EP0000759A1 - Elektrode - Google Patents

Elektrode Download PDF

Info

Publication number
EP0000759A1
EP0000759A1 EP7878100552A EP78100552A EP0000759A1 EP 0000759 A1 EP0000759 A1 EP 0000759A1 EP 7878100552 A EP7878100552 A EP 7878100552A EP 78100552 A EP78100552 A EP 78100552A EP 0000759 A1 EP0000759 A1 EP 0000759A1
Authority
EP
European Patent Office
Prior art keywords
electrode
electrode according
plastic
conductive
plastic foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP7878100552A
Other languages
English (en)
French (fr)
Other versions
EP0000759B1 (de
Inventor
Erich Szehi
Georg Naser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19772735041 external-priority patent/DE2735041A1/de
Priority claimed from DE2735050A external-priority patent/DE2735050C3/de
Priority claimed from DE19782831109 external-priority patent/DE2831109A1/de
Priority claimed from DE19782831099 external-priority patent/DE2831099A1/de
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0000759A1 publication Critical patent/EP0000759A1/de
Application granted granted Critical
Publication of EP0000759B1 publication Critical patent/EP0000759B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0476Array electrodes (including any electrode arrangement with more than one electrode for at least one of the polarities)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/252Means for maintaining electrode contact with the body by suction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0492Patch electrodes

Definitions

  • the invention relates to an electrode for taking or supplying electrical signals.
  • Electrodes of this type can be used to take bioelectric signals, such as EKG or the like.
  • electrical signals for example stimulation current during stimulation current treatment, can also be supplied to a body via such an electrode.
  • Electrodes of the type mentioned in the introduction can also be designed as suction electrodes. Such suction electrodes are used in electromedicine for therapy as well as for diagnosis. From DE-AS 12 24 847 a suction electrode is already known, in which a vacuum is generated at the application point by sucking air out of the suction cup housing, so that the suction cup housing including the electrode adheres to the application point. To make a lei an elastic sponge plate (natural or viscose sponge) with contact liquid (mostly water) serves as the connection between the body surface and the actual electrode.
  • contact liquid mostly water
  • suction electrodes due to the pure suction principle, contact liquid is permanently sucked in through the feed hose by the suction pump, as a result of which the contact liquid can collect in the feed hose and in the suction pump which is at earth potential; Apart from the undesired pollution, electrical shunts can also form.
  • This disadvantage is remedied in the essential points by suction electrodes which work according to the air jet pump principle (injector principle).
  • Suction electrodes of this type are known for example from DT-AS 19 39 523. With these electrodes, the sucked-in contact liquid is sprayed out into the open by the flow of the pressurizing gas generating the negative pressure, away from the jet pump.
  • the electrodes make good contact, so that signals can be taken from the patient's body as free of interference as possible or current can be supplied to the patient's body via the electrode without interference.
  • the object of the present invention is to provide electrodes which optimally meet these conditions.
  • the suction electrode should be designed with the least effort so that the electrodes do not accidentally loosen and fall off after application.
  • the electrode comprises at least one conductive plastic foam insert which is provided with an application-side pore-closed contact surface for producing the electrical contact during application.
  • the foam plastics have a specific electrical resistance of less than 2000 ohms. cm and a compression hardness between 1 and 20 kPa.
  • the plastics are, for example, silicone rubbers, polyurethanes, such as polyethers and polyesters, polyethylenes, polyvinyl chlorides and polyamides. Foams made from these base materials can, if they are foamed with open pores, be easily conductive. Another possibility is to use conductive base materials for the production of the foams.
  • the invention uses as a key additive for electrical. the one plastic foam insert.
  • a plastic foam In contrast to the usual contacting means, such as felt or viscose sponges provided with contact liquid, such a plastic foam already has excellent electrical conductivity without additional contact liquid. Impregnation with such a contact liquid can therefore be dispensed with from the outset, which considerably simplifies application with excellent contacting.
  • the conductive foam In addition to good conductivity, the conductive foam also has excellent elasticity, so that a good one Fitting of the entire electrode surface on the skin is guaranteed. This in turn results in increased interference immunity when the electrical signals are picked up or supplied.
  • the plastic-foam insert with its application-side contact surface can lie directly on the patient's skin (especially in AC operation with constant voltage). For optimal contacting, ie enlarging the contact area and thus reducing the electrode resistance, it is recommended. it is, however, on the contact surface a damp E l ektrodenpapier to install.
  • This electrode paper which should preferably consist of absorbent, approx. 0.4 mm thick cellulose (fleece), only absorbs the amount of liquid necessary to reduce the electrode resistance.
  • the application of such an electrode paper is optimally simplified if the application-side contact surface of the plastic foam insert is smooth - in particular by surface-pore-coating an open-pore foam, ie, so-called coating.
  • the interfaces are already smooth when the material is foamed, so that "the special pore-sealing lacquer can then be omitted.
  • a moistened electrode paper adheres to such a smooth surface solely due to adhesion.
  • the electrode according to the invention can also be used as a multiple electrode.
  • a number of art corresponding to the desired number of contact points arranged material-foam inserts on a common electrode carrier.
  • the plastic foam inserts are then covered on the application side with a common electrode paper.
  • the spaces between the electrode carrier and the common electrode paper that are free of plastic foam inserts are then preferably filled by non-conductive inserts, for example made of foam rubber.
  • the contamination of the suction nozzles is no longer present from the outset.
  • an electrode carrier 2 made of non-conductive foam rubber is arranged in an electrode housing 1 and carries a plastic foam insert 3 towards the housing opening. Between foam rubber 2 and foam insert 3 there is a metal gauze 4 as a large-area connection contact for an electrical line 5, via which a current can be drawn off or supplied.
  • the plastic foam insert 3 is made smooth in the case of open-pore foaming of the base material on its application surface 6 by surface-coating which closes pores (so-called coating).
  • the smooth surface 6 serves to hold an electrode paper 7, which remains well adhered by adhesion in the moistened state.
  • the electrode paper which is preferably made of absorbent, 0.4 mm thick tissue (fleece), only absorbs the amount of liquid required to reduce the electrode resistance.
  • the multiple electrode of FIG. 2 comprises a total of four plastic foam inserts 9 to 12, which are held at a distance from one another on a common carrier 8, which in turn is preferably non-conductive foam rubber. All of the foam inserts 9 to 12 are designed in accordance with the use of the electrode of FIG. 1, that is to say they occupy smooth application surfaces due to the surface-sealing varnish. All foam inserts are also covered on the application side with a common electrode paper 13, for example fleece again. Each foam insert 9 to 12 is also extensively contacted with a metal gauze mesh. Each metal braid is provided with its own cable for power consumption or supply. In FIG. 2 and also in the detail enlargement of FIG. 3, such a metal gauze is designated 15 specifically for the foam insert 10. The associated power line is marked with 16.
  • the power lines of the remaining three plastic foam inserts are indicated in FIG. 2 with 17, 18 and 19.
  • the paper-carrying, lacquered application surface of the plastic foam insert 10 is also designated by 14.
  • the enlargement of the details also shows that the spaces between the electrode carrier 8 and the common electrode paper 13, which are free of plastic foam inserts 9 to 12, are filled with non-conductive inserts, preferably also made of foam rubber, which ensure a good spring contact without risk of the electrode paper 13 breaking.
  • the single electrode of FIG. 1 is particularly suitable for use when taking an EKG or other. physical physiological signals.
  • the multiple electrode of FIG. 2 is preferably used in stimulation current treatment (diagnosis and therapy), where several stimulation currents to be superimposed are to be supplied to the patient's body at the same time in order to generate an interference current field. Equalizing currents between the plastic inserts are negligible when the electrode paper is thin.
  • the suction electrode comprises an eyepiece 21 as an electrode housing, which has, for example, the essentially cylindrical shape, which can be easily adapted to the curvature of the body surface by slightly compressing the elastic jacket in the application area.
  • the suction cup housing 21 In the upper part of the suction cup housing 21 is the jet pipe 22 of the air jet pump with a connection piece 23 (preferably plug-in cone) for the hose to a (not shown) pressurized gas generator and with a free outlet 24 for the pressurized gas of the jet pump.
  • the jet pipe 22 of the air jet pump is preferably a plastic injection molded part; In contrast to pipes made of metal, this prevents any kind of corrosion (decomposition of the metallic jet pump due to electrolysing processes) and thus guarantees that small nozzle cross-sections are maintained from this side. Thanks to the ideal shape, which is easier to achieve with plastic processing than with metal processing, the efficiency of the air jet pump made of plastic can be increased compared to that of metal.
  • the interior of the jet pipe 22 is connected to the vacuum chamber 28 of the suction cup housing 21 via a narrow nozzle 25 and a bore 26 in an electrode carrier plate 27.
  • the carrier plate 27 is made of conductive material, preferably graphite or conductive rubber; however, it can equally well be made of metal.
  • the conductive carrier plate 28 now carries a non-absorbent or only slightly absorbent but highly electrically conductive plastic foam insert 29 instead of the previously exchangeable felt or viscose sponge.
  • the foam insert 29 projects in the direction of the application opening of the suction cup housing 21 and it is with open-cell foam of the base material on its application surface 30 is made smooth by superficially pore-sealing lacquer.
  • the smooth one Surface 30 serves to receive an electrode paper 31 which, when moistened, adheres well by adhesion.
  • the electrode paper which preferably consists of absorbent, 0.4 mm thick cellulose (fleece), only absorbs the amount of liquid necessary to reduce the electrode resistance. Since the electrode applied is a practically closed system, the transpiration of the skin can also contribute to contacting. Sucking off large amounts of excess contact fluid or body sweat and the associated carrying of dirt is avoided in any case from the outset.
  • the hygienic application is also significantly improved if cheap disposable paper is used as electrode paper. Dandruff or other deposits can be removed after each treatment by throwing away the electrode paper. In this way, too, a possible source for clogging of the suction nozzle 25 is eliminated.
  • the suction electrode of FIG. 4 is suitable, for example, for the stimulation current treatment (diagnosis and therapy); it can also be used to take an EKG or other physiological body signals.
  • the supply or removal of the electrical currents to or from the electrode consisting of plastic foam insert 29, carrier part 27 and electrode paper 31 takes place via the hose connection piece 23, which is metallic for the current transfer to the carrier plate 27.
  • FIG. 4 specifically includes a suction electrode based on the air jet pump principle.
  • a suction electrode ensures particularly good adhesion, provided the narrow suction nozzles in the invention senses according to the invention always remain open.
  • the liquid-reducing application with conductive foam can also be used with suction cup electrodes with a suction pump housed on the device side. Since practically no contact liquid is sucked in, the risk of excess contact liquid accumulating in the suction lines or in the suction pump is eliminated and the associated disadvantages can no longer occur.
  • Foamable, soft-elastic plastics are used as materials for the foam inserts 3, 9 to 12 and 29.
  • foams are an artificially produced, specifically light material with a cellular structure.
  • the properties of foam plastics in particular are determined both by the type of base materials and by the pore structure.
  • closed-cell foams the individual air or gas bubbles are sealed off from one another, while in the case of open-cell foams they are connected to one another. In between there are the mixed-cell foams with a continuous transition from one group to the other.
  • the pore volume, i.e. the percentage volume of the bubbles (vacuoles) of the total volume is generally always over 50% and goes up to 99%; it is an essential significant parameter for the mechanical properties of the foam.
  • the so-called compression hardness is expediently determined as a measure of the softness, ie the flexible properties of the foams.
  • the second group of foams can already be made electrically conductive as a starting solution by dispersed conductive particles. Both the abovementioned substances, which predominantly form open-pore foams, and such substances, which predominantly form closed-pore foams, can be used as base materials for this.

Abstract

Die Erfindung bezieht sich auf eine Elektrode zur Abnahme oder Zuführung von elektrischen Signalen. Derartige Elektroden können Einfach- (1) oder Mehrfachelektroden (8) sowie insbesondere auch Saugelektroden (21) sein. Bisher wurde zwischen Körperoberfläche und eigentlicher Elektrode zur Herstellung einer elektrisch leitenden Verbindung eine elastische Schwammplatte (Natur- oder Viskoseschwamm) mit Kontaktflüssigkeit angeordnet. Gemäß der Erfindung umfaßt nun die Elektrode (1, 8, 21) wenigstens einen leitfähigen Kunststoff - Schaumstoffeinsatz (3, 9 bis 12, 29), der mit einer applikationsseitigen porenverschlossenen Kontaktfläche (6, 14, 30) zur Herstellung des elektrischen Kontaktes bei Applikation versehen ist. Die leitfähigen Schaumstoff werden beispielsweise auf Silikonkautschuk-, Polyurethan-, Polyäthylen-, Polyvinyl- chlorid- oder Polyamidbasis hergestellt. Da bei solchen Kunststoff - Schaumstoffeinsätzen (3, 9 bis 12, 29) auf die Tränkung mit separater Kontaktflüssigkeit verzichtet werden kann, ist die Applikation bei ausgezeichneter Kontaktierung erheblich erleichtert. Speziell bei Saugelektroden (21) ist die Gefahr einer Verunreinigung der Saugdüsen aufgrund der Kontaktflüssigkeit von vornherein nicht mehr gegeben. Die erfindungsgemäße Elektrode (1, 8, 21) läßt sich insbesondere zur Zuführung von elektrischen Signalen zum Patientenkörper, beispielsweise Reizstrom bei der Reiztrombehandlung, oder zur Abnahme von bioelektrischen Signalen vom Körper verwenden.

Description

  • Die Erfindung bezieht sich auf eine Elektrode zur Abnahme oder Zuführung von elektrischen Signalen.
  • Elektroden dieser Art lassen sich zur Abnahme bioelektrischer Signale, wie EKG od.dgl., einsetzen. Ebensogut können über eine solche Elektrode einem Körper jedoch auch elektrische Signale, beispielsweise Reizstrom bei der Reizstrombehandlung, zugeführt werden.
  • Elektroden der eingangs genannten Art können auch als Saugelektroden ausgebildet sein. Solche Saugelektroden werden in der Elektromedizin gleichermaßen zur Therapie als auch zur Diagnostik angewandt. Durch die DE-AS 12 24 847 ist bereits eine Saugelektrode vorbekannt, bei der durch Absaugen von Luft aus dem Saugnapfgehäuse ein Unterdruck an der Applikationsstelle erzeugt-wird, so daß das Saugnapfgehäuse samt Elektrode an der Applikationsstelle haften bleibt. Zur Herstellung einer leitenden Verbindung zwischen Körperoberfläche und eigentlicher Elektrode dient eine elastische Schwammplatte (Natur- oder Viskoseschwamm) mit Kontaktflüssigkeit (meistens Wasser). Der wesentliche Nachteil der Saugelektroden besteht darin, daß aufgrund des reinen Saugprinzips permanent Kontaktflüssigkeit durch den Zuführungsschlauch von der Saugpumpe angesaugt wird, wodurch sich die Kontaktflüssigkeit im Zuführungsschlauch und in der auf Erdpotential liegenden Saugpumpe sammeln kann; abgesehen von der unerwünschten Verschmutzung können sich also auch elektrische Nebenschlüsse bilden. Dieser Nachteil wird in den wesentlichen Punkten durch solche Saugelektroden behoben, die nach dem Luftstrahlpumpenprinzip (Injektorprinzip) arbeiten. Saugelektroden dieser Art sind beispielsweise aus der DT-AS 19 39 523 vorbekannt. Bei diesen Elektroden wird die angesaugte Kontaktflüssigkeit von der Strömung des den Unterdruck erzeugenden Preßgases, von der Strahlpumpe weg ins Freie gesprüht. Die Kontaktflüssigkeit kann also nicht mehr in die Leitungen zur Saugpumpe gelangen, so daß elektrische Nebenschlüsse dort auch nicht mehr auftreten können. Trotz der erheblichen Vorteile der Saugelektroden nach dem Luftstrahlpumpenprinzip ergeben sich aber auch gewisse Nachteile. Bedingt durch die kleinen Düsenquerschnitte zwischen Unterdruckraum und Strahlrohr im Saugnapfgehäuse kommt es schon bei geringen Verunreinigungen relativ rasch zu Verengungen. Es besteht also Gefahr, daß die Saugelektroden sich lockern und abfallen.
  • In jedem Fall ist es aber wesentlich, daß die Elektroden gut kontaktieren, so daß Signale vom Patientenkörper möglichst störungsfrei abgenommen werden können oder dem Patientenkörper über die Elektrode störungsfrei Strom zugeführt werden kann.
  • Aufgabe vorliegender Erfindung ist es, Elektroden anzugeben, die diese Bedingungen optimal erfüllen. Insbesondere die Saugelektrode soll mit geringstem Aufwand so ausgebildet sein, daß die Elektroden nach Applikation sich nicht unbeabsichtigt lockern und abfallen.
  • Die Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Elektrode wenigstens einen leitfähigen Kunststoff-Schaumstoffeinsatz umfaßt, der mit einer applikationsseitigen porenverschlossenen Kontaktfläche zur Herstellung des elektrischen Kontaktes bei Applikation versehen ist. Dabei weisen die Schaumkunststoffe einen spezifischen elektrischen Widerstand kleiner als 2000 Ohm . cm und eine Stauchhärte zwischen 1 und 20 kPa auf. Die Kunststoffe sind beispielsweise Silikonkautschuke, Polyurethane, wie Polyäther und Polyester, Polyäthylene, Polyvinylchloride und Polyamide. Schaumstoffe aus diesen Basismaterialien lassen sich, sofern sie offenporig geschäumt werden, in einfacher Weise beleitfähigen. Eine andere Möglichkeit besteht darin, zur Herstellung der Schaumstoffe bereits leitfähige Basismaterialien zu verwenden.
  • Die Erfindung verwendet als Leitzusatz für die Elektro-. den einen Kunststoff-Schaumstoffeinsatz. Im Gegensatz zu den üblichen Kontaktierungsmitteln, wie z.B. mit Kontaktflüssigkeit versehene Filz- oder Viskoseschwämme, weist ein solcher Kunststoff-Schaumstoff bereits ohne zusätzliche Kontaktflüssigkeit ausgezeichnete elektrische Leitfähigkeit auf. Auf die Tränkung mit einer solchen Kontaktflüssigkeit kann also von vornherein verzichtet werden, wodurch sich die Applikation bei ausgezeichneter Kontaktierung erheblich erleichtert. Der leitende Schaumstoff besitzt neben guter Leitfähigkeit auch ausgezeichnete Elastizität, so daß ein gutes Anliegen der gesamten Elektrodenfläche auf der Haut gewährleistet ist. Hieraus wiederum resultiert erhöhte Störsicherheit bei der Abnahme bzw. Zuführung der elektrischen Signale.
  • Der Kunststoff-Schaumstoffeinsatz kann mit seiner applikationsseitigen Kontaktfläche direkt an der Haut des Patienten anliegen (insbesondere bei Wechselspannungsbetrieb mit konstanter Spannung). Zur optimalen Kontaktierung, d.h. Kontaktflächenvergrößerung und damit Herabsetzung des Elektrodenwiderstandes, empfiehlt. es sich jedoch, auf der Kontaktfläche ein angefeuchtetes Elektrodenpapier anzubringen. DiesesElektrodenpapier, das vorzugsweise aus saugfähigem, ca. 0,4 mm dickem Zellstoff (Vlies) bestehen soll, nimmt nur die zur Herabsetzung des Elektrodenwiderstandes notwendige Flüssigkeitsmenge auf. In vorteilhafter Ausgestaltung wird das Anbringen eines solchen Elektrodenpapiers optimal vereinfacht, wenn die applikationsseitige Kontaktfläche des Kunststoff-Schaumstoffeinsatzes - insbesondere durch oberflächlich porenverschließende Lackierung eines offenporigen Schaumstoffes, d.h. sogenanntes coating - glatt ausgebildet wird. Speziell bei Verwendung von geschlossenporigen Schaumstoffen und leitfähigem Basismaterial sind bereits die Grenzflächen beim Aufschäumen des Materials glatt, so daß "die spezielle porenverschließende Lackierung dann entfallen kann. An einer solchen glatten Fläche haftet ein angefeuchtetes Elektrodenpapier allein aufgrund Adhäsion.
  • Die Elektrode gemäß der Erfindung läßt sich auch als Mehrfachelektrode einsetzen. In der Ausbildung als Mehrfachelektrode ist dabei eine der gewünschten Zahl der Kontaktstellen entsprechende Anzahl von Kunststoff-Schaumstoffeinsätzen auf einem gemeinsamen Elektrodenträger angeordnet. In vorteilhafter Ausgestaltung sind dann die Kunststoff-Schaumstoffeinsätze applikationsseitig mit einem gemeinsamen Elektrodenpapier abgedeckt. Die von Kunststoff-Schaumstoffeinsätzen freien Zwischenräume zwischen Elektrodenträger und gemeinsamem Elektrodenpapier sind dann vorzugsweise durch nichtleitende Einsätze, z.B. aus Moosgummi, ausgefüllt.
  • Bei Verwendung der Erfindung als Saugelektrode ist besonders vorteilhaft, daß die Verunreinigung der Saugdüsen speziell aufgrund von zusätzlicher Kontaktflüssigkeit von vornherein nicht mehr gegeben ist. Darüber hinaus ist aber auch die Möglichkeit einer Verunreinigung durch sonstige Flüssigkeiten, z.B. auch Schweiß des transpirierenden Patienten, stark herabgesetzt bzw. ganz unterbunden, da Kunststoff-Schaumstoff mit porenverschlossener Oberfläche nicht saugfähig ist.
  • Weitere Vorteile und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen anhand der Zeichnung in Verbindung mit den Unteransprüchen.
  • Es zeigen:
    • Fig. 1 eine Einfachelektrode gemäß der Erfindung, teilweise im Schnitt,
    • Fig. 2 eine Mehrfachelektrode in Draufsicht und Seitenansicht,
    • Fig. 3 eine Detailvergrößerung des Details A in Fig. 2,
    • Fig. 4 eine als Saugelektrode ausgebildete erfindungsgemäße Elektrode in Seitenansicht, teilweise im Schnitt.
  • In der Fig. 1 ist in einem Elektrodengehäuse 1 ein Elektrodenträger 2.aus nichtleitendem Moosgummi angeordnet, der zur Gehäuseöffnung hin einen Kunststoff-Schaumstoffeinsatz 3 trägt. Zwischen Moosgummi 2 und Schaumstoffeinsatz 3 liegt eine Metallgaze 4 als großflächiger Anschlußkontakt für eine elektrische Leitung 5, über die ein Strom abgenommen oder zugeführt werden kann. Der Kunststoff-Schaumstoffeinsatz 3 ist bei offenporiger Schäumung des Basismaterials an seiner Applikationsfläche 6 durch oberflächlich porenverschließende Lackierung (sogenanntes coating) glatt ausgebildet. Die glatte Fläche 6 dient zur Aufnahme eines Elektrodenpapiers 7, das im angefeuchteten Zustand durch Adhäsion gut haften bleibt. Das Elektrodenpapier, das vorzugsweise aus saugfähigem,0,4 mm dickem Zeilstoff (Vlies) besteht, nimmt nur die zur Herabsetzung des Elektrodenwiderstandes notwendige Flüssigkeitsmenge auf.
  • Die Mehrfachelektrode der Fig. 2 umfaßt insgesamt vier Kunststoff-Schaumstoffeinsätze 9 bis 12, die im Abstand voneinander an einem gemeinsamen Träger 8, bei dem'es sich vorzugsweise wiederum um nichtleitenden Moosgummi handelt, gehaltert sind. Sämtliche Schaumstoffeinsätze 9 bis 12 sind entsprechend dem Einsatz der Elektrode der Fig. 1 ausgebildet, d.h. sie besetzen glatte Applikationsflächen aufgrund oberflächlich parenverschlieBender Lackierung. Sämtliche Schaumstoffeinsätze sind ferner an der Applikatiönsseite mit einem gemeinsamen Elektrodenpapier-13, z.B. wiederum Vlies, abgedeckt. Jeder Schaumstoffeinsatz 9 bis 12 ist ferner mit einem Metallgazegeflecht großflächig kontaktiert. Jedes Metallgeflecht ist mit einer eigenen Leitung zur Stromabnahme bzw. Stromzuführung versehen. In der Fig. 2 und auch in der Detailvergrößerung der Fig. 3 ist eine solche Metallgaze speziell für del Schaumstoffeinsatz 10 mit 15 bezeichnet. Die zugehörige Stromleitung ist mit 16 gekennzeichnet. Die Stromleitungen der restlichen drei Kunststoff-Schaumstoffeinsätze sind in der Fig. 2 mit 17, 18 und 19 angedeutet. In der Detailvergrößerung der Fig. 3 ist außerdem die papiertragende lackierte Applikationsfläche des Kunststoff-Schaumstoffeinsatzes 10 mit 14 bezeichnet. Aus der Detailvergrößerung geht auch hervor, daß die von Kunststoff-Schaumstoffeinsätzen 9 bis 12 freien Zwischenräume zwischen Elektrodenträger 8 und gemeinsamem Elektrodenpapier 13 durch nichtleitende Einsätze, vorzugsweise ebenfalls aus Moosgummi, ausgefillt sind, die eine gut federnde Kontaktierung ohne Bnchgefahr des Elektrodenpapiers 13 gewährleisten.
  • Di Einfachelektrode der Fig. 1 eignet sich insbesotere zum Einsatz bei der Abnahme eines EKG oder son-. stiger physiologischer Körpersignale. Die Mehrfachelektrcde der Fig. 2 wird hingegen bevorzugt bei der Reizstrmbehandlung (Diagnostik und Therapie) eingesetzt,wo bei pielsweise zur Erzeugung eines Interferenzstromfeldes dem Patientenkörper gleichzeitig mehrere zu überlagernde Reizströme zugeführt werden sollen. Ausgleichsströle zwischen den Kunststoff-Einsätzen sind bei entspro end dünnem Elektrodenpapier vernachlässigbar.
  • Die Sugelektrode nach Fig. 4 arbeitet speziell nach dem Luftstrahlpumpenprinzip. Die Saugelektrode umfaßt einen augnapf 21 als Elektrodengehäuse, der beispielsweise the im wesentlichen zylindrische Form aufweist, die durch leichtes Zusammendrücken des elastischen Mantels im Applikationsbereich gut an die Krümmung der Körperoberfläche angepaßt werden kann. Im oberen Teil des Saugnapfgehäuses 21 befindet sich das Strahlrohr 22 der Luftstrahlpumpe mit einem Anschlußstück 23 (vorzugsweise Steckkonus) für den Schlauch zu einem (nicht dargestellten) Preßgaserzeuger und mit einem freien Auslauf 24 für das Preßgas der Strahlpumpe. Das Strahlrohr 22 der Luftstrahlpumpe ist vorzugsweise ein Kunststoffspritzteil; im Gegensatz zu Rohren aus Metall wird hierdurch jede Art von Korrosion (Zersetzungserscheinungen der metallischen Strahlpumpe aufgrund elektrolysierender Vorgänge) vermieden und somit auch von dieser Seite her die Beibehaltung kleiner Düsenquerschnitte garantiert. Durch ideale Formgestaltung, die sich bei Kunststoffbearbeitung leichter als bei Metallbearbeitung erreichen läßt, kann außerdem der Wirkungsgrad der Luftstrahlpumpe aus Kunststoff gegenüber jenen aus Metall gesteigert werden. Im Ausführungsbeispiel nach Fig. 4 gemäß der Zeichnung ist der Innenraum des Strahlrohres 22iber eine enge Düse 25 sowie eine Bohrung 26 in einer Elektrodenträgerplatte 27 mit dem Unterdruckraum 28 des Saugnapfgehäuses 21 verbunden. Die Trägerplatte 27 besteht aus leitendem Material, vorzugsweise aus Graphit oder Leitgummi; sie kann jedoch ebensogut auch aus Metall gefertigt sein. Die leitende Trägerplatte 28 trägt nun anstelle des bisher üblichen auswechselbaren Filz- oder Viskoseschwammes einen nicht oder nur wenig saugfähigen, aber gut elektrisch leitenden Kunststoff-Schaumstoffeinsatz 29. Der Schaumstoffeinsatz 29 ragt in Richtung der-Applikationsöffnung des Saugnapfgehäuses 21 und er ist bei offenporiger'Schäumung des Basismaterials an seiner Applikationsfläche 30 durch oberflächlich porenverschließende Lackierung glatt ausgebildet. Die glatte Fläche 30 dient zur Aufnahme eines Elektrodenpapiers 31, das in angefeuchtetem Zustand durch Adhäsion gut haften bleibt. Das Elektrodenpapier, das vorzugsweise aus saugfähigem, 0,4 mm dickem Zellstoff (Vlies) besteht, nimmt nur die zur Herabsetzung des Elektrodenwiderstandes notwendige Flüssigkeitsmenge auf. Da es sich bei der angelegten Elektrode um ein praktisch abgeschlossenes System handelt, kann die Transpiration der Haut zusätzlich zur Kontaktierung beitragen. Ein Absaugen großer Mengen überschüssiger Kontaktflüssigkeit oder auch von Körperschweiß sowie ein damit verbundenes Mitführen von Verschmutzungen wird jedoch auf jeden Fall von vornherein vermieden. Die hygienische Applikation wird ferner erheblich verbessert, wenn als Elektrodenpapier billiges Einmalpapier verwendet wird. So können Hautschuppen oder sonstige Ablagerungen nach jeder Behandlung mit dem Wegwerfen des Elektrodenpapiers beseitigt werden. Auch so wird eine mögliche Quelle für ein Verstopfen der Ansaugdüse 25 beseitigt.
  • Die Saugelektrode der Fig. 4 eignet sich beispielsweise für die Reizstrombehandlung (Diagnostik und Therapie); sie läßt sich ebensogut auch zur Abnahme eines EKG oder sonstiger physiologischer Körpersignale einsetzen. Die Zuführung bzw. Abnahme der elektrischen Ströme zu bzw. von der aus Kunststoff-Schaumstoffeinsatz 29, Trägerteil 27 und Elektrodenpapier 31 bestehenden Elektrode erfolgt über das Schlauchanschlußstück 23, das für den Stromübertritt zur Trägerplatte 27 metallisch ausgebildet ist.
  • Das Ausführungsbeispiel nach Fig. 4 beinhaltet speziell eine Saugelektrode nach dem Luftstrahlpumpenprinzip. Eine derartige Saugelektrode gewährleistet besonders gute Haftung, sofern die engen Saugdüsen im erfindungsgemäßen Sinne immer offen bleiben. Selbstverständlich läßt sich jedoch die flüssigkeitsreduzierende Applikation mit leitendem Schaumstoff auch bei Saugnapfelektroden mit geräteseitig untergebrachter Saugpumpe einsetzen. Da praktisch keine Kontaktflüssigkeit angesaugt wird, ist die Gefahr einer Ansammlung überschüssiger Kontaktflüssigkeit in den Saugleitungen bzw. in der Saugpumpe beseitigt und die damit verbundenen Nachteile können nicht mehr auftreten.
  • Als Materialien für die Schaumstoffeinsätze 3, 9 bis 12 und 29 werden schaumfähige, weichelastische Kunststoffe verwendet.
  • Unter Schaumstoffen versteht man nach DIN 7626/1 einen künstlich hergestellten, spezifisch leichten Werkstoff mit zelliger Struktur. Die Eigenschaften speziell der Schaumkunststoffe werden sowohl durch die Art der Grundmaterialien wie durch die Porenstruktur bestimmt. Bei geschlossenzelligen Schaumstoffen sind die einzelnen Luft- oder Gasbläschen gegeneinander abgeschlossen, während sie bei offenzelligen Schaumstoffen untereinander in Verbindung stehen. Dazwischen liegen mit kontinuierlichem Übergang von der einen Gruppe zur anderen Gruppe die gemischtzelligen Schaumstoffe. In der Praxis spricht man eher von vorwiegend offenporigen oder vorwiegend geschlossenporigen Schaumstoffen. Das Porenvolumen, d.,h. der prozentuale Volumenanteil der Bläschen (Vakuolen) vom Gesamtvolumen, beträgt im allgemeinen immer über 50 % und geht bis 99 % ; es ist eine wesentliche signifikante Kenngröße für die mechanischen Eigenschaften des Schaumstoffes. Je nach Herstellungsart, Größe des Volumenanteils und Basismaterials verfügt man dementsprechend über eine Reihe verschiedenartiger Schaumstoffe, die von sprödhart über zähhart bis weichelastisch führt. Für die erfindungs-gemäße Verwendung als leitender Einsatz für Elektro-den werden weichelastische Schaumstoffe benötigt; als Maß für die Weichheit, d.h. die flexiblen Eigenschaften der Schaumstoffe, wird zweckmäßigerweise die sog. Stauchhärte nach DIN 53577 ermittelt. Die Stauchhärte ist als die zu einer festgelegten Verformung (im allgemeinen 40 %) beim Belastungsvorgang ermittelte Druckspannung definiert; sie wird in Kilo-Pascal (kPa) oder Newton pro mm (1 kPa = 0,001 N/mm2) gemessen.
  • Bei der Herstellung von leitfähigen Schaumstoffen lassen sich zwei Gruppen unterscheiden:
    • Die erste Gruppe sind die überwiegend offenporigen Schaumstoffe. Diese werden beispielsweise aus Polyurethanen, wie Polyester und Polyäther, Polyäthylenen, Polyvinylchloriden oder Polyamiden als Basismaterial aufgeschäumt und anschließend in den offenen Poren beleitfähigt. Dafür wird ein elektrisch leitender Lack, vorzugsweise auf Kohlenstoffbasis (sog. Coatings), in die Schaumstoffe eingebracht, so daß leitfähige Teilchen an den Zellwänden haften bleiben. Insgesamt ergibt sich dadurch eine integrale Leitfähigkeit des Schaumstoffes; der spezielle Wert der elektrischen Leitfähigkeit bzw. spezifische Widerstand ergibt sich dabei aus dem Verhältnis der mit Lack beschichteten Grenzflächen der Poren zum Gesamtvolumen des Schaumstoffes. Als Parameter geht also wesentlich das bei der Herstellung des Schaumstoffes gezielt beeinflußbare Porenvolumen ein. Andererseits bestimmen - wie oben erwähnt - genau diese Parameter auch die Weichheit bzw. Flexibilität des Schaumstoffes. Die so auf Polyurethan-, Polyäthylen-, Polyvinylchlorid- und Polyamid-Basis hergestellten Schaumstoffe weisen einen spezifischen elektrischen Widerstand im Bereich kleiner als 2000 Ohm cm und eine Stauchhärte von 1 bis 20 kPa auf. Dabei wird der spezifische Widerstand in Anlehnung an DIN 53482 und die Stauchhärte nach DIN 53577 gemessen.
  • Die zweite Gruppe von Schaumstoffen kann schon durch dispergierte leitfähige Teilchen bereits als Ausgangslösung elektrisch leitend gemacht werden. Als Basismaterialien hierfür können sowohl die obengenannten Stoffe, die überwiegend offenporige Schaumstoffe bilden als auch solche Stoffe, die überwiegend geschlossenporige Schaumstoffe bilden, verwendet werden.
  • Beispielsweise werden bei Silikonkautschuk als Basismaterial Graphitteilchen dispergiert. Es sind leitfähige Silikonkautschuke mit spezifischen Widerständen kleiner als 20 Ohm cm bekannt. Solche Kunst-Kautschuke können geschäumt werden. Ein geschlossenporiger Schaumstoff auf Silikonbasis hat wegen der glatten Oberflächen für die erfindungsgemäße Anwendung bei Elektroden sogar Vorteile; er braucht nicht in einem separaten Verfahrensschritt an der Oberfläche unter Porenverschluß glatt gemacht zu werden. Die Weichheit bzw. die elastischen Eigenschaften eines so hergestellten Schaumstoffs hängen wiederum im wesentlichen vom.Porenvolumen ab. Im gewissen Maße werden auch noch die Menge und Große der im Basismaterial dispergierten elektrisch leitenden Teilchen die flexiblen Eigenschaften beeinflussen. Insgesamt haben zwar die so hergestellten Schaumstoffe einen höheren spezifischen elektrischen Widerstand als das leitfähige Basismaterial; sie liegen aber bezügliGh der elektrischen Eigenschaften günstiger als die beleitfähigen Schaumstoffe.

Claims (24)

1. Elektrode zur Abnahme oder Zuführung von elektrischen Signalen, dadurch gekennzeichnet , daß sie wenigstens einen leitfähigen Kunststoff-Schaumstoffeinsatz (3, 9 bis 12, 29) umfaßt, der mit einer applikationsseitigen porenversdn lossenen Kontaktfläche (6, 14, 30) zur Herstellung des elektrischen Kontaktes bei Applikation versehen ist.
2. Elektrode nach Anspruch 1, dadurch gekennzeichnet , daß'der leitfähige Kunststoff einen spezifischen elektrischen Widerstand im Bereich kleiner als 2000 Ohm cm und eine Stauchhärte im Bereich von 1 bis 20 kPa aufweist.
3. Elektrode nach Anspruch 1 und 2, dadurch gekennzeichnet , daß der Kunststoff ein Silikonkautschuk ist.
4. Elektrode nach Anspruch 1 und 2, dadurch gekennzeichnet , daß der Kunststoff ein Polyurethan ist.
5. Elektrode nach Anspruch 1 oder 4, dadurch gekennzeichnet , daß der Kunststoff ein Polyäther ist.
6. Elektrode nach Anspruch 1 oder 4, dadurch gekennzeichnet , daß der Kunststoff ein Polyester ist.
7. Elektrode nach Anspruch 1 und 2, dadurch gekennzeichnet , daß der Kunststoff ein Polyäthylen ist.
8. Elektrode nach Anspruch 1 und 2, dadurch gekennzeichnet daß der Kunststoff ein Polyvinylchlorid ist.
9. Elektrode nach Anspruch 1 und 2, dadurch gekennzeichnet , daß der Kunststoff ein Polyamid ist.
10. Elektrode nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet , daß der Kunststoff-Schaumstoffeinsatz (3, 29) an einer leitenden Trägerplatte, vorzugsweise aus Graphit oder Leitgummi, gehaltert ist.
11. Elektrode nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet , daß der Kunststoff-Schaumstoffeinsatz (3 bzw. 9 bis 12) an einer nichtleitenden Trägerplatte (2 bzw. 8), vorzugsweise aus Moosgummi, unter Zwischenschaltung einer elektrischen Leitungskontaktierung (4 bzw. 15 etc.) gehaltert ist.
12. Elektrode nach Anspruch 11, dadurch gekennzeichnet , daß die elektrische Kontaktierung (4 bzw. 15 etc.) eine Metallgaze ist, an der die elektrische Leitung (5 bzw. 16 bis 19) zur Abnahme oder Zuführung der elektrischen Signale angeschlossen ist.
13. Elektrode nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet , daß der Kunststoff-Schaumstoffeinsatz (3, 9 bis 12, 29) an seiner applikationsseitigen porenverschlossenen Kontaktfläche (6, 14, 30) mit einem Kontaktpapier (7, 13, 31) versehen ist, das durch Aufnahme von Flüssigkeit den Elektrodenwiderstand herabsetzt.
14. Elektrode nach Anspruch 13, dadurch gekennzeichnet , daß der Kunststoff-Schaumstoffeinsatz (3, 9 bis 12, 29) an der applikationsseitigen Kontaktfläche (6, 14, 30) glatt ist, so daß das Elektrodenpapier (7, 13, 31) im angefeuchteten Zustand lediglich durch Adhäsion gut haftet.
15. Elektrode nach Anspruch 14, dadurch gekennzeichnet , daß die applikationsseitige Kontaktfläche (6, 14, 30) des Kunststoff-Schaumstoffeinsatzes (3, 9 bis 12, 29) aufgrund oberflächlich porenverschließender Lackierung (sogenanntes Coating) glatt ist.
16. Elektrode nach einem der Ansprüche 13 oder 14, dadurch gekennzeichnet , daß als Elektrodenpapier feiner, vorzugsweise ca. 0,4 mm dicker, saugfähiger Zellstoff (Vlies) dient.
17. Elektrode nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet , daß in Ausbildung der Elektrode als Mehrfachelektrode (z.B. gemäß Fig. 2) eine der gewünschten Zahl der Kontaktstellen entsprechende Anzahl von Kunststoff-Schaumstoffeinsätzen (9 bis 12) auf einem gemeinsamen Elektrodenträger (8) angeordnet sind.
18. Elektrode nach Anspruch 17, dadurch gekennzeichnet , daß die Kunststoff-Schaumstoffeinsätze (9 bis 12) applikationsseitig mit einem gemeinsamen Elektrodenpapier (13) abgedeckt sind.
19. Elektrode nach Anspruch 18, dadurch gekennzeichnet , daß der von Kunststoff-Schaumstoffeinsätzen (9 bis 12) freie Zwischenraum zwischen Elektrodenträger (8) und gemeinsamem Elektrodenpapier (13) durch nichtleitende Einsätze, vorzugsweise aus Moosgummi, ausgefüllt ist.
20. Elektrode nach Anspruch 11, dadurch gekennzeichnet , daß in Sandwichbauweise zwischen Moosgummi als Elektrodenträger und dem die Zwischenräume füllenden Moosgummi an den Verbindungsstellen zu den Kunststoff-Schaumstoffeinsätzen (9 bis 12) als Leitverbindung Metallgaze (15 etc.) liegt, an der jeweils elektrische Leitungen (16 bis 19) zur Abnahme bzw. Zuführung von elektrischen Signalen ankontaktiert sind.
21. Elektrode nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet , daß in Ausbildung der Elektrode als Saugelektrode mit einem Saugnapfgehäuse (21) mit Anschluß an einen Unter- .druckerzeuger der Kunststoff-Schaumstoffeinsatz (29) im Saugnapfgehäuse (21) mit der applikationsseitigen porenverschlossenen Kontaktfläche (30) zur Herstellung des elektrischen Kontaktes bei Applikation angeordnet ist.
22. Elektrode nach Anspruch 1 und 21, dadurch gekennzeichnet , daß eine leitende Trägerplatte (27), vorzugsweise aus Graphit oder Leitgummi, zur Halterung des Kunststoff-Schaunstoffeinsatzes (29) in Napfgehäuse (21).angeordnet ist.
23. Elektrode nach Anspruch 21, dadurch gekennzeichnet , daß wenigstens jene Teile zur Unterdruckerzeugung im Saugnapfgehäuse (21), die mit engen Saugdüsen (25) versehen sind, aus Kunststoff gefertigt sind.
24. Elektrode nach Anspruch 21, dadurch gekennzeichnet , daß bei Anwendung des Luftstrahlpumpenprinzips wenigstens das Strahlrohr (22) im Saugnapfgehäuse (21) als Kunststoffspritzteil ausgebildet ist.
EP78100552A 1977-08-03 1978-07-31 Elektrode Expired EP0000759B1 (de)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
DE2735050 1977-08-03
DE2735041 1977-08-03
DE19772735041 DE2735041A1 (de) 1977-08-03 1977-08-03 Saugelektrode
DE2735050A DE2735050C3 (de) 1977-08-03 1977-08-03 Elektrode
DE2831109 1978-07-14
DE19782831109 DE2831109A1 (de) 1978-07-14 1978-07-14 Saugelektrode
DE2831099 1978-07-14
DE19782831099 DE2831099A1 (de) 1978-07-14 1978-07-14 Elektrode

Publications (2)

Publication Number Publication Date
EP0000759A1 true EP0000759A1 (de) 1979-02-21
EP0000759B1 EP0000759B1 (de) 1981-09-02

Family

ID=27432240

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100552A Expired EP0000759B1 (de) 1977-08-03 1978-07-31 Elektrode

Country Status (2)

Country Link
EP (1) EP0000759B1 (de)
DE (1) DE2861010D1 (de)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0029245A1 (de) * 1979-11-20 1981-05-27 Siemens Aktiengesellschaft Anordnung zur Zuführung oder Abnahme von elektrischen Signalen
US4381789A (en) * 1979-11-20 1983-05-03 Siemens Aktiengesellschaft Electrode system
US4458696A (en) * 1979-08-07 1984-07-10 Minnesota Mining And Manufacturing Company T.E.N.S. Electrode
WO1987001024A1 (en) * 1985-08-21 1987-02-26 Spring Creek Institute, Inc. Dry electrode system, disposable electrode pad, and amplifier circuit for detection of biopotentials
EP0273167A1 (de) * 1986-11-26 1988-07-06 Siemens Aktiengesellschaft Leitfähige Zwischenlage für Elektroden
US4763659A (en) * 1985-08-21 1988-08-16 Spring Creek Institute, Inc. Dry electrode system for detection of biopotentials
EP0289906A1 (de) * 1987-05-08 1988-11-09 Siemens Aktiengesellschaft Unterdruckdüse für Saugelektroden
US4865039A (en) * 1985-08-21 1989-09-12 Spring Creek Institute Dry electrode system for detection of biopotentials and dry electrode for making electrical and mechanical connection to a living body
FR2651989A1 (fr) * 1989-05-10 1991-03-22 Archeny Jean Pierre Plaque, coussins, matelas de table d'operation et de table de radiologie conducteurs electriques et permeables aux rayons x usage medical.
US5211174A (en) * 1990-09-14 1993-05-18 Physiometrix, Inc. Low impedance, low durometer, dry conforming contact element
US5269810A (en) * 1992-06-19 1993-12-14 W. L. Gore & Associates, Inc. Patch electrode
EP0788329A1 (de) * 1994-10-24 1997-08-13 TRANSSCAN RESEARCH & DEVELOPMENT CO. LTD. Vorrichtung und vielelementwandler zur bilderzeugung mittels impedanzmessung
US5803911A (en) * 1995-11-06 1998-09-08 Colin Corporation Electrocardiographic waveform detection system
US6055452A (en) * 1994-10-24 2000-04-25 Transcan Research & Development Co., Ltd. Tissue characterization based on impedance images and on impedance measurements
US6154669A (en) * 1998-11-06 2000-11-28 Capita Systems, Inc. Headset for EEG measurements
US6345192B1 (en) 1998-09-08 2002-02-05 Venturi Medical Systems, Llc Electrode structure for electric contactor
EP1212981A1 (de) * 2000-12-08 2002-06-12 Tanita Corporation Harzdeckel mit Elektroden für Vorrichtung zur Messung bioelektrischer Impedanz
US6560480B1 (en) 1994-10-24 2003-05-06 Transscan Medical Ltd. Localization of anomalies in tissue and guidance of invasive tools based on impedance imaging
US6678552B2 (en) 1994-10-24 2004-01-13 Transscan Medical Ltd. Tissue characterization based on impedance images and on impedance measurements
US7054677B2 (en) 2002-04-16 2006-05-30 Venturi Medical Systems Venturi ECG electrode system
US10173060B2 (en) 2014-06-02 2019-01-08 Cala Health, Inc. Methods for peripheral nerve stimulation
US10625074B2 (en) 2013-01-21 2020-04-21 Cala Health, Inc. Devices and methods for controlling tremor
US10765856B2 (en) 2015-06-10 2020-09-08 Cala Health, Inc. Systems and methods for peripheral nerve stimulation to treat tremor with detachable therapy and monitoring units
US10814130B2 (en) 2016-07-08 2020-10-27 Cala Health, Inc. Dry electrodes for transcutaneous nerve stimulation
US11331480B2 (en) 2017-04-03 2022-05-17 Cala Health, Inc. Systems, methods and devices for peripheral neuromodulation for treating diseases related to overactive bladder
US11344722B2 (en) 2016-01-21 2022-05-31 Cala Health, Inc. Systems, methods and devices for peripheral neuromodulation for treating diseases related to overactive bladder
US11596785B2 (en) 2015-09-23 2023-03-07 Cala Health, Inc. Systems and methods for peripheral nerve stimulation in the finger or hand to treat hand tremors
US11857778B2 (en) 2018-01-17 2024-01-02 Cala Health, Inc. Systems and methods for treating inflammatory bowel disease through peripheral nerve stimulation
US11890468B1 (en) 2019-10-03 2024-02-06 Cala Health, Inc. Neurostimulation systems with event pattern detection and classification

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1098726A (fr) * 1954-01-28 1955-08-18 Parisienne D Expl Des Etabliss électrode pour traitements électro-médicaux et pour électro-diagnostic
US3566860A (en) * 1968-12-20 1971-03-02 United Aircraft Corp Carbon-impregnated body electrode
US3606881A (en) * 1970-02-20 1971-09-21 Riley D Woodson Conductive rubber electrode
US3696807A (en) * 1970-02-13 1972-10-10 Mdm Corp Medical electrode with relatively rigid electrolyte cup
US3828766A (en) * 1972-08-14 1974-08-13 Jet Medical Prod Inc Disposable medical electrode
US3888240A (en) * 1974-02-08 1975-06-10 Survival Technology Electrode assembly and methods of using the same in the respiratory and/or cardiac monitoring of an infant
DE2459627A1 (de) * 1973-12-17 1975-06-19 Ndm Corp Medizinische elektrode
DE2414584A1 (de) * 1974-03-26 1975-10-16 Siemens Ag Elektrode zum verbinden eines elektrischen leiters mit einem patienten
DE2629549A1 (de) * 1975-07-03 1977-01-27 Hal Charles Danby Elektrode zum ausbilden einer elektrischen verbindung mit der haut eines patienten
DE2754465A1 (de) * 1976-12-13 1978-06-15 M I Systems Inc Ekg-elektrodenpackung

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1098726A (fr) * 1954-01-28 1955-08-18 Parisienne D Expl Des Etabliss électrode pour traitements électro-médicaux et pour électro-diagnostic
US3566860A (en) * 1968-12-20 1971-03-02 United Aircraft Corp Carbon-impregnated body electrode
US3696807A (en) * 1970-02-13 1972-10-10 Mdm Corp Medical electrode with relatively rigid electrolyte cup
US3606881A (en) * 1970-02-20 1971-09-21 Riley D Woodson Conductive rubber electrode
US3828766A (en) * 1972-08-14 1974-08-13 Jet Medical Prod Inc Disposable medical electrode
DE2459627A1 (de) * 1973-12-17 1975-06-19 Ndm Corp Medizinische elektrode
US3888240A (en) * 1974-02-08 1975-06-10 Survival Technology Electrode assembly and methods of using the same in the respiratory and/or cardiac monitoring of an infant
DE2414584A1 (de) * 1974-03-26 1975-10-16 Siemens Ag Elektrode zum verbinden eines elektrischen leiters mit einem patienten
DE2629549A1 (de) * 1975-07-03 1977-01-27 Hal Charles Danby Elektrode zum ausbilden einer elektrischen verbindung mit der haut eines patienten
DE2754465A1 (de) * 1976-12-13 1978-06-15 M I Systems Inc Ekg-elektrodenpackung

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4458696A (en) * 1979-08-07 1984-07-10 Minnesota Mining And Manufacturing Company T.E.N.S. Electrode
EP0029245A1 (de) * 1979-11-20 1981-05-27 Siemens Aktiengesellschaft Anordnung zur Zuführung oder Abnahme von elektrischen Signalen
US4381789A (en) * 1979-11-20 1983-05-03 Siemens Aktiengesellschaft Electrode system
WO1987001024A1 (en) * 1985-08-21 1987-02-26 Spring Creek Institute, Inc. Dry electrode system, disposable electrode pad, and amplifier circuit for detection of biopotentials
US4669479A (en) * 1985-08-21 1987-06-02 Spring Creek Institute, Inc. Dry electrode system for detection of biopotentials
US4763659A (en) * 1985-08-21 1988-08-16 Spring Creek Institute, Inc. Dry electrode system for detection of biopotentials
US4865039A (en) * 1985-08-21 1989-09-12 Spring Creek Institute Dry electrode system for detection of biopotentials and dry electrode for making electrical and mechanical connection to a living body
EP0273167A1 (de) * 1986-11-26 1988-07-06 Siemens Aktiengesellschaft Leitfähige Zwischenlage für Elektroden
EP0289906A1 (de) * 1987-05-08 1988-11-09 Siemens Aktiengesellschaft Unterdruckdüse für Saugelektroden
FR2651989A1 (fr) * 1989-05-10 1991-03-22 Archeny Jean Pierre Plaque, coussins, matelas de table d'operation et de table de radiologie conducteurs electriques et permeables aux rayons x usage medical.
US5211174A (en) * 1990-09-14 1993-05-18 Physiometrix, Inc. Low impedance, low durometer, dry conforming contact element
US5269810A (en) * 1992-06-19 1993-12-14 W. L. Gore & Associates, Inc. Patch electrode
EP0788329A1 (de) * 1994-10-24 1997-08-13 TRANSSCAN RESEARCH & DEVELOPMENT CO. LTD. Vorrichtung und vielelementwandler zur bilderzeugung mittels impedanzmessung
EP0788329A4 (de) * 1994-10-24 1999-11-10 Transscan Res & Dev Co Ltd Vorrichtung und vielelementwandler zur bilderzeugung mittels impedanzmessung
US6055452A (en) * 1994-10-24 2000-04-25 Transcan Research & Development Co., Ltd. Tissue characterization based on impedance images and on impedance measurements
US6308097B1 (en) 1994-10-24 2001-10-23 Transscan Medical Ltd. Tissue characterization based on impedance images and on impedance measurements
US7141019B2 (en) 1994-10-24 2006-11-28 Mirabel Medical Systems Ltd. Tissue characterization based on impedance images and on impedance measurements
US6421559B1 (en) 1994-10-24 2002-07-16 Transscan Medical Ltd. Tissue characterization based on impedance images and on impedance measurements
US6560480B1 (en) 1994-10-24 2003-05-06 Transscan Medical Ltd. Localization of anomalies in tissue and guidance of invasive tools based on impedance imaging
US6678552B2 (en) 1994-10-24 2004-01-13 Transscan Medical Ltd. Tissue characterization based on impedance images and on impedance measurements
US5803911A (en) * 1995-11-06 1998-09-08 Colin Corporation Electrocardiographic waveform detection system
EP0876791A1 (de) * 1995-11-06 1998-11-11 Colin Corporation Elektrokardiographisches Wellenform Messsystem
US6345192B1 (en) 1998-09-08 2002-02-05 Venturi Medical Systems, Llc Electrode structure for electric contactor
US6154669A (en) * 1998-11-06 2000-11-28 Capita Systems, Inc. Headset for EEG measurements
EP1212981A1 (de) * 2000-12-08 2002-06-12 Tanita Corporation Harzdeckel mit Elektroden für Vorrichtung zur Messung bioelektrischer Impedanz
US7054677B2 (en) 2002-04-16 2006-05-30 Venturi Medical Systems Venturi ECG electrode system
US10625074B2 (en) 2013-01-21 2020-04-21 Cala Health, Inc. Devices and methods for controlling tremor
US10905879B2 (en) 2014-06-02 2021-02-02 Cala Health, Inc. Methods for peripheral nerve stimulation
US10173060B2 (en) 2014-06-02 2019-01-08 Cala Health, Inc. Methods for peripheral nerve stimulation
US10561839B2 (en) 2014-06-02 2020-02-18 Cala Health, Inc. Systems for peripheral nerve stimulation
US10179238B2 (en) 2014-06-02 2019-01-15 Cala Health, Inc. Systems for peripheral nerve stimulation
US10549093B2 (en) 2014-06-02 2020-02-04 Cala Health, Inc. Method for peripheral nerve stimulation
US10960207B2 (en) 2014-06-02 2021-03-30 Cala Health, Inc. Systems for peripheral nerve stimulation
US10765856B2 (en) 2015-06-10 2020-09-08 Cala Health, Inc. Systems and methods for peripheral nerve stimulation to treat tremor with detachable therapy and monitoring units
US11596785B2 (en) 2015-09-23 2023-03-07 Cala Health, Inc. Systems and methods for peripheral nerve stimulation in the finger or hand to treat hand tremors
US11344722B2 (en) 2016-01-21 2022-05-31 Cala Health, Inc. Systems, methods and devices for peripheral neuromodulation for treating diseases related to overactive bladder
US11918806B2 (en) 2016-01-21 2024-03-05 Cala Health, Inc. Systems, methods and devices for peripheral neuromodulation of the leg
US10814130B2 (en) 2016-07-08 2020-10-27 Cala Health, Inc. Dry electrodes for transcutaneous nerve stimulation
US11331480B2 (en) 2017-04-03 2022-05-17 Cala Health, Inc. Systems, methods and devices for peripheral neuromodulation for treating diseases related to overactive bladder
US11857778B2 (en) 2018-01-17 2024-01-02 Cala Health, Inc. Systems and methods for treating inflammatory bowel disease through peripheral nerve stimulation
US11890468B1 (en) 2019-10-03 2024-02-06 Cala Health, Inc. Neurostimulation systems with event pattern detection and classification

Also Published As

Publication number Publication date
DE2861010D1 (en) 1981-11-26
EP0000759B1 (de) 1981-09-02

Similar Documents

Publication Publication Date Title
EP0000759B1 (de) Elektrode
DE102012014714B4 (de) Elektrodenanordnung und System bestehend aus einer Elektrodenanordnung und einer Anzahl an Elektroden
DE3628652C2 (de)
DE1939523B1 (de) Saugelektrodenvorrichtung fuer elektromedizinische Geraete
DE3300765C1 (de) Elektrodenvorrichtung zur Abnahme elektro-physiologischer Spannungen
DE4231600B4 (de) Implantierbares Defibrillationssystem
DE2712816A1 (de) Einmal-elektrode fuer elektromedizinische zwecke und verfahren zur herstellung eines satzes von derartigen elektroden
DE1466768B2 (de) Bewegungsfehlerfreie Elektrodenanordnung
DE3024359A1 (de) Temporaere, einstellbare bipolare leitungsanordnung
DE102010005462A1 (de) Liner
DE102013017889A1 (de) Stimulationsvorrichtung
EP0963217B1 (de) Tampon, insbesondere zur anwendung bei harn-inkontinenz von frauen
DE202018100556U1 (de) Textile Bioelektrische Überwachungselektrode
DE2735050C3 (de) Elektrode
DE2041392A1 (de) Elektroden fuer elektro-medizinische Zwecke
EP2582290A1 (de) Befeuchtete sensorkontakteinheit
DE3713481C2 (de) Biomedizinische Elektrode
DE7603022U1 (de) Biomedizinische reizelektrodenleitung zur dauernden implantation im lebenden koerper
DE2831109A1 (de) Saugelektrode
DE2831099A1 (de) Elektrode
DE2735041A1 (de) Saugelektrode
CH656314A5 (de) Vorrichtung zum ausgleichen des elektrischen potentials eines menschlichen oder tierischen koerpers gegenueber dem erdpotential.
AT503420B1 (de) Oberflächenelektrode
DE4018649C2 (de)
DE1224847B (de) Vorrichtung zur Saugmasse und gleichzeitigen Elektrisierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB NL SE

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB NL SE

REF Corresponds to:

Ref document number: 2861010

Country of ref document: DE

Date of ref document: 19811126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19830630

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19830725

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19830731

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19830831

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19840731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19840801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840925

Year of fee payment: 7

BERE Be: lapsed

Owner name: SIEMENS A.G. BERLIN UND MUNCHEN

Effective date: 19840731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19850201

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19850329

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890401

EUG Se: european patent has lapsed

Ref document number: 78100552.5

Effective date: 19850612

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT