoch geringere Mengen verwendet werden, werden brauchbare Ergebnisse erhalten. Eine Auswahl in dieser Richtung kann durch den Fachmann getroffen werden. Die elektrophotographischen Aufzeichnungsmaterialien mit der erfindungsgemäßen Ladungsträgertransportschicht zeigen ein ausgezeichnetes Verhältnis von Empfindlichkeit, insbesondere bei niedrigen Temperaturen, Adhäsion zu benachbarten Schichten und Widerstandsfähigkeit gegen mechanische Abnutzung wiederum bei verschiedenen Temperaturen. Die Aufzeichnungsmaterialien zeigen auch hinsichtlich der. Alterung ausgezeichnete Eigenschaften und weisen eine beträchtliche Widerstandsfähigkeit gegen Tonerfilmbildung auf.From the examples given above it can be seen that the p-type charge transport layer according to the present invention can be made with various types of resin binders as well as a variety of hydrazone compounds of the specified type. Both organic and inorganic charge generation layers can be used with the charge transport layer according to the present invention, and various combinations of solvents, polymeric binders and the like known per se can be used. Certain hydrazone compounds show when in relatively high concentrations a tendency to crystallize, thereby decreasing their charge transport function. However, if smaller amounts are used, useful results will be obtained. A selection in this direction can be made by a person skilled in the art. The electrophotographic recording materials with the charge carrier transport layer according to the invention show an excellent ratio of sensitivity, in particular at low temperatures, adhesion to adjacent layers and resistance to mechanical wear, again at different temperatures. The recording materials also show in terms of. Aging excellent properties and have considerable resistance to toner film formation.

Claims (12)

1. Electrophotographic recording material having an electrically conductive layer, a charge generation layer, and a binder-containing charge transport layer, characterized in that the charge transport layer contains as charge transport compound a hydrazone of the general formula
Figure imgb0023
where the residues are
Figure imgb0024
2. An electrophotographic recording material as claimed in claim 1, characterized in that the charge transport layer contains hydrazones selected from the group comprising p-diethylaminobenzaldehyde (diphenylhydrazone), o-ethoxy-p-diethylaminobenzaldehyde-(diphenylhydrazone), o-methyl-p-diethylaminobenzaldehyde-(diphenylhydrazone), o-methyl-p-dimethylaminobenzaldehyde-(diphenylhydrazone), p-dipropylaminobenzaldehyde-(diphenylhydrazone), p-diethylaminobenzaldehyde-(benzyl- phenylhydrazone), p-dibutylaminobenzaldehyde-(diphenylhydrazone), p-dimethylaminobenzaldehyde-(diphenylhydrazone).
3. Electrophotographic recording material as claimed in claim 1, characterized in that the charge transport layer contains as a polymeric binder a polycarbonate resin, a polyester resin, or an acrylic resin, or mixtures thereof.
4. Electrophotographic recording material as claimed in claims 1, 2 and 3, characterized in that the charge transport layer contains p-diethylaminobenzaldehyde-(diphenylhydrazone), and a polycarbonate resin, polyester resin, or an acrylic resin, or mixtures thereof.
5. Electrophotographic recording material as claimed in claims 1 and 4, characterized in that the charge transport layer is between 7 and 35 µm thick.
6. Electrophotographic recording material as claimed in any one of claims 1 to 5, characterized in that the charge transport layer is of the p-type.
7. Electrophotographic recording material as claimed in claim 1, characterized in that the charge transport layer is positioned on the charge generation layer.
8. Electrophotographic recording material as claimed in claim -1, characterized in that the charge generation layer contains a photoconductor selected from the group consisting of selenium, tellurium, or their alloys; compounds of elements of Group Ilb with those of Group Via of the Periodic Table; of cyanine compounds, disazo compounds, phthalocyanine compounds, and methine dyes derived from squaric acid.
9. Electrophotographic recording material as claimed in claim 8, characterized in that the charge generation layer contains chlorodiane blue, methyl squarylium, and/or hydroxy squarylium.
10. Electrophotographic recording material as claimed in one or several of claims 1 to 9, characterized in that the charge generation layer is between 0.05 and 0.2 µm thick, and in that the charge transport layer is at least 5 µm thick.
11. Electrophotographic recording material as claimed in claims 1 and 8, characterized in that the charge generation layer is responsive to actinic radiation with a wave length greater than 390 nm, and in that the charge transport layer is transparent to this radiation.
12. Use of the electrophotographic recording material as claimed in any one of claims 1 to 11 in an electrophotographic copying process.
EP78101087A 1977-10-17 1978-10-06 Electrophotographic recording material and its application in a copying process Expired EP0001599B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US842431 1977-10-17
US05/842,431 US4150987A (en) 1977-10-17 1977-10-17 Hydrazone containing charge transport element and photoconductive process of using same

Publications (2)

Publication Number Publication Date
EP0001599A1 EP0001599A1 (en) 1979-05-02
EP0001599B1 true EP0001599B1 (en) 1981-10-21

Family

ID=25287276

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78101087A Expired EP0001599B1 (en) 1977-10-17 1978-10-06 Electrophotographic recording material and its application in a copying process

Country Status (7)

Country Link
US (1) US4150987A (en)
EP (1) EP0001599B1 (en)
JP (1) JPS5459143A (en)
AR (1) AR222158A1 (en)
AU (1) AU520312B2 (en)
CA (1) CA1108914A (en)
DE (1) DE2861209D1 (en)

Families Citing this family (284)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150128A (en) * 1978-05-17 1979-11-26 Mitsubishi Chem Ind Electrophotographic photosensitive member
JPS5546760A (en) * 1978-09-29 1980-04-02 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5552063A (en) * 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5584943A (en) * 1978-12-21 1980-06-26 Ricoh Co Ltd Laminated type electrophotographic photoreceptor
US4269922A (en) * 1979-03-12 1981-05-26 Xerox Corporation Positive toners containing long chain hydrazinium compounds
JPS55157550A (en) * 1979-05-25 1980-12-08 Ricoh Co Ltd Novel hydrazone compound and its preparation
US4297426A (en) * 1979-05-28 1981-10-27 Ricoh Co., Ltd. Electrophotographic element with carbazole hydrazone or anile charge transport compounds
JPS561944A (en) * 1979-06-20 1981-01-10 Ricoh Co Ltd Electrophotographic receptor
JPS5681850A (en) * 1979-12-08 1981-07-04 Ricoh Co Ltd Electrophotographic receptor
US4247477A (en) * 1980-02-27 1981-01-27 Gaf Corporation Copolymerizable, ultraviolet light absorber 4-allyloxybenzal-1-phenylhydrazones
US4247714A (en) * 1980-02-27 1981-01-27 Gaf Corporation Copolymerizable, ultraviolet light absorber 4-acryloyloxybenzal-1-alkyl-1-phenylhydrazone
US4385106A (en) * 1980-02-28 1983-05-24 Ricoh Co., Ltd. Charge transfer layer with styryl hydrazones
US4307167A (en) * 1980-03-03 1981-12-22 International Business Machines Corporation Layered electrophotographic plate having tetramethyl benzidene based disazo dye
US4388393A (en) * 1980-03-13 1983-06-14 Ricoh Co., Ltd. Hydrazone compound, with hydroxyethyl group in charge transfer layer
DE3176608D1 (en) * 1980-05-21 1988-02-18 Ciba Geigy Ag Process for the preparation of a uv-absorbing mask
JPS575050A (en) * 1980-06-11 1982-01-11 Ricoh Co Ltd Electrophotographic receptor
JPS6034099B2 (en) * 1980-06-24 1985-08-07 富士写真フイルム株式会社 electrophotographic photoreceptor
US4390611A (en) * 1980-09-26 1983-06-28 Shozo Ishikawa Electrophotographic photosensitive azo pigment containing members
GB2088074B (en) * 1980-09-26 1984-12-19 Copyer Co Electrophotographic photosensitive member
JPS5767940A (en) 1980-10-15 1982-04-24 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS6034101B2 (en) * 1980-10-23 1985-08-07 コニカ株式会社 electrophotographic photoreceptor
US4399208A (en) * 1980-11-22 1983-08-16 Canon Kabushiki Kaisha Electrophotographic photosensitive member
US4420548A (en) * 1980-11-28 1983-12-13 Canon Kabushiki Kaisha Electrophotographic member with hydrazone or ketazine compounds
JPS5799648A (en) * 1980-12-13 1982-06-21 Copyer Co Ltd Electrophotographic receptor
US4481271A (en) * 1980-12-15 1984-11-06 Ricoh Company, Ltd. Layered electrophotographic photoconductor containing a hydrazone
US4423129A (en) * 1980-12-17 1983-12-27 Canon Kabushiki Kaisha Electrophotographic member having layer containing methylidenyl hydrazone compound
JPS57104144A (en) * 1980-12-19 1982-06-29 Fuji Photo Film Co Ltd Electrophotographic receptor
US4321318A (en) * 1980-12-23 1982-03-23 International Business Machines Corporation Disazo photoconductor and process of manufacture of electrophotographic element
US4446217A (en) * 1981-02-03 1984-05-01 Canon Kabushiki Kaisha Electrophotographic photosensitive member having a hydrazone containing layer
JPS6058469B2 (en) * 1981-02-19 1985-12-20 コニカ株式会社 electrophotographic photoreceptor
JPS57147656A (en) * 1981-03-09 1982-09-11 Fuji Photo Film Co Ltd Electrophotographic sensitive printing plate material
JPS5723972U (en) * 1981-03-11 1982-02-06
JPS57148749A (en) * 1981-03-11 1982-09-14 Fuji Photo Film Co Ltd Electrophotographic receptor
US4418133A (en) * 1981-03-27 1983-11-29 Canon Kabushiki Kaisha Disazo photoconductive material and electrophotographic photosensitive member having disazo pigment layer
JPS57169755A (en) * 1981-04-11 1982-10-19 Mitsubishi Paper Mills Ltd Electrophotographic receptor
US4362798A (en) * 1981-05-18 1982-12-07 International Business Machines Corporation Hydrazone and pyrazoline or acetosol yellow containing charge transport layer, photoconductor and electrophotographic process using the same
JPS57195255A (en) * 1981-05-26 1982-11-30 Canon Inc Electrophotographic receptor
US4343881A (en) * 1981-07-06 1982-08-10 Savin Corporation Multilayer photoconductive assembly with intermediate heterojunction
JPS587643A (en) * 1981-07-07 1983-01-17 Mitsubishi Chem Ind Ltd Electrophotographic receptor
US4399207A (en) * 1981-07-31 1983-08-16 Canon Kabushiki Kaisha Electrophotographic photosensitive member with hydrazone compound
US4390610A (en) * 1981-10-29 1983-06-28 International Business Machines Corporation Layered electrophotographic imaging element, apparatus and method sensitive to gallium arsenide laser, the element including two charge generation layers and a polycarbonate adhesive layer
US4381337A (en) * 1981-11-23 1983-04-26 Pitney Bowes Inc. Polyester adhesive layer for photosensitive elements
JPS58100134A (en) * 1981-12-09 1983-06-14 Canon Inc Electrophotographic receptor
US4456671A (en) * 1981-12-23 1984-06-26 Canon Kabushiki Kaisha Electrophotographic photosensitive member having a photosensitive layer containing a hydrazone compound
DE3201202A1 (en) * 1982-01-16 1983-07-28 Basf Ag, 6700 Ludwigshafen NEW PHENYL HYDRAZONE AND THEIR USE
GB2114766B (en) * 1982-02-05 1985-05-22 Konishiroku Photo Ind Electrophotographic photoreceptor
JPS58181050A (en) * 1982-04-17 1983-10-22 Canon Inc Electrophotographic receptor
JPS58199353A (en) * 1982-05-17 1983-11-19 Canon Inc Electrophotographic receptor
EP0096989A3 (en) * 1982-05-26 1984-11-14 Toray Industries, Inc. Electrophotographic photosensitive material
JPS5915251A (en) * 1982-07-16 1984-01-26 Mitsubishi Chem Ind Ltd Electrophotographic receptor
JPS5942352A (en) 1982-09-01 1984-03-08 Fuji Photo Film Co Ltd Disazo compound, photoconductive composition and electrophotographic sensitive material containing the same
JPS5950445A (en) * 1982-09-16 1984-03-23 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Xerographic material
US4447144A (en) * 1982-12-08 1984-05-08 International Business Machines Corporation Grooved roller support for a belt xerographic photoconductor
DE3246036C2 (en) * 1982-12-09 1984-11-29 Hoechst Ag, 6230 Frankfurt Electrophotographic recording material
US4507480A (en) * 1983-05-09 1985-03-26 Xerox Corporation Squaraines
US4471041A (en) * 1983-05-09 1984-09-11 Xerox Corporation Photoconductive devices containing novel squaraine compositions
US4567126A (en) * 1983-12-01 1986-01-28 Mitsubishi Paper Mills, Ltd. Hydrazone photoconductive materials for electrophotography
US4486520A (en) * 1983-12-05 1984-12-04 Xerox Corporation Photoconductive devices containing novel squaraine compositions
US4508803A (en) * 1983-12-05 1985-04-02 Xerox Corporation Photoconductive devices containing novel benzyl fluorinated squaraine compositions
US4515882A (en) * 1984-01-03 1985-05-07 Xerox Corporation Overcoated electrophotographic imaging system
US4524218A (en) * 1984-01-11 1985-06-18 Xerox Corporation Processes for the preparation of squaraine compositions
US4588667A (en) * 1984-05-15 1986-05-13 Xerox Corporation Electrophotographic imaging member and process comprising sputtering titanium on substrate
JPS60250359A (en) * 1984-05-28 1985-12-11 Fuji Photo Film Co Ltd Electrophotographic recording material
JPH0658538B2 (en) * 1984-09-27 1994-08-03 ミノルタカメラ株式会社 Photoconductor
JPS61123850A (en) * 1984-10-31 1986-06-11 Canon Inc Electrophotographic sensitive body and image forming method
US5290649A (en) * 1986-02-07 1994-03-01 Mitsubishi Chemical Industries Ltd. Electrophotographic photoreceptor comprising a photosensitive layer containing a naphthylhydrazone compound
JPS6330850A (en) * 1986-07-24 1988-02-09 Canon Inc Electrophotographic sensitive body
US4786570A (en) * 1987-04-21 1988-11-22 Xerox Corporation Layered, flexible electrophotographic imaging member having hole blocking and adhesive layers
DE3814105C2 (en) * 1987-04-27 1999-02-04 Minolta Camera Kk Electrophotographic recording material
JPS6444946A (en) * 1987-08-13 1989-02-17 Konishiroku Photo Ind Electrophotographic sensitive body
JPS6444949A (en) * 1987-08-13 1989-02-17 Konishiroku Photo Ind Electrophotographic sensitive body
US4886720A (en) * 1987-08-31 1989-12-12 Minolta Camera Kabushiki Kaisha Photosensitive medium having a styryl charge transport material
DE3890861C2 (en) * 1987-10-07 1994-10-13 Fuji Electric Co Ltd Electrophotographic recording material
US4931371A (en) * 1987-11-24 1990-06-05 Canon Kabushiki Kaisha Electrophotographic photosensitive member
DE3740421A1 (en) * 1987-11-28 1989-06-08 Basf Ag MULTILAYERED, ELECTROPHOTOGRAPHIC RECORDING MATERIAL
DE3740420A1 (en) * 1987-11-28 1989-06-08 Basf Ag MULTI-LAYER ELECTROPHOTOGRAPHIC RECORDING MATERIAL
US4956277A (en) * 1987-12-09 1990-09-11 Fuji Electric Co., Ltd. Photoconductor comprising charge transporting hydrazone compounds
JPH01237555A (en) * 1988-03-17 1989-09-22 Fuji Electric Co Ltd Electrophotographic sensitive body
US4956250A (en) * 1988-03-23 1990-09-11 Fuji Electric Co., Ltd. Azulenium photoconductor for electrophotography
JPH01273049A (en) * 1988-04-26 1989-10-31 Fuji Electric Co Ltd Electrophotographic sensitive body
US4935323A (en) * 1988-06-08 1990-06-19 Fuji Electric Co., Ltd. Photoconductor for electrophotography
JPH0212258A (en) * 1988-06-30 1990-01-17 Fuji Electric Co Ltd Electrophotographic sensitive body
JP2629885B2 (en) * 1988-09-17 1997-07-16 富士電機株式会社 Electrophotographic photoreceptor
US4874682A (en) * 1988-10-28 1989-10-17 International Business Machines Corporation Organic photoconductors with reduced fatigue
US5262261A (en) * 1988-12-29 1993-11-16 Canon Kabushiki Kaisha Photosensitive member for electrophotography
JPH02178670A (en) * 1988-12-29 1990-07-11 Canon Inc Electrophotographic sensitive body
US4921773A (en) * 1988-12-30 1990-05-01 Xerox Corporation Process for preparing an electrophotographic imaging member
US4933244A (en) * 1989-01-03 1990-06-12 Xerox Corporation Phenolic epoxy polymer or polyester and charge transporting small molecule at interface between a charge generator layer and a charge transport layer
JP2629929B2 (en) * 1989-01-19 1997-07-16 富士電機株式会社 Electrophotographic photoreceptor
JPH0750331B2 (en) * 1989-01-20 1995-05-31 キヤノン株式会社 Electrophotographic photoreceptor
US4988596A (en) * 1989-02-10 1991-01-29 Minolta Camera Kabushiki Kaisha Photosensitive member containing hydrazone compound with styryl structure
JPH02226160A (en) * 1989-02-27 1990-09-07 Mitsubishi Paper Mills Ltd Electrophotographic sensitive body
US5130603A (en) 1989-03-20 1992-07-14 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
JPH02254467A (en) * 1989-03-29 1990-10-15 Fuji Electric Co Ltd Electrophotographic sensitive body
GB8912279D0 (en) * 1989-05-27 1989-07-12 Ciba Geigy Japan Ltd Electrophotographic sensitive materials
US5275898A (en) * 1989-06-06 1994-01-04 Fuji Electric Co., Ltd. Bisazo photoconductor for electrophotography
US5266430A (en) * 1989-06-06 1993-11-30 Fuji Electric Co., Ltd. Photoconductor for electrophotography
JP2803169B2 (en) * 1989-06-06 1998-09-24 富士電機株式会社 Electrophotographic photoreceptor
US5198318A (en) * 1989-06-06 1993-03-30 Fuji Electric Co., Ltd. Bisazo photoconductor for electrophotography
US4988594A (en) * 1989-07-26 1991-01-29 Fuji Electric, Co. Ltd. Diazo photoconductor for electrophotography
DE69030852T2 (en) * 1989-08-31 1998-01-08 Lexmark Int Inc Electrophotographic photoconductor
US5130215A (en) * 1989-08-31 1992-07-14 Lexmark International, Inc. Electrophotographic photoconductor contains ordered copolyester polycarbonate binder
US5132189A (en) * 1989-09-07 1992-07-21 Fuji Electric Co., Ltd. Photoconductor for electrophotography
US5120628A (en) * 1989-12-12 1992-06-09 Xerox Corporation Transparent photoreceptor overcoatings
JPH03255453A (en) * 1990-01-17 1991-11-14 Fuji Electric Co Ltd Electrophotographic sensitive body
US5028502A (en) * 1990-01-29 1991-07-02 Xerox Corporation High speed electrophotographic imaging system
JP2770539B2 (en) * 1990-03-08 1998-07-02 富士電機株式会社 Electrophotographic photoreceptor
JP2535240B2 (en) * 1990-03-30 1996-09-18 キヤノン株式会社 Electrophotographic photoreceptor
US5223361A (en) * 1990-08-30 1993-06-29 Xerox Corporation Multilayer electrophotographic imaging member comprising a charge generation layer with a copolyester adhesive dopant
JPH04300853A (en) * 1991-03-29 1992-10-23 Mita Ind Co Ltd Phenylenediamine derivative and photo-sensitizer using the same
US5500261A (en) * 1991-05-24 1996-03-19 Kao Corporation Resin composition and a container
US5316881A (en) * 1991-12-27 1994-05-31 Fuji Electric Co., Ltd. Photoconductor for electrophotgraphy containing benzidine derivative
JPH05224439A (en) * 1992-02-12 1993-09-03 Fuji Electric Co Ltd Electrophotographic sensitive body
JP2817822B2 (en) * 1992-05-14 1998-10-30 富士電機株式会社 Electrophotographic photoreceptor
US5486439A (en) * 1993-02-09 1996-01-23 Canon Kabushiki Kaisha Electrophotographic with polycarbonate having charge transporting group
US5453343A (en) * 1993-02-09 1995-09-26 Industrial Technology Research Institute Hydrazone compounds as charge transport material in photoreceptors
US5418106A (en) * 1993-07-01 1995-05-23 Nu-Kote International, Inc. Rejuvenated organic photoreceptor and method
US5510218A (en) * 1993-07-09 1996-04-23 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge using same and electrophotographic apparatus
US5501930A (en) * 1993-08-26 1996-03-26 Sharp Kabushiki Kaisha Electrophotographic photoreceptor containing enamine derivative
JP3143550B2 (en) * 1993-10-22 2001-03-07 キヤノン株式会社 Electrophotographic photoreceptor, electrophotographic apparatus and apparatus unit having the electrophotographic photoreceptor
JP3158831B2 (en) * 1994-01-11 2001-04-23 富士電機株式会社 Metal-free phthalocyanine, its production method and electrophotographic photoreceptor
US5585213A (en) 1994-06-10 1996-12-17 Toyo Ink Manufacturing Co., Ltd. Hole-transporting material and its use
US5681664A (en) 1994-08-04 1997-10-28 Toyo Ink Manufacturing Co., Ltd. Hole-transporting material and use thereof
US5654481A (en) 1994-10-31 1997-08-05 Hodogaya Chemical Co., Ltd. Amine compound
US5468583A (en) * 1994-12-28 1995-11-21 Eastman Kodak Company Cyclic bis-dicarboximide electron transport compounds for electrophotography
JPH09222741A (en) 1995-12-11 1997-08-26 Toyo Ink Mfg Co Ltd Positive hole transferring material and its use
US5935747A (en) * 1996-06-07 1999-08-10 Canon Kabushiki Kaisha Electrophotographic photosensitive member, and process cartridge and electrophotographic apparatus having the electrophotographic photosensitive member
US6022655A (en) * 1997-04-08 2000-02-08 Sharp Kabushiki Kaisha Photoreceptor for electrophotography, bishydrazone compound and intermediate thereof, and method for producing bishydrazone compound and intermediate thereof
US5925486A (en) * 1997-12-11 1999-07-20 Lexmark International, Inc. Imaging members with improved wear characteristics
US5972549A (en) * 1998-02-13 1999-10-26 Lexmark International, Inc. Dual layer photoconductors with charge generation layer containing hindered hydroxylated aromatic compound
US6225015B1 (en) 1998-06-04 2001-05-01 Mitsubishi Paper Mills Ltd. Oxytitanium phthalocyanine process for the production thereof and electrophotographic photoreceptor to which the oxytitanium phthalocyanine is applied
DE69928896T2 (en) 1998-10-28 2006-08-24 Sharp K.K. An electrophotographic photoreceptor containing crystalline oxotitanyl phthalocyanine
CN1966607A (en) 1998-12-28 2007-05-23 出光兴产株式会社 Material for organic electroluminescent device
JP2000206710A (en) 1999-01-08 2000-07-28 Sharp Corp Electrophotographic photoreceptor and electrophotographic image forming method
TW463528B (en) 1999-04-05 2001-11-11 Idemitsu Kosan Co Organic electroluminescence element and their preparation
JP3464407B2 (en) 1999-04-12 2003-11-10 シャープ株式会社 Electrophotographic photoreceptor and method of manufacturing the same
US6291120B1 (en) 1999-05-14 2001-09-18 Sharp Kabushiki Kaisha Electrophotographic photoreceptor and coating composition for charge generating layer
WO2004011555A1 (en) 2002-07-29 2004-02-05 Mitsubishi Paper Mills Limited Organic dye, photoelectric transducing material, semiconductor electrode, and photoelectric transducing device
JP4101668B2 (en) * 2002-09-04 2008-06-18 シャープ株式会社 Organic photoconductive material, electrophotographic photosensitive member and image forming apparatus using the same
JP4506113B2 (en) 2002-09-20 2010-07-21 東ソー株式会社 Novel arylamine derivatives having a fluorene skeleton, synthetic intermediates thereof, production methods thereof, and organic EL devices
KR100676790B1 (en) * 2003-02-07 2007-02-02 샤프 가부시키가이샤 Electrophotographic Photoreceptor and Image Forming Apparatus having The Same
JP3580426B1 (en) * 2003-05-12 2004-10-20 シャープ株式会社 Organic photoconductive material, electrophotographic photoreceptor and image forming apparatus using the same
JP3718508B2 (en) * 2003-06-03 2005-11-24 シャープ株式会社 Electrophotographic photoreceptor and image forming apparatus having the same
EP1651011B1 (en) 2003-07-02 2011-11-02 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and display using same
AU2003257279A1 (en) * 2003-08-13 2005-03-07 Belgonucleaire Sa Sealing device for the outer surface of a nuclear fuel cladding
US7018756B2 (en) 2003-09-05 2006-03-28 Xerox Corporation Dual charge transport layer and photoconductive imaging member including the same
JP3881648B2 (en) * 2003-10-08 2007-02-14 シャープ株式会社 Electrophotographic photosensitive member and image forming apparatus having the same
JP3881651B2 (en) * 2003-11-19 2007-02-14 シャープ株式会社 Electrophotographic photosensitive member and image forming apparatus having the same
JP5015459B2 (en) 2003-12-01 2012-08-29 出光興産株式会社 Asymmetric monoanthracene derivative, material for organic electroluminescence device, and organic electroluminescence device using the same
JP4177240B2 (en) * 2003-12-01 2008-11-05 シャープ株式会社 Amine compound, method for producing the same, electrophotographic photoreceptor using the amine compound, and image forming apparatus including the same
CN101980395B (en) 2003-12-19 2014-05-07 出光兴产株式会社 Organic electroluminescent device
JP3881659B2 (en) * 2004-01-29 2007-02-14 シャープ株式会社 Image forming apparatus
JP4227061B2 (en) * 2004-03-30 2009-02-18 シャープ株式会社 Amine compound, electrophotographic photoreceptor using the amine compound, and image forming apparatus having the same
US7138555B2 (en) 2004-04-20 2006-11-21 Xerox Corporation Process for preparing iodoaromatic compounds and using the same
EP1752441B1 (en) 2004-05-25 2016-12-21 Hodogaya Chemical Co., Ltd. P-terphenyl compound and photosensitive body for electrophotography using such compound
JP4275600B2 (en) * 2004-09-07 2009-06-10 シャープ株式会社 Hydrazone compound, electrophotographic photoreceptor using the hydrazone compound, and image forming apparatus provided with the electrophotographic photoreceptor
KR101169901B1 (en) 2005-01-05 2012-07-31 이데미쓰 고산 가부시키가이샤 Aromatic amine derivative and organic electroluminescent device using same
US7449268B2 (en) * 2005-05-27 2008-11-11 Xerox Corporation Polymers of napthalene tetracarboxylic diimide dimers
JP4302664B2 (en) * 2005-06-01 2009-07-29 シャープ株式会社 Asymmetric bishydroxyenamine compound, electrophotographic photoreceptor and image forming apparatus
US7541123B2 (en) * 2005-06-20 2009-06-02 Xerox Corporation Imaging member
WO2007007553A1 (en) 2005-07-14 2007-01-18 Idemitsu Kosan Co., Ltd. Biphenyl derivatives, organic electroluminescent materials, and organic electroluminescent devices made by using the same
JP4848152B2 (en) 2005-08-08 2011-12-28 出光興産株式会社 Aromatic amine derivative and organic electroluminescence device using the same
US7361440B2 (en) * 2005-08-09 2008-04-22 Xerox Corporation Anticurl backing layer for electrostatographic imaging members
JP2007073814A (en) 2005-09-08 2007-03-22 Idemitsu Kosan Co Ltd Organic electroluminescence element using polyarylamine
US7422831B2 (en) * 2005-09-15 2008-09-09 Xerox Corporation Anticurl back coating layer electrophotographic imaging members
US7504187B2 (en) * 2005-09-15 2009-03-17 Xerox Corporation Mechanically robust imaging member overcoat
WO2007032161A1 (en) 2005-09-15 2007-03-22 Idemitsu Kosan Co., Ltd. Asymmetric fluorene derivative and organic electroluminescent element containing the same
EP1932895A1 (en) 2005-09-16 2008-06-18 Idemitsu Kosan Co., Ltd. Pyrene derivative and organic electroluminescence device making use of the same
US20070104977A1 (en) 2005-11-07 2007-05-10 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
JP2007137784A (en) 2005-11-15 2007-06-07 Idemitsu Kosan Co Ltd Aromatic amine derivative and organic electroluminescence element using the same
WO2007058127A1 (en) 2005-11-16 2007-05-24 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using the same
WO2007058172A1 (en) 2005-11-17 2007-05-24 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
EP1956011A1 (en) 2005-11-28 2008-08-13 Idemitsu Kosan Co., Ltd. Amine compound and organic electroluminescent element employing the same
JP2007149941A (en) 2005-11-28 2007-06-14 Idemitsu Kosan Co Ltd Organic electroluminescensce element
JP2007153778A (en) 2005-12-02 2007-06-21 Idemitsu Kosan Co Ltd Nitrogen-containing heterocyclic derivative and organic electroluminescent (el) element using the same
US7462434B2 (en) * 2005-12-21 2008-12-09 Xerox Corporation Imaging member with low surface energy polymer in anti-curl back coating layer
US7455941B2 (en) * 2005-12-21 2008-11-25 Xerox Corporation Imaging member with multilayer anti-curl back coating
US7517624B2 (en) * 2005-12-27 2009-04-14 Xerox Corporation Imaging member
WO2007077766A1 (en) 2005-12-27 2007-07-12 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device
US7754404B2 (en) * 2005-12-27 2010-07-13 Xerox Corporation Imaging member
CN101370769B (en) 2006-01-25 2015-04-01 保土谷化学工业株式会社 P-terphenyl compound mixture and electrophotographic photoreceptors made by using the same
WO2007097178A1 (en) 2006-02-23 2007-08-30 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent device, method for producing same and organic electroluminescent device
CN101395107A (en) 2006-02-28 2009-03-25 出光兴产株式会社 Naphthacene derivative and organic electroluminescent element using same
US9214636B2 (en) 2006-02-28 2015-12-15 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US20080007160A1 (en) 2006-02-28 2008-01-10 Idemitsu Kosan Co., Ltd. Organic electroluminescent device using fluoranthene derivative and indenoperylene derivative
JPWO2007102361A1 (en) 2006-03-07 2009-07-23 出光興産株式会社 Aromatic amine derivatives and organic electroluminescence devices using them
KR20080105113A (en) 2006-03-27 2008-12-03 이데미쓰 고산 가부시키가이샤 Nitrogen-containing heterocyclic derivative and organic electroluminescent device using same
EP2000464A4 (en) 2006-03-27 2010-06-30 Idemitsu Kosan Co Nitrogen-containing heterocyclic derivative and organic electroluminescent device using same
KR20080105127A (en) 2006-03-30 2008-12-03 이데미쓰 고산 가부시키가이샤 Material for organic electroluminescent device and organic electroluminescent device using the same
KR101166809B1 (en) 2006-04-13 2012-07-26 토소가부시키가이샤 Benzofluorene compound and use thereof
WO2007125714A1 (en) 2006-04-26 2007-11-08 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescence element using the same
US8076839B2 (en) 2006-05-11 2011-12-13 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
CN101444141A (en) 2006-05-11 2009-05-27 出光兴产株式会社 organic electroluminescent element
TW200813666A (en) * 2006-05-18 2008-03-16 Mitsubishi Chem Corp Electrophotographic photosensitive body, image forming device and electrophotographic cartridge
EP1933397A4 (en) 2006-05-25 2008-12-17 Idemitsu Kosan Co Organic electroluminescent device and full color light-emitting device
JP4134200B2 (en) * 2006-06-02 2008-08-13 シャープ株式会社 Electrophotographic photoreceptor and image forming apparatus
TW200815446A (en) * 2006-06-05 2008-04-01 Idemitsu Kosan Co Organic electroluminescent device and material for organic electroluminescent device
US7527906B2 (en) * 2006-06-20 2009-05-05 Xerox Corporation Imaging member having adjustable friction anticurl back coating
US7582399B1 (en) 2006-06-22 2009-09-01 Xerox Corporation Imaging member having nano polymeric gel particles in various layers
US7524597B2 (en) * 2006-06-22 2009-04-28 Xerox Corporation Imaging member having nano-sized phase separation in various layers
JP5616582B2 (en) 2006-06-22 2014-10-29 出光興産株式会社 Organic electroluminescence device using heterocyclic amine-containing arylamine derivative
KR20090023411A (en) 2006-06-27 2009-03-04 이데미쓰 고산 가부시키가이샤 Aromatic amine derivative, and organic electroluminescence device using the same
EP2053672A1 (en) 2006-08-04 2009-04-29 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US20080049413A1 (en) 2006-08-22 2008-02-28 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US7767373B2 (en) * 2006-08-23 2010-08-03 Xerox Corporation Imaging member having high molecular weight binder
JP5203207B2 (en) 2006-08-23 2013-06-05 出光興産株式会社 Aromatic amine derivatives and organic electroluminescence devices using them
EP2081240A4 (en) 2006-11-09 2010-08-18 Idemitsu Kosan Co Organic el material-containing solution, method for synthesizing organic el material, compound synthesized by the synthesizing method, method for forming thin film of organic el material, thin film of organic el material, and organic el device
JP2008124156A (en) 2006-11-09 2008-05-29 Idemitsu Kosan Co Ltd Organic el material-containing solution, method for forming thin film of organic el material, thin film of organic el material, and organic el device
JP2008124157A (en) 2006-11-09 2008-05-29 Idemitsu Kosan Co Ltd Organic el material-containing solution, method for forming thin film of organic el material, thin film of organic el material, and organic el device
EP2085371B1 (en) 2006-11-15 2015-10-07 Idemitsu Kosan Co., Ltd. Fluoranthene compound, organic electroluminescent device using the fluoranthene compound, and organic electroluminescent material-containing solution
EP2518045A1 (en) 2006-11-24 2012-10-31 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using the same
JP2008166629A (en) 2006-12-29 2008-07-17 Idemitsu Kosan Co Ltd Organic-el-material-containing solution, organic el material synthesizing method, compound synthesized by the synthesizing method, method of forming thin film of organic el material, thin film of organic el material, and organic el element
WO2008102740A1 (en) 2007-02-19 2008-08-28 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
US8278819B2 (en) 2007-03-09 2012-10-02 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and display
US8207526B2 (en) 2007-03-23 2012-06-26 Idemitsu Kosan Co., Ltd. Organic EL device
CN101542769B (en) 2007-04-06 2012-04-25 出光兴产株式会社 Organic electroluminescent element
JP5289979B2 (en) 2007-07-18 2013-09-11 出光興産株式会社 Material for organic electroluminescence device and organic electroluminescence device
KR20100038193A (en) 2007-08-06 2010-04-13 이데미쓰 고산 가부시키가이샤 Aromatic amine derivative and organic electroluminescent device using the same
KR101583097B1 (en) 2007-11-22 2016-01-07 이데미쓰 고산 가부시키가이샤 Organic el element and solution containing organic el material
EP2213662B1 (en) 2007-11-30 2012-04-18 Idemitsu Kosan Co., Ltd. Azaindenofluorenedione derivative, organic electroluminescent device material, and organic electroluminescent device
JP5355421B2 (en) 2007-12-21 2013-11-27 出光興産株式会社 Organic electroluminescence device
US8021812B2 (en) * 2008-04-07 2011-09-20 Xerox Corporation Low friction electrostatographic imaging member
US7943278B2 (en) * 2008-04-07 2011-05-17 Xerox Corporation Low friction electrostatographic imaging member
US8084173B2 (en) * 2008-04-07 2011-12-27 Xerox Corporation Low friction electrostatographic imaging member
US8026028B2 (en) * 2008-04-07 2011-09-27 Xerox Corporation Low friction electrostatographic imaging member
US7998646B2 (en) * 2008-04-07 2011-08-16 Xerox Corporation Low friction electrostatographic imaging member
US8007970B2 (en) * 2008-04-07 2011-08-30 Xerox Corporation Low friction electrostatographic imaging member
WO2009145016A1 (en) 2008-05-29 2009-12-03 出光興産株式会社 Aromatic amine derivative and organic electroluminescent device using the same
JP5416118B2 (en) 2008-08-06 2014-02-12 三菱製紙株式会社 Dye for dye-sensitized solar cell, semiconductor electrode, and dye-sensitized solar cell
JPWO2010074087A1 (en) 2008-12-26 2012-06-21 出光興産株式会社 Material for organic electroluminescence device and organic electroluminescence device
WO2010074181A1 (en) 2008-12-26 2010-07-01 出光興産株式会社 Organic electroluminescence element and compound
KR20110117073A (en) 2009-01-05 2011-10-26 이데미쓰 고산 가부시키가이샤 Organic electroluminescent element material and organic electroluminescent element comprising same
JP4565047B1 (en) 2009-03-19 2010-10-20 シャープ株式会社 Electrophotographic photosensitive member and image forming apparatus using the same
US8039127B2 (en) 2009-04-06 2011-10-18 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and material for organic electroluminescence device
US8168356B2 (en) * 2009-05-01 2012-05-01 Xerox Corporation Structurally simplified flexible imaging members
US8173341B2 (en) * 2009-05-01 2012-05-08 Xerox Corporation Flexible imaging members without anticurl layer
US8124305B2 (en) * 2009-05-01 2012-02-28 Xerox Corporation Flexible imaging members without anticurl layer
US20100297544A1 (en) 2009-05-22 2010-11-25 Xerox Corporation Flexible imaging members having a plasticized imaging layer
US8378972B2 (en) * 2009-06-01 2013-02-19 Apple Inc. Keyboard with increased control of backlit keys
US8278017B2 (en) * 2009-06-01 2012-10-02 Xerox Corporation Crack resistant imaging member preparation and processing method
WO2011013558A1 (en) 2009-07-28 2011-02-03 保土谷化学工業株式会社 Indole derivative
US8241825B2 (en) 2009-08-31 2012-08-14 Xerox Corporation Flexible imaging member belts
US8003285B2 (en) 2009-08-31 2011-08-23 Xerox Corporation Flexible imaging member belts
CN102471320A (en) 2009-10-16 2012-05-23 出光兴产株式会社 Fluorene-containing aromatic compound, material for organic electroluminescent element, and organic electroluminescent element using same
JP4871386B2 (en) * 2009-10-29 2012-02-08 シャープ株式会社 Electrophotographic photosensitive member and image forming apparatus using the same
JP5753788B2 (en) 2009-11-06 2015-07-22 保土谷化学工業株式会社 Diphenylnaphthylamine derivatives
US20110136049A1 (en) * 2009-12-08 2011-06-09 Xerox Corporation Imaging members comprising fluoroketone
US8232030B2 (en) 2010-03-17 2012-07-31 Xerox Corporation Curl-free imaging members with a slippery surface
US8343700B2 (en) 2010-04-16 2013-01-01 Xerox Corporation Imaging members having stress/strain free layers
US8541151B2 (en) 2010-04-19 2013-09-24 Xerox Corporation Imaging members having a novel slippery overcoat layer
US8404413B2 (en) 2010-05-18 2013-03-26 Xerox Corporation Flexible imaging members having stress-free imaging layer(s)
US8470505B2 (en) 2010-06-10 2013-06-25 Xerox Corporation Imaging members having improved imaging layers
US8394560B2 (en) 2010-06-25 2013-03-12 Xerox Corporation Imaging members having an enhanced charge blocking layer
CN102958905A (en) 2010-06-29 2013-03-06 保土谷化学工业株式会社 Triphenylamine derivative
US8475983B2 (en) 2010-06-30 2013-07-02 Xerox Corporation Imaging members having a chemical resistive overcoat layer
JP5047343B2 (en) 2010-08-30 2012-10-10 シャープ株式会社 Electrophotographic photoreceptor, image forming apparatus using the same, and coating liquid for electrophotographic photoreceptor undercoat layer
JP5309122B2 (en) 2010-12-21 2013-10-09 シャープ株式会社 Electrophotographic photosensitive member and image forming apparatus using the same
US8263298B1 (en) 2011-02-24 2012-09-11 Xerox Corporation Electrically tunable and stable imaging members
US8465892B2 (en) 2011-03-18 2013-06-18 Xerox Corporation Chemically resistive and lubricated overcoat
EP2709183B1 (en) 2011-05-13 2019-02-06 Joled Inc. Organic electroluminescent multi-color light-emitting device
US8877413B2 (en) 2011-08-23 2014-11-04 Xerox Corporation Flexible imaging members comprising improved ground strip
KR102048688B1 (en) 2011-09-09 2019-11-26 이데미쓰 고산 가부시키가이샤 Nitrogen-containing heteroaromatic ring compound
CN103827109A (en) 2011-09-28 2014-05-28 出光兴产株式会社 Material for organic electroluminescent element and organic electroluminescent element using same
US20140231772A1 (en) 2011-11-07 2014-08-21 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent elements, and organic electroluminescent element using the same
JP6095107B2 (en) 2013-01-29 2017-03-15 高砂香料工業株式会社 Triphenylamine derivative, charge transport material and electrophotographic photoreceptor using the same
US9017907B2 (en) 2013-07-11 2015-04-28 Xerox Corporation Flexible imaging members having externally plasticized imaging layer(s)
US9091949B2 (en) 2013-08-16 2015-07-28 Xerox Corporation Imaging members having electrically and mechanically tuned imaging layers
US9046798B2 (en) 2013-08-16 2015-06-02 Xerox Corporation Imaging members having electrically and mechanically tuned imaging layers
US9017908B2 (en) 2013-08-20 2015-04-28 Xerox Corporation Photoelectrical stable imaging members
US9075327B2 (en) 2013-09-20 2015-07-07 Xerox Corporation Imaging members and methods for making the same
KR20150077290A (en) 2013-12-27 2015-07-07 삼성전자주식회사 Asymmetric butadiene-based charge transporting compounds, and electrophotographic photoreceptor and electrophotographic imaging apparatus including the same
CN110571334A (en) 2014-04-16 2019-12-13 株式会社理光 Photoelectric conversion element
EP3410506B1 (en) 2016-01-25 2022-03-30 Ricoh Company, Ltd. Photoelectric conversion element
WO2017138566A1 (en) 2016-02-08 2017-08-17 高砂香料工業株式会社 Triphenylamine derivative, charge transport material produced using same, and electrophotographic photoreceptor
US10651390B2 (en) 2016-06-08 2020-05-12 Ricoh Company, Ltd. Tertiary amine compound, photoelectric conversion element, and solar cell
EP3552253B1 (en) 2016-12-07 2022-02-16 Ricoh Company, Ltd. Photoelectric conversion element
SG11202112678YA (en) 2019-06-10 2021-12-30 Ricoh Co Ltd Photoelectric conversion element, photoelectric conversion element module, electronic device, and power supply module
KR102636393B1 (en) 2019-07-16 2024-02-13 가부시키가이샤 리코 Solar modules, electronics, and power modules
US20210167287A1 (en) 2019-11-28 2021-06-03 Tamotsu Horiuchi Photoelectric conversion element, photoelectric conversion module, electronic device, and power supply module
EP3872861B1 (en) 2020-02-27 2023-06-28 Ricoh Company, Ltd. Photoelectric conversion element and photoelectric conversion module
JP7413833B2 (en) 2020-02-27 2024-01-16 株式会社リコー Photoelectric conversion element and photoelectric conversion module
EP4064355A1 (en) 2021-03-23 2022-09-28 Ricoh Company, Ltd. Solar cell module
EP4377978A1 (en) 2021-07-29 2024-06-05 Ricoh Company, Ltd. Photoelectric conversion element and solar cell module
JP2023137773A (en) 2022-03-18 2023-09-29 株式会社リコー Photoelectric conversion elements, photoelectric conversion modules, electronic equipment, and solar cell modules

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB930988A (en) * 1958-07-03 1963-07-10 Ozalid Co Ltd Improvements in and relating to electrophotographic reproduction materials
GB1152582A (en) * 1965-06-10 1969-05-21 Gaf Corp Electrostatic Recording.
US3547646A (en) * 1966-12-16 1970-12-15 Keuffel & Esser Co Light-sensitive imaging material containing hydrazones
US3615533A (en) * 1968-03-11 1971-10-26 Eastman Kodak Co Heat and light sensitive layers containing hydrazones
US3717462A (en) * 1969-07-28 1973-02-20 Canon Kk Heat treatment of an electrophotographic photosensitive member
US3697595A (en) * 1970-03-31 1972-10-10 Ibm Conjugated nitro amines
GB1351129A (en) * 1970-05-14 1974-04-24 Oce Van Der Grinten Nv Photoconductive compositions and their use in electrophotography
US3870516A (en) * 1970-12-01 1975-03-11 Xerox Corp Method of imaging photoconductor in change transport binder
US3765884A (en) * 1971-07-06 1973-10-16 Eastman Kodak Co 1-substituted-2-indoline hydrazone photoconductors
US3837851A (en) * 1973-01-15 1974-09-24 Ibm Photoconductor overcoated with triarylpyrazoline charge transport layer
DE2355075C2 (en) * 1973-11-03 1982-08-19 Hoechst Ag, 6000 Frankfurt Condensation products of o-phenylenediamine or 1,8-diaminonaphthalene and 4,10-benzthioxanthene-3,1'-dicarboxylic acid anhydride, process for their preparation and their use
DE2363458C3 (en) * 1973-12-20 1981-09-03 Basf Ag, 6700 Ludwigshafen Aminobenzaldehyde compounds and a process for their production
US3997342A (en) * 1975-10-08 1976-12-14 Eastman Kodak Company Photoconductive element exhibiting persistent conductivity

Also Published As

Publication number Publication date
US4150987A (en) 1979-04-24
JPS5542380B2 (en) 1980-10-30
CA1108914A (en) 1981-09-15
JPS5459143A (en) 1979-05-12
AU3719478A (en) 1979-12-20
DE2861209D1 (en) 1981-12-24
AR222158A1 (en) 1981-04-30
AU520312B2 (en) 1982-01-28
EP0001599A1 (en) 1979-05-02

Similar Documents

Publication Publication Date Title
EP0001599B1 (en) Electrophotographic recording material and its application in a copying process
DE2939483C2 (en) Electrophotographic recording material
DE2941509C2 (en) Electrophotographic recording material
DE2734990C2 (en) Electrophotographic recording material
DE1622364C3 (en) Electrophotographic recording material
DE2712557C2 (en) Use of N, N'-diphenyl-N, N'-bis (phenylmethyl) - (1,1'-biphenyl) -4,4'-diamine in an electrophotographic recording material
DE3124396C2 (en)
DE3138252C2 (en)
DE2712556A1 (en) RECORDING METHOD AND DEVICE
DE2401220A1 (en) ELECTROPHOTOGRAPHIC PLATE
DE3004339A1 (en) RECORDING DEVICE
DE2935481C2 (en) Electrophotographic recording material
DE3715853A1 (en) PHOTO SENSITIVE ELEMENT WITH STYRYL COMPONENT
DE69630637T2 (en) Electrophotographic elements with charge-transporting layers that contain high mobility polyester binders
DE2356370A1 (en) ELECTROPHOTOGRAPHIC RECORDING MATERIAL
EP0061090B1 (en) Electrophotographic recording material
DE3921421C2 (en) Electrophotographic recording material
DE3441646C2 (en) Electrophotographic recording material
AT392852B (en) ELECTROPHOTOGRAPHIC RECORDING MATERIAL
DE2552886A1 (en) METHOD OF MANUFACTURING ELECTROSTATOGRAPHIC PHOTORECEPTORS
DE2654873A1 (en) MULTI-LAYER ELECTROPHOTOGRAPHIC PLATE
DE2108984C3 (en) Electrophotographic recording material
DE2942784A1 (en) COMPLEX TYPE ELECTROPHOTOGRAPHIC PLATE AND ELECTROPHOTOGRAPHIC METHOD PROCESSED USING SUCH A PLATE
DE2747143A1 (en) ELECTROPHOTOGRAPHIC LIGHT SENSITIVE PARTS
DE3338204C2 (en) Electrophotographic recording material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 2861209

Country of ref document: DE

Date of ref document: 19811224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840926

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890930

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19901006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910201

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: GC

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960913

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT