EA039934B1 - Катализатор для риформинга бензиновых фракций, способ его получения и применение катализатора - Google Patents

Катализатор для риформинга бензиновых фракций, способ его получения и применение катализатора Download PDF

Info

Publication number
EA039934B1
EA039934B1 EA202000173A EA202000173A EA039934B1 EA 039934 B1 EA039934 B1 EA 039934B1 EA 202000173 A EA202000173 A EA 202000173A EA 202000173 A EA202000173 A EA 202000173A EA 039934 B1 EA039934 B1 EA 039934B1
Authority
EA
Eurasian Patent Office
Prior art keywords
catalyst
zeolite
zsm
granules
temperature
Prior art date
Application number
EA202000173A
Other languages
English (en)
Other versions
EA202000173A1 (ru
Inventor
Виктор Георгиевич Степанов
Юрий Константинович ВОРОБЬЕВ
Евгения Александровна НУДНОВА
Павел Леонидович СИНКЕВИЧ
Original Assignee
Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" filed Critical Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор"
Publication of EA202000173A1 publication Critical patent/EA202000173A1/ru
Publication of EA039934B1 publication Critical patent/EA039934B1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/085Catalytic reforming characterised by the catalyst used containing platinum group metals or compounds thereof
    • C10G35/09Bimetallic catalysts in which at least one of the metals is a platinum group metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/87Gallosilicates; Aluminogallosilicates; Galloborosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/88Ferrosilicates; Ferroaluminosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/32Freeze drying, i.e. lyophilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/095Catalytic reforming characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • C10G49/06Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • C10G49/08Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Предложен катализатор для риформинга бензиновых фракций, гидрирования бензольной фракции или ароматических углеводородов, содержащий оксид алюминия, платину, цеолит со структурой ZSM-5 или ZSM-11. В качестве цеолита катализатор содержит кристаллический ферроалюмосиликат или феррогаллийалюмосиликат со структурой цеолита ZSM-5 или ZSM-11 и имеет следующий состав, мас.%: платина - 0,1-0,5; указанный цеолит - 1-75; оксид алюминия - остальное. Также в изобретении раскрывается способ получения катализатора, описанного выше, способ риформинга бензиновых фракций и способ гидрирования бензольной фракции или ароматических углеводородов. Технический результат - снижение температуры полного выжигания катализаторного кокса на стадии регенерации катализатора, а также увеличение выхода ароматических углеводородов и октанового числа получаемой бензиновой фракции.

Description

Область техники
Изобретение относится к катализаторам риформинга бензиновых фракций для получения высокооктановых бензиновых фракций и/или ароматических углеводородов, к катализаторам гидрирования бензольных фракций и ароматических углеводородов, а также к способам применения этого катализатора в процессах риформинга и в процессах гидрирования ароматических углеводородов и их фракций. Изобретение может быть использовано в нефтеперерабатывающей и нефтехимической отраслях промышленности.
Предшествующий уровень техники
Основным процессом получения высокооктановых бензиновых фракций и ароматических углеводородов Сб-С1о из низкооктановых бензиновых фракций является процесс каталитического риформинга, который осуществляют с применением катализаторов, содержащих по меньшей мере один металл из платиновой группы (Гуреев А.А., Жоров Ю.М., Смидович Е.В. Производство высокооктановых бензинов, М., Химия, 1981, 224 с; Маслянский Г.Н., Шапиро Р.Н., Каталитический риформинг бензинов, Л., Химия, 1985, 222 с). Для повышения эффективности процесса риформинга применяемые катализаторы постоянно совершенствуются путем изменения природы и концентрации металлов, используемых в качестве активных компонентов и/или промоторов, а также путем изменения соотношения дегидрирующей и кислотной функций.
Одним из путей изменения соотношения дегидрирующей и кислотной функций катализатора риформинга является введение в его состав цеолитного компонента, причем для этого используют цеолиты различных структурных типов. Известны способы различных вариантов риформинга бензиновых фракций с применением цеолитсодержащих катализаторов, например, содержащих широкопористые цеолиты типа L (пат. США № 4645586, C10G 59/02, 1987; пат. США № 4985132, C10G 59/02, 1991; пат. РФ № 2108153, B01J 29/62; B01J 23/34; C10G 61/06, 1998; пат. РФ № 2123382, B01J 29/62; C10G 35/09, 1998) и ZSM-12 (пат. США № 4652360, C10G 35/095, 1987) или узкопористые цеолиты со структурой эрионита, ферьерита и филиппсита (пат. РФ № 2458103, C10G 35/085; B01J 29/54; B01J 29/67; B01J 21/04; B01J 21/12; B01J 32/00; B01J 37/04, 2012; пат. РФ № 2471854, C10G 35/085; C10G 35/095; B01J 23/42; B01J 23/36; B01J 21/04; B01J 29/00; B01J 27/047; B01J 37/02, 2013).
Применение в составе катализаторов риформинга узкопористых цеолитов, к которым относятся эрионит, ферьерит, филлипсит и др., приводит к дополнительной переработке непрореагировавших на металлоксидном катализаторе н-парафинов, однако при этом не затрагиваются слаборазветвленные монометилпарафины, имеющие невысокие октановые числа, что приводит к получению бензиновых фракций с относительно низкими октановыми числами. В случае применения в составе катализаторов риформинга широкопористых цеолитов, таких как цеолиты L, β, ω и пр., в переработку вовлекаются высокооктановые сильноразветвленные изопарафины, что в результате протекания побочных реакций гидрокрекинга приводит к снижению выхода бензиновых фракций. Таких недостатков лишены катализаторы, содержащие среднепористые цеолиты со структурой ZSM-5 и ZSM-11, вовлекающие в переработку монометил- и н-парафины, и не затрагивающие вследствие молекулярно-ситового эффекта сильноразветвленные изопарафины.
Известен способ приготовления катализаторов риформинга, содержащих 0,01-10 мас.% металлов VIII группы и цеолиты ZSM-5, ZSM-11, ZSM-12, ZSM-35 и ZSM-38 (пат. США № 4652360, C10G 35/095, 1987). Согласно данному способу катализатор готовят путем прокаливания натриевой формы цеолита при температуре 200-600°С, последующей его пропитки или ионного обмена с водным раствором, содержащим соединения платины или палладия, или платины в сочетании с соединениями металлов VIII группы, прокаливания металлсодержащего цеолита при температуре 150-550°С, последующего ионного обмена с раствором, содержащим соединения щелочных металлов, промывки водой и сушкой при температуре 110°С. В качестве второго металла VIII группы возможно использование иридия или родия. Процесс риформинга осуществляют при температуре 375-575°С и массовой скорости подачи сырья 0,2-5 ч-1.
Известен катализатор и способ риформинга (пат. США № 4276151, C10G 35/095, 1981). Согласно данному способу процесс риформинга бензиновых фракций осуществляют при температуре 427-565°С, давлении 0,6-3,4 МПа, массовой скорости подачи сырья 0,5-50 ч-1 (лучше 1-20 ч-1) и мольном отношении водород/углеводороды 1-10 на катализаторе, содержащем платину или смесь платины и рения на оксиде алюминия и 1-15 мас.% цеолита ZSM-5 в аммиачной (NH4-) форме.
Известен способ приготовления цеолитсодержащего катализатора риформинга бензиновых фракций (пат. РФ № 2108154, B01J 37/02; B01J 29/40; C10G 35/095, 1998). Согласно данному способу цеолитсодержащий катализатор риформинга получают путем пропитки под избыточным давлением 0,02-0,3 МПа предварительно прокаленного цеолитсодержащего носителя раствором смеси аммиаката платины, соединения промотора и соли натрия или калия при рН 8,5-12 и атомном соотношении натрий или калий:платина - (1-50):1, последующей сушки и прокалки полученного материала. В качестве носителя используют оксид алюминия в смеси с натриевой формой цеолита ZSM-5, ZSM-8, ZSM-11 в массовом соотношении (35-45):(55-65), а в качестве промотора используют вольфрам и молибден.
Наиболее близким по своей технической сущности и достигаемому эффекту является катализатор
- 1 039934 риформинга бензиновых фракций и способ его приготовления (пат. РФ № 2043149, B01J 29/44; C10G 35/09, 1995). Согласно выбранному прототипу катализатор содержит носитель - оксид алюминия, 0,2-1,2 мас.% платины или смесь платины и промотора, выбранного из группы: Re, Ir, Rh, W, Mo в массовом соотношении (0,5-12):1, цеолит типа ZSM-5 или ZSM-8, или ZSM-11 в количестве 50-75% и 0,4-6,8% оксида щелочного металла - Li или Na или K. Катализатор готовят в несколько стадий. Первоначально готовят цеолитсодержащий носитель, для чего смешивают гидроксид алюминия с цеолитом в натриевой форме и добавляют азотную кислоту в качестве пептизатора, полученную смесь формуют в экструдаты, сушат и прокаливают в токе воздуха при температуре 500°С. Полученные экструдаты пропитывают раствором аммиаката платины или смесью аммиаката платины с соединением промотора при температуре 80-90°С и рН 10, после чего избыток раствора сливают, а экструдаты пропитывают при 80-90°С водным раствором соли щелочного металла (Li, Na или K), после чего избыток раствора сливают, полученный катализатор сушат и прокаливают в токе воздуха при температуре 500°С.
Основными недостатками прототипа и перечисленных выше аналогов являются относительно высокая температуры выгорания кокса, образующегося на цеолитном компоненте катализатора и неполная глубина его выгорания при умеренных температурах регенерации катализатора.
Раскрытие изобретения
Задачей изобретения является разработка катализатора риформинга бензиновых фракций и гидрирования ароматических углеводородов и их фракций с пониженной температурой полного выгорания кокса, образующегося на цеолитном компоненте катализатора в условиях процесса, при сохранении высокого уровня активности катализатора, а также способ приготовления такого катализатора, способ риформинга бензиновых фракций и способ гидрирования бензольной фракции и ароматических углеводородов.
Поставленная задача достигается тем, что катализатор риформинга бензиновых фракций содержит 1-75 мас.% кристаллического ферроалюмосиликата или феррогаллийалюмосиликата со структурой цеолита ZSM-5 или ZSM-11, 0,1-0,5% платины, возможно 0,1-1,6% рения и/или олова, 0,1-1,6% хлора, и остальное - оксид алюминия.
Поставленная задача достигается также тем, что катализатор для риформинга бензиновых фракций готовят путем смешения порошка или пасты гидроксида алюминия и кристаллического ферроалюмосиликата или феррогаллийалюмосиликата, возможно с оловосодержащим реагентом, последующего добавления раствора минеральной и/или органической кислоты в качестве пептизатора, формования полученной смеси, нейтрализации сформованных угранул аммиачным раствором, сушки и прокаливания сформованных гранул носителя, пропитки прокаленных гранул соединениями платины, возможно соединениями олова или рения, возможно в растворах кислот, последующей сушки и прокаливания гранул катализатора, а применяемый ферроалюмосиликат или феррогаллийалюмосиликат имеет структуру цеолита ZSM-5 или ZSM-11.
Поставленная задача достигается также тем, что ферроалюмосиликат имеет мольное отношение SiO2/Al2O3 в интервале 38-310 и содержит 0,1-1,5 мас.% железа, а феррогаллийалюмосиликат имеет мольное отношение SiO2/Al2O3 в интервале 61-320 и содержит 0,1-1,2% железа и 0,1-1,5% галлия.
Предпочтительно применяемый катализатор содержит 0,1-0,5 мас.% платины, 0,1-1,6% олова и/или рения и может содержать 0,1-1,6% хлора.
Поставленная задача достигается также тем, что риформинг бензиновых фракций осуществляют путем их контактирования при повышенных температурах и избыточном давлении в присутствии водородсодержащего газа с вышеупомянутым катализатором, содержащим у оксид алюминия, платину, возможно рений и/или олово, и содержащим 1-75 мас.% кристаллического ферроалюмосиликата или феррогаллийалюмосиликата со структурой цеолита ZSM-5 или ZSM-11.
Поставленная задача достигается так же тем, что вышеупомянутый катализатор применяют для гидрирования бензольной фракции или ароматических углеводородов путем контактирования сырья в присутствии водородсодержащего газа при избыточном давлении с катализатором, содержащим у оксид алюминия, платину, возможно рений и/или олово, и содержащим 1-75 мас.% кристаллического ферроалюмосиликата или феррогаллийалюмосиликата со структурой цеолита ZSM-5 или ZSM-11.
Основным отличительным признаком предлагаемого способа является применение в составе катализатора кристаллического ферроалюмосиликата или феррогаллийалюмосиликата со структурой цеолита ZSM-5 или ZSM-11.
Катализатор готовят следующим образом. Гидроксид алюминия, полученный по алюминатной технологии по однопоточному или непрерывному осаждению, смешивают с кристаллическим ферроалюмосиликатом или феррогаллийалюмосиликатом, возможно смешивание с растворимым соединением олова, добавляют водный раствор минеральной и/или органической кислоты в качестве пептизатора, гранулируют известными методами в виде экструдатов или сфер, сушат при температуре до 200°С и прокаливают в токе воздуха при температуре 500-650°С. Прокаленные гранулы после охлаждения пропитывают известными методами растворами, содержащими соединения платины или смесь соединений платины и рения, возможно минеральной и/или органической кислоты. Возможна предварительная пропитка со- 2 039934 единениями олова. После стадии пропитки раствор отделяют от гранул катализатора, катализатор сушат и прокаливают в токе воздуха при температуре 450-550°С. Применяемый при приготовлении катализатора кристаллический ферроалюмосиликат или феррогаллийалюмосиликат имеет структуру цеолита ZSM5 или ZSM-11 и используется в катионной Na-форме, или в катион-декатионированной HNa-форме, или в декатионированной кислой Н-форме.
Для внесения дополнительного количества хлора в катализатор стадию пропитки гранул соединениями платины или смесью соединений платины и промотора осуществляют раствором, содержащим соляную кислоту.
Риформинг бензиновых фракций осуществляют путем контактирования сырья с вышеописанным катализатором в присутствии водородсодержащего газа при температуре 440-560°С, избыточном давлении 0,3-4,0 МПа, объемной скорости подачи жидкого сырья 0,5-10 ч-1 и мольном отношении водорода к углеводородам 1-10.
Перед использованием катализатора в процессе риформинга его восстанавливают водородом при температуре 450-550°С. После восстановления водородом катализатор может быть предварительно осернен сероводородом и/или сераорганическими соединениями из расчета 0,01-0,07 мас.% серы на катализатор.
Гидрирование бензольной фракции или ароматических углеводородов осуществляют путем контактирования сырья с вышеописанным катализатором в присутствии водородсодержащего газа при температуре 220-400°С, избыточном давлении 0,5-5,0 МПа, объемной скорости подачи жидкого сырья 0,5-10 ч-1 и мольном отношении водорода к углеводородам 4-15. Перед использованием катализатора в процессе гидрирования его восстанавливают водородом при температуре 400-500°С. В результате гидрирования бензол превращается в циклогексан, который далее частично изомеризуется в метилциклопентан. Варьируя условия процесса, возможно дальнейшее раскрытие 6- и 5-членных углеводородных колец с образованием парафинов С6 - н-гексана, метилпентанов и диметилбутанов. При гидрировании алкилбензолов первичным продуктом является соответствующий алкилциклогексан, который в зависимости от условий процесса далее может превращаться подобно вышеописанной схеме.
В ходе переработки углеводородного сырья происходит постепенное закоксование катализатора, приводящее к снижению его каталитической активности, что в свою очередь приводит к падению выхода ароматических углеводородов и к снижению октанового числа получаемых бензиновых фракций. Для восстановления начального уровня активности катализатора осуществляют его регенерацию, заключающуюся в регулируемом выжигании коксовых отложений с поверхности катализатора регенерирующим газом с определенным содержанием кислорода. Однако выгорание кокса на металлическом компоненте катализатора, находящемся на оксиде алюминия, происходит более полно и при более низких температурах, чем выгорание кокса, образовавшегося внутри кристаллов алюмосиликатного (цеолитного) компонента, так как вводимые на стадии пропитки катализатора поливалентные катионы металлов (Pt, Re и пр.) не внедряются внутрь кристаллов цеолитов типа ZSM-5 и ZSM-11 и поэтому не влияют на процесс выжигания катализаторного кокса внутри цеолитных каналов. Вследствие этого коксовые отложения, находящиеся внутри цеолитных кристаллов, могут полностью не выгорать при умеренных температурах регенерации и постепенно накапливаться от регенерации к регенерации приводя к снижению уровня активности и/или к сокращению времени межрегенерационного пробега катализатора. Введение же на стадии гидротермального синтеза в кристаллический каркас цеолита атомов железа и галлия при синтезе ферроалюмосиликата или феррогаллийалюмосиликата со структурой ZSM-5 и ZSM-11 приводит к образованию в объеме их кристаллов активных центров, ускоряющих реакции выгорания катализаторного кокса, что в свою очередь приводит к снижению температуры и увеличению глубины выжигания кокса в цеолитном компоненте катализатора при сохранении высокого уровня активности катализатора.
Лучший вариант осуществления изобретения.
Сущность предлагаемого способа и его практическая применимость иллюстрируется нижеприведенными примерами. Примеры № 1-12 описывают приготовление катализатора по предлагаемому способу, пример № 13 - приготовление катализатора подобно прототипу; составы получаемых катализаторов дополнительно представлены в табл. 1. Для иллюстрации достижимости поставленной цели - снижения температуры выгорания кокса, образующегося на цеолитном компоненте катализатора и увеличения полноты его выгорания, приведены примеры № 14-16 и фиг. 1-3 - пример № 14 (фиг. 1) показывает глубину выгорания кокса, образующегося на цеолитном компоненте катализатора, приготовленного аналогично прототипу, а примеры № 15 и 16 (фиг. 2 и 3) иллюстрируют выгорание кокса на цеолитном компоненте предлагаемого катализатора. Примеры № 17-28 иллюстрируют способ применения предлагаемого катализатора в процессе риформинга бензиновых фракций, а пример № 29 - применение катализатора, приготовленного подобно прототипу и приведен для сравнения; результаты испытаний катализаторов приведены в табл. 2. Примеры № 30-32 иллюстрируют способ применения катализатора в процессе гидрирования бензольной фракции и ароматических углеводородов.
Пример 1.
В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия однопоточного осаждения с суммарной влажностью 75%. Гидроксид алюминия в количестве 1000 г при тем- 3 039934 пературе 20°С пластифицируют 36 мл 46% уксусной кислотой из расчета получения кислотного модуля (мольное отношение кислоты к оксиду алюминия в гидроксиде) Мк = 0,12 и добавляют при перемешивании 28 г порошка кристаллического ферроалюмосиликата со структурой цеолита ZSM-5 в декатионированной кислой Н-форме, имеющего мольное отношение SiO2/Al2O3 = 86 и содержащего 0,4 мас.% железа. Полученную жидкотекучую тиксотропную смесь формуют в сферические гранулы капельным методом в дизельной фракции и нейтрализуют их в 18% водном растворе аммиака. Сформованные гранулы провяливают на воздухе в течение 24 ч, сушат при температуре 120°С в течение 4 ч и прокаливают при температуре 550°С в течение 2 ч в токе воздуха с объемной скоростью подачи 500 ч-1. Полученные сферические гранулы носителя на основе γ-Α12Ο3 содержат 10 мас.% цеолита и имеют диаметр 1,6-2,0 мм, прочность на раздавливание 25 МПа, удельную поверхность 220 м /г. Пористая структура оксида алюминия представлена порами со средним диаметром 70А и объемом пор 0,6 см3/г.
Охлажденные гранулы приготовленного носителя, взятые в количестве 200 г, увлажняют 290 мл водного раствора 0,5% уксусной кислоты при температуре 25°С в течение 0,5 ч, затем в раствор с гранулами носителя при перемешивании добавляют 75 мл раствора нитрата платины (IV) с концентрацией платины 15 г/л и проводят обработку гранул полученным раствором при температуре 60°С в течение 2 ч, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 ч, сушат при температуре 110°С в течение 2 ч и прокаливают при 500°С в течение 2 ч. Полученные гранулы катализатора содержат 10 мас.% ферроалюмосиликата со структурой цеолита ZSM-5 и 0,5% платины.
Пример 2.
В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия однопоточного осаждения с суммарной влажностью 73%. Гидроксид алюминия в количестве 1000 г пластифицируют раствором 31 г щавелевой кислоты в 124 мл воды при 45°С из расчета получения Мк = 0,13. Полученную тиксотропную массу смешивают при перемешивании с 30 г порошка кристаллического феррогаллийалюмосиликата со структурой цеолита ZSM-5 в декатионированной Н-форме, имеющего мольное отношение SiO2/Al2O3 = 92 и содержащего 0,3 мас.% железа и 0,1% галлия. Гранулирование полученной смеси осуществляют капельным методом в дизельной фракции, а нейтрализацию сформованных гранул проводят в 15% водном растворе аммиака. Сформованные гранулы выдерживают на воздухе в течение 10 часов, сушат при температуре 110°С в течение 4 ч и прокаливают при температуре 600°С в токе сухого воздуха при скорости подачи 1000 ч-1 в течение 2 ч. Полученные сферические гранулы носителя на основе γ-Α12Ο3 содержат 10 мас.% цеолита и имеют диаметр 1,6-1,9 мм, прочность на раздавливание 22 МПа и удельную поверхность 250 м2/г.
Охлажденные гранулы приготовленного носителя, взятые в количестве 200 г, увлажняют 290 мл водного раствора 0,5% уксусной кислоты при температуре 20°С в течение 0,5 часа, затем в раствор с гранулами носителя при перемешивании добавляют 45 мл раствора платинохлористоводородной кислоты с концентрацией платины 15 г/л и проводят обработку гранул полученным раствором при температуре 60°С в течение 2 ч, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 ч, сушат при температуре 110°С в течение 2 ч и прокаливают при 500°С в течение 2 ч. Полученные гранулы катализатора содержат 10 мас.% феррогаллийалюмосиликата со структурой цеолита ZSM-5, 0,3% платины и 0,5% хлора.
Пример 3.
В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия холодного осаждения с суммарной влажностью 80%. Гидроксид алюминия в количестве 1000 г пластифицируют при температуре 22°С раствором 56,5 г лимонной кислоты в 45 мл воды из расчета получения кислотного модуля Мк = 0,15. В полученную смесь при перемешивании добавляют раствор 2 г тетрахлорида олова пятиводного в 10 мл воды и 50 г порошка кристаллического ферроалюмосиликата со структурой цеолита ZSM-5 в катионной Na-форме, имеющего мольное отношение SiO2/Al2O3 = 310 и содержащего 1,5 мас.% железа. Гранулирование полученной смеси осуществляют капельным методом в дизельной фракции, а нейтрализацию гранул проводят в 15% водном растворе аммиака. Сформованные гранулы провяливают на воздухе в течение 4 ч, сушат при температуре 110°С в течение 2 ч и прокаливают при 500°С в токе воздуха при объемной скорости подачи 1000 ч-1 в течение 2 ч. Полученные сферические гранулы носителя на основе γ-Α12Ο3 содержат 20 мас.% цеолита и 0,2% олова; гранулы имеют диаметр 1,6-1,8 мм, прочность на раздавливание 21 МПа и средний диаметр пор оксида алюминия 100А.
Охлажденные гранулы приготовленного носителя, взятые в количестве 200 г, увлажняют 320 мл водного раствора 1% лимонной кислоты при температуре 20°С в течение получаса, затем в раствор с гранулами носителя при перемешивании добавляют 25 мл водного раствора рениевой кислоты с концентрацией рения 35 г/л, 30 мл раствора платинохлористоводородной кислоты с концентрацией платины 15,0 г/л и проводят обработку гранул полученным раствором при 60°С в течение 2 ч, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 ч, сушат при температуре 120°С в течение 2 ч и прокаливают при 500°С в течение 2 ч. Полученные гранулы катализатора содержат 20 мас.% ферроалюмосиликата со структурой цеолита ZSM-5, 0,2% платины, 0,3% рения и 0,4% хлора.
- 4 039934
Пример 4.
В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия смесевого осаждения при соотношении гидроксидов алюминия холодного и горячего осаждения 1:1 мас. Смесевой гидроксид алюминия высушивают при 110°С до суммарной влажности 25%, размалывают на шаровой мельнице до порошкообразного состояния с размером частиц не более 50 мкм. Полученный порошок гидроксида алюминия в количестве 1000 г с суммарной влажностью 25% смешивают с 2,7 л деионизированной воды, 38 мл раствора 69% азотной кислоты до получения Мк = 0,08, после чего при перемешивании добавляют 40 г порошка кристаллического ферроалюмосиликата со структурой цеолита ZSM-5 в декатионированной Н-форме, имеющего мольное отношение SiO2/Al2O3 = 38 и содержащего 0,1 мас.% железа. Стадию пластификации и смешивания с порошком цеолита осуществляют при температуре 28°С до содержания в массе 248 г А12О3/кг смеси. Полученную пластифицированную массу выдерживают в течение 24 ч при температуре 22°С и формуют в сферические гранулы капельным методом в дизельной фракции с последующей нейтрализацией в 15% водном растворе аммиака. Сформованные гранулы провяливают на воздухе при температуре 20°С в течение 24 ч, затем сушат при 110°С в течение 2 ч и прокаливают при температуре 650°С в течение 4 ч в токе сухого воздуха с объемной скоростью подачи 600 ч-1. Полученные сферические гранулы носителя на основе γ-Α12Ο3 содержат 5 мас.% цеолита, имеют диаметр 1,4-1,8 мм, прочность на раздавливание 28 МПа и средний диаметр пор оксида алюминия 65А.
Охлажденные гранулы приготовленного носителя в количестве 700 г увлажняют 1000 мл водного раствора 0,3н. соляной кислоты при температуре 20°С в течение 0,5 ч, затем в раствор с гранулами носителя при перемешивании последовательно добавляют 21 мл водного раствора 0,5% уксусной кислоты, 105 мл раствора платинохлористоводородной кислоты с концентрацией платины 15 г/л и проводят обработку гранул полученным раствором при 60°С в течение 2 ч, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 ч, сушат при температуре 120°С в течение 2 ч и прокаливают при 500°С в течение 2 ч. Полученные гранулы катализатора содержат 5 мас.% ферроалюмосиликата со структурой цеолита ZSM-5, 0,2% платины, 0,3% олова и 1,4% хлора.
Пример 5.
В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия непрерывного осаждения с суммарной влажностью 85%. Гидроксид алюминия в количестве 500 г пластифицируют при температуре 20°С смесью кислот, добавляя 3,8 мл раствора 69% азотной кислотой и 3,6 мл 46% уксусной кислоты из расчета получения суммарной величины кислотного модуля Мк = 0,12, и смешивают с 8,4 г порошка кристаллического феррогаллийалюмосиликата со структурой цеолита ZSM11 в декатионированной Н-форме, имеющего мольное отношение SiO2/Al2O3 = 61 и содержащего 0,1 мас.% железа и 0,3% галлия. Гранулирование полученной смеси в сферические гранулы осуществляют жидкостным методом в керосиновой фракции, а твердение и нейтрализацию гранул проводят в 18% водном растворе аммиака. Сформованные гранулы сушат при температуре 110°С в течение 2 ч и прокаливают в токе сухого воздуха с объемной скоростью 1000 ч-1 при температуре 550°С в течение 4 ч. Полученные сферические гранулы носителя на основе γ-Α12Ο3 содержат 10 мас.% цеолита и имеют диаметр 1,6-2,0 мм, прочность на раздавливание 20 МПа, удельную поверхность 270 м2/г и средний диаметр пор оксида алюминия 65А.
Охлажденные гранулы приготовленного носителя, взятые в количестве 70 г, увлажняют 150 мл водного раствора 0,5% уксусной кислоты при температуре 20°С в течение 0,5 ч, затем в раствор с гранулами носителя при перемешивании последовательно добавляют 10 мл раствора рениевой кислоты с концентрацией рения 35 г/л, 20 мл раствора нитрата платины (IV) с концентрацией платины 15 г/л и проводят обработку гранул полученным раствором при 80°С в течение 2 ч, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 ч, сушат при температуре 120°С в течение 2 ч и прокаливают при 500°С в течение 2 ч. Полученные гранулы катализатора содержат 10 мас.% феррогаллийалюмосиликата со структурой цеолита ZSM-11, 0,2% платины и 0,4% рения.
Пример 6.
В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия однопоточного осаждения с суммарной влажностью 73%. Гидроксид алюминия в количестве 1000 г пластифицируют раствором 31 г щавелевой кислоты в 124 мл воды при 45°С из расчета получения Мк = 0,13. Полученную тиксотропную массу перемешивают с добавлением 30 г порошка кристаллического феррогаллийалюмосиликата со структурой цеолита ZSM-11 в катион-декатионированной HNa-форме, имеющего мольное отношение SiO2/Al2O3 = 320 и содержащего 1,1 мас.% железа и 1,5% галлия. Гранулирование полученной смеси осуществляют методом капельной формовки в дизельной фракции, а нейтрализацию гранул проводят в 18% водном растворе аммиака Сформованные гранулы выдерживают на воздухе в течение 10 ч, сушат при температуре 110°С в течение 4 ч и прокаливают при температуре 600°С в токе сухого воздуха при скорости подачи 1000 ч-1 в течение 2 ч. Полученные сферические гранулы носителя на основе γ-Α12Ο3 содержат 10 мас.% цеолита и 0,5% олова, гранулы имеют диаметр 1,6-1,9 мм, прочность на раздавливание 15 МПа и удельную поверхность 250 м2/г.
- 5 039934
Охлажденные гранулы приготовленного носителя в количестве 250 г увлажняют 360 мл водного раствора 0,5% соляной кислоты при температуре 20°С в течение 0,5 ч, затем в раствор с гранулами носителя добавляют раствор 4,5 г пятиводного тетрахлорида олова в 50 мл воды и проводят обработку гранул полученным раствором в течение часа при температуре 60°С, после чего смесь декантируют, гранулы сушат при температуре 110°С в течение 2 ч и прокаливают при 500°С в течение 2 ч. Охлажденные гранулы увлажняют при температуре 20°С деионизированной водой, затем в раствор с гранулами добавляют при перемешивании 55 мл раствора платинохлористоводородной кислоты с концентрацией платины 15 г/л и проводят обработку гранул полученным раствором первоначально при 20°С, а затем при 70°С, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 ч, сушат при температуре 120°С в течение 2 ч и прокаливают при 500°С в течение 2 ч. Полученные гранулы катализатора содержат 10 мас.% феррогаллийалюмосиликата со структурой цеолита ZSM-11, 0,3% платины, 0,5% олова и 0,9% хлора.
Пример 7.
В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия непрерывного осаждения с суммарной влажностью 79%. Пасту данного гидроксида алюминия в количестве 600 г при температуре 25°С пептизируют 9,5 мл раствора 69% азотной кислоты из расчета получения кислотного модуля Мк = 0,10 и смешивают при перемешивании с 0,4 г тетрахлорида олова пятиводного в 5 мл воды и 1,3 г порошка кристаллического ферроалюмосиликата со структурой цеолита ZSM-11 в катионной Na-форме, имеющего мольное отношение SiO2/Al2O3 = 88 и содержащего 0,1 мас.% железа. Полученную жидкотекучую тиксотропную смесь формуют методом капельной формовки в дизельной фракции и нейтрализуют их в 20% водном растворе аммиака. Сформованные гранулы провяливают на воздухе в течение 10 ч и сушат первоначально при температуре 60°С в течение 2 ч, а затем при температуре 110°С в течение 4 ч, после чего их прокаливают в течение 3 ч при температуре 550°С в токе сухого воздуха с объемной скоростью подачи 1000 ч-1. Полученные гранулы γ-Α12Ο3 содержат 1 мас.% цеолита и 0,1% олова, имеют размер 1,6-1,8 мм, прочность на раздавливание 31 МПа, удельную поверхность 210 м2/г и пористую структуру со средним диаметром пор 90А и объемом пор 0,55 см3/г.
Охлажденные гранулы приготовленного носителя в количестве 100 г увлажняют в 200 мл деионизированной воды при температуре 20°С в течение 0,5 ч, затем в раствор с гранулами носителя при перемешивании добавляют 16 мл раствора рениевой кислоты с концентрацией рения 35 г/л, 22 мл раствора нитрата платины (IV) с концентрацией платины 15,0 г/л и проводят обработку гранул полученным раствором при 20°С в течение 2 ч, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 ч, сушат при температуре 120°С в течение 2 ч и прокаливают при 500°С в течение 2 ч.
Полученные гранулы катализатора содержат 1 мас.% ферроалюмосиликата со структурой цеолита ZSM-11, 0,3% платины, 0,5% рения и 0,1% олова.
Пример 8.
В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия непрерывного осаждения с суммарной влажностью 79%. Пасту данного гидроксида алюминия в количестве 500 г пластифицируют 5,1 мл раствора 69% азотной кислотой из расчета получения кислотного модуля Мк = 0,08. Полученную тиксотропную массу гидроксида алюминия перемешивают с 3 г тетрахлорида олова пятиводного в 30 мл воды и с 3,2 г порошка кристаллического феррогаллийалюмосиликата со структурой цеолита ZSM-5 в декатионированной Н-форме, имеющего мольное отношение SiO2/Al2O3 = 212 и содержащего 0,6 мас.% железа и 1,1% галлия. Смесь формуют в сферические гранулы методом капельной формовки в керосиновой фракции, а нейтрализацию сформованных гранул проводят в 15% водном растворе аммиака. Сформованные гранулы провяливают на воздухе в течение 10 ч и сушат при температуре 110°С в течение 4 ч, после чего их прокаливают в течение 3 ч при температуре 550°С в токе сухого воздуха с объемной скоростью 600 ч-1. Полученные гранулы носителя - γ-Α12Ο3 размером 1,6-1,8 мм обладают прочностью на раздавливание 20 МПа, удельной поверхностью 250 м2/г и содержат 3 мас.% цеолита и 1% олова. Пористая структура оксида алюминия представлена порами со средним диаметром 90А и объемом пор 0,8 см3/г.
Охлажденные гранулы приготовленного носителя, взятые в количестве 100 г, увлажняют 150 мл водного раствора 1% соляной кислоты при температуре 20°С в течение 0,5 ч, затем в раствор с гранулами носителя при перемешивании добавляют 3 мл водного раствора 0,5% уксусной кислоты, 35 мл водного раствора рениевой кислоты с концентрацией рения 20,0 г/л, 33 мл раствора платинохлористоводородной кислоты с концентрацией платины 15,0 г/л и проводят обработку гранул полученным раствором при 20°С в течение получ, а затем при 80°С в течение 1 ч, после чего раствор декантируют, гранулы катализатора провяливают на воздухе в течение 10 ч, сушат при температуре 110°С в течение 2 ч и прокаливают при 500°С в течение 2 ч. Полученные гранулы катализатора содержат 3 мас.% феррогаллийалюмосиликата со структурой цеолита ZSM-5, 0,4% платины, 0,6% рения, 1% олова и 1,6% хлора.
Пример 9.
В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия не
- 6 039934 прерывного осаждения с суммарной влажностью 85%. Гидроксид алюминия в количестве 1500 г пластифицируют при температуре 20°С смесью кислот, добавляя по 11 мл 69% азотной кислотой и 46% уксусной кислоты из расчета получения суммарной величины кислотного модуля Мк = 0,12. Полученную тиксотропную массу гидроксида алюминия перемешивают с раствором 7 г тетрахлорида олова пятиводного в 60 мл воды и с 25 г порошка кристаллического феррогаллийалюмосиликата со структурой цеолита ZSM-11 в декатионированной Н-форме, имеющего мольное отношение SiO2/Al2O3 = 186 и содержащего 1,2 мас.% железа и 0,3% галлия. Гранулирование полученной смеси в сферические гранулы осуществляют жидкостным методом в керосиновой фракции, а твердение и нейтрализацию гранул проводят в 18% водном растворе аммиака. Сформованные гранулы сушат при температуре 120°С в течение 2 ч и прокаливают в токе сухого воздуха с объемной скоростью 800 ч-1 при температуре 550°С в течение 4 ч. Полученные сферические гранулы носителя на основе y-Al2O3 имеют диаметр 1,6-1,9 мм, прочность на раздавливание 22 МПа, удельную поверхность 260 м2/г, средний диаметр пор оксида алюминия 70А и содержат 10 мас.% цеолита и 1% олова.
Охлажденные гранулы приготовленного носителя в количестве 200 г увлажняют в 400 мл деионизированной воды при температуре 20°С в течение 0,5 ч, затем в раствор с гранулами носителя при перемешивании добавляют 40 мл раствора перрената аммония с концентрацией рения 35 г/л, 15 мл раствора нитрата платины (IV) с концентрацией платины 15,0 г/л и проводят обработку гранул полученным раствором при 20°С в течение 2 ч, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 ч, сушат при температуре 120°С в течение 2 ч и прокаливают при 500°С в течение 2 ч. Полученные гранулы катализатора содержат 10 мас.% феррогаллийалюмосиликата со структурой цеолита ZSM-5, 0,1% платины, 0,6% рения и 1,0% олова.
Пример 10.
В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия непрерывного осаждения с суммарной влажностью 80%. В смеситель с Z-образными лопастями загружают 3,0 кг пасты гидроксида алюминия и при постоянном перемешивании добавляют 19 мл 69% азотной кислоты. После перемешивания в течение 15 мин к пластифицированной массе добавляют при перемешивании 1,4 кг порошка кристаллического ферроалюмосиликата со структурой цеолита ZSM-5 в декатионированной Н-форме, имеющего мольное отношение SiO2/Al2O3 = 96 и содержащего 0,5 мас.% железа. Полученную массу с суммарной влажностью 50% формуют на экструдере в черенки с диаметром 3-4 мм и длиной 5-7 мм. Экструдаты выдерживают на воздухе в течение 10 ч, сушат при температуре 110°С в течение 4 ч и прокаливают при 500°С в течение 4 ч. Полученные гранулы носителя содержат 30 мас.% γAl2O3 и 70% цеолита, имеют прочностью на раздавливание по образующей 7,1 МПа и удельную поверхностью 340 м2/г.
Охлажденные гранулы приготовленного носителя в количестве 2,0 кг увлажняют 3,3 л водного раствора 0,5% уксусной кислоты при температуре 20°С в течение 0,5 ч, затем в раствор с гранулами носителя при циркуляции раствора добавляют 420 мл раствора нитрата платины (IV) с концентрацией платины 15,0 г/л и проводят обработку гранул полученным раствором первоначально при 20°С в течение 0,5 ч, а затем при 70°С в течение 1 ч, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 ч, сушат при температуре 120°С в течение 2 ч и прокаливают при 500°С в течение 2 ч. Полученные гранулы катализатора содержат 70 мас.% ферроалюмосиликата со структурой цеолита ZSM-5 и 0,3% платины.
Пример 11.
В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия смесевого осаждения при соотношении гидроксида алюминия холодного осаждения и горячего 1:1 мас. Смесевой гидроксид алюминия высушивают при 110°С до суммарной влажности ~25%, размалывают на шаровой мельнице до порошкообразного состояния с размером частиц не более 50 мкм. Полученный порошок гидроксида алюминия в количестве 3 кг с суммарной влажностью 25% помещают в смеситель с Z-образными лопастями и смешивают при постоянном перемешивании с 1,5 кг порошка кристаллического феррогаллийалюмосиликата со структурой цеолита ZSM-5 в декатионированной Н-форме, имеющего мольное отношение SiO2/Al2O3 = 145 и содержащего 0,2 мас.% железа и 0,6% галлия. К полученной смеси порошков добавляют при постоянном перемешивании раствор азотной кислоты, содержащий 114 мл 69% азотной кислоты для получения кислотного модуля Мк = 0,08 и 1930 мл воды. Полученную массу перемешивают в течение 20 мин и добавляют 25 г тетрахлорида олова пятиводного в 140 мл воды. Смесь с суммарной влажностью 46% формуют в экструдаты диаметром 4-5 мм и длиной 5-8 мм. Гранулы выдерживают на воздухе в течение 10 ч и сушат при температуре 120°С в течение 4 ч. Прокаливание гранул проводят при температуре 550°С в токе сухого воздуха при его объемной скорости подачи 1000 ч-1 в течение 4 ч. Полученные гранулы экструдатов на основе γ-ΛΙ2Ο3 содержат 40 мас.% цеолита и 0,2% олова, гранулы обладают прочностью на раздавливание по образующей 8,9 МПа и удельной поверхностью 310 м2/г.
Охлажденные гранулы приготовленного носителя в количестве 3,5 кг увлажняют 5,5 л водного рас
- 7 039934 твора 0,1н. соляной кислоты при температуре 20°С в течение 0,5 ч, затем при циркуляции раствора добавляют 130 мл раствора платинохлористоводородной кислоты с концентрацией платины 15 г/л и проводят обработку гранул полученным раствором первоначально при 20°С в течение 0,5 ч, а затем при 70°С в течение 1 ч, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 ч, сушат при температуре 120°С в течение 2 ч и прокаливают при 500°С в течение 2 ч. Полученные гранулы катализатора содержат 40 мас.% феррогаллийалюмосиликата со структурой цеолита ZSM-5, 0,1% платины, 0,2% олова и 0,9% хлора.
Пример 12.
В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия непрерывного осаждения с суммарной влажностью 75%. В смеситель с Z-образными лопастями загружают 2,0 кг пасты гидроксида алюминия и при постоянном перемешивании добавляют 222 мл 69% азотной кислоты. После перемешивания пластифицированной массы в течение 15 мин к ней добавляют при постоянном перемешивании 4,0 кг порошка смесевого гидроксида алюминия, полученного после сушки влажной лепешки смесевого гидроксида алюминия при 110°С до влажности ~25% и размола его на шаровой мельнице до частиц с размером менее 50 мкм. Через 30 мин перемешивания в полученную пластифицированную массу вводят 10,5 кг порошка кристаллического феррогаллийалюмосиликата со структурой цеолита ZSM-11 в декатионированной Н-форме, имеющего мольное отношение SiO2/Al2O3 = 105 и содержащего 0,4 мас.% железа и 0,1% галлия. Полученную пластифицированную массу гидроксида алюминия с суммарной влажностью 50% экструдируют в гранулы диаметром 5-7 мм и длиной 7-10 мм. Экструдированные гранулы выдерживают на воздухе при комнатной температуре в течение 10 ч, сушат при 110°С в течение 4 ч и прокаливают в токе воздуха при объемной скорости подачи 500 ч-1 при температуре 550°С в течение 2 ч. Полученные гранулы носителя содержат 25 мас.% y-Al2O3 и 75% цеолита, гранулы обладает прочностью на раздавливание по образующей 4,8 МПа и удельной поверхностью 350 м2/г.
Охлажденные гранулы приготовленного носителя в количестве 14,0 кг увлажняют под вакуумом 25 л деионизированной воды при температуре 20°С в течение 0,5 ч, затем при циркуляции раствора добавляют 1,4 л раствора рениевой кислоты с концентрацией рения 35 г/л и 2,1 л раствора нитрата платины (IV) с концентрацией платины 15,0 г/л и проводят обработку гранул полученным раствором при 20°С в течение 2 ч, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 ч, сушат при температуре 110°С в течение 2 ч и прокаливают при 500°С в течение 2 ч. Полученные гранулы катализатора содержат 75 мас.% феррогаллийалюмосиликата со структурой цеолита ZSM-11, 0,2% платины и 0,3% рения.
Пример 13 (для сравнения).
Носитель для катализатора и сам катализатор готовят подобно их приготовлению по прототипу. Для приготовления носителя применяют пасту гидроксида алюминия с влажностью 30%. Пасту гидроксида алюминия в количестве 43 г смешивают с 70 г цеолита ZSM-5 в декатионированной Н-форме, имеющего мольное отношение SiO2/Al2O3 = 91, и добавляют раствор 57% азотной кислоты в качестве пептизатора до получения кислотного модуля Мк = 0,05. Смесь формуют на экструдере в черенки с диаметром 3-4 мм и длиной 5-7 мм, сушат на воздухе в течение 10 ч и прокаливают в токе воздуха при температуре 500°С в течение 4 ч. Полученные гранулы носителя имеют прочностью на раздавливание по образующей 5,1 МПа и удельную поверхностью 340 м2/г и содержат 30 мас.% y-Al2O3 и 70% цеолита.
Пропитку 100 г полученного носителя 200 мл раствора нитрата платины (IV) с содержанием платины 2 г/л ведут при температуре 85°С в течение 3 ч, избыток раствора сливают, катализатор сушат на воздухе в течение 10 ч и прокаливают в токе воздуха при температуре 500°С в течение 4 ч. Полученные гранулы катализатора содержат 70 мас.% цеолита ZSM-5 и 0,3% платины.
Пример 14 (для сравнения).
Изучение процесса выжигания катализаторного кокса закоксованного образца осуществляют по контролю изменения массы 0,2 г образца в реакторе, близком к изотермическому. Выжигание кокса проводят путем контактирования с катализатором регенерирующего газа, содержащего 1,3 об.% кислорода в смеси с азотом, которое осуществляют при атмосферном давлении, температуре 500-600°С и скорости подачи газа 50 л/ч.
Выжиганию кокса подвергают носитель примера 13, проработавший 15 ч как катализатор переработки углеводородной фракции С68 и содержащий 5,1 мас.% кокса.
Выжигание кокса начинают при постоянной температуре 500°С и ведут 60 мин до стабилизации массы образца катализатора; в результате окислительной обработки катализатора было удалено 39% от начального содержания кокса. После повышения температуры регенерации до 520°С и последующего выжигания кокса в течение 60 мин до стабилизации массы образца катализатора было удалено еще 22% от начального содержания кокса. При температуре 550°С было удалено еще 8% кокса. Остаточный кокс в количестве 31% от начального содержания кокса выгорел при температуре 600°С за 70 мин. Общее время выжигания кокса составило ~250 мин. Кривые потери массы образца во времени, за счет выгора- 8 039934 ния кокса в закоксованном катализаторе, представлены на фиг. 1.
Пример 15.
Аналогичен примеру 14 с тем отличием, что выжиганию кокса подвергают носитель примера 10, проработавший 15 ч как катализатор переработки углеводородной фракции C6-C8 и содержащий 5,2 мас.% кокса.
Выжигание кокса начинают при постоянной температуре 500°С и ведут 85 мин до стабилизации массы образца катализатора; в результате окислительной обработки катализатора было удалено 62% от начального содержания кокса. После повышения температуры регенерации до 520°С и последующего выжигания кокса в течение 75 мин до стабилизации массы образца катализатора было удалено еще 28% от начального содержания кокса. Остаточный кокс в количестве 10% от начального содержания кокса выгорел при температуре 550°С за 20 мин. Контрольное повышение температуры до 600°С не привело к дальнейшему изменению массы образца, что подтверждает полное удаление кокса при температуре 550°С. Общее время выжигания кокса составило ~180 мин. Кривые потери массы образца во времени, за счет выгорания кокса в закоксованном катализаторе, представлены на фиг. 2.
Пример 16.
Аналогичен примеру 14 с тем отличием, что выжиганию кокса подвергают носитель примера 12, проработавший 100 ч как катализатор переработки углеводородной фракции С68 и содержащий 10,2 мас.% кокса.
Выжигание кокса начинают при постоянной температуре 500°С и ведут 80 мин до стабилизации массы образца катализатора; в результате окислительной обработки катализатора было удалено 81% от начального содержания кокса. После повышения температуры регенерации до 520°С и последующего выжигания кокса в течение 60 мин до стабилизации массы образца катализатора было удалено еще 13% от начального содержания кокса. Остаточный кокс в количестве 6% от начального содержания кокса выгорел при температуре 550°С за 20 мин. Контрольное повышение температуры до 600°С не привело к дальнейшему изменению массы образца, что подтверждает полное удаление кокса при температуре 550°С. Общее время выжигания кокса составило ~160 мин. Кривые потери массы образца во времени, за счет выгорания кокса в закоксованном катализаторе, представлены на фиг. 3.
Пример 17.
Испытание катализатора в процессе риформинга проводят на лабораторной установке с трубчатым изотермическим реактором. При тестировании катализатора в качестве сырья процесса риформинга применяют модельную фракцию углеводородов С68, содержащую нафтены, н-парафины и изопарафины в массовом соотношении 1:1:1. В качестве катализатора используют катализатор примера 10. Перед испытанием катализатор активируют в токе воздуха в течение 1 ч при температуре 450°С, затем продувают азотом и восстанавливают в токе водорода при температуре 480°С в течение 4 ч. Риформинг углеводородной фракции С68 осуществляют при температуре 480°С, избыточном давлении 1,0 МПа, объемной скорости подачи жидкого сырья 2,0 ч-1 и мольном отношении водорода к углеводородам Н2/СН = 5. При этих условиях получаемая бензиновая фракция С5+ содержит, мас.%: н-парафины - 11,4; изопарафины 29,6; нафтены -6,2; ароматические углеводороды - 52,8; и имеет октановое число 83,6 ММ.
Примеры 18-28.
Аналогичны примеру 17. Условия процесса риформинга и результаты испытаний катализаторов приведены в табл. 2. Составы катализаторов приведены в табл. 1.
Пример 29 (для сравнения).
Аналогичен примеру 17. В качестве катализатора используют катализатор примера № 13, приготовленный подобно прототипу. Состав катализатора приведен в табл. 1. Условия процесса риформинга и результаты испытаний катализаторов приведены в табл. 2.
Пример 30.
Испытание катализатора в реакциях гидрирования проводят на лабораторной установке с трубчатым изотермическим реактором. Катализатор тестируют в процессе гидрирования бензольной фракции, содержащей % мас: парафины C6 - 24,6, нафтены C6 - 4,1, бензол - 34,8, парафины C7 - 36,5. В качестве катализатора применяют катализатор примера 10. Перед испытанием катализатора его активируют в токе воздуха в течение 1 ч при температуре 450°С, затем продувают азотом и восстанавливают в токе водорода при температуре 500°С в течение 2 ч. Испытание катализатора проводят при температуре 380°С, избыточном давлении 3,0 МПа, объемной скорости подачи жидкого сырья 5,0 ч-1 и мольном отношении водорода к углеводородам Н2/СН = 5. При этих условиях конверсия бензола составляет 83%, выход фракции С5+ - 65 мас.% Фракция C5+ содержит 75,9 мас.% парафинов С57, 12,9% нафтенов С6, 9,1% бензола, 1,3% толуола и 0,8% ксилолов.
Пример 31.
Аналогичен примеру 30. В качестве сырья процесса гидрирования используют смесь бензола и толуола в соотношении 2:1 мас., в качестве катализатора применяют катализатор примера 1. Превращение сырья проводят при температуре 300°С, давлении 3,0 МПа, объемной скорости подачи жидкого сырья 2,0 ч-1 и мольном отношении Н2/СН = 15. При этих условиях конверсия бензола составляет 84%, конвер- 9 039934 сия толуола - 98%, выход фракции C5+ - 96 мас.% Фракция С5+ содержит 0,1 мас.% парафинов С6, 94,9% нафтенов С6-С7 и 5,0% бензола с толуолом.
Пример 32.
Аналогичен примеру 30. В качестве сырья процесса гидрирования используют бензол, в качестве катализатора применяют катализатор примера 12. Превращение сырья проводят при температуре 280°С, давлении 5,0 МПа, объемной скорости подачи жидкого сырья 1,7 ч-1 и мольном отношении Н2/СН = 10. При этих условиях конверсия бензола составляет 96%, выход фракции С5+ -97 мас.% Фракция C5+ содержит 0,1 мас.% парафинов С6, 24,9% метилциклопентана, 71,2% циклогексана и 3,8% бензола.
Как видно из приведенных примеров № 13-15 и фиг. 1-3 предлагаемый катализатор обладает способностью проводить удаление коксовых отложений с поверхности цеолитного компонента регенерируемого катализатора в более мягких условиях, заключающихся в снижении температуры полного выжигания кокса с 600 до 550°С и сокращении общего времени регенерации. При этом он проявляет высокую активность в процессах риформинга бензиновых фракций и гидрирования ароматических углеводородов. Кроме того, при одинаковых с прототипом условиях процесса риформинга предлагаемый катализатор производит бензиновую фракцию C5+ с большим содержанием ароматических углеводородов и большим октановым числом, чем катализатор прототипа (см. соответственно примеры 17 и 29 в табл. 2).
Промышленная применимость
Изобретение может быть использовано в нефтеперерабатывающей и нефтехимической отраслях промышленности.
Таблица 1. Характеристика применяемого цеолита и состав катализатора
№ примера Характеристика цеолита Состав катализатора, % мае.
Структура цеолита Мольное отношение SiO2/Al2O3 Содержание, % мае. цео лит Pt Re Sn Cl γai2o3
Fe Ga
1 ZSM-5 86 0,4 10 0,5 осталь ное
2 ZSM-5 92 0,3 0,1 10 0,3 - - 0,5 - « -
3 ZSM-5 310 1,5 - 20 0,2 о,з - 0,4 -«-
4 ZSM-5 38 ο,ι - 5 0,2 - 0,3 1,4 - « -
5 ZSM-11 61 ο,ι 0,3 10 0,2 0,4 - - - « -
6 ZSM-11 320 1,1 1,5 10 0,3 - 0,5 0,9 - « -
7 ZSM-11 88 ο,ι - 1 0,3 0,5 ο,ι - - « -
8 ZSM-5 212 0,6 1,1 3 0,4 0,6 1,0 1,6 - « —
9 ZSM-11 186 1,2 0,3 10 0,1 0,6 1,0 - - « -
10 ZSM-5 96 0,5 - 70 0,3 - - - — « -
И ZSM-5 145 0,2 0,6 40 0,2 - 0,2 0,9 - « -
12 ZSM-11 105 0,4 Ο,ι 75 0,2 0,3 - - - « -
13 ZSM-5 91 - - 70 0,3 - - - -«-
Таблица 2. Условия процесса риформинга и результаты испытаний катализатора
№ при мера Катализатор по примеру № Параметры процесса риформинга Состав фракции С5+, % мае. Октановое число фракции с5+, мм
Темпе ратура, °C Давле ние (изб.), МПа Объемная скорость подачи сырья, ч1 Мольное отношение Н2/СН нпарафи ны изопарафи ны нафтены арены
17 10 480 1,0 2,0 5 11,4 29,6 6,2 52,8 83,6
18 12 500 0,7 1,5 5 9,5 25,1 3,1 62,3 85,0
19 1 500 0,5 2,5 3 8,9 22,4 4,4 64,3 86,5
20 2 440 2,0 3,5 1 13,2 35,4 10,1 41,3 81,3
21 3 500 3,0 2,0 6 10,3 24,5 4,3 60,9 84,5
22 4 500 0,7 2,0 4 11,0 27,6 5,4 56,0 83,8
23 5 480 1,5 1,5 5 11,7 30,7 6,6 51,0 83,2
24 6 500 0,7 2,0 5 10,1 22,1 4,8 63,0 86,2
25 7 560 4,0 10,0 10 10,2 26,0 5,2 58,6 84,1
26 8 520 1,0 4,0 5 9,9 22,5 з,з 64,3 86,4
27 9 500 1,0 2,0 5 11,6 31,6 7,5 49,3 82,3
28 И 460 0,3 0,5 5 12,6 34,3 8,8 44,3 82,2
29 13 480 1,0 2,0 5 12,1 32,6 7,8 47,5 82,4

Claims (17)

  1. ФОРМУЛА ИЗОБРЕТЕНИЯ
    1. Катализатор для риформинга бензиновых фракций, гидрирования бензольной фракции или ароматических углеводородов, содержащий оксид алюминия, платину, цеолит со структурой ZSM-5 или ZSM-11, отличающийся тем, что в качестве цеолита катализатор содержит кристаллический ферроалюмосиликат или феррогаллийалюмосиликат со структурой цеолита ZSM-5 или ZSM-11 и имеет следующий состав, мас.%: платина - 0,1-0,5; указанный цеолит - 1-75; оксид алюминия - остальное.
  2. 2. Катализатор по п.1, отличающийся тем, что ферроалюмосиликат имеет мольное отношение SiO2/Al2O3 в интервале 38-310 и содержит 0,1-1,5 мас.% железа.
  3. 3. Катализатор по п.1, отличающийся тем, что феррогаллийалюмосиликат имеет мольное отношение SiO2/Al2O3 в интервале 61-320 и содержит 0,1-1,2 мас.% железа и 0,1-1,5 мас.% галлия.
  4. 4. Катализатор по любому из пп.1-3, отличающийся тем, что дополнительно включает промотор в количестве 0,1-1,6 мас.%, представляющий собой рений и/или олово.
  5. 5. Катализатор по п.1, отличающийся тем, что катализатор дополнительно содержит 0,1-1,6 мас.% хлора.
  6. 6. Способ получения катализатора по любому из пп.1-5 для риформинга бензиновых фракций, гидрирования бензольной фракции или ароматических углеводородов путем смешения порошка или пасты гидроксида алюминия и цеолита со структурой ZSM-5 или ZSM-11, добавления раствора минеральной и/или органической кислоты в качестве пептизатора, формования полученной смеси, нейтрализации сформованных гранул аммиачным раствором, сушки и прокаливания сформованных гранул, пропитки прокаленных гранул носителя соединениями платины, сушки и прокаливания гранул катализатора, отличающийся тем, что в качестве цеолита применяют кристаллический ферроалюмосиликат или феррогаллийалюмосиликат со структурой цеолита ZSM-5 или ZSM-11.
  7. 7. Способ по п.6, отличающийся тем, что ферроалюмосиликат имеет мольное отношение SiO2/Al2O3 в интервале 38-310 и содержит 0,1-1,5 мас.% железа.
  8. 8. Способ по п.6, отличающийся тем, что феррогаллийалюмосиликат имеет мольное отношение SiO2/Al2O3 в интервале 61-320 и содержит 0,1-1,2 мас.% железа и 0,1-1,5 мас.% галлия.
  9. 9. Способ по п.6, отличающийся тем, что дополнительно в качестве промотора используют рений и/или олово.
  10. 10. Способ по п.6, отличающийся тем, что пропитку прокаленных гранул носителя соединениями платины осуществляют в растворе минеральной и/или органической кислоты.
  11. 11. Способ по п.9, отличающийся тем, что смешение гидроксида алюминия с порошком или пастой цеолита осуществляют соединением олова.
  12. 12. Способ по п.9, отличающийся тем, что пропитку прокаленных гранул носителя соединениями платины и соединениями промоторов рения и/или олова осуществляют в растворе минеральной и/или органической кислоты.
  13. 13. Способ по любому из пп.6-12, отличающийся тем, что прокаливание гранул носителя проводят при температуре 500-650°С, прокаливание гранул катализатора проводят при температуре 450-550°С.
  14. 14. Способ риформинга бензиновых фракций путем их контактирования в присутствии водородсодержащего газа при повышенных температурах и избыточном давлении с катализатором, отличающийся тем, что в качестве катализатора используют катализатор по любому из пп.1-5.
  15. 15. Способ по п.14, отличающийся тем, что риформинг бензиновых фракций осуществляют при температуре 440-560°С, избыточном давлении 0,3-4,0 МПа, объемной скорости подачи жидкого сырья 0,5-10 ч-1 и мольном отношении водорода к углеводородам 1-10.
  16. 16. Способ гидрирования бензольной фракции или ароматических углеводородов путем контактирования сырья с катализатором в присутствии водородсодержащего газа при избыточном давлении, отличающийся тем, что используют катализатор по любому из пп.1-5.
  17. 17. Способ по п.16, отличающийся тем, что гидрирование бензольной фракции или ароматических углеводородов осуществляют при температуре 220-400°С, давлении 0,5-5,0 МПа, объемной скорости подачи жидкого сырья 0,5-10 ч-1 и мольном отношении водорода к углеводородам 4-15.
EA202000173A 2018-07-30 2019-07-15 Катализатор для риформинга бензиновых фракций, способ его получения и применение катализатора EA039934B1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2018128110A RU2675629C1 (ru) 2018-07-30 2018-07-30 Катализатор для риформинга бензиновых фракций, способ его получения и применение катализатора
PCT/RU2019/000499 WO2020027696A1 (ru) 2018-07-30 2019-07-15 Катализатор для риформинга бензиновых фракций, способ его получения и применение катализатора

Publications (2)

Publication Number Publication Date
EA202000173A1 EA202000173A1 (ru) 2020-10-02
EA039934B1 true EA039934B1 (ru) 2022-03-29

Family

ID=64753565

Family Applications (1)

Application Number Title Priority Date Filing Date
EA202000173A EA039934B1 (ru) 2018-07-30 2019-07-15 Катализатор для риформинга бензиновых фракций, способ его получения и применение катализатора

Country Status (3)

Country Link
EA (1) EA039934B1 (ru)
RU (1) RU2675629C1 (ru)
WO (1) WO2020027696A1 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2704014C1 (ru) * 2019-07-30 2019-10-23 Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" Способ получения алюмооксидного металлсодержащего катализатора переработки углеводородного сырья (варианты)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0186479A2 (en) * 1984-12-27 1986-07-02 Mobil Oil Corporation Shape selective zeolite catalyst
US4670614A (en) * 1984-06-15 1987-06-02 Research Association For Petroleum Alternative Development Hydrocarbon conversion process
RU2289475C1 (ru) * 2005-08-12 2006-12-20 Институт проблем переработки углеводородов Сибирского отделения Российской Академии Наук (ИППУ СО РАН) Катализатор для риформинга бензиновых фракций и способ его приготовления

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2048911C1 (ru) * 1992-08-26 1995-11-27 Научно-внедренческая фирма "Катализатор" Способ приготовления катализатора риформинга бензиновых фракций
RU2173333C2 (ru) * 1999-08-09 2001-09-10 Открытое акционерное общество "Славнефть-Ярославнефтеоргсинтез" Способ каталитического риформинга

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4670614A (en) * 1984-06-15 1987-06-02 Research Association For Petroleum Alternative Development Hydrocarbon conversion process
EP0186479A2 (en) * 1984-12-27 1986-07-02 Mobil Oil Corporation Shape selective zeolite catalyst
RU2289475C1 (ru) * 2005-08-12 2006-12-20 Институт проблем переработки углеводородов Сибирского отделения Российской Академии Наук (ИППУ СО РАН) Катализатор для риформинга бензиновых фракций и способ его приготовления

Also Published As

Publication number Publication date
RU2675629C1 (ru) 2018-12-21
EA202000173A1 (ru) 2020-10-02
WO2020027696A1 (ru) 2020-02-06

Similar Documents

Publication Publication Date Title
US4636299A (en) Process for the manufacture of lubricating oils
RU2465959C2 (ru) Катализатор гидроизомеризации, способ его получения, способ депарафинизации углеводородного масла и способ получения базового смазочного масла
US20120000819A1 (en) Method of producing alkylbenzene and catalyst used therefor
JPH0631335B2 (ja) 接触脱蝋法
JPH067926B2 (ja) 潤滑油の接触脱ロウ方法
EA013273B1 (ru) Способ улучшения качества топлива из гидрообработанных углеводородных смесей
US4134823A (en) Catalyst and hydrocarbon conversion process
JP5330056B2 (ja) 1環芳香族炭化水素の製造方法
EP0309139A2 (en) Method for producing stabilized zeolite catalysts
US5273645A (en) Manufacture of lubricating oils
CN106660025B (zh) 异构化催化剂
US4563266A (en) Catalytic dewaxing process
US4992401A (en) Noble metal alkaline zeolites for catalytic reforming
EP2247694B1 (en) Process for improving the fuel quality of hydrotreated hydrocarbon blends
EA039934B1 (ru) Катализатор для риформинга бензиновых фракций, способ его получения и применение катализатора
JP7362368B2 (ja) キシレンの製造方法
WO2020027693A1 (ru) Способ приготовления носителя для катализаторов переработки углеводородного сырья
US2728713A (en) High activity reforming catalysts for use in the hydroforming of naphtha
US5880051A (en) Reforming catalyst system with differentiated acid properties
US3620963A (en) Catalytic dewaxing
JPH0242539B2 (ru)
US4755279A (en) Process for the manufacture of lubricating oils
JP2024514945A (ja) 軽質芳香族炭化水素の調製方法
EP0251564B1 (en) Extruded zeolite catalysts
RU2617684C1 (ru) Цеолитный катализатор депарафинизации и способ депарафинизации