DK170553B1 - Process for making casting cores and molds and using them for making light metal work - Google Patents

Process for making casting cores and molds and using them for making light metal work Download PDF

Info

Publication number
DK170553B1
DK170553B1 DK004181A DK4181A DK170553B1 DK 170553 B1 DK170553 B1 DK 170553B1 DK 004181 A DK004181 A DK 004181A DK 4181 A DK4181 A DK 4181A DK 170553 B1 DK170553 B1 DK 170553B1
Authority
DK
Denmark
Prior art keywords
binder
polymer
process according
binder material
unsaturated
Prior art date
Application number
DK004181A
Other languages
Danish (da)
Other versions
DK4181A (en
Inventor
William R Dunnavant
Heimo J Langer
Grant O Sedgwick
Original Assignee
Ashland Oil Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ashland Oil Inc filed Critical Ashland Oil Inc
Publication of DK4181A publication Critical patent/DK4181A/en
Application granted granted Critical
Publication of DK170553B1 publication Critical patent/DK170553B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • C08F290/147Polyurethanes; Polyureas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins

Description

DK 170553 B1DK 170553 B1

Opfindelsen angår en fremgangsmåde til fremstilling af støbeforme og støbekerner og disses anvendelse til støbning af letmetalstøbegods.The invention relates to a process for making molds and casting cores and their use in casting light metal castings.

Mange forskellige typer bindende eller bindemiddelmaterialer har fundet anvendelse ved fremstillingen af støbekerner og støbeforme. Binde-5 middelmaterialet skal efter hærdning give kernen og formene forskellige ønskelige egenskaber. Eksempler på sådanne egenskaber er slid-bestandighed, fugtmodstandsdygtighed og smuldreevne eller udrystelig-hed. Ved fremstilling af kerner eller forme er en høj produktion også et ønsket mål.Many different types of bonding or binder materials have been used in the manufacture of mold cores and molds. The binder material, after curing, should provide various desirable properties to the core and molds. Examples of such properties are wear resistance, moisture resistance and crumb resistance or shake resistance. In the production of cores or molds, high production is also a desired goal.

10 Den moderne kernefremstillings- og formfremstillingsteknik begyndte med anvendelsen af umættede tørrende olier afledt af naturprodukter som bindemiddel. Linolie er det første eksempel på en tørrende olie.10 The modern core-making and mold-making technique began with the use of unsaturated drying oils derived from natural products as a binder. Linseed oil is the first example of a drying oil.

Ved eksponering for luft undergår linolie og andre umættede olier oxidativt initierede polymerisationer, der resulterer i dannelsen af 15 faste, stærkt tværbundne strukturer. Polymerisationen kan accelereres ved hjælp af varme eller kemiske metoder. Disse bindende materialer er kendt inden for industrien som kerneolier. Ved formning af en kerne blandes olien med sand, og sandblandingen bringes i form af en kerne eller en form. Hærdningen udføres ved opvarmning eller modning af ker-20 nen eller formen i et langt tidsrum. Bindemidler baseret på kerneolie kan ud over oliebestanddelen indeholde andre bestanddele såsom olieafledte estere, umættede carbonhydridharpikser og opløsningsmidler. Kerneoliebaserede fremgangsmåder til fremstilling af støbelegemer såsom forme eller kerner har været kendt i 50 - 60 år.Upon exposure to air, linseed oil and other unsaturated oils undergo oxidatively initiated polymerizations resulting in the formation of 15 solid, highly crosslinked structures. The polymerization can be accelerated by heat or chemical methods. These binding materials are known in the industry as nuclear oils. When forming a core, the oil is mixed with sand and the sand mixture is brought into the form of a core or mold. The curing is carried out by heating or maturing the core or mold for a long period of time. Core oil binders may contain, in addition to the oil component, other ingredients such as oil-derived esters, unsaturated hydrocarbon resins and solvents. Nuclear oil-based processes for making casting bodies such as molds or cores have been known for 50-60 years.

25 Processer, der er hurtigere end de ovenfor nævnte kerneolieprocesser, blev introduceret for 25 - 30 år siden. Disse processer kræver varme-hærdning for bindemiddelmaterialet. Disse såkaldte "hot-box"-kernefremgangsmåder er baseret på en termohærdende harpikskomposition.25 Processes faster than the above-mentioned nuclear oil processes were introduced 25 - 30 years ago. These processes require heat curing for the binder material. These so-called "hot-box" core methods are based on a thermosetting resin composition.

Kemisk omfatter disse termohærdende harpikser phenolharpikser, urea-30 formaldehydharpikser og furfurylalkohol-formaldehydharpikser. Ud over anvendelsen af varme til hærdning eller polymerisation af disse bindemiddelmaterialer inkorporeres ofte syrer som katalysatorer.Chemically, these thermosetting resins include phenolic resins, urea formaldehyde resins and furfuryl alcohol formaldehyde resins. In addition to the use of heat to cure or polymerize these binder materials, acids are often incorporated as catalysts.

For ca. 10 år siden indførtes stuetemperatursprocesser, der udføres med høj hastighed, til fremstilling af støbekerner og -forme. Det ved 35 disse fremgangsmåder dannede bindemiddel er baseret på urethankemi. Egentlig består bindemiddelmaterialet af to flydende harpikskomponenter. Den ene komponent er et phenolharpiks. Den anden komponent er et polymert isocyanat. Phenolharpiksen og isocyanatharpiksen blandes med sand og kan anvendes i enten et "cold box"- eller et "no bake"-system.For approx. Ten years ago, high-temperature room temperature processes were introduced to produce cast cores and molds. The binder formed by these processes is based on urethane chemistry. Actually, the binder material consists of two liquid resin components. One component is a phenolic resin. The second component is a polymeric isocyanate. The phenolic resin and isocyanate resin are mixed with sand and can be used in either a "cold box" or a "no bake" system.

40 Ved "cold box"-systemet blæses sandet, der er overtrukket med de to komponenter, ind i en kerneboks. Når sandet er blæst ind i kernebok 2 DK 170553 B1 sen, føres en gasformig tertiær amin gennem kerneboksen for at bevirke omgående hærdning eller størkning til dannelse af bindemidlet. Denne teknologi beskrives i USA-patentskrift 3.409.579. Ved "no bake"-kernefremstillingsfremgangsmåden blandes polyisocyanatkomponenten, 5 phenolharpikskomponenten og katalysatoren alle med sand samtidig. ,40 In the "cold box" system, the sand coated with the two components is blown into a core box. When the sand is blown into core book 2, a gaseous tertiary amine is passed through the core box to effect immediate cure or solidification to form the binder. This technology is disclosed in U.S. Patent 3,409,579. In the "no bake" core preparation process, the polyisocyanate component, the phenolic resin component and the catalyst are all mixed with sand at the same time. .

Sandblandingen hældes derefter i en kerneboks eller i et mønster. Sandblandingen forbliver flydende i et vist tidsrum. Når dette tidsrum er forløbet, initierer katalysatoren hærdningen eller polymerisatio- * nen, og kernen dannes hurtigt, eftersom bindemiddelkomponenterne 10 reagerer hurtigt til dannelse af et urethanbindemiddel. I USA-patentskrift nr. 3.676.392 beskrives "no bake"-bindemidler.The sand mixture is then poured into a core box or into a pattern. The sand mixture remains liquid for a certain period of time. When this time has elapsed, the catalyst initiates the cure or polymerization, and the core is formed rapidly as the binder components 10 react rapidly to form a urethane binder. U.S. Patent No. 3,676,392 discloses "no bake" binders.

En yderligere bindemiddelkomposition og -procedure til dannelse af et støbebindemiddel beskrives i USA-patentskrift nr. 3.879.339. I dette patentskrift beskrives en fremgangsmåde, ved hvilken der anvendes en 15 "cold box", dvs. stuetemperatur, og gashærdning til dannelse af et støbebindemiddel omfattende en organisk harpiks, der kan hærdes med en syre og et oxidationsmiddel. Denne bindemiddelkomponent hærdes med svovldioxidgas. Kombinationen af svovldioxid plus oxidationsmidlet fører til dannelsen af svovlsyre, hvilken syre tjener til at hærde den 20 syrehærdelige organiske harpiks. Egentlig dannes svovlsyren in situ, og syren reagerer med harpiksen. Således tilvejebringes hærdning af bindemiddelkompositionen.A further binder composition and procedure for forming a molding binder is disclosed in U.S. Patent No. 3,879,339. This patent describes a method by which a "cold box" is used, i.e. room temperature, and gas cure to form a molding binder comprising an organic resin which can be cured with an acid and an oxidizing agent. This binder component is cured with sulfur dioxide gas. The combination of sulfur dioxide plus the oxidant leads to the formation of sulfuric acid, which acid serves to cure the 20 acid curable organic resin. Actually, the sulfuric acid is formed in situ and the acid reacts with the resin. Thus, curing of the binder composition is provided.

Ingen af de ovenfor beskrevne støbebindemidler er af en sådan anvendelighed og mangesidighed, at de kan anses for at være et universal-25 eller uerstatteligt støbebindemiddel. Hvert af dem har fordele og ulemper i en vis udstrækning.None of the molding binders described above are of such utility and versatility that they can be considered as a universal or irreplaceable molding adhesive. Each of them has its advantages and disadvantages to some extent.

Det er derfor et mål for den foreliggende opfindelse at tilvejebringe en fremgangsmåde til fremstilling af støbeemner baseret på et bindemiddel med en kemi, der hidtil ikke har været anvendt inden for støbe-30 området eller for andre områder hvad angår bindemiddelanvendelse. Det er et særligt mål for den foreliggende opfindelse at tilvejebringe et støbebindemiddel af "cold box"-type, der udviser hurtig hærdning. Et andet mål er at tilvejebringe et "cold box"-bindemiddel, der er nyttigt til støbning af aluminium og andre letmetaller.It is therefore an object of the present invention to provide a process for making moldings based on a binder with a chemistry that has not heretofore been used in the molding field or for other areas of binder application. It is a particular object of the present invention to provide a "cold box" type binder which exhibits rapid cure. Another objective is to provide a "cold box" binder useful for casting aluminum and other light metals.

i, 35 Opfindelsen angår en fremgangsmåde af den i krav l's indledning angivne art og den er ejendommelig ved det i krav l's kendetegnende del angivne. Forme og kerner fremstillet under anvendelse af disse bindemidler udviser overlegen smuldreevne, når de anvendes ved støbning af letmetaller, dvs. metaller, der støbes ved lave støbetempera-40 turer. Hærdningen af bindemiddelmaterialet til dannelse af bindemid- 3 DK 170553 B1 delkompositionen foregår fortrinsvis ved stuetemperatur og sker næsten øjeblikkeligt.The invention relates to a method of the kind set forth in the preamble of claim 1 and is peculiar to the characterizing part of claim 1. Molds and cores made using these binders exhibit superior crumb performance when used in casting light metals, ie. metals cast at low casting temperatures. The hardening of the binder material to form the binder sub-composition preferably takes place at room temperature and occurs almost immediately.

Fra DE-OS 24 17 939 er det kendt at fremstille støbekerner og støbeforme ved at tilsætte sandet en acrylsyreester, en organisk peroxyd og 5 en polymerisationsaccelerator. Anvendelse af gasformigt S02 som katalysator nævnes ikke i dette skrift.From DE-OS 24 17 939 it is known to make mold cores and molds by adding the sand an acrylic acid ester, an organic peroxide and a polymerization accelerator. The use of gaseous SO2 as a catalyst is not mentioned in this specification.

Ved den foreliggende opfindelse anvendes således et støbebindemiddel, for hvilket kemien er forskellig fra den, der anvendes til dannelse af et hvilket som helst bindemiddel, der hidtil har været kendt for at 10 være anvendeligt inden for støbeindustrien. Bindemidlet kan også anvendes som bindemiddel eller bindende middel inden for andre områder end støbeindustrien. Den kemi, på hvilken bindemidlet er baseret, er i analogi med en kemi, der hidtil har været anvendt til overtræk, jfr. f.eks. britisk patentskrift nr. 1.055.242, og bindemidler, jfr. f.eks.Thus, in the present invention, a cast binder is used for which the chemistry is different from that used to form any binder heretofore known to be useful in the casting industry. The binder can also be used as a binder or binder in areas other than the molding industry. The chemistry on which the binder is based is analogous to a chemistry that has been used so far for coatings, cf. for example. British Patent Specification No. 1,055,242, and binders, cf. for example.

15 forskellige patenter i navnet Loctite Corporation. Et anaerobt hærdet støbebindemiddel baseret på en lignende kemi beskrives i canadisk patentskrift nr. 1.053.440. Dette bindemiddel hærder meget langsomt, og der kræves opvarmning til bevirkning af hærdning. Den foreliggende opfindelse omfatter ikke nogen anaerobt hærdningsproces, men angår i 20 stedet hurtig, næsten øjeblikkelig hærdning ved stuetemperatur.15 different patents in the name of Loctite Corporation. An anaerobic cured casting binder based on a similar chemistry is disclosed in Canadian Patent No. 1,053,440. This binder cures very slowly and heating is required to effect curing. The present invention does not include any anaerobic curing process, but instead relates to rapid, almost instantaneous curing at room temperature.

Det er velkendt, at støbelegemer, dvs. kerner og forme, dannes ved at påføre et bindende stof eller kemikalie på sand eller et andet aggregatmateriale, at bibringe sandet den ønskede form og tillade eller bringe det bindende stof eller kemikaliet til at hærde til dannelse af 25 et bindemiddel. Den foreliggende opfindelse kan betragtes som et bindemiddel, der fås ved at bringe to dele sammen. Del I er et bindende stof eller en bindende komposition, der undergår polymerisation og tværbinding for at hæfte til, fastholde eller binde sandet eller andet aggregat i den ønskede form. Den anden del (Del II) er et middel, der 30 bevirker polymerisation og tværbinding af Del I. Dette middel betegnes her "friradikalinitiator". Udtrykket "tværbinding" betegner her en kædeopbygning, som resulterer, når en polymer er involveret enten ved binding til en anden polymer eller til en monomer. Udtrykket "polymerisation" omfatter "tværbinding", men betegner også kædepolymerisa-35 tionen, som kun sker for monomerer.It is well known that casting bodies, i.e. cores and molds are formed by applying a binding substance or chemical to sand or other aggregate material, imparting the desired shape to the sand and allowing or causing the binding substance or chemical to harden to form a binder. The present invention can be considered as a binder obtained by bringing two parts together. Part I is a binding substance or bond that undergoes polymerization and cross-linking to adhere to, retain or bond the sand or other aggregate in the desired form. The second part (Part II) is an agent which causes polymerization and crosslinking of Part I. This agent is herein referred to as "free radical initiator". The term "crosslinking" here refers to a chain structure which results when a polymer is involved either by bonding to another polymer or to a monomer. The term "polymerization" includes "crosslinking" but also refers to the chain polymerization which occurs only for monomers.

Del I i bindemiddelsystemet kan beskrives som en umættet komposition, der kan tværbindes eller polymeriseres ved friradikalmekanisme. Umættetheden er fortrinsvis endestillet eller i tilknyttede grupper.Part I of the binder system can be described as an unsaturated composition which can be crosslinked or polymerized by free radical mechanism. The unsaturation is preferably terminated or in associated groups.

Selv intern umættethed kan accepteres, og polymerisation vil resultere 40 efter kombination med Del II. Det er også muligt, afhængig af syntesemetoden for komponenten Del I at have en komponentdel I, som både har 4 DK 170553 B1 en endestillet og/eller tilknyttet umættethed og også en indre umæt-tethed i samme komponent. Det formodes, at polymerisationsmekanismen praktisk taget fuldstændig er af friradikaltype, når tværbindende kompositioner, (dvs. umættet polymer eller umættede polymerer) er 5 involveret. Når visse monomerer anvendes som bindende komposition, er * det muligt at en del af polymerisationen kan foregå ved en mekanisme, der er forskellig fra en friradikal. Det skal derfor forstås, at den foreliggende ansøgning ikke er begrænset til nogen særlig polymerisa- * tionsmekanisme, men at udtrykket "friradikalmekanisme" anvendes for 10 enkelthedens skyld og beskriver en sådan mekanisme korrekt i praktisk taget alle tilfælde. Det er dog underforstået, at ud over friradikal-mekanismen kan også andre mekanismer være involveret i polymerisationen under visse omstændigheder. Hærdningen tilvejebringes under anvendelse af Del II, en friradikalinitiator, som indeholder et peroxid og 15 et katalytisk middel. Det har vist sig, at umættede reaktive monomerer, polymerer og blandinger deraf (dvs. den bindende komposition) kan anvendes som et bindende materiale, der hærder øjeblikkeligt ved valg af bestemte katalysatorer i friradikalinitiatoren. Den umættethed, der findes i monomererne og polymererne, er som angivet af 20 ethylenisk karakter. F.eks. anvendes reaktive polymerer, der også kan beskrives som oligomerer eller addukter, som fortrinsvis indeholder vinylisk eller acrylisk umættethed, som bindemiddelkompositioner, der efter polymerisation giver et bindemiddel til støbekerner og -forme af sand. Friradikalinitiatoren (Del II) blandes med den reaktive polymer 25 eller monomer (Del I) og danner frie radikaler, der polymeriserer den bindende komposition til dannelse af bindemidlet. Denne kombination af et peroxid og det katalytiske middel benævnes her "friradikalinitiator" .Even internal unsaturation is acceptable and polymerization will result in 40 after combination with Part II. It is also possible, depending on the synthesis method of component Part I, to have a component part I, which has both a terminal and / or associated unsaturation and also an internal unsaturation in the same component. It is believed that the polymerization mechanism is practically completely free-radical type when cross-linking compositions (i.e., unsaturated polymer or unsaturated polymers) are involved. When certain monomers are used as a binding composition, * it is possible that part of the polymerization may take place by a mechanism different from a free radical. It is therefore to be understood that the present application is not limited to any particular polymerization mechanism, but that the term "free radical mechanism" is used for the sake of simplicity and correctly describes such a mechanism in practically all cases. However, it is to be understood that in addition to the free radical mechanism, other mechanisms may also be involved in the polymerization under certain circumstances. The cure is provided using Part II, a free radical initiator containing a peroxide and a catalytic agent. It has been found that unsaturated reactive monomers, polymers, and mixtures thereof (i.e., the binding composition) can be used as a binding material that cures instantaneously by selecting certain catalysts in the free radical initiator. The unsaturation found in the monomers and polymers is as indicated by 20 ethylenic character. For example. reactive polymers, which may also be described as oligomers or adducts, which preferably contain vinyl or acrylic unsaturation, are used as binder compositions which, after polymerization, provide a binder for sand grains and molds. The free radical initiator (Part II) is mixed with the reactive polymer 25 or monomer (Part I) to form free radicals that polymerize the binding composition to form the binder. This combination of a peroxide and the catalytic agent is herein referred to as "free radical initiator".

Friradikalinitiatoren kan anvendes til at bevirke polymerisation af 30 Del I-materialer på en række måder. Peroxidet kan f.eks. blandes med Del I-materialet, og denne blanding fordeles homogent på sand. Efter at sandet er formet som ønsket, kan det formede sand eksponeres for det katalytiske middel. Det katalytiske middel kan alternativt sættes til Del I-materialet, og denne blanding anvendes til at overtrække 35 sandet, og det overtrukne sand formes derefter som ønsket. Peroxidkom-ponenten i friradikalinitiatoren kan derefter sættes til den formede artikel, og hærdning sker ved polymerisation. Det er også muligt at ^ dele Del I-materialet i to portioner. Det katalytiske middel kan sættes til den ene portion, og peroxidet kan sættes til den anden 40 portion. Når de to portioner kombineres efter påføring af mindst en * portion med materialet, der skal bindes, sker polymerisation. Afhængig af den anvendte type af katalytisk middel eller udrustning samt den anvendte påføring kan denne sidstnævnte fremgangsmåde eventuelt ikke være praktisk gennemførlig. Hvis det bindende materiale imidlertid 5 DK 170553 B1 anvendes til at sammenklæbe ikke-partikelformige materialer, kan denne sidstnævnte fremgangsmåde være særlig nyttig.The free radical initiator can be used to effect polymerization of 30 Part I materials in a variety of ways. The peroxide may e.g. are mixed with the Part I material and this mixture is distributed homogeneously on sand. After the sand is shaped as desired, the shaped sand can be exposed to the catalytic agent. Alternatively, the catalytic agent may be added to the Part I material, and this mixture is used to coat the sand and the coated sand is then formed as desired. The peroxide component of the free radical initiator can then be added to the molded article and cure occurs by polymerization. It is also possible to divide the Part I material into two portions. The catalytic agent may be added to one portion and the peroxide may be added to the other portion. When the two portions are combined after application of at least one portion with the material to be bonded, polymerization occurs. Depending on the type of catalytic agent or equipment used and the application used, this latter process may not be practicable. However, if the binding material is used to bond non-particulate materials, this latter method may be particularly useful.

Som beskrevet ovenfor er det bindende materiale en polymeriserbar, umættet monomer, polymer eller en blanding af sådan(ne) monomer(er) og 5 sådan(ne) polymer(er). Eksempler på materialer, der er egnede monomere forbindelser til komponenten Del I, omfatter en lang række monofunktionelle, difunktionelle, trifunktionelle og tetrafunktionelle acryla-ter. En repræsentativ liste over disse monomerer omfatter alkylacryla-ter, hydroxyalkylacrylater, alkoxyalkylacrylater, cyanoalkylacrylater, 10 alkylmethacrylater, hydroxyalkylmetacrylater, alkoxyalkylmetacrylater, cyanoalkylmethacrylater, N-alkoxymethylacrylamider og N-alkoxymethyl-methacrylamider. Difunktionelle monomere acrylater omfatter hexandiol-diacrylat og tetraethylenglycoldiacrylat. Andre acrylater, der kan anvendes, omfatter f.eks. trimethylolpropantriacrylat, methacrylsyre 15 og 2-ethylhexylmethacrylat. Det foretrækkes at anvende polyfunktionel-le acrylater, når monomeren er den eneste bindende enhed i bindemid-delsystemet. Som anført ovenfor kan der eventuelt ikke forekomme tværbinding, når der kun anvendes monomerer som det bindende materiale. Endvidere kan andre mekanismer end friradikalmekanismen bevirke 20 polymerisation.As described above, the binding material is a polymerizable, unsaturated monomer, polymer or a mixture of such monomer (s) and polymer (s). Examples of materials that are suitable monomeric compounds for the component I component include a wide variety of monofunctional, difunctional, trifunctional and tetrafunctional acrylics. A representative list of these monomers includes alkyl acrylates, hydroxyalkyl acrylates, alkoxyalkyl acrylates, cyanoalkyl acrylates, alkyl methacrylates, hydroxyalkyl methacrylates, alkoxyalkylmethacrylates, cyanoalkylmethacrylates, N-alkoxymethylacrylamides and N-alkoxymethyl Difunctional monomeric acrylates include hexanediol diacrylate and tetraethylene glycol diacrylate. Other acrylates which may be used include e.g. trimethylolpropane triacrylate, methacrylic acid and 2-ethylhexylmethacrylate. It is preferred to use polyfunctional acrylates when the monomer is the only binding unit in the binder system. As stated above, crosslinking may not occur when only monomers are used as the binding material. Furthermore, mechanisms other than the free radical mechanism may cause polymerization.

Eksempler på umættede reaktive polymerer, der har vist sig at være særlig nyttige til dannelse af dette støbebindemiddel, er epoxyacry-latreaktionsprodukter, polyester/urethan/acrylatreaktionsprodukter, polyetheracrylater og polyesteracrylater. Umættede polymerer, der kan 25 anvendes som Del I-komposition, omfatter kommercielt tilgængelige materialer såsom "UVITHANE '' 782 og 783, acrylerede urethanoligomerer fra Thiokol og CMD 1700, en acryleret ester af en acrylpolymer, og "CELRAD" 3701, en acryleret epoxyharpiks, begge markedsførte af Cela-nese. Reaktive polymerer kan fremstilles på en række måder. En fore-30 trukken fremgangsmåde til fremstilling af de reaktive polymerer er at danne en isocyanatendestillet præpolymer ved at omsætte en polyhy-droxyforbindelse eller polyol med et diisocyanat. Præpolymeren omsættes yderligere med et hydroxyalkylacrylat til dannelse af en oligomer.Examples of unsaturated reactive polymers which have been found to be particularly useful in forming this binder are epoxy acrylate reaction products, polyester / urethane / acrylate reaction products, polyether acrylates and polyester acrylates. Unsaturated polymers which can be used as a Part I composition include commercially available materials such as "UVITHANE" 782 and 783, acrylic urethanol oligomers from Thiokol and CMD 1700, an acrylic ester of an acrylic polymer, and "CELRAD" 3701, an acrylic epoxy resin Reactive polymers can be prepared in a number of ways. A preferred method of preparing the reactive polymers is to form an isocyanate-distilled prepolymer by reacting a polyhydroxy compound or polyol with a diisocyanate. further with a hydroxyalkyl acrylate to form an oligomer.

En anden metode, der har vist sig at være fordelagtig, er at omsætte 35 en polyisocyanatforbindelse, fortrinsvis en diisocyanatforbindelse, med et hydroxyalkylacrylat. Reaktionsproduktet er et "addukt" af disse to materialer. Additionsoligomerer og addukter kan fremstilles samtidig under hensigtsmæssige betingelser.Another method which has been found to be advantageous is to react a polyisocyanate compound, preferably a diisocyanate compound, with a hydroxyalkyl acrylate. The reaction product is an "adduct" of these two materials. Addition oligomers and adducts can be prepared simultaneously under appropriate conditions.

Foruden den reaktive umættede polymer, kan et opløsningsmiddel, for-40 trinsvis et af reaktiv natur, inkluderes og inkluderes fortrinsvis som en bestanddel af det bindende materiale. Afhængig af det umættede bindende materiales natur kan også anvendes inerte opløsningsmidler. Det 6 DK 170553 B1 foretrukne opløsningsmiddel er en umættet monomer forbindelse som den, der er beskrevet ovenfor ved beskrivelsen af monomere Del I-materialer. Følgelig kan Del I-materialet omfatte en blanding af disse umættede monomerer og umættet polymer, som ovenfor er foreslået til an-5 vendelse som Del I-materiale per se. De bedste resultater forekommer, når der anvendes en opløsning af en umættet reaktiv polymer og et monomert umættet opløsningsmiddel. Denne kombination syntes lettere at kunne undergå copolymerisation og tværbinding til dannelse af en bin- ^ dende matrix, der er nødvendig for enten at klæbe sandet eller andet 10 aggregat sammen til dannelse af støbekernen eller -formen eller til at binde andre materialer.In addition to the reactive unsaturated polymer, a solvent, preferably one of a reactive nature, may be included and preferably included as a component of the binding material. Depending on the nature of the unsaturated binding material, inert solvents may also be used. The preferred solvent is an unsaturated monomeric compound such as that described above in the description of monomeric Part I materials. Accordingly, the Part I material may comprise a mixture of these unsaturated monomers and unsaturated polymer suggested above for use as Part I material per se. The best results occur when a solution of an unsaturated reactive polymer and a monomeric unsaturated solvent is used. This combination seemed easier to undergo copolymerization and cross-linking to form a bonding matrix necessary to either adhere the sand or other aggregate together to form the cast core or mold or to bond other materials.

Som det er angivet, foretrækkes det i Del I af bindemiddelsystemet at anvende en umættet monomer forbindelse som opløsningsmiddel sammen med den umættede polymer. Som beskrevet ovenfor kan disse monomerer, som 15 indeholder umættethed, tværbindes med polymeren, ud over at de tjener som opløsningsmiddel for den umættede polymer. En hvilken som helst af de umættede monomerer (eller kombinationer deraf), der beskrives som værende nyttige Del I-materialer per se, er også nyttige som opløsningsmidler. Ethylenisk umættethed, fortrinsvis af vinyl- eller 20 acryltype, anbefales. Eksempler på foretrukne monomerer til anvendelse som opløsningsmidler for de umættede polymerer omfatter pentaerytri-toltriacrylat, trimethylolpropantriacrylat, 1,6-hexandioldiacrylat og tetraethylenglycoldiacrylat, der anvendes som et opløsningsmiddel for den umættede polymer. Mængden af monomer i Del I kan være fra 0 op til 25 100%, beregnet på den bindende komposition Del I's totalvægt.As indicated, in Part I of the binder system, it is preferred to use an unsaturated monomeric compound as a solvent with the unsaturated polymer. As described above, these monomers containing unsaturation can be crosslinked with the polymer in addition to serving as a solvent for the unsaturated polymer. Any of the unsaturated monomers (or combinations thereof) described as being useful Part I materials per se are also useful as solvents. Ethylenic unsaturation, preferably of the vinyl or acrylic type, is recommended. Examples of preferred monomers for use as solvents for the unsaturated polymers include pentaerythritol tri triacrylate, trimethylol propane triacrylate, 1,6-hexanediol diacrylate and tetraethylene glycol diacrylate used as a solvent for the unsaturated polymer. The amount of monomer in Part I can be from 0 up to 25%, based on the total weight of the binding composition of Part I.

Det er også muligt at anvende den reaktive polymer som Del I-materiale og friradikalinitiatoren uden at noget opløsningsmiddel for den umættede monomer, herunder umættet polymer, er til stede. Det er også muligt at anvende den umættede monomer som Del I-materialet sammen med 30 en friradikalinitiator, men uden den reaktive polymer, med det formål at få et polymeriseret bindemiddel. Ingen af de to ovenfor beskrevne kombinationer foretrækkes. Som beskrevet ovenfor er det foretrukne bindemiddelsystem Del I indeholdende en reaktiv umættet polymer opløst i et reaktivt fortyndingsmiddel, fortrinsvis et monomert umættet 35 opløsningsmiddel, og Del II indeholder en friradikalinitiator.It is also possible to use the reactive polymer as Part I material and the free radical initiator without the presence of any solvent for the unsaturated monomer, including unsaturated polymer. It is also possible to use the unsaturated monomer as the Part I material with a free radical initiator, but without the reactive polymer, for the purpose of obtaining a polymerized binder. Neither of the two combinations described above is preferred. As described above, the preferred binder system Part I containing a reactive unsaturated polymer is dissolved in a reactive diluent, preferably a monomeric unsaturated solvent, and Part II contains a free radical initiator.

Friradikalinitiatoren udgøres af to komponenter. Den første komponent er et organisk peroxid. Peroxidniveauet kan variere inden for vide grænser, i nogen udstrækning afhængig af det anvendte katalytiske *.The free radical initiator is made up of two components. The first component is an organic peroxide. The peroxide level may vary widely, to some extent depending on the catalytic * used.

middel. Det kan imidlertid generelt siges, at fra 0,5 til 2% peroxid, 40 beregnet på vægten af det bindende materiale (Del I), vil give tilfredsstillende binding under de fleste betingelser. Eksempler på egnede peroxider omfatter tert.butylhydroperoxid, cumenhydroperoxid og 7 DK 170553 B1 methylethylketonperoxid. Det er værd at bemærke, at hydroperoxiderne er langt foretrukne fremfor peroxiderne. Utilfredsstillende hærdning er iagttaget ved anvendelse af peroxid. Blandinger af peroxider og hydroperoxider samt blandinger af hydroperoxider er nyttige.agent. However, it can generally be said that from 0.5 to 2% peroxide, 40 based on the weight of the binding material (Part I), will provide satisfactory bonding under most conditions. Examples of suitable peroxides include tert.butyl hydroperoxide, cumene hydroperoxide and methylethyl ketone peroxide. It is worth noting that the hydroperoxides are far preferred over the peroxides. Unsatisfactory curing has been observed using peroxide. Mixtures of peroxides and hydroperoxides as well as mixtures of hydroperoxides are useful.

5 Ved foretrukken støbepraksis blandes den umættede reaktive polymer, monomer eller blandinger deraf og peroxidkomponenten i friradikal-initiatoren med sand på konventionel måde. Sandblandingen formes derefter til en ønsket støbekonfiguration ved stampning, blæsning eller andre kendte støbekerne- og -formfremstillingsmetoder. Det 10 formede emne eksponeres derefter for den katalytiske komponent i friradikalinitiatoren, det vil sige gasformigt S02. Denne gas er kun til stede i katalytiske mængder som angivet ovenfor. Eksponeringstiden for kontakten mellem sandblandingen og gassen kan være så lille som 1/2 sekund eller mindre, og bindemiddelkomponenten hærder ved kontakt 15 med det katalytiske middel. Ved anvendelse af S02 som det katalytiske middel i en "cold box"-støbeproces, suspenderes det i en strøm af bæregas på kendt måde. Bæregassen er sædvanligvis N2. Så lidt som 0,5% S02, beregnet på vægten af bæregassen, er tilstrækkelig til at bevirke polymerisation. Det er også muligt at eksponere bindemiddelkomponenten 20 for S02 uden tilstedeværelse af nogen bæregas.In preferred casting practice, the unsaturated reactive polymer, monomer or mixtures thereof and the peroxide component of the free radical initiator are mixed with sand in a conventional manner. The sand mixture is then formed into a desired mold configuration by stamping, blowing or other known mold core and mold making methods. The 10-shaped blank is then exposed to the catalytic component of the free radical initiator, i.e. gaseous SO2. This gas is only present in catalytic amounts as indicated above. The exposure time of the contact between the sand mixture and the gas can be as little as 1/2 second or less and the binder component cures upon contact with the catalytic agent. Using SO 2 as the catalytic agent in a "cold box" casting process, it is suspended in a stream of carrier gas in known manner. The carrier gas is usually N2. As little as 0.5% SO 2, based on the weight of the carrier gas, is sufficient to effect polymerization. It is also possible to expose the binder component 20 to SO2 without the presence of any carrier gas.

Del I kan også indeholde eventuelle bestanddele. F.eks. kan additiver til befugtning og til at forhindre skumning være nyttige. Silaner har vist sig at være særlig nyttige additiver. Særlig foretrukne er umættede silaner, f. eks. vinylsilaner.Part I may also contain any constituents. For example. additives for wetting and foaming can be useful. Silanes have been found to be particularly useful additives. Particularly preferred are unsaturated silanes, e.g., vinyl silanes.

25 Fordelene ved den bindende komposition som støbebindemiddel er følgende. Smuldreevnen hos det anvendte bindemiddel til støbning af aluminium er fremragende. Det har vist sig, at dette bindemiddel let smuldrer, dvs. rystes ud af støbte aluminiumemner ved påføring af en minimal ydre energi. Bindemidlet giver også gode styrkeegenskaber.The advantages of the binding composition as a molding binder are as follows. The crumbling ability of the binder used for casting aluminum is excellent. It has been found that this binder easily crumbles, ie. shaken out of cast aluminum blanks by applying minimal external energy. The binder also provides good strength properties.

30 "Bench life"-tiden for sand blandet med Del I er lang. Den overfladefinish, der fås hos støbte emner fremstillet under anvendelse af dette bindemiddel og denne fremgangsmåde, har vist sig at være særdeles god. Produktionshastigheden for kerner og forme fremstillet under anvendelse af dette bindemiddelsystem er særdeles hurtig.30 "Bench life" time for sand mixed with Part I is long. The surface finish obtained from molded articles made using this binder and method has proven to be very good. The production rate of cores and molds made using this binder system is extremely fast.

35 I et støberi, hvor den her beskrevne bindemiddelkomposition anvendes, blandes Del I og en komponent af friradikalinitiatoren, fortrinsvis peroxidet, med sand eller andet egnet støbeaggregat på kendt måde. Sandblandingen formes derefter i den ønskede støbeudformning, kerner eller forme, på kendt måde. Sandblandingen eksponeres derefter for den 40 anden komponent i friradikalinitiatoren, fortrinsvis det katalytiske 8 DK 170553 B1 middel, der er svovldioxidgas, og polymerisation af bindemiddelmateri-alet Del I sker straks til dannelse af det her omhandlede bindemiddel.In a foundry where the binder composition described herein is used, Part I and a component of the free radical initiator, preferably the peroxide, are mixed with sand or other suitable molding assembly in a known manner. The sand mixture is then formed into the desired molding, cores or molds, in known manner. The sand mixture is then exposed to the second component of the free radical initiator, preferably the catalytic agent, which is sulfur dioxide gas, and polymerization of the binder material Part I occurs immediately to form the binder herein.

Den foreliggende opfindelse belyses nærmere ved nedenstående eksempler, i hvilke alle delangivelser er vægtdele og alle procent- .The present invention is illustrated in more detail by the following Examples, in which all partial indications are by weight and all percentages.

5 angivelser er vægtprocenter, medmindre andet angives.5 entries are weight percentages unless otherwise stated.

Eksempel 1. ‘Example 1. '

Der udføres gelforsøg med forskellige umættede monomerer og polymerer til bestemmelse af deres tendens til at polymerisere og polymerisationshastigheden. Ved gennemførelsen af forsøgene blandes fra ca. 1,5 10 til 2 g umættet monomer eller polymer (dvs. Del I) med 0,03 g tert.-butylhydroperoxid (peroxidkomponenten i friradikalinitiatoren). Denne blanding eksponeres derefter for svovldioxidgas (det katalytiske middel i friradikalinitiatoren) enten ved at dispergere gassen i væsken (bobling) eller ved at skabe en S02-atmosfære over væsken (kontakt). De 15 nedenfor anførte resultater indicerer, at alle umættede monomerer og polymerer polymeriserer. Således er alle de nedenfor angivne forbindelser potentielle bindemidler. De angivne forbindelser, som viser hurtig polymerisation eller gelering, har den største potentielle værdi som støbebindemiddel til at gøre støbeform- og -kernefremstil-20 lingen hurtig ved højhastighedsfremstilling under anvendelse af en såkaldt "cold box".Gel tests are performed with various unsaturated monomers and polymers to determine their tendency to polymerize and the rate of polymerization. When conducting the experiments, mix from ca. 1.5 to 2 g of unsaturated monomer or polymer (i.e., Part I) with 0.03 g of tert-butyl hydroperoxide (the peroxide component of the free radical initiator). This mixture is then exposed to sulfur dioxide gas (the catalytic agent in the free radical initiator) either by dispersing the gas in the liquid (bubbling) or by creating a SO 2 atmosphere over the liquid (contact). The results listed below indicate that all unsaturated monomers and polymers polymerize. Thus, all of the compounds listed below are potential binders. The disclosed compounds which show rapid polymerization or gelation have the greatest potential value as a molding agent to make the mold and core preparation quick in high speed manufacture using a so-called "cold box".

Del I PolvmerisationsforløbPart I Polymerization course

Acrylsyre Hurtig, ved kontakt med S02Acrylic Acid Fast, on contact with SO2

Ethylacrylat Langsom, ved kontakt med S02 25 n-Butylacrylat Langsom, ved kontakt med S02Ethyl Acrylate Slow, on Contact with SO2 25 n-Butyl Acrylate Slow, on Contact with SO2

Isobutylacrylat Langsom, ved kontakt med S02 2-Ethylhexylacrylat Hurtig, ved kontakt med S02Isobutyl Acrylate Slow, on contact with SO2 2-Ethylhexyl acrylate Fast, on contact with SO2

Isodecylacrylat Hurtig, ved kontakt med S02 2-Ethoxyethylacrylat Hurtig, ved kontakt med S02 30 Ethoxyethoxyethylacrylat Hurtig, ved kontakt med S02Isodecyl Acrylate Fast, on contact with SO2 2-Ethoxyethyl acrylate Fast, on contact with SO2 30 Ethoxyethoxyethyl acrylate Fast, on contact with SO2

Butoxyethylacrylat Hurtig, ved kontakt med S02 *Butoxyethyl acrylate Fast, in contact with SO2 *

Hydroxyethylacrylat Hurtig, ved kontakt med S02Hydroxyethyl acrylate Fast, on contact with SO2

Hydroxypropylacrylat Hurtig, ved kontakt med S02 *Hydroxypropyl acrylate Fast, on contact with SO2 *

Glycidylacrylat Hurtig, ved kontakt med S02 35 Dimethylaminoethylacrylat Hurtig, ved kontakt med S02Glycidyl acrylate Fast, on contact with SO2 35 Dimethylaminoethyl acrylate Quick, on contact with SO2

Cyanoethylacrylat Hurtig, ved kontakt med S02 I.'1'/·;: r 9 DK 170553 B1Cyanoethyl acrylate Fast, in contact with SO2 I.'1 '/ · ;: r 9 DK 170553 B1

Diacetoneacrylamid i methanol, 50% Hurtig, ved kontakt med S02Diacetone acrylamide in methanol, 50% Fast, on contact with SO2

Acrylamid i methanol, 50% Hurtig, ved kontakt med so2 (N-Methylcarbamoyloxy)- 5 ethylacrylat Hurtig, ved kontakt med S02Acrylamide in methanol, 50% Fast, on contact with SO2 (N-Methylcarbamoyloxy) - 5 ethyl acrylate Quick, on contact with SO2

Methylcellosolveacrylat Hurtig, ved kontakt med S02Methylcellosolveacrylate Fast, on contact with SO2

Phenoxyethylacrylat Hurtig, ved kontakt med S02Phenoxyethyl acrylate Fast, on contact with SO2

Benzylacrylat Hurtig, ved kontakt med S02Benzyl acrylate Fast, on contact with SO2

Ethylenglycolacrylat- 10 Phthalat Hurtig, ved kontakt med S02Ethylene glycol acrylate Phthalate Fast, on contact with SO2

Melaminacrylat Hurtig, ved kontakt med S02Melamine Acrylate Fast, on contact with SO2

Diethylenglycoldiacrylat Hurtig, ved kontakt med S02Diethylene glycol diacrylate Fast, on contact with SO2

Hexandioldiacrylat Hurtig, ved kontakt med S02Hexanediol diacrylate Fast, on contact with SO2

Butandioldiacrylat Hurtig, ved kontakt med S02 15 Triethylenglycoldiacrylat Hurtig, ved kontakt med S02Butanediol diacrylate Fast, in contact with SO2 15 Triethylene glycol diacrylate Quick, in contact with SO2

Tetraethylenglycoldiacrylat Hurtig, ved kontakt med S02Tetraethylene glycol diacrylate Fast, on contact with SO2

Neopentylglycoldiacrylat Hurtig, ved kontakt med S02 1,3-Butylenglycoldiacrylat Hurtig, ved kontakt med S02Neopentyl glycol diacrylate Quick, on contact with SO2 1,3-Butylene glycol diacrylate Quick, on contact with SO2

Trimethyloipropantriacrylat Hurtig, ved kontakt med S02 20 Pentaerythritoltriacrylat Hurtig, ved kontakt med S02Trimethyloipropanetriacrylate Fast, on contact with SO2 20 Pentaerythritol triacrylate Fast, on contact with SO2

Methacrylsyre Hurtig, ved kontakt med S02Methacrylic acid Fast, on contact with SO2

Methylmethacrylat Langsom, ved bobling med S02 2-Ethylhexylmethacrylat Langsom, ved bobling med S02Methylmethacrylate Slow, by bubbling with SO2 2-Ethylhexylmethacrylate Slow, by bubbling with SO2

Hydroxypropylmethacrylat Hurtig, ved kontakt med S02 25 Glycidylmethacrylat Hurtig, ved kontakt med S02Hydroxypropylmethacrylate Fast, on contact with SO2 25 Glycidylmethacrylate Fast, on contact with SO2

Dimethylaminoethylmethacrylat Hurtig, ved kontakt med S02Dimethylaminoethyl methacrylate Fast, on contact with SO2

Ethylenglycoldimethacrylat Hurtig, ved kontakt med S02Ethylene glycol dimethacrylate Fast, on contact with SO2

Trimethylolpropantrimethacrylat Hurtig, ved kontakt med S02Trimethylol propane trimethacrylate Fast, on contact with SO2

Acryleret urethan afledt af 30 glycerol 65% i MIAK/HiSOL-10 Hurtig, ved kontakt med S02 N-Methylolacrylamid i vand 60% Hurtig, ved kontakt med S02 N-(Isobutoxymethyl)acrylamid i methanol 50% Hurtig, ved kontakt med S02Acrylated urethane derived from 30 glycerol 65% in MIAK / HiSOL-10 Quick, on contact with SO2 N-Methylolacrylamide in water 60% Quick, on contact with SO2 N- (Isobutoxymethyl) acrylamide in methanol 50% Quick, on contact with SO2

Epocryl R-12 resin (Shell) 35 acryleret epoxy 80% i acetone Langsom, ved kontakt med S02 10 DK 170553 B1 "UVITHANE" 783 (thiokol/chem.- div.) acryleret urethan oligomer Hurtig, ved kontakt med S02 "AROPOL" 7200 (ASHLAND) umættet polyesterharpiks i acetone 60% Langsom, ved kontakt med S02 5 "RICON" 157 (Colorado Specialty ,,Epocrylic R-12 resin (Shell) 35 acrylic epoxy 80% in acetone Slow, on contact with SO2 10 DK 170553 B1 "UVITHANE" 783 (thiocol / chem. Div.) Acrylated urethane oligomer Fast, on contact with SO2 "AROPOL" 7200 (ASHLAND) Saturated Polyester Resin in Acetone 60% Slow, Upon Contact with SO2 5 "RICON" 157 (Colorado Specialty ,,

Chemical) en umættet carbon- hydridharpiks i acetone 50% Langsom, ved kontakt med S02Chemical) an unsaturated hydrocarbon resin in acetone 50% Slow, on contact with SO2

Hydroxy PB G-2000 (Hystl Co.) c en umættet carbonhydridharpiks 10 i acetone 50% Langsom, ved kontakt med S02Hydroxy PB G-2000 (Hystl Co.) c an unsaturated hydrocarbon resin 10 in acetone 50% Slow, on contact with SO2

Eksempel 2.Example 2.

En umættet polymer fremstilles ved at omsætte ækvivalenten af 1 mol pentandiol og ækvivalenten af 4 mol hydroxyethylacrylat med ækvivalenten af 3,0 mol toluendiisocyanat. Dibutyltindilaurat anvendes til at 15 katalysere omsætningen. Baseret på det faste stofindhold anvendes 0,14% katalysator. Hydroquinonmonoethylether anvendes som inhibitor. Omsætningen udføres i et reaktionsmiddel (opløsningsmiddel) bestående af ethylhexylacrylat og hydroxyethylacrylat. Ved udførelsen af omsætningen sættes en blanding af TDI og opløsningsmiddel til reaktions-20 beholderen. Pentandiol sættes til denne blanding efterfulgt af tilsætningen af hydroxyethylacrylat. Når tilsætningen af hydroxyethylacrylat er fuldendt, tilsættes katalysatoren. Omsætningen udføres under luftindblæsning. Reaktionen forløber ved 40 - 45°C i 2,1 time, og derefter hæves temperaturen til 80-85°C, og omsætningen fortsættes 25 i 4,3 timer, derefter tilsættes 0,03% inhibitor, og omsætningen fortsættes i 1/2 time. Produktet lades afkøle. Produktet testes for ikke-flygtige bestanddele, og 59,2% findes. Dette svarer til en teoretisk mængde ikke-flygtige bestanddele på 60%. Produktets viskositet er 6,0 St. 20 g umættet polymer blandes derefter med 1,6 g acrylsyre, 10,7 g 30 diethylenglycoldiacrylat, 9,9 g trimethylolpropantrimethacrylat og 2,0 g vinylsilan. Acrylsyre, diethylenglycoldiacrylat og trimethylol-propantriacrylat er umættede monomerer. Denne opløsning af umættet polymer og umættede monomerer benævnes Del I. 1 g tert.butylhydroper-oxid, peroxidkomponenten i friradikalinitiatoren, sættes til opløsnin-35 gen af den umættede polymer og de umættede monomerer.An unsaturated polymer is prepared by reacting the equivalent of 1 mole of pentanediol and the equivalent of 4 moles of hydroxyethyl acrylate with the equivalent of 3.0 moles of toluene diisocyanate. Dibutyltin dilaurate is used to catalyze the reaction. Based on the solids content, 0.14% catalyst is used. Hydroquinone monoethyl ether is used as an inhibitor. The reaction is carried out in a reaction agent (solvent) consisting of ethyl hexyl acrylate and hydroxyethyl acrylate. In carrying out the reaction, a mixture of TDI and solvent is added to the reaction vessel. Pentanediol is added to this mixture followed by the addition of hydroxyethyl acrylate. When the addition of hydroxyethyl acrylate is complete, the catalyst is added. The reaction is carried out under air supply. The reaction proceeds at 40 - 45 ° C for 2.1 hours, then raises the temperature to 80-85 ° C and the reaction is continued for 25 hours in 4.3 hours, then 0.03% inhibitor is added and the reaction is continued for 1/2 hour. The product is allowed to cool. The product is tested for non-volatile components and 59.2% is found. This corresponds to a theoretical amount of non-volatile constituents of 60%. The viscosity of the product is 6.0 St. 20 g of unsaturated polymer is then mixed with 1.6 g of acrylic acid, 10.7 g of diethylene glycol diacrylate, 9.9 g of trimethylolpropane trimethacrylate and 2.0 g of vinylsilane. Acrylic acid, diethylene glycol diacrylate and trimethylol propane triacrylate are unsaturated monomers. This solution of unsaturated polymer and unsaturated monomers is referred to as Part I. 1 g of tert.butyl hydroperoxide, the peroxide component of the free radical initiator, is added to the solution of the unsaturated polymer and the unsaturated monomers.

Wedron 5010-sand (vasket og tørret finkornet siliciumdioxidsand, » AFSGFN 66) anbringes i et egnet blandeapparat. Del I og peroxidkomponenten i friradikalinitiatoren blandes med sandet, indtil der opnås en ensartet fordeling. Niveauet for del I plus peroxid er 2%, beregnet på ^ 40 sandvægten.Wedron 5010 sand (washed and dried fine-grained silica sand, »AFSGFN 66) is placed in a suitable mixer. Part I and the peroxide component of the free radical initiator are mixed with the sand until a uniform distribution is obtained. The level of Part I plus peroxide is 2%, calculated on the ^ 40 sand weight.

Sandblandingen blæses ind i en konventionel kernehulhed eller -boks til fremstilling af standardtrækstyrkeprøver, der er kendt som "kød- 11 DK 170553 B1 ben". Kødben-testkemerne hærdes ved at eksponere kernerne for den katalytiske komponent i friradikalinitiatoren. Den katalytiske komponent er gasformig svovldioxid. Kernerne eksponeres for S02-katalysa-toren i ca. 1/2 sekund (gasningstid), og katalysatoren fjernes ved at 5 gennemblæse med nitrogen i 15 sekunder, og kernen fjernes fra boksen. Kernernes trækstyrker er i MPa 1,54 uden for boksen og 1,41 efter 3 timer og 1,57 efter 24 timer.The sand mixture is blown into a conventional core cavity or box to produce standard tensile strength tests known as "meat bone". The meat bone test nuclei are cured by exposing the nuclei to the catalytic component of the free radical initiator. The catalytic component is gaseous sulfur dioxide. The nuclei are exposed to the SO2 catalyst for approx. 1/2 second (gassing time) and the catalyst is removed by blowing with nitrogen for 15 seconds and the core removed from the box. The tensile strengths of the cores are in MPa 1.54 outside the box and 1.41 after 3 hours and 1.57 after 24 hours.

Kødben-kerner i lighed med de ovenfor beskrevne anvendes til udryst-ningsforsøg med støbte aluminiumsemner. Syv trækstyrkeprøver (kødben) 10 anbringes i en form. Formen tilsluttes et indløbssystem. Formen er fremstillet, så at der fås hule støbte emner med en metaltykkelse på ca. 5,4 mm på alle sider. En åben ende af det støbte emne er beregnet til fjernelse af kernen fra støbeemnet. Smeltet aluminium ved ca.Meatbone cores, similar to those described above, are used for shredding experiments with cast aluminum blanks. Seven tensile strength tests (meat bone) 10 are placed in a mold. The mold is connected to an inlet system. The mold is made so that hollow molded blanks with a metal thickness of approx. 5.4 mm on all sides. An open end of the molded blank is intended to remove the core from the mold. Melted aluminum at approx.

700°C fremstillet ud fra aluminiumråemner hældes i formen. Efter 15 afkøling i ca. 1 time fjernes de støbte aluminiumemner fra indløbssystemet og tages ud af formen til udrystningsforsøg.700 ° C made from aluminum blanks is poured into the mold. After 15 cooling for approx. For 1 hour, the cast aluminum blanks are removed from the inlet system and taken out of the mold for shaking experiments.

Udrystningsforsøg udføres ved at anbringe et støbt emne i en beholder med et rumfang på ca. 3,8 liter (1 gallon). Beholderen anbringes på en rystemekanisme og rystes i 5 minutter. Vægten af sandkernen, som fjer-20 nes fra det støbte emne på denne måde, sammenlignes med sandkernens begyndelsesvægt, og en procentvis udrystning beregnes. Sand, der forbliver i det støbte emne efter rystningen beskrevet ovenfor, fjernes ved skrabning og vejes også. Sandkernen bundet med det ovenfor beskrevne bindemiddel konstateres at have en udrystning på 100%. Det 25 skal bemærkes, at den ovenfor beskrevne udrystningstest ikke er nogen standardtest. Der er så vidt vides ingen standardtest til måling af denne kvalitet. Det formodes, at den anvendte test giver en pålidelig opfattelse af et bindemiddels smuldreevne og kan anvendes til sammenligning af bindemidlers relative smuldreevne.Shaking tests are performed by placing a molded blank in a container with a volume of approx. 3.8 liters (1 gallon). The container is placed on a shaking mechanism and shaken for 5 minutes. The weight of the sand core, which is removed from the molded article in this way, is compared to the initial weight of the sand core and a percentage shaking is calculated. Sand that remains in the cast after the shaking described above is removed by scraping and also weighed. The sand core bonded with the binder described above is found to have a shaking of 100%. It should be noted that the shaking test described above is not a standard test. So far, no standard test is known to measure this quality. It is believed that the test used provides a reliable view of the crumb performance of a binder and can be used to compare the relative crumb performance of the binder.

30 De angivne procentdele er behæftet med en vis usikkerhed, men er pålidelige indikatorer.30 The percentages stated are subject to some uncertainty but are reliable indicators.

12 DK 170553 B112 DK 170553 B1

Eksempel 3.Example 3

Sand Wedron 5010 ved 23-26°C Del ISand Wedron 5010 at 23-26 ° C Part I

a) umættet monomer acrylsyre 1,6 g, diethylenglycoldi- 5 acrylat 10,7 g, trimethylolpropantri- methacrylat 9,9 g b) umættet polymer syntetiseret som beskrevet nedenfor, * 20 g umættet polymer syntese 10 i) polyisocyanat i molækvivalenter TDI 4 ii) polyol, i molækvivalenter glycerol - 1 iii) acrylat, i molækviva- 15 lenter hydroxyethylacrylat, 5 iv) katalysator dibutyltindilaurat 0,14% v) inhibitor hydroquinonmonomethylether vii) opløsningsmiddel i % ethylhexylacrylat og hydroxyethyla crylat, 40% 20 viii) temperatur/tid °C/time 40°-45° i 2,13 timer derefter 80°-85° i 4,8 timer ix) viskositet, St 16,0 x) % ikke-flygtigt materiale, faktisk 63,9 25 teoretisk 60,0 c) additiv i g vinylsilan - 2,0a) unsaturated monomeric acrylic acid 1.6 g, diethylene glycol diacrylate 10.7 g, trimethylol propane trimethacrylate 9.9 gb) unsaturated polymer synthesized as described below, * 20 g unsaturated polymer synthesis 10 i) polyisocyanate in molar equivalents TDI 4 ii) polyol, in molar equivalents glycerol - 1 iii) acrylate, in molar equivalents hydroxyethyl acrylate, 5 iv) catalyst dibutyltin dilaurate 0.14% C / hr 40 ° -45 ° for 2.13 hours then 80 ° -85 ° for 4.8 hours ix) viscosity, St 16.0 x)% non-volatile material, actually 63.9 25 theoretical 60.0 c additive in vinyl silane - 2.0

Friradikalinitiator (Del II) a) peroxidkomponent 2,2% tert.butylhydroperoxid b) katalytisk komponent S02-gas 30 Gasningstid, s 0,5Free radical initiator (Part II) a) peroxide component 2.2% tert.butyl hydroperoxide b) catalytic component SO2 gas

Gennemblæsningstid, s 15 med N2Penetration time, s 15 with N2

Trækstvrke i MPa ved udtagelse af boks 1,23 3 timer 1,50 35 24 timer 1,61 *Tensile strength in MPa when removing box 1.23 3 hours 1.50 35 24 hours 1.61 *

Bindemiddelniveau (del I + peroxid- komponent) 2% støbemetal aluminium udrystning, % 100 DK 170553 B1 13Binder level (part I + peroxide component) 2% cast metal aluminum shaking,% 100 DK 170553 B1 13

Eksempel 4 5Example 4 5

Sand Wedron 5010 Wedron 5010Sand Wedron 5010 Wedron 5010

Del IPart I

a) umættet monomer acrylsyre 1,6 g, hydroxyethylacrylat 5 diethylenglycoldi- 2,2 g, dicyclopente- acrylat 10,7 g, nylacrylat 20,8 g, trimethylolpropan- (N-methylcarbamoy- triacrylat 9,9 g loxy)ethylacrylat 17,3 g 10 b) umættet polymer syntetiseret som beskrevet nedenfor, 20 g umættet polymer syntese 15 i) polyisocyanat, i molækvivalenter TDI, 3 ii) polyol, i mol- ækvivalenter Olin 20-265a\ 1 a) polyoxypropylenglycol 20 iii) acrylat, i molækvivalenter hydroxyethylacrylat, 4 iv) katalysator dibutyltindilaurat, 0,14% v) inhibitor hydroquinonmonomethylether vii) opløsningsmiddel ethylhexylacrylat og hydroxyethyl- 25 i % acrylat, 40% viii) temperatur/tid 40° - 45° i 2,1 og °C/time 80° - 85° i 4,75 ix) viskositet 4,2 x) % ikke flygtigt 30 materiale, faktisk 59,2 teoretisk 60,0 c) additiv i g vinylsilan 2,0 ga) unsaturated monomeric acrylic acid 1.6 g, hydroxyethyl acrylate diethylene glycol di 2.2 g, dicyclopentene acrylate 10.7 g, nyl acrylate 20.8 g, trimethylolpropane (N-methylcarbamoyl triacrylate 9.9 g loxy) ethyl acrylate 17, 3 g 10 b) unsaturated polymer synthesized as described below, 20 g unsaturated polymer synthesis 15 i) polyisocyanate, in molar equivalents TDI, 3 ii) polyol, in molar equivalents Olin 20-265a \ 1 a) polyoxypropylene glycol 20 iii) acrylate, i molar equivalents of hydroxyethyl acrylate, 4 iv) catalyst dibutyltin dilaurate, 0.14% v) hydroquinone monomethyl ether inhibitor vii) solvent ethylhexyl acrylate and hydroxyethyl 25% acrylate, 40% viii) temperature / time 40 ° - 45 ° for 2.1 and ° C / hour 80 ° - 85 ° in 4.75 ix) Viscosity 4.2 x)% non volatile material, in fact 59.2 theoretical 60.0 c) Additive vinylsilane 2.0 g

Friradikalinitiator (Del II) a) peroxidkomponent 11,3% cumenhydro- 2,4% tert.butylhydro- 35 peroxid peroxid b) katalytisk komponent S02-gas S02-gasFree radical initiator (Part II) a) peroxide component 11.3% cumene hydro- 2.4% tert.butyl hydroperoxide peroxide b) catalytic component SO2 gas SO2 gas

Gasningstid, s 0,5 1Gassing time, s 0.5 1

Gennemblæsningstid s 15 med n2 15 med N2Penetration time s 15 with n2 15 with N2

Trækstyrke i MPa 40 ved udtagelse af boks 1,10 3 timer 0,17 24 timer 48 timer 1,60 14 DK 170553 B1Tensile strength in MPa 40 when removing box 1.10 3 hours 0.17 24 hours 48 hours 1.60 14 DK 170553 B1

Bindemiddelniveau (del I + peroxidkomponent) 2% 2% støbemetal aluminium udrystning % 100 5 Eksempel 67 *Binder level (part I + peroxide component) 2% 2% cast metal aluminum shaking% 100 5 Example 67 *

Sand Wedron 5010 Wedron 5010Sand Wedron 5010 Wedron 5010

Del I t a) umættet monomer pentaerythritol- acrylsyre 7,2 g, di- triacrylat 40 g ethylenglycoldiacry-10 lat 21,4 g, trimethylol- propantriacrylat 13 g b) umættet polymer syntese i) polyisocyanat, i 15 molækvivalenter ii) polyol, i molækvivalenter iii) acrylat, i molækvivalenter 20 iv) katalysator v) inhibitor vii) opløsningsmiddel i % viii) temperatur/time °C/timer ix) viskositet 25 x) % ikke flygtigt materiale, faktisk teoretisk c) additiv i g Friradikalinitiator (Del II) 30 a) peroxidkomponent 2,4% tert. butylhy- 2,4% tert.Part I ta saturated monomeric pentaerythritol acrylic acid 7.2 g, triacrylate 40 g ethylene glycol diacrylate 21.4 g, trimethylol propane triacrylate 13 gb) unsaturated polymer synthesis i) polyisocyanate, in 15 molar equivalents ii) polyol, in molar equivalents iii) acrylate, in molar equivalents 20 iv) catalyst v) inhibitor vii) solvent in% viii) temperature / hour ° C / hour ix) viscosity 25 x)% non volatile material, in fact theoretical c) additive ig Free radical initiator (Part II) 30 a) Peroxide component 2.4% tert. butyl hy- 2.4% tert.

droperoxid butylhydro- peroxid b) katalytisk komponent S02-gas S02-gasdropper oxide butyl hydroperoxide b) catalytic component SO2 gas SO2 gas

Gasningstid, s 0,5 1 35 Gennemblæsningstid, s 15 10Gassing time, p 0.5 1 35 Purging time, p 15 10

Trækstvrke. MPa ved udtagelsen af boks 0,33 0,90 3 timer ^ 24 timer 15 DK 170553 B1Trækstvrke. MPa at the take out of box 0.33 0.90 3 hours ^ 24 hours 15 DK 170553 B1

Bindemiddelniveau (Del 1 + peroxidkomponent) 2% 2% støbemetal udrystning % 5 Eksempel 8 9Binder level (Part 1 + peroxide component) 2% 2% cast metal shaking% 5 Example 8 9

Sand Wedron 5010 Port CrescentSand Wedron 5010 Port Crescent

Del IPart I

a) umættet monomer acrylsyre 3,2 g diethy- lenglycoldiacrylat 21,4 10 g, trimethylolpropan- trimethacrylat 19,8 g b) umættet polymer syntetiseret som samme som i eksempel 4 beskrevet nedenfor 40 g 40 g 15 i) polyisocyanat i molækvivalenter TDI, 3 ii) polyol, i mol- ækvivalenter Olin 20-265, 1 iii) acrylat, i mol- hydroxyethylacry- 20 ækvivalenter lat, 4 iv) katalysator dibutyltindilaurat, 0,14% v) inhibitor hydroquinonmono- methylether 0,07% 25 vii) opløsningsmiddel pentoxon (93,7) i % hydroxyethylacry- lat 35% viii) temperatur/tid 40° - 45° i 2 timer °C/timer derefter 20°C - 85°C i 4 30 ix) viskositet thixotropisk efter 3 dage x) % ikke flygtigt materiale, faktisk 63,1 teoretisk 65 35 c) additiv i g vinylsilan vinylsilan A-172 2,0 g acrylsyre 1,6 ga) unsaturated monomer acrylic acid 3.2 g diethylene glycol diacrylate 21.4 10 g, trimethylol propane trimethacrylate 19.8 gb) unsaturated polymer synthesized as the same as in Example 4 described below 40 g 40 g 15 i) polyisocyanate in molar equivalents TDI, 3 ii) polyol, in molar equivalents Olin 20-265, 1 iii) acrylate, in molar hydroxyethyl acryl 20 lat, 4 iv) catalyst dibutyltin dilaurate, 0.14% v) inhibitor hydroquinone monomethyl ether 0.07% 25 vii) solvent pentoxone (93.7) in% hydroxyethyl acrylate 35% viii) temperature / time 40 ° - 45 ° for 2 hours ° C / hours thereafter 20 ° C - 85 ° C for 4 30 ix) thixotropic viscosity after 3 days x )% non-volatile material, in fact 63.1 theoretical 65 35 c) additive vinylsilane vinylsilane A-172 2.0g acrylic acid 1.6g

Friradikalinitiator (Del II) a) peroxidkomponent (90%)tert.butyl- tert.butylperacetat 40 hydroperoxid (6 g) 2,2% b) katalytisk komponent S02-gas varme 450° i 90 s.Free radical initiator (Part II) a) Peroxide component (90%) tert.butyl tert.butyl peracetate 40 hydroperoxide (6 g) 2.2% b) Catalytic component SO2 gas heat 450 ° for 90 s.

Gasningstid, s 0,5Gassing time, s 0.5

Gennemblæsningstid, s 15 med N2 16 DK 170553 B1Purging time, page 15 with N2 16 DK 170553 B1

Trækstvrke, MPa ved udtagelsen af boks 0,37 0,52 3 timer 0,37 24 timer 0,64 5 koldstyrke 1,07 1,10Tensile strength, MPa when removing box 0.37 0.52 3 hours 0.37 24 hours 0.64 5 cold strength 1.07 1.10

Bindemiddelniveau (Del I + ^ peroxidkomponent) 2% 2% støbemetal udrystning % * 10 Eksempel 10 11Binder Level (Part I + Peroxide Component) 2% 2% Cast Metal Shaking% * 10 Example 10 11

Sand Wedron 5010 Wedron 5010Sand Wedron 5010 Wedron 5010

Del I samme som i eksempel 10 a) umættet monomer acrylsyre 1,6 g, 15 trimethylolpropan- triacrylat 9,9 g b) umættet polymer syntetiseret som beskrevet nedenfor, 20 g 20 umættet polymer syntese i) polyisocyanat molækvivalenter TDI, 3,5 ii) polyol, i mol- glycerol diethylen- 25 ækvivalenter glycolblanding (1:1), 1 iii) acrylat, i mol- hydroxyethylacry- ækvivalenter lat 4,5 iv) katalysator dibutyltindilaurat 30 0,14% v) inhibitor hydroquinonmono- methylether 0,07% vii) opløsningsmiddel ethylhexylacrylat i % + hydroxyethylacry- 35 lat (4: 6) 40% viii) temperatur/tid 40° - 45° i 2 timer °C/timer derefter 80 - 85 i 4,8 timer ix) viskositet 10 St 40 x) % ikke flygtigt ~ materiale, faktisk 59,9 teoretisk 60,0 c) additiv i g vinylsilan A-172, 2"HiSol"®) 10 45 10,7Part I, same as in Example 10 a) unsaturated monomer acrylic acid 1.6 g, trimethylol propane triacrylate 9.9 gb) unsaturated polymer synthesized as described below, 20 g 20 unsaturated polymer synthesis i) polyisocyanate molar equivalents TDI, 3.5 ii) polyol, in molar glycerol diethylene equivalents glycol mixture (1: 1), 1 iii) acrylate, in molar hydroxyethylacry equivalents lat 4.5 iv) catalyst dibutyltin dilaurate 30 0.14% v) inhibitor hydroquinone monomethyl ether 0.07 % vii) solvent ethylhexyl acrylate in% + hydroxyethyl acrylate (4: 6) 40% viii) temperature / time 40 ° - 45 ° for 2 hours ° C / hours thereafter 80 - 85 for 4.8 hours ix) viscosity 10 St 40 x)% non-volatile material, actually 59.9 theoretical 60.0 c) Additive vinylsilane A-172, 2 "HiSol" ®) 10 45 10.7

Friradikalinitiator (Del II) 17 DK 170553 B1 a) peroxidkomponent 70% tert. butylhydro- peroxid 2,2% b) katalytisk komponent S02-gas 1/2 S02-gas i N2 5 bæregasFree Radical Initiator (Part II) 17 a 170% tart peroxide component. butyl hydroperoxide 2.2% b) catalytic component SO2 gas 1/2 SO2 gas in N2 carrier gas

Gasningstid, s 0,5 1/2Gassing time, s 0.5 1/2

Gennemblæsningstid, s 15 med N2-gas ingenPenetration time, s 15 with N2 gas none

Trækstyrke. MPa ved udtagelse af boks 1,57 0,48 10 3 timer 1,57 0,84 24 timer 1,77 1,54Tensile strength. MPa when taking box 1.57 0.48 10 3 hours 1.57 0.84 24 hours 1.77 1.54

Bindemiddelniveau (Del I + peroxidkomponent 2% 1,5 støbemetal aluminium 15 udrystning % 100Binder level (Part I + peroxide component 2% 1.5 cast metal aluminum 15 shaking% 100

Eksempel 12Example 12

Sand Wedron 5010Sand Wedron 5010

Del IPart I

a) umættet monomer acrylsyre 1,6 g, diethylenglycol 5,49, 2 0 trimethylolpropantriacrylat 9,9 b) umættet polymer syntetiseret som beskrevet nedenfor, 20 g umættet polymer syntese 25 i) polyisocyanat molækvivalenter 4 ii) polyol, i mol- ækvivalenter glycerol 1 iii) acrylat, i mol- 30 ækvivalenter hydroxyethylacrylat iv) katalysator dibutyltindilaurat 0,14 v) inhibitor hydroquinonmonomethylether 0,03 vii) opløsningsmiddel methylisoamylketon, "HiSol"® 10 i % (65:35) 35% - 35 viii) temperatur/tid 40° - 45° i 1,75 timer derefter °C/timer 80° - 85° i 4,5 timer ix) viskositet, St 10 x) % ikke flygtigt materiale, faktisk 64,1 40 teoretisk 65 c) additiv i g vinylsilan 2,0 "HiSol"® 10 5,3a) unsaturated monomer acrylic acid 1.6 g, diethylene glycol 5.49, 20 trimethylol propane triacrylate 9.9 b) unsaturated polymer synthesized as described below, 20 g unsaturated polymer synthesis 25 i) polyisocyanate molar equivalents 4 ii) polyol, in molar equivalents glycerol Iii) acrylate, in molar equivalents of hydroxyethyl acrylate iv) catalyst dibutyltin dilaurate 0.14 v) inhibitor hydroquinone monomethyl ether 0.03 vii) solvent methylisoamyl ketone, "HiSol" ® 10% (65:35) 35% - 35 viii) temperature time 40 ° - 45 ° for 1.75 hours then ° C / hour 80 ° - 85 ° for 4.5 hours ix) viscosity, St 10 x)% non volatile material, in fact 64.1 40 theoretical 65 c) additive ig vinylsilane 2.0 "HiSol" ® 5.3

Friradikalinitiator (Del II) 18 DK 170553 B1 a) peroxidkomponent 2,2% tert. butylhydroperoxid - 70 b) katalytisk komponent 1% S02-gas i N2-bæregasFree radical initiator (Part II) 18 a) Peroxide component 2.2% tert. butyl hydroperoxide - 70 b) catalytic component 1% SO2 gas in N2 carrier gas

Gasningstid, s 20 ^ 5 Gennemblæsningstid, s ingenGassing time, s 20 ^ 5 Penetration time, s none

Træks tvrke. MPa $ ved udtagelsen af boks 1,50 3 timer 1,08 24 timer 1,61 10 Bindemiddelniveau (Del I + peroxidkomponent) 1,5 støbemetal aluminium udrystning % 100The drag of the drag. MPa $ at box take 1.50 3 hours 1.08 24 hours 1.61 10 Binder level (Part I + peroxide component) 1.5 cast metal aluminum shaking% 100

Eksempel 13 15 Sand Wedron 5010Example 13 15 Sand Wedron 5010

Del IPart I

a) umættet monomer acrylsyre 1,6 g, diethylenglycol 5,49, trimethylolpropantriacrylat 9,9 b) umættet polymer syntetiseret som beskrevet nedenfor, 20 20 g umættet polymer syntese i) polyisocyanat molækvivalenter 4 25 ii) polyol, i mol- ækvivalenter glycerol-1 iii) acrylat, i mol- ækvivalenter hydroxyethylacrylat iv) katalysator dibutyltindilaurat 0,14 30 v) inhibitor hydroquinonmonomethylether 0,03 vii) opløsningsmiddel methylisoamylketon, "HiSol" 10 i % (65:35) 35% viii) temperatur/tid 40° - 45°C i 1,75 timer derefter °C/timer 80° - 85°C i 4,5 timer 35 ix) viskositet, St 10 x) % ikke flygtigt materiale, faktisk 64,1 i teoretisk 65 c) additiv i g vinylsilan 2,0 "HiSol"® 10 5,3a) unsaturated monomer acrylic acid 1.6 g, diethylene glycol 5.49, trimethylol propane triacrylate 9.9 b) unsaturated polymer synthesized as described below, 20 g unsaturated polymer synthesis i) polyisocyanate molar equivalents 4 ii) polyol, in molar equivalents glycerol Iii) Acrylate, in molar equivalents of hydroxyethyl acrylate iv) Catalyst dibutyltin dilaurate 0.14 v - 45 ° C for 1.75 hours thereafter ° C / Hours 80 ° - 85 ° C for 4.5 hours 35 ix) Viscosity, St 10 x)% non volatile material, actually 64.1 in theory 65 c) Additive ig vinylsilane 2.0 "HiSol" ® 5.3

Friradikalinitiator (Del II) 19 DK 170553 B1 a) peroxidkomponent 2,2% tert. butylhydroperoxid - 70 b) katalytisk komponent S02-gasFree radical initiator (Part II) 19 a) Peroxide component 2.2% tert. butyl hydroperoxide - 70 b) catalytic component SO2 gas

Gasningstid, s 0,5 5 Gennemblæsningstid, s 15 med luftGassing time, s 0.5 5 Blowing time, s 15 with air

Trækstyrke, MPa ved udtagelsen af boks 1,22 3 timer 0,66 24 timer 1,03 10 Bindemiddelniveau (Del I + peroxidkomponent) 1,5 støbemetal aluminium udrystning % 100 Særlig foretrukne udførelsesformer for de i patentkravene definerede 15 fremgangsmåder kan sammenfattes som følger:Tensile strength, MPa when taking box 1.22 3 hours 0.66 24 hours 1.03 10 Binder level (Part I + peroxide component) 1.5 cast metal aluminum shaking% 100 Particularly preferred embodiments of the 15 processes defined in the claims can be summarized as follows :

Ved fremgangsmåden til formning af støbeemner er aggregatmaterialet fortrinsvis sand. Ved samme fremgangsmåde er det katalytiske middel gasformigt svovldioxid. Det katalytiske middel suspenderes hensigtsmæssigt i en bæregas, og eksponeres for bindemiddelmaterialet i mindst 20 0,5 sekunder. Det katalytiske middel kan endvidere have en forhøjet temperatur på mindst ca. 50°C.In the mold forming process, the aggregate material is preferably sand. By the same process, the catalytic agent is gaseous sulfur dioxide. The catalytic agent is conveniently suspended in a carrier gas and exposed to the binder material for at least 20 0.5 seconds. Furthermore, the catalytic agent may have an elevated temperature of at least approx. 50 ° C.

Ved fremgangsmåden ifølge krav 1 gælder det, at bindemiddelmaterialet kan omfatte en blanding, hvori monomeren er blandet med i det mindste en anden ethylenisk umættet monomer. Endvidere kan bindemiddelmateria-25 let omfatte i det mindste en ethylenisk umættet polymer foruden monomeren. Omvendt gælder det, at ved fremgangsmåden ifølge krav 3 kan den ethylenisk umættede polymer i bindemiddeLkompositionen være blandet med mindst en ethylenisk umættet monomer eller mindst en anden ethylenisk umættet polymer. Den umættede polymer kan f.eks. være en oligomer 30 eller et addukt.In the process of claim 1, the binder material may comprise a mixture in which the monomer is mixed with at least one other ethylenically unsaturated monomer. Furthermore, the binder material may comprise at least one ethylenically unsaturated polymer in addition to the monomer. Conversely, in the process of claim 3, the ethylenically unsaturated polymer in the binder composition may be blended with at least one ethylenically unsaturated monomer or at least one other ethylenically unsaturated polymer. The unsaturated polymer can e.g. be an oligomer 30 or an adduct.

Ved fremgangsmåden til sammenbinding af mindst to materialer gælder det, at det katalytiske middel fortrinsvis er af kemisk natur, f.eks. gasformig svovldioxid, eller forhøjet temperatur på i det mindste ca. 50°C. Det katalytiske middel suspenderes hensigtsmæssigt i en bæregas, 35 og eksponeres for bindemiddelmaterialet i mindst 1/2 sekund.In the process of bonding at least two materials, the catalytic agent is preferably of a chemical nature, e.g. gaseous sulfur dioxide, or elevated temperature of at least approx. 50 ° C. The catalytic agent is conveniently suspended in a carrier gas, and exposed to the binder material for at least 1/2 second.

Ved fremgangsmåden ifølge krav 5 gælder det, at monomeren i bindemiddelmaterialet fortrinsvis er blandet med mindst en anden ethylenisk umættet monomer eller mindst en ethylenisk umættet polymer.In the process of claim 5, the monomer in the binder material is preferably mixed with at least one other ethylenically unsaturated monomer or at least one ethylenically unsaturated polymer.

Claims (11)

1. Fremgangsmåde til dannelse af støbeemner og støbeforme omfattende a) fordeling på et støbeaggregatmateriale af en bindende mængde af et bindemiddelmateriale, hvilket bindemiddelmateriale omfatter en ethylenisk umættet monomer og/eller polymer, 15 b) formning af aggregatmaterialet til det ønskede støbeemne, og c) polymerisering af bindemiddelmaterialet ved hjælp af en friradikal-initiator, hvilken initiator omfatter et organisk peroxid og et katalytisk middel, kendetegnet ved, at det katalytiske middel er gasformigt 20 svovldioxid.A process for forming molds and molds comprising a) distributing on a molding aggregate material a binding amount of a binder material, said binder material comprising an ethylenically unsaturated monomer and / or polymer, b) forming the aggregate material for the desired molding, and c) polymerization of the binder material by a free radical initiator, which initiator comprises an organic peroxide and a catalytic agent, characterized in that the catalytic agent is gaseous sulfur dioxide. 2. Fremgangsmåde ifølge krav 1, kendetegnet ved, at bindemiddelmaterialet omfatter en ethylenisk umættet acrylmonomer og/eller acrylpolymer.Process according to claim 1, characterized in that the binder material comprises an ethylenically unsaturated acrylic monomer and / or acrylic polymer. 3. Fremgangsmåde ifølge krav 1 eller 2, 25 kendetegnet ved, at bindemiddelmaterialet omfatter en acrylpolymer valgt fra gruppen bestående af pentaerytritoltriacrylat, trimethylolpropantriacrylat, 1,6-hexandioldiacrylat og tetraethylen-glycoldiacrylat.Process according to claim 1 or 2, characterized in that the binder material comprises an acrylic polymer selected from the group consisting of pentaerythritol triacrylate, trimethylolpropane triacrylate, 1,6-hexanediol diacrylate and tetraethylene glycol diacrylate. 4. Fremgangsmåde ifølge et hvilket som helst af kravene 1-3, 30 kendetegnet ved, at bindemiddelmaterialet omfatter en mono-merblanding af mindst én anden ethylenisk umættet monomer. DK 170553 B1Process according to any one of claims 1-3, 30, characterized in that the binder material comprises a monomer mixture of at least one other ethylenically unsaturated monomer. DK 170553 B1 5. Fremgangsmåde ifølge et hvilket som helst af kravene 1-3, kendetegnet ved, at bindemiddelmaterialet omfatter en polymerblanding af mindst én anden ethylenisk umættet polymer.Process according to any one of claims 1-3, characterized in that the binder material comprises a polymer blend of at least one other ethylenically unsaturated polymer. 5 Ved fremgangsmåden gælder det, at den umættede polymer f. eks. kan være en oligomer eller et addukt. Ved fremgangsmåden til støbning af letmetalemner gælder det, at de ovenfor angivne foretrukne udførelsesformer også gælder her, dvs. ved formningen af støbeemnet.In the process, for example, the unsaturated polymer may be an oligomer or an adduct. In the process of casting light metal items, the preferred embodiments given above also apply here, ie. in forming the molding. 6. Fremgangsmåde ifølge et hvilket som helst af kravene 1-5, 5 kendetegnet ved, at bindemiddelmaterialet omfatter en blanding af mindst én anden ethylenisk umættet monomer og mindst én anden ethylenisk umættet polymer.Process according to any one of claims 1-5, characterized in that the binder material comprises a mixture of at least one other ethylenically unsaturated monomer and at least one other ethylenically unsaturated polymer. 7. Fremgangsmåde ifølge et hvilket som helst af kravene 1-6, kendetegnet ved, at den umættede polymer er en oligomer.Process according to any one of claims 1-6, characterized in that the unsaturated polymer is an oligomer. 8. Fremgangsmåde ifølge et hvilket som helst af kravene 1-7, kendetegnet ved, at den umættede polymer er et addukt.Process according to any one of claims 1-7, characterized in that the unsaturated polymer is an adduct. 9. Fremgangsmåde ifølge et hvilket som helst af kravene 1-8, kendetegnet ved, at det katalytiske middel suspenderes i en bæregas og eksponeres for bindemiddelmaterialet i mindst 0,5 sekund.Process according to any one of claims 1-8, characterized in that the catalytic agent is suspended in a carrier gas and exposed to the binder material for at least 0.5 second. 10. Fremgangsmåde ifølge et hvilket som helst af kravene 1-9, kendetegnet ved, at aggregatmaterialet er sand.Process according to any of claims 1-9, characterized in that the aggregate material is true. 10 PATENTKRAV10 PATENT REQUIREMENTS 11. Anvendelse af støbeemner og støbeforme dannet ved en fremgangsmåde ifølge et hvilket som helst af kravene 1-10 til støbning af letmetal-emner.Use of moldings and molds formed by a method according to any one of claims 1-10 for casting light metal blanks.
DK004181A 1980-01-07 1981-01-06 Process for making casting cores and molds and using them for making light metal work DK170553B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11002580A 1980-01-07 1980-01-07
US11002580 1980-01-07

Publications (2)

Publication Number Publication Date
DK4181A DK4181A (en) 1981-07-08
DK170553B1 true DK170553B1 (en) 1995-10-23

Family

ID=22330849

Family Applications (1)

Application Number Title Priority Date Filing Date
DK004181A DK170553B1 (en) 1980-01-07 1981-01-06 Process for making casting cores and molds and using them for making light metal work

Country Status (25)

Country Link
JP (2) JPS5835780B2 (en)
KR (1) KR840000672B1 (en)
AR (1) AR227904A1 (en)
AT (1) AT397359B (en)
AU (1) AU526004B2 (en)
BE (1) BE886988A (en)
BR (1) BR8100066A (en)
CA (1) CA1168831A (en)
CH (1) CH660019A5 (en)
DE (1) DE3100157C2 (en)
DK (1) DK170553B1 (en)
ES (3) ES8303143A1 (en)
FR (1) FR2472958A1 (en)
GB (1) GB2066714B (en)
IE (1) IE50414B1 (en)
IT (1) IT1134962B (en)
MA (1) MA19038A1 (en)
MX (1) MX165134B (en)
NL (1) NL185611C (en)
NO (1) NO159349C (en)
PH (2) PH19861A (en)
PT (1) PT72317B (en)
SE (3) SE448833B (en)
TR (1) TR21901A (en)
ZA (1) ZA8136B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4320218A (en) * 1980-08-04 1982-03-16 Ashland Oil, Inc. Binder composition
DE3224402A1 (en) * 1982-06-30 1984-01-05 Hüttenes-Albertus Chemische Werke GmbH, 4000 Düsseldorf Mould material binding medium, cold-setting with polyurethane formation, and its use
US4806576A (en) * 1982-08-05 1989-02-21 Ashland Oil, Inc. Curable epoxy resin compositions and use in preparing formed, shaped, filled bodies
US4518723A (en) * 1982-08-05 1985-05-21 Cl Industries, Inc. Curable epoxy resin compositions and use in preparing formed, shaped, filled bodies
US4516996A (en) * 1983-04-07 1985-05-14 Owens-Corning Fiberglas Corporation Formation of molded glass fiber parts from glass fiber blankets and product
US4791022A (en) * 1983-11-07 1988-12-13 Owens-Corning Fiberglas Corporation Decorative panels
US5880175A (en) * 1997-03-04 1999-03-09 Ashland Inc. Amine cured foundry binder system and their uses
US6429236B1 (en) * 2000-05-23 2002-08-06 Ashland Inc. Acrylic-modified phenolic-urethane foundry binders
WO2005121276A2 (en) * 2004-01-29 2005-12-22 Ashland Inc. Composition and process for inhibiting the movement of free flowing particles
CN115921768B (en) * 2022-12-08 2023-10-24 江苏华岗材料科技发展有限公司 Cold box resin for casting and preparation method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3179990A (en) * 1961-10-26 1965-04-27 Freeman Chemical Corp Foundry composition with cross-linked polyester binder
DE1220609B (en) * 1962-07-30 1966-07-07 Eastman Kodak Co Process for polymerizing liquid, olefinically unsaturated monomers
US3367992A (en) * 1964-06-05 1968-02-06 Dow Chemical Co 2-hydroxyalkyl acrylate and methacrylate dicarboxylic acid partial esters and the oxyalkylated derivatives thereof
CH463105A (en) * 1965-02-24 1968-09-30 Phoenix Gummiwerke Ag Storable, dry and heat-curable, pressable mixture and process for its production
DE1608337B1 (en) * 1968-03-01 1970-07-09 Huettenes Kg Geb binder
JPS5213499B2 (en) * 1973-02-05 1977-04-14
GB1419800A (en) * 1973-04-14 1975-12-31 Ciba Geigy Ag Making shaped articles from particulate material and an anaerobic adhesive
JPS5145616A (en) * 1974-10-18 1976-04-19 Hitachi Metals Ltd IMONOSUNA
GB1510645A (en) * 1974-12-11 1978-05-10 Ciba Geigy Ag Making shaped articles from particulate material and an anaerobic adhesive
JPS53102989A (en) * 1977-02-22 1978-09-07 Denki Kagaku Kogyo Kk Curable composition
JPS5510320A (en) * 1978-07-06 1980-01-24 Mitsubishi Electric Corp Composition for casting mold

Also Published As

Publication number Publication date
PT72317A (en) 1981-03-01
FR2472958B1 (en) 1985-03-08
NO810020L (en) 1981-07-08
ES498356A0 (en) 1983-02-01
GB2066714B (en) 1984-12-05
IE810005L (en) 1981-07-07
SE8603682L (en) 1986-09-02
NL8100026A (en) 1981-08-03
SE8703466D0 (en) 1987-09-07
NO159349B (en) 1988-09-12
AU6589680A (en) 1981-07-16
DK4181A (en) 1981-07-08
NL185611B (en) 1990-01-02
AR227904A1 (en) 1982-12-30
BR8100066A (en) 1981-07-21
ES509237A0 (en) 1982-12-16
SE459400B (en) 1989-07-03
IT8119037A0 (en) 1981-01-07
JPS58187233A (en) 1983-11-01
ES8301707A1 (en) 1982-12-16
GB2066714A (en) 1981-07-15
TR21901A (en) 1985-10-14
ES8303144A1 (en) 1983-02-01
MA19038A1 (en) 1981-10-01
MX165134B (en) 1992-10-28
SE8703466L (en) 1987-09-07
PH19861A (en) 1986-08-13
PH22002A (en) 1988-05-02
FR2472958A1 (en) 1981-07-10
NL185611C (en) 1990-06-01
JPS56109135A (en) 1981-08-29
JPS6111701B2 (en) 1986-04-04
SE459256B (en) 1989-06-19
IT1134962B (en) 1986-08-20
ES509238A0 (en) 1983-02-01
CA1168831A (en) 1984-06-12
BE886988A (en) 1981-05-04
NO159349C (en) 1988-12-21
KR840000672B1 (en) 1984-05-18
ES8303143A1 (en) 1983-02-01
PT72317B (en) 1981-12-18
SE448833B (en) 1987-03-23
KR830004049A (en) 1983-07-06
DE3100157C2 (en) 1984-05-24
ATA2281A (en) 1993-08-15
CH660019A5 (en) 1987-03-13
IE50414B1 (en) 1986-04-16
ZA8136B (en) 1982-01-27
SE8603682D0 (en) 1986-09-02
JPS5835780B2 (en) 1983-08-04
AT397359B (en) 1994-03-25
DE3100157A1 (en) 1981-11-19
AU526004B2 (en) 1982-12-09
SE8008958L (en) 1981-07-08

Similar Documents

Publication Publication Date Title
US4526219A (en) Process of forming foundry cores and molds utilizing binder curable by free radical polymerization
DK170553B1 (en) Process for making casting cores and molds and using them for making light metal work
US6037389A (en) Amine cured foundry binder systems and their uses
US5459178A (en) Foundry mixes and their uses
US4317763A (en) Catalysts and binder systems for manufacturing sand shapes
KR100946530B1 (en) Free radically cured cold-box binders containing an alkyl silicate
JP4398094B2 (en) Binders for amine-cured molds and their uses
CN102581216B (en) Bi-component epoxy resin binder, cast mixture containing bi-component epoxy resin binder, cast molding body and method for casting metal products
RU2305019C2 (en) Cold-box process binder containing epoxy resin, acrylate and alkyl esters
US6662854B2 (en) Cold-box foundry binder systems having improved shakeout
WO2001021340A1 (en) Amine curable foundry binder system
US6429236B1 (en) Acrylic-modified phenolic-urethane foundry binders
WO1990002007A1 (en) Material for mold and process for forming mold using same
NO169107B (en) PROCEDURE FOR CASTING LIGHT METAL GOODS
US20030066622A1 (en) Cold-box foundry binder systems
US3919135A (en) Binders from the condensations of an oxazoline with an ethylenically unsaturated monomer and formaldehyde
CA2653013A1 (en) Sulfur dioxide-cured epoxy acrylate foundry binder system
JPH0625300B2 (en) Method of applying curable composition

Legal Events

Date Code Title Description
B1 Patent granted (law 1993)
PUP Patent expired