EP0000497A1 - Transportleitung mit keramischer Innenisolierung zur Führung heisser Fluide - Google Patents

Transportleitung mit keramischer Innenisolierung zur Führung heisser Fluide Download PDF

Info

Publication number
EP0000497A1
EP0000497A1 EP78100361A EP78100361A EP0000497A1 EP 0000497 A1 EP0000497 A1 EP 0000497A1 EP 78100361 A EP78100361 A EP 78100361A EP 78100361 A EP78100361 A EP 78100361A EP 0000497 A1 EP0000497 A1 EP 0000497A1
Authority
EP
European Patent Office
Prior art keywords
wall
transport line
ceramic
inner insulation
hollow body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP78100361A
Other languages
English (en)
French (fr)
Other versions
EP0000497B1 (de
Inventor
Franz Scholz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Kernforschungsanlage Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH, Kernforschungsanlage Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP0000497A1 publication Critical patent/EP0000497A1/de
Application granted granted Critical
Publication of EP0000497B1 publication Critical patent/EP0000497B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/07Arrangements using an air layer or vacuum the air layer being enclosed by one or more layers of insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems
    • F16L59/147Arrangements for the insulation of pipes or pipe systems the insulation being located inwardly of the outer surface of the pipe
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C11/00Shielding structurally associated with the reactor
    • G21C11/08Thermal shields; Thermal linings, i.e. for dissipating heat from gamma radiation which would otherwise heat an outer biological shield ; Thermal insulation
    • G21C11/081Thermal shields; Thermal linings, i.e. for dissipating heat from gamma radiation which would otherwise heat an outer biological shield ; Thermal insulation consisting of a non-metallic layer of insulating material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S138/00Pipes and tubular conduits
    • Y10S138/05Pre-stress

Definitions

  • the invention relates to a ceramic inner insulation for a hot fluid-carrying transport line, which is formed by a ceramic hollow body which at least partially surrounds the flow space of the fluid and which is arranged at a short distance within an outer wall of the transport line.
  • Internal insulation for transport lines is required to protect the outer walls of the transport line, which are usually made of metallic materials, from overheating. This is particularly necessary when the hot fluids are under pressure and the loads on the transport line caused thereby have to be borne by the outer walls. Ceramic foil or fiber materials and solid ceramic insulation are known for internal insulation. The latter have particularly Proven especially for prestressed concrete tanks.
  • the object of the invention is to provide a ceramic inner insulation which is also suitable for high fluid pressures and high axial flow pressure losses while avoiding gas flows and which can also be used in a simple manner in the transport lines.
  • a ceramic inner insulation of the type mentioned above according to the invention in that the ceramic hollow body is prestressed in the unloaded state by means of clamping elements which gas-tightly enclose the hollow body on its side facing the outer wall of the transport line.
  • the preload is selected so that the inner insulation is not subjected to tensile forces in the operating state, but at least in such a way that the tensile stresses to be absorbed are limited to an admissible level.
  • the internal insulation expands so that the pretension applied by the tensioning elements is increased during operation.
  • the clamping elements also act as sealing elements. The occurrence of parasitic gas flows in the space between the inner insulation and the outer wall can be largely suppressed in an advantageous manner.
  • Draw ceramic inner insulation with tensioning elements is therefore also characterized by a higher insulating effect.
  • a further embodiment of the invention is that rings or sleeves that can be shrunk onto ceramic hollow bodies are provided as clamping elements.
  • ceramic segments that are more adaptable to the shapes of the transport lines can advantageously be used without having to fear the occurrence of parasitic gas flows.
  • the ring and sleeve are connected gas-tight to the outer wall at least in the area of these connection points. Such a connection is facilitated in that an intermediate wall is attached to the outer wall, with which the ring or the sleeve can be welded.
  • Thin-walled tubular parts can be used as the intermediate wall, which are welded to the pressure-bearing outer walls before they are annealed. The subsequent welding of the rings or sleeves does not cause any deterioration in the desired strength properties of the outer wall.
  • rings or sleeves With moderate pressures in the flow space of the transport line, further forms staltung of the invention, the rings or sleeves at the same time the outer wall of the transport line. This considerably simplifies the construction of the transport line. Since the tensioning elements are heated to a comparatively low degree when the transport line is in operation, rings or sleeves can be directly welded to one another at connection points or connected in a gas-tight manner in another suitable manner.
  • the transport line has, within an outer wall 1, a ceramic inner insulation surrounding the flow space 2 of the fluid and designed as a hollow body 3.
  • a steel tube is provided as the outer wall 1.
  • the inner insulation is formed by several segments, of which in Fi gur 2 the interlocked segments 3a to 3c are shown.
  • a space 4 is present between the inner insulation and the outer wall.
  • the ceramic hollow body 3 is enclosed on its side facing the outer wall 1 by clamping elements 5, which prestress the hollow body under pressure.
  • tensioning wires can be used as tensioning elements. An embodiment of this type is not shown in the drawing.
  • 5 rings are provided as tensioning elements, which are shrunk onto the segments of the hollow body 3 which are jointed together in order to achieve the desired prestress. This creates closed, hollow-cylindrical insulating pieces that can be inserted axially into the transport line. Centering 6 ensure mutual alignment of the lined up hollow body.
  • the clamping elements 5 are welded gas-tight to the outer wall 1.
  • the outer wall 1 is connected to a further inner, thin intermediate wall 8.
  • the intermediate wall 8 is welded into the outer wall 1 at welding points 7 ′ before the annealing treatment.
  • the intermediate wall 8 advantageously also reduces the space between the insulation and the outer wall, so that heat losses - caused by the occurrence of free convection in the space - are reduced.
  • a transport line for lower pressures is shown in axial section in FIG.
  • the inner insulation which also consists of segments in this exemplary embodiment, is spanned by sleeves 12, which at the same time form the outer wall of the transport line.
  • the sleeves 12 are welded at connection points.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Insulation (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

In einer Transportleitung für heiße Fluide sind den Strömungsraum (2) des Fluids zumindest teilweise umgebende keramische Hohlkörper (3) zur Innenisolierung der Transportleitung eingesetzt, die mit geringem Abstand zur äußeren Wandung (1) der Transportleitung angeordnet sind. Um hohe Fluiddrucke und hohe axiale Strömungsdruckverluste aufnehmen zu können, ist der keramische Hohlkörper (3) durch Spannelemente (5), die den Hohlkörper auf seiner der äußeren Wandung (1) der Transportleitung zugewandten Seite umschließen, im unbelasteten Zustand auf Druck vorgespannt.

Description

  • Die Erfindung bezieht sich auf eins keramische Innenisolierung für eine heiße Fluide führende Transportleitung, die von einem den Strömungsraum des Fluids zumindest teilweise umgebenden keramischen Hohlkörper gebildet wird, der mit geringem Abstand innerhalb einer äußeren Wandung der Transportleitung angeordnet ist.
  • Innenisolierungen bei Transportlsitungen sind erforderlich, um die meist aus metallischen Werkstoffen bestehenden äußeren Wandungen der Transportleitung vor einer Überhitzung zu schützen. Dies ist vor allem dann erforderlich, wenn die heißen Fluide unter Druck stehen und die hierdurch hervorgerufenen Belastungen der Transportleitung von den äußeren Wandungen zu übernehmen sind. Zur Innenisolierung sind keramische Folien-oder Faserwerkstoffe und Festkeramikisolierungen bekannt. Letztere haben sich insbesondere für Spannbetonbehälter bewährt.
  • Bei einer keramischen Innenisolierung in einer Transportleitung für heiße Fluide treten vor allem zwei Probleme auf: Durch den erwünschten Temperaturabbau in der Innenisolierung zwischen Strömungsraum und äußerer Wandung treten an der äußeren kalten Seite der Isolierung Zugspannungen auf, die das keramische Material nur in sehr begrenztem Umfang aufnehmen kann. Die Rißgefahr bei keramischen Innenisolierungen ist infolgedessen insbesondere bei hohen Temperaturgradienten zwischen Strömungsraum-und äußerer Wandung außerordentlich hoch. Um dies zu vermeiden, wurde daher bereits vorgeschlagen, die keramische Innenisolierung in mehrere Segmente zu unterteilen. Nachteilig ist dabei jedoch, daß sich infolge der in Strömungsrichtung des Fluids bestehenden Druckgradienten eine parasitäre Gasströmung in den Fugen zwischen aneinanderliegenden Isolierungssegmenten sowie im Zwischenraum zwischen Innenisolierung und äußerer Wandung der Transportleitung einstellt. Diese unerwünschte Gasströmung setzt die Isolierwirkung in häufig unkontrollierbarer Weise stark herab, so daß örtlich für die Aufnahme der Kräfte in der Wandung unzulässig hohe Temperaturen auftreten.
  • Aufgabe der Erfindung ist es, unter Vermeidung von Gasströmungen außerhalb des Strömungsraumes eine auch für hohe Fluiddrucke und hohe axiale Strömungsdruckverluste geeignete keramische Innenisolierung zu schaffen, die zugleich in einfacher Weise in die Transportleitungen einsetzbar ist.
  • Diese Aufgabe wird bei einer keramischen Innenisolierung der oben genannten Art gemäß der Erfindung dadurch gelöst, daß der keramische Hohlkörper mittels Spannelementen, die den Hohlkörper auf seiner der äußeren Wandung der Transportleitung zugewandten Seite gasdicht umschließen, im unbelasteten Zustand auf Druck vorgespannt ist. Die Vorspannung wird so gewählt, daß die Innenisolierung'im Betriebszustand nicht durch Zugkräfte beansprucht wird, zumindest aber so, daß die aufzunehmenden Zugspannungen auf ein zulässiges Maß beschränkt sind. Bei Betrieb dehnt sich die Innenisolierung aus, so daß die durch die Spannelemente aufgebrachte Vorspannung während des Betriebes noch erhöht wird. Die Spannelemente wirken zugleich als Dichtelemente. Das Auftreten parasitärer Gasströmungen im Zwischenraum zwischen Innenisolierung und äußerer Wandung läßt sich in vorteilhafter Weise weitgehend unterdrücken. Keramische Innenisolierungen mit Spannelementen zeichnen sich daher zugleich auch durch eine höhere Isolierwirkung aus.
  • Eine weitere Ausgestaltung der Erfindung besteht darin, daß als Spannelemente auf keramische Hohlkörper aufschrumpfbare Ringe oder Hülsen vorgesehen sind. In diesem Falle lassen sich in vorteilhafter Weise auch den Formen der Transportleitungen besser anpaßbare keramische Segmente einsetzen, ohne dabei das Auftreten parasitärer Gasströme befürchten zu müssen. Um auch das Einströmen von Fluid in den Zwischenraum zwischen Innenisolierung und äußerer Wandung an solchen Stellen zu vermeiden, an denen ein RohranschluB erforderlich ist, sind zumindest im Bereich dieser Anschlußstellen Ring und Hülse mit der äußeren Wandung gasdicht verbunden. Eine solche Verbindung wird dadurch erleichtert, daß an der äußeren Wandung eine Zwischenwand befestigt ist, mit der der Ring oder die Hülse verschweißbar sind. Als Zwischenwand sind dünnwandige Rohrteile verwendbar, die vor dem Glühen der drucktragenden äußeren Wandungen mit diesen verschweißt werden. Das spätere Einschweißen der Ringe oder Hülsen verursacht so keine Verschlechterung der-erwünschten Festigkeitseigenschaften der äußeren Wandung. r
  • Bei mäßigen Drücken im Strömungsraum der Transportleitung bilden in weiterer Ausgestaltung der Erfindung die Ringe oder Hülsen zugleich die äußere Wandung der Transportleitung. Damit vereinfacht sich der Aufbau der Transportleitung erheblich. Da die Spannelemente bei Betrieb der Transportleitung nur verhältnismäßig gering erhitzt werden, lassen sich Ringe oder Hülsen an Anschlußstellen unmittelbar miteinander verschweißen oder in sonst geeign.eter Weise gasdicht verbinden.
  • Die Erfindung wird anhand von Ausführungsbeispielen, die in der Zeichnung schematisch wiedergegeben sind, näher erläutert. Die Figuren zeigen im einzelnen
    • Figur 1 Transportleitung mit keramischer Innenisolierung im Axialschnitt gemäß Schnittlinie I/I nach Figur 2,
    • Figur 2 Querschnitt einer Transportleitung nach Figur 1 gemäß Schnittlinie II/II und
    • Figur 3 Transportleitung mit keramischer Innenisolierung für niederen Druck.
  • Wie aus der Zeichnung ersichtlich ist, weist die Transportleitung innerhalb einer äußeren Wandung 1 eine den Strömungsraum 2 des Fluids umgebende, als Hohlkörper 3 ausgebildete keramische Innenisolierung auf. Im Ausführungsbeispiel ist als-äußere Wandung 1 ein Stahlrohr vorgesehen. Die Innenisolierung wird von mehreren Segmenten gebildet, von denen in Figur 2 die ineinander verfugten Segmente 3a bis 3c wiedergegeben sind. Zwischen Innenisolierung und äußerer Wandung ist ein Zwischenraum 4 vorhanden. Der keramische Hohlkörper 3 wird auf seiner der äußeren Wandung 1 zugewandten Seite von Spannelementen 5 umschlossen, die den Hohlkörper auf Druck vorspannen. Als Spannelemente sind im einfachsten Falle Spanndrähte verwendbar. Ein Ausführungsbeispiel dieser Art ist in der Zeichnung nicht dargestellt.
  • Im Ausführungsbeispiel nach Figur 1 und 2 sind als Spannelemente 5 Ringe vorgesehen, die in üblicher Weise auf die miteinander verfugten Segmente des Hohlkörpers 3 zur Erzielung der gewünschten Vorspannung aufgeschrumpft werden. Es entstehen so geschlossene hohlzylindrische Isolierstücke, die in die Transportleitung axial einsetzbar sind. Zentrierungen 6 sorgen für eine gegenseitige Ausrichtung der aneinandergereihten Hohlkörper.
  • Um eine axiale Gasströmung im Zwischenraum 4 zu vermeiden, sind die Spannelemente 5 mit der äußeren Wandung 1 gasdicht verschweißt. Um dies ohne Beeinträchtigung der äußeren Wandung zu ermöglichen ist im dargestellten Ausführungsbeispiel die äußere Wandung 1 mit einer weiteren inneren, dünnen Zwischenwand 8 verbunden. Mit der Zwischenwand 8 sind die Spannelemente 5 an Schweißstellen 7 verschweißt. Die Zwischenwand 8 wird in der äußeren Wandung 1 an Schweißstellen 7'vor der Glühbehandlung eingeschweißt. Die Zwischenwand 8 verringert in vorteilhafter Weise zugleich den Zwischenraum zwischen Isolierung und äußerer Wandung, so daß Wärmeverluste - verursacht durch das Auftreten freier Konvektion im Zwischenraum - vermindert werden.
  • Eine Transportleitung-für geringere Drücke ist in Figur 3 im Axialschnitt dargestellt. Die auch in diesem Ausführungsbeispiel aus Segmenten bestehende Innenisolierung wird von Hülsen 12 umspannt, die zugleich die äußere Wandung der Transportleitung bilden. An Anschlußstellen werden die Hülsen 12 verschweißt.

Claims (5)

1. Keramische Innenisolierung für eine heiße Fluide führende Transportleitung, die von einem den Strömungsraum des Fluids zumindest teilweise umgebenden keramischen Hohlkörper gebildet wird, der mit geringem Ab- . stand innerhalb einer äußeren Wandung der Transportleitung angeordnet ist, dadurch gekennzeichnet,
daß der keramische Hohlkörper (3) mittels Spannelementen (5, 12), die den Hohlkörper auf seiner der äußeren Wandung (1) der Transportleitung zugewandten Seite umschließen, im unbelasteten Zustand auf Druck vorgespannt ist.
2. Keramische Innenisolierung nach Anspruch 1, dadurch gekennzeichnet,
daß als Spannelemente (5) auf keramische Hohlkörper aufschrumpfbare Ringe (5) oder Hülsen (12) vorgesehen sind.
3. Keramische Innenisolierung nach Anspruch 2, dadurch gekennzeichnet,
daß im Bereich von Anschlußstellen Ring oder Hülse mit der äußeren Wandung (1) gasdicht verbunden sind.
Keramische Innenisolierung nach Anspruch 3, dadurch gekennzeichnet,
daß an der äußeren Wandung (1) eine Zwischenwand (8) befestigt ist, mit der die Ringe oder Hülsen verschweißbar sind.
5. Keramische Innenisolierung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
daß die Ringe (5) oder Hülsen (12) zugleich die äußere Wandung (1) der Transportleitung bilden.
EP78100361A 1977-07-26 1978-07-11 Transportleitung mit keramischer Innenisolierung zur Führung heisser Fluide Expired EP0000497B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2733611 1977-07-26
DE2733611A DE2733611C2 (de) 1977-07-26 1977-07-26 Transportleitung mit keramischer Innenisolierung zur Führung heißer Fluide

Publications (2)

Publication Number Publication Date
EP0000497A1 true EP0000497A1 (de) 1979-02-07
EP0000497B1 EP0000497B1 (de) 1981-01-07

Family

ID=6014838

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100361A Expired EP0000497B1 (de) 1977-07-26 1978-07-11 Transportleitung mit keramischer Innenisolierung zur Führung heisser Fluide

Country Status (3)

Country Link
US (1) US4259993A (de)
EP (1) EP0000497B1 (de)
DE (1) DE2733611C2 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0096791A1 (de) * 1982-06-11 1983-12-28 INTERATOM Gesellschaft mit beschränkter Haftung Isolierung für Heissgasrohrleitung
EP0148434A1 (de) * 1983-12-21 1985-07-17 INTERATOM Gesellschaft mit beschränkter Haftung Heissgasbehälter mit Isolierung aus einander überlappenden keramischen Körpern
EP0334010A1 (de) * 1988-03-19 1989-09-27 MAN Gutehoffnungshütte Aktiengesellschaft Thermisch isolierte Rohrleitung
EP0441025A2 (de) * 1989-11-07 1991-08-14 The Babcock & Wilcox Company Rohrleitung
FR2894316A1 (fr) 2005-12-05 2007-06-08 Commissariat Energie Atomique Element de conduite de transport de gaz chauds et procede de realisation d'un tel element

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR8008976A (pt) * 1979-12-15 1981-10-20 Steetley Refractories Ltd Conjunto tubular, metodo de preparacao do conjunto, aparelho para vazamento pelo fundo que incorpora o conjunto e metodo de fundicao de metal
US4516608A (en) * 1982-09-29 1985-05-14 Electro-Petroleum, Inc. Tubular member
DK205583A (da) * 1983-05-09 1984-11-10 Hasle Klinker & Chamott Centralroer til cyklon til rensning af varme gasser
AT381367B (de) * 1984-06-20 1986-10-10 Jericha Herbert Dipl Ing Dr Te Innere isolation fuer hochtemperatur-dampfturbinen
US4684155A (en) * 1986-04-11 1987-08-04 Cerline Ceramic Corporation Pipe elbow with abrasion resistant composite inner liner and method for forming
US4773149A (en) * 1987-09-14 1988-09-27 Gte Products Corporation Method of making ceramic tube for high temperature use
DE3821985C1 (de) * 1988-06-30 1990-03-01 Metalpraecis Berchem + Schaberg Gesellschaft Fuer Metallformgebung Mbh, 4650 Gelsenkirchen, De
DE4236895A1 (de) * 1992-10-31 1994-05-05 Maury Hans Dietmar Tauchrohr für einen Fliehkraftabscheider (Zyklon)
US20030207103A1 (en) * 2002-05-03 2003-11-06 Zvosec Charles M. System and method for protecting surfaces against corrosive compounds
US6994117B2 (en) * 2003-09-25 2006-02-07 Kerr-Mcgee Chemical, Llc Piping elbow liners
EP3506318B1 (de) 2010-04-23 2020-10-14 Atomic Energy of Canada Limited/ Énergie Atomique du Canada Limitée Druckrohrreaktor und verfahren zum betrieb desselben
WO2011130821A1 (en) * 2010-04-23 2011-10-27 Atomic Energy Of Canada Limited/Énergie Atomique Du Canada Limitée Pressure-tube reactor with coolant plenum
CA2805785A1 (en) * 2012-05-02 2013-11-02 Owens Corning Intellectual Capital, Llc Duct liner
EP3309795B1 (de) 2012-06-13 2019-10-30 Atomic Energy of Canada Limited/ Énergie Atomique du Canada Limitée Brennstoffkanalanordnung und brennstabbündel für einen kernreaktor
CN105673979B (zh) * 2015-03-12 2018-07-17 周朝辉 一种两分双层式耐磨抗冲击弯管及其制备方法
CA3125200A1 (en) 2019-01-04 2020-07-09 Canadian Pressure Control Inc. Pipeline-leak-containment apparatus
DE102021106305A1 (de) 2021-03-16 2022-09-22 Karlsruher Institut für Technologie (Körperschaft des öffentlichen Rechts) Verfahren zur Herstellung von Rohren mit topographischen Innenstrukturen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1119469A (en) * 1966-06-14 1968-07-10 Euratom Nuclear reactor cooling duct or pressure tube with solid internal insulation
DE1804143A1 (de) * 1968-10-19 1970-04-30 Arnold Hellmut Rohr
DE2243995A1 (de) * 1971-09-09 1973-03-15 Commissariat Energie Atomique Verfahren und vorrichtung zur waermeisolation bei hoher temperatur

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE289599C (de) *
DE223944C (de) *
US1696725A (en) * 1926-02-12 1928-12-25 Thomas E Murray Drum, pipe, fittings, etc.
GB260898A (en) * 1926-03-01 1926-11-11 Mannesmann Ag Improvements in or relating to pipes with shrunk-on hooping rings
GB296015A (en) * 1927-08-23 1928-12-27 Julius Grossweischede Improved method of making bandaged tubes for pressure-conduits
US2652943A (en) * 1947-01-09 1953-09-22 Williams Sylvester Vet High-pressure container having laminated walls
FR1222543A (fr) * 1958-12-17 1960-06-10 Entpr S Campenon Bernard Tuyaux et corps creux en béton précontraint chemisé et leur procédé d'obtention
US3136036A (en) * 1959-05-29 1964-06-09 Dobell Curzon Method of making reinforced rocket nozzle
BE592445A (de) * 1960-06-30
US3156091A (en) * 1961-07-19 1964-11-10 Curtiss Wright Corp Multi-layer anisotropic heat shield construction
US3308853A (en) * 1963-11-06 1967-03-14 Minnesota Mining & Mfg Constrained ceramics
US3587659A (en) * 1968-01-08 1971-06-28 Hydro Conduit Corp Wrapped tubular concrete pipe
BE792348A (fr) * 1971-12-28 1973-03-30 Uss Eng & Consult Procede de liaison de garnitures dans des tubes metalliques
NL169756C (nl) * 1972-09-01 1982-08-16 Estel Hoogovens Bv Compensatorsectie voor een hetewindleiding.
US4010775A (en) * 1975-01-15 1977-03-08 Consolidated Controls Corporation High temperature valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1119469A (en) * 1966-06-14 1968-07-10 Euratom Nuclear reactor cooling duct or pressure tube with solid internal insulation
DE1804143A1 (de) * 1968-10-19 1970-04-30 Arnold Hellmut Rohr
DE2243995A1 (de) * 1971-09-09 1973-03-15 Commissariat Energie Atomique Verfahren und vorrichtung zur waermeisolation bei hoher temperatur

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0096791A1 (de) * 1982-06-11 1983-12-28 INTERATOM Gesellschaft mit beschränkter Haftung Isolierung für Heissgasrohrleitung
EP0148434A1 (de) * 1983-12-21 1985-07-17 INTERATOM Gesellschaft mit beschränkter Haftung Heissgasbehälter mit Isolierung aus einander überlappenden keramischen Körpern
US4732177A (en) * 1983-12-21 1988-03-22 Interatom Gmbh Hot gas container with insulation formed of overlapping ceramic bodies
EP0334010A1 (de) * 1988-03-19 1989-09-27 MAN Gutehoffnungshütte Aktiengesellschaft Thermisch isolierte Rohrleitung
EP0441025A2 (de) * 1989-11-07 1991-08-14 The Babcock & Wilcox Company Rohrleitung
EP0441025A3 (en) * 1989-11-07 1991-10-23 The Babcock & Wilcox Company Conduit
TR26228A (tr) * 1989-11-07 1995-02-15 Babcock & Wilcox Co Tecritli boru imalati
FR2894316A1 (fr) 2005-12-05 2007-06-08 Commissariat Energie Atomique Element de conduite de transport de gaz chauds et procede de realisation d'un tel element
WO2007065835A1 (fr) 2005-12-05 2007-06-14 Commissariat A L'energie Atomique Element d'isolation pour conduite de transport de gaz chauds e procede de realisation d'une telle conduite
US8276621B2 (en) 2005-12-05 2012-10-02 Commissariat A L'energie Atomique Element for a pipe for transporting hot gases and method of fabricating said element

Also Published As

Publication number Publication date
EP0000497B1 (de) 1981-01-07
DE2733611A1 (de) 1979-02-01
DE2733611C2 (de) 1982-10-14
US4259993A (en) 1981-04-07

Similar Documents

Publication Publication Date Title
EP0000497A1 (de) Transportleitung mit keramischer Innenisolierung zur Führung heisser Fluide
DE3910630C3 (de) Verbindung eines ungekühlten Rohres mit einem gekühlten Rohr
DE2818892A1 (de) Vorrichtung zum abkuehlen heissen gases
EP0171583B1 (de) Reaktionsrohrsystem eines Röhrenspaltofens
EP0148434B1 (de) Heissgasbehälter mit Isolierung aus einander überlappenden keramischen Körpern
EP0355662A2 (de) Aktiv gekühlter Wärmeschutzschild
DE2536280A1 (de) Isostatische heisspresse
WO1992016787A1 (de) Doppelwandiger druckbehälter und verfahren zu seiner herstellung
DE2316123C2 (de) Vakuumisoliertes Kryokabel
DE3341156A1 (de) Elektrode mit integriertem waermetransportrohr
DE2707539C2 (de) Rohrleitungsverteiler
DE202012100322U1 (de) Rohrverbindungseinrichtung
DE3316482A1 (de) Verfahren zum verlegen eines aus einzelnen waermeisolierten leitungsrohren bestehenden rohrstranges
DE3422781A1 (de) Verfahren zur waermebehandlung einer rohrleitung
DE19527634A1 (de) Stumpfschweißverbindung
DE2242566A1 (de) Verfahren zur herstellung eines waermeisolierten leitungssystems
EP0334010B1 (de) Thermisch isolierte Rohrleitung
EP2767335A1 (de) Anlage zur Herstellung von Synthesegas
DE3147512A1 (de) Waermetauscher mit u-rohren
AT256956B (de) Supraleitende Energieübertragungsleitung
DE19707915A1 (de) Verbindung eines heißen, ungekühlten Rohres mit einem gekühlten Rohr
AT233334B (de) Tauchrohr
DE3001353C2 (de)
DE1256003B (de) Anschlussverbindung zum nachtraeglichen Anbringen einer Abzweigleitung an eine Mantelrohrleitung
DE2443221C2 (de) Einrichtung zur risslaengenbegrenzung fuer eine rohrleitung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH FR GB NL

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH FR GB NL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900625

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900717

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900719

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900731

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19910731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920201

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT