US3919135A - Binders from the condensations of an oxazoline with an ethylenically unsaturated monomer and formaldehyde - Google Patents

Binders from the condensations of an oxazoline with an ethylenically unsaturated monomer and formaldehyde Download PDF

Info

Publication number
US3919135A
US3919135A US378366A US37836673A US3919135A US 3919135 A US3919135 A US 3919135A US 378366 A US378366 A US 378366A US 37836673 A US37836673 A US 37836673A US 3919135 A US3919135 A US 3919135A
Authority
US
United States
Prior art keywords
composition
acid
oxazoline
sand
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US378366A
Inventor
Louis A Jurisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commercial Solvents Corp
Original Assignee
Commercial Solvents Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commercial Solvents Corp filed Critical Commercial Solvents Corp
Priority to US378366A priority Critical patent/US3919135A/en
Priority to US05/537,869 priority patent/US3983071A/en
Priority to US05/538,646 priority patent/US3960816A/en
Application granted granted Critical
Publication of US3919135A publication Critical patent/US3919135A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/28Condensation with aldehydes or ketones

Definitions

  • this invention relates to a 100% solids, essentially non-polluting binder for the sand.
  • metal casting is conventionally carried out by mixing an aggregate, e.g. sand, with a foundry sand binder capable of hardening the aggregate, tamping it into a mold to form a sand core and letting it stand for a period of time to allow the binder to set up whereby the sand core becomes self-supporting, and then removing the mold.
  • the molten metal is subsequently poured into the sand core and when cool, the sand core is broken away.
  • the resulting casting is then finished by grinding away the imperfections.
  • binders are of a class of nobake, or cold setting resins, i.e. designed to be cured without the application of heat, while others are of a class suitable for hot box application.
  • Hot box means foundry operations wherein the resin binders are cured by the application of heat.
  • Alkyd resins have been widely used as the binder. These resins are too viscous to be used alone however. It has therefore been necessary to dilute them with a solvent so that they can be adequately mixed with the sand. The sand core must then be baked to set the alkyd and volatilize the solvent.
  • Another common problem is air pollution in the foundry atmosphere due to the emission of noxious fumes from decomposition of the binder resulting from the heat of the molten metal. Large quantities of irritating white smoke are common in foundries during the pouring step. Although exhaust fans and ventilation are provided, the workers closest to the operation are exand furthermore the air outside the foundry is polluted by the exhaust.
  • the binder for the preparation of sand cores can be provided by a member selected from the class of mono-, bisor trisoxazolincs, or mixtures thereof.
  • a polyisocyanate can be mixed therewith, if desired, but not necessarily, as is known in the art.
  • R and R can be methyl, ethyl, hydroxymethyl, or acyloxymethyl corresponding to the formula and can be the same or different;
  • R is hydrogen and when X is trivalent, R is the group i (H -i wherein Y is a saturated or unsaturated hydrocarbon radical of 16 carbon atoms.
  • the monocarboxylic acids suitable for forming the monooxazoline compounds of formula 1 include saturated and unsaturated fatty acids of from 2 to 22 carbon atoms, including mixtures thereof. Such acids are well-known in the art and include, but are not limited to, acetic, propionic, decanoic, lauric, linoleic, linolenic, oleic, stearic, behenic, etc. They are commercially available and the usual commercial grades, including the crude materials, are suitable for preparing the oxazoline compounds.
  • the dicarboxylic acids suitable for preparing the bisoxazolines of formula ll include, but are not limited to, acids of from 4 to carbon atoms, viz., succinic, glutaric, adipic, sorbic, pimelic, suberic, azelaic, and sebacic and mixtures thereof. Also the dimer of C unsaturated fatty acids is a suitable and preferred dicarboxylic acid. Dimerized acids and oxazolines made therefrom are known to those skilled in the art. They are described in, for example, US. Pat. No. 3,661,861 issued to J. H. Hunsucker which is incorporated herein by reference thereto and in Technical Bulletin No. 438C, published by Emery Industries, Inc., Cincinnati, Ohio.
  • the tricarboxylic acids suitable for preparing the trisoxazoline compounds include, but are not limited to, the trimer of C unsaturated fatty acids. This trimerized acid and oxazolines made therefrom are known to those skilled in the art. They are described in US. Pat. No. 3,661,861 and in the aforementioned Technical Bulletin No. 438C.
  • the preferred ones are those where R and R are the acyloxymethyl groups represented by the formula where a rapid set time of the sand core is desired, metal driers up to 10% by weight can be incorporated.
  • Suitable driers and combinations thereof are those known in the art, including but not limited to peroxides and/or compounds of cobalt, e.g. cobalt naphthenate, lead, e.g. lead octoate, tin, e.g. stannous octoate, potassium chromate and zinc.
  • Zinc driers are preferred and a combination of zinc drier and a peroxide is particularly preferred.
  • Suitable peroxides are well known in the art. Typical peroxides include, but are not limited to ditert.- butyl peroxide, hydrogen peroxide, methyl ethyl ketone peroxide, benzoyl peroxides, cumeme hydroperoxide and tert.-butyl perbenzoate. When used, either along or in combination with the metal driers, the peroxides are generally employed at a concentration of about 0.5 to about 5% based on the weight of the resin.
  • the compounds of formula I wherein X is H can be modified, and preferably are so modified, by reacting, e.g. copolymerizing, them with a dissimilar ethylenic unsaturated monomer having a terminal CH C group in amounts necessary to give the desired modification.
  • a particularly preferred class of ethylenic unsaturated monomers are those having one ethylenic unsaturation such as the olefms, e. g. ethylene, propylene, isobutylene; acrylyl and alkacrylyl compounds, e.g.
  • acrylic haloacrylic, and methacrylic acids, esters, nitriles, and amides for example, acrylonitrile, methyl methacrylate, ethyl methacrylate, butyl methacrylate, octyl methacrylate, cyclohexyl methacrylate, methoxymethyl methacrylate, n-butoxyethyl methacrylate, nbutoxyethoxyethyl methacrylate, aminoalkyl methacrylates such as beta-diethylaminoethyl methacrylate, chloroethyl methacrylate, methacrylic acid, ethyl acrylate, and alpha-chloroacrylic acid; N-vinyl imides, e.g.
  • N-vinyl-phthalimide and N-vinyl succinimide N-vinyllactams, e.g. N-vinylcaprolactam and N-vinylbutyrolactam, vinyl aryls, e.g. styrene, methyl styrene and vinylnaphthalene, and other vinyl derivatives such as methyl vinyl ketone, vinylpyridine, vinyl isobutyl ether, and vinyl ethyl ether.
  • the resulting compounds are then condensed with formaldehyde amounts and dehydrated to yield vinylated derivatives.
  • the modified oxazolines are readily prepared by condensing with the ethylenically unsaturated monomer, e.g. styrene, vinyl toluene or acrylic ester in a weight ratio of about 1 to about 50% at a temperature of about 300400F preferably in the presence of a chain transfer agent and a peroxide catalyst.
  • the reaction mixture is allowed to cool slightly, then formaldehyde about 3l0% by weight of unsaturated monomer is introduced slowly.
  • an alkaline catalyst e.g. lithium hydroxide
  • a polymerization inhibitor e.g. tbutyl catechol
  • the formaldehyde is added as a solution in an alcohol, e.g. a lower alkanol of l to 4 carbon atoms, which are commercially available. it can, however, also be supplied as paraformaldehyde or as the 37% or 44% commercialgrade aqueous solution.
  • Gaseous formaldehyde from a formaldehyde generator is also suitable for use. Water of reaction, and any water or alkanol introduced with the formaldehyde, is removed by distillation. The residue is useful as is Without further refinement.
  • Example 1 The preparation of a particularly preferred binder is described in Example 1.
  • the oxazoline binders and modifications thereof of the present invention have particular utility in the preparation of binders for sand cores used for casting in foundries and for hot box applications.
  • the binder is blended with the aggregate, e.g. sand, in an amount sufficient to provide about 05-50% or more, usually about 0.5-1 .5% of the binder based on the weight of the sand.
  • up to of metal driers preferably 3-7% can be blended with the binder before mixing with the aggregate.
  • the treated sand is then placed in a mold to harden. If a rapid hardening time is required, the wet sand can be thoroughly mixed with an amount of polyisocyanate sufficient to provide about based on the weight of the binder.
  • the binder can be modified by incorporating therein about 10% of a low-molecular weight hydrocarbon resin, or if a monooxazoline, additionally about 10% of a polyoxazoline corresponding to formula ll can be added. It has been discovered that by varying the polyoxazoline content, the time required for the sand to harden can be varied.
  • the selected binder is blended with the aggregate and then up to 20% or more of a dior polyisocyanate is mixed therewith, as is known in the art.
  • Polyisocyanates suitable for the practice of this invention include but are not limited to polymethylene polyphenylisocyanate.
  • suitable isocyanates are known in the art, e.g. the aliphatic polyisocyanates such as hexamethylene diisocyanate; alicyclic polyisocyanates such as 4,4-dicyclohexylmethane diisocyanate; and aromatic polyisocyanates such as l,4- and 2,6-toluene diisocyanate; diphenyl methyl diisocyanate and the dimethyl derivative thereof.
  • polyisocyanates are LS-naphthalene diisocyanate; triphenyl methane triisocyanate; xylylene diisocyanate and the methyl derivative; polymethylene polyphenyl isocyanate; chlorophenylene-Z,4-diisocyanate, and the like.
  • the binder of the present invention provides numerous advantages in the preparation of sand cores for foundry casting.
  • the advantages include the following points:
  • the binder composition has low viscosity at am bient temperatures and wets the sand excellently. As a result it is easily mixed with the sand.
  • the hardcning time of the sand core can be easily controlled.
  • a preferred oxazoline binder was prepared by mixing 250 lb. tall oil fatty acids containing less than 4% rosin and having an equivalent weight of 284 (0.88 equivalents), l6 lb of propionic acid (0.2 l 6 equivalents) 43 lb of tris-(hydroxymethyl)aminomethane (0.355 moles or 1.065 equivalents). The mixture was heated with stirring to 460F in a reaction vessel equipped with a distillation column and a take-off head. During the heating step, the water of reaction was removed by distillation. The reaction was monitored by occasionally determining, by known methods, the acid value. When it was below 5, the mixture was allowed to cool to 300F and there was then added over a period of 90 min. a mixture consisting of lb styrene, 2.5 lb ditert.-butyl peroxide catalyst, and 1.2 lb of n-dodecylmercaptan chain transfer agent.
  • the product obtained above was used as a binder to prepare a sand core for foundry use.
  • An amount of the resin sufficient to provide 1% by weight based on the weight of the sand was mixed thoroughly with sufficient diethylenetriamine (later found to be unnecessary) to provide 1% by weight of the resin and with metallic drier to provide 7% by weight of the resin.
  • the drier used was a mixture of 4% of a 24% Pb salt (lead octoate) and 3% of a 6% cobalt salt (cobalt naphthenate), both of which are conventional in the art.
  • the foregoing resin-amine-drier mixture was then thoroughly mixed with the predetermined weight of the casting sand and then the wet sand was thoroughly mixed with a quantity of polymethylene polyphenylisocyanate, sufficient to provide 20% based on the weight of the resin.
  • the sand was packed into a mold and in 80 minutes it had hardened sufficiently that the mold could be stripped from the sand.
  • the stripping time was about 15 minutes. Despite the longer hardening time, the product was deemed useful.
  • EXAMPLE 2 The experiment of Example 2 was repeated in all essential details except that in preparing the binder composition for the sand core, there was additionally added to the resin-drier-amine-Ricon 150 mixture, 10% of a polyoxazoline, based on the weight of the resin, prepared from 1 mole of trimerized linseed fatty acid, known in the art, and 3 moles of 2-amino-2-methyl-lpropanol.
  • the sand core so prepared was hard enough after 45 minutes that the mold could be stripped from the sand.
  • the binder composition was deemed useful.
  • Example 4 The experiment of Example 1 was repeated in all essential details except that 10,717 lb. of tall oil fatty acids,-805 lb. of propionic acid, 2121 lb of tris(hydroxymethyl)arninomethane and 5 lb. of tridecyl phosphite were used. After the acid value was below about 5, a mixture of styrene 3780 lb., ditert.-butyl peroxide 126 1b., and n-dodecylmercaptan 1.2 lb. was gradually added over a period of 90 minutes. The reaction mixture was heated to 400F for 30 minutes and was then cooled to 37 5F. A mixture of 3.5 lb.
  • EXAMPLE 5 A portion, 3.5 lb. of the resin prepared in Example 4 was mixed with 7% of metallic drier (4% of lead salts and 3% of cobalt salts) and was mulled with sand for 2 A minutes. There was added 0.7 lb. of polymethylene polyphenylisocyanate (PAPl made by The Upjohn Co., Kalamazoo, Mich.) and mulled an additional 2 minutes. The temperature of the sand at the start was 62F and the finish, 78F.
  • PAPl polymethylene polyphenylisocyanate
  • Molten iron at 26002800F was poured into the molds. There was less smoke emitted than when the sand core was prepared with an alkyd resin binder, and no obnoxious fumes were emitted during pouring. By comparison, the alkyd resin binder emitted irritating fumes. Also, no flashing of fire occurred. After 20 minutes, the mold was broken away and the castings were deemed to be of high quality. The sand in contact with the metal was clean and none adhered to the metal. Only minimal grinding was necessary to finish the castmg.
  • Example 6 The experiment of Example 1 was repeated in all essential details except that the oxazoline was prepared from 2550 g of tall oil fatty acids (largely C 8.9 equivalents, 215 g propionic acid, 2.91 equivalents, 750 g of 2-amino-2-ethyl-l,3-propanediol, 6.3 moles, or 12.6 equivalents.
  • tall oil fatty acids largely C 8.9 equivalents, 215 g propionic acid, 2.91 equivalents, 750 g of 2-amino-2-ethyl-l,3-propanediol, 6.3 moles, or 12.6 equivalents.
  • the product was reacted with a mixture of styrene 200 g and methyl methacrylate 100 G, in the presence of ditert.-butyl peroxide 2 g, and azobis isobutyryl nitrile, 10 g, a chain initiator which promotes low molecular weight, then with formaldehyde, 675 g of a 40% solution in butanol to form the vinyl compound.
  • the low-molecular weight resin obtained by the above procedure was clear, had a low viscosity of B-%, color of 15, acid value of 1.0, and was 100% nonvolatile.
  • EXAMPLE 7 Following the general procedure of Example 1, an oxazoline oligomer blend was prepared by condensing 960 g of 2-amino-2-ethyl-l,S-propanediol (8.06 moles or 16.12 equivalents) with 644 g of dimethyl glutarate (8.05 equivalents). Tall oil fatty acids, 2200 g, (7.75 equivalents) were added and the solution was heated to 460F. Water of reaction was separated by distillation. At an acid value of 14.5, the solution was cooled to 200F at which time dibutyl acid phosphate, 5 g, and 130 g of water were added. The mixture was heated at 200F for minutes and was then cooled. The resulting resin had a viscosity of Z color of 10, acid value 12.5. The infra-red absorption spectrum indicated the presence of considerable amide.
  • the resin prepared above was mixed for 2 minutes in varied proportions with 200 g of Portage silica Sand No. 430 at 70F. Polyisocyanate (Mondur MR) and 5 drops of lead octoate drier were then added and mixed for 1 minute.
  • the sand mix was then dumped into a 5 inch diameter cylinder and tamped with a l0 lb. weight.
  • the sand mixture was checked periodically for stiffness and surface hardness. Campbell hardness was checked afler 30 minutes and 1 hour. The results obtained are:
  • a cold-setting, non-polluting resinous binder composition for foundry sand cores comprising the product obtained by (a) reacting an oxazoline corresponding to the formula wherein R and R are methyl, ethyl, or hydroxymethyl, or an acyloxymethyl group corresponding to the formula and R is hydrogen or an alkyl or alkenyl fatty acid group of from 1 to 18 carbon atoms or mixture thereof with from [-50% by weight of monoethylenically unsaturated monomer having a terminal at a temperature of about 300-400F in the presence of a peroxide catalyst and a chain transfer agent for a time sufficient to effect said condensation, (b) adding with agitation formaldehyde in an amount of about 3 to about by weight based on the weight of the ethylenically unsaturated monomer and an alkaline catalyst,
  • composition of claim 1 wherein said ethylenically unsaturated monomer is styrene.
  • composition of claim 1 wherein R and R are the acyloxymethyl group corresponding to the formula where R is hydrogen or alkyl or alkenyl group of l to 18 carbon atoms.
  • composition of claim 1 wherein R is ethyl and R is the acyloxymethyl group where R is hydrogen or an alkyl or alkenyl group of from 1 to 18 carbon atoms.
  • composition of claim 1 wherein there is additionally from 1 to about 20% of a bisor a tris-oxazoline.
  • composition of claim 7 wherein said bisoxazoline is the product obtained by reacting an alkanolamine corresponding to the formula 2 R;CH,OH
  • composition of claim 8 wherein said acid is glutaric acid.
  • composition of claim 8 wherein said acid is sorbic acid.
  • composition of claim 8 wherein said acid is adipic acid.
  • composition of claim 8 wherein said acid is dimerized linseed fatty acid.
  • composition of claim 7 wherein said trisoxazoline is the product obtained by reacting an alkanolamine corresponding to the formula where R and R are methyl, ethyl or hydroxymethyl, with tricarboxylic acid.
  • composition of claim 13 wherein said tricarboxylic acid is trimerized linseed fatty acid.

Abstract

An improved process for the preparation of sand cores for foundry use in metal casting by mixing sand with a binder, and packing into a mold to harden. The improvement in the process resides in using as the binder an oxazoline or condensation product thereof.

Description

United States Patent n9;
Jurisch [Ill $919,135
[ Nov. [1.1975
[5 BINDERS FROM THE CONDENSATIONS OF AN OXAZOLINE WITH AN ETHYLENICALLY UNSATURATED MONOMER AND FORMALDEHYDE [75] inventor: Louis A. Jurisch, Mnrengo. Ill.
(73] Assignee: Commerical Solvents Corporation,
Terre Haute. Ind.
[22] Filed: Jul) 11, [973 [2l] Appl. No: 378.366
[52] U.S. (Tl.v 260/73 L: 260/21; 260/23 CP; 260/23 ST. 260/675 [51] Int. Cl.'-' COSF 26/06; CO8F 242/00; COSG 12/26 [58] Field of Search 260/67 R, 67 FP. 67.5.
260/73 L. 23 CP, 23 STQZI [56] References Cited UNITED STATES PATENTS 3.248.397 4/1966 PurCull lot/H311 L A X 3.367.395 2/1968 Clark. 260/67 5 X 3.654.201 4/l972 Munsour et n]. 2611/23 ST Primary E.mmimrLucille M. Phynes Attorney. Agent. or Firm-Roherl H. Dene); Howard E. Post 14 Claims. No Drawings 1 BINDERS FROM THE CONDENSATIONS OF AN OXAZOLINE WITH AN ETHYLENICALLY UNSATURATED MONOMER AND FORMALDEHYDE BACKGROUND OF THE INVENTION This invention relates to a process for the preparation of sand cores for metal castings in the foundry industry.
In a particular aspect this invention relates to a 100% solids, essentially non-polluting binder for the sand.
In foundry practice, metal casting is conventionally carried out by mixing an aggregate, e.g. sand, with a foundry sand binder capable of hardening the aggregate, tamping it into a mold to form a sand core and letting it stand for a period of time to allow the binder to set up whereby the sand core becomes self-supporting, and then removing the mold. The molten metal is subsequently poured into the sand core and when cool, the sand core is broken away. The resulting casting is then finished by grinding away the imperfections.
Many materials have been used as the binder in preparing such cores. Some binders are of a class of nobake, or cold setting resins, i.e. designed to be cured without the application of heat, while others are of a class suitable for hot box application. Hot box" means foundry operations wherein the resin binders are cured by the application of heat. Alkyd resins have been widely used as the binder. These resins are too viscous to be used alone however. It has therefore been necessary to dilute them with a solvent so that they can be adequately mixed with the sand. The sand core must then be baked to set the alkyd and volatilize the solvent.
This process for preparing the sand core is in widespread use but it presents several problems of considerable magnitude. Chief of these is the danger of fire from the solvent. Although the core is sometimes baked before the molten metal is poured into it, there is frequently considerable residual solvent, especially where large castings are being made. Consequently flash tires are common in foundries.
Another common problem is air pollution in the foundry atmosphere due to the emission of noxious fumes from decomposition of the binder resulting from the heat of the molten metal. Large quantities of irritating white smoke are common in foundries during the pouring step. Although exhaust fans and ventilation are provided, the workers closest to the operation are exand furthermore the air outside the foundry is polluted by the exhaust.
J. .I. Engel et al. discussed other problems and disclosed a solution thereto in US. Pat. No. 3,255,500, which is incorporated herein by reference thereto. Engel et a]. disclosed a binder composition consisting of drying oils containing ethylenic unsaturation such as the hydrocarbon polymers and copolymers prepared from butadiene, styrene, cyclopentadiene and the like, but preferably the alkyd resins having a hydroxyl value of at least 25. The drying oil is used in combination with isocyanates and solvents preferably with a catalyst.
SUMMARY OF THE INVENTION It is an object of this invention to provide a solventfree, no-bake binder composition for preparation of sand cores.
It is another object of this invention to provide a binder composition having minimal air pollution potential.
It is yet another object of this invention to provide a binder composition which does not cause or contribute to a fire hazard.
Other objects will be apparent to those skilled in the art from the disclosure herein.
It is the discovery of this invention that the binder for the preparation of sand cores can be provided by a member selected from the class of mono-, bisor trisoxazolincs, or mixtures thereof. Many of these oxazolines are useful as is but when X in formula I below is H then the oxazoline can be modified when desired and when R in fonnula I is saturated they are so modificd by condensing the oxazoline with an ethylenically unsaturated monomer having a terminal CH C- group and further condensing the compound thereby obtained with formaldehyde to introduce additional =CH, groups. After mixing the oxazoline with the aggregate, a polyisocyanate can be mixed therewith, if desired, but not necessarily, as is known in the art.
DETAILED DISCUSSION The oxazoline compounds useful in the practice of this invention correspond to formula I.
where R and R can be methyl, ethyl, hydroxymethyl, or acyloxymethyl corresponding to the formula and can be the same or different; R can be hydrogen or an alkyl or alkenyl group of from 1 to about 18 carbon atoms, and X can be =CI-I or H or the binder can be supplied by compounds corresponding to formula (II) where R can be the group R Ii -T where X is any divalent or trivalent saturated or unsaturated aliphatic hydrocarbon group including straight chain or branched chain, of from to 32 carbon atoms. When X is divalent, R is hydrogen and when X is trivalent, R is the group i (H -i wherein Y is a saturated or unsaturated hydrocarbon radical of 16 carbon atoms.
Some of these compounds are commercially available or they can be prepared by reacting an alkanolamine corresponding to the formula The monocarboxylic acids suitable for forming the monooxazoline compounds of formula 1 include saturated and unsaturated fatty acids of from 2 to 22 carbon atoms, including mixtures thereof. Such acids are well-known in the art and include, but are not limited to, acetic, propionic, decanoic, lauric, linoleic, linolenic, oleic, stearic, behenic, etc. They are commercially available and the usual commercial grades, including the crude materials, are suitable for preparing the oxazoline compounds.
The dicarboxylic acids suitable for preparing the bisoxazolines of formula ll include, but are not limited to, acids of from 4 to carbon atoms, viz., succinic, glutaric, adipic, sorbic, pimelic, suberic, azelaic, and sebacic and mixtures thereof. Also the dimer of C unsaturated fatty acids is a suitable and preferred dicarboxylic acid. Dimerized acids and oxazolines made therefrom are known to those skilled in the art. They are described in, for example, US. Pat. No. 3,661,861 issued to J. H. Hunsucker which is incorporated herein by reference thereto and in Technical Bulletin No. 438C, published by Emery Industries, Inc., Cincinnati, Ohio.
The tricarboxylic acids suitable for preparing the trisoxazoline compounds include, but are not limited to, the trimer of C unsaturated fatty acids. This trimerized acid and oxazolines made therefrom are known to those skilled in the art. They are described in US. Pat. No. 3,661,861 and in the aforementioned Technical Bulletin No. 438C.
In the embodiment of the invention represented by the compounds of formula I, the compounds where X is =CH and R is an unsaturated group can be employed as the binder without modifiers and without catalysts. Of these compounds, the preferred ones are those where R and R are the acyloxymethyl groups represented by the formula where a rapid set time of the sand core is desired, metal driers up to 10% by weight can be incorporated. Suitable driers and combinations thereof are those known in the art, including but not limited to peroxides and/or compounds of cobalt, e.g. cobalt naphthenate, lead, e.g. lead octoate, tin, e.g. stannous octoate, potassium chromate and zinc. Zinc driers are preferred and a combination of zinc drier and a peroxide is particularly preferred. Suitable peroxides are well known in the art. Typical peroxides include, but are not limited to ditert.- butyl peroxide, hydrogen peroxide, methyl ethyl ketone peroxide, benzoyl peroxides, cumeme hydroperoxide and tert.-butyl perbenzoate. When used, either along or in combination with the metal driers, the peroxides are generally employed at a concentration of about 0.5 to about 5% based on the weight of the resin.
The compounds of formula I wherein X is H, can be modified, and preferably are so modified, by reacting, e.g. copolymerizing, them with a dissimilar ethylenic unsaturated monomer having a terminal CH C group in amounts necessary to give the desired modification.
A particularly preferred class of ethylenic unsaturated monomers are those having one ethylenic unsaturation such as the olefms, e. g. ethylene, propylene, isobutylene; acrylyl and alkacrylyl compounds, e.g. acrylic haloacrylic, and methacrylic acids, esters, nitriles, and amides for example, acrylonitrile, methyl methacrylate, ethyl methacrylate, butyl methacrylate, octyl methacrylate, cyclohexyl methacrylate, methoxymethyl methacrylate, n-butoxyethyl methacrylate, nbutoxyethoxyethyl methacrylate, aminoalkyl methacrylates such as beta-diethylaminoethyl methacrylate, chloroethyl methacrylate, methacrylic acid, ethyl acrylate, and alpha-chloroacrylic acid; N-vinyl imides, e.g. N-vinyl-phthalimide and N-vinyl succinimide, N-vinyllactams, e.g. N-vinylcaprolactam and N-vinylbutyrolactam, vinyl aryls, e.g. styrene, methyl styrene and vinylnaphthalene, and other vinyl derivatives such as methyl vinyl ketone, vinylpyridine, vinyl isobutyl ether, and vinyl ethyl ether. The resulting compounds are then condensed with formaldehyde amounts and dehydrated to yield vinylated derivatives.
The modified oxazolines are readily prepared by condensing with the ethylenically unsaturated monomer, e.g. styrene, vinyl toluene or acrylic ester in a weight ratio of about 1 to about 50% at a temperature of about 300400F preferably in the presence of a chain transfer agent and a peroxide catalyst. The reaction mixture is allowed to cool slightly, then formaldehyde about 3l0% by weight of unsaturated monomer is introduced slowly. Preferably an alkaline catalyst, e.g. lithium hydroxide, and a polymerization inhibitor, e.g. tbutyl catechol, are added in suitable amounts. Heating of the reaction mixture is then maintained at about 375 to about 400F until water and alkanol (if any) have been separated by distillation. Preferably the formaldehyde is added as a solution in an alcohol, e.g. a lower alkanol of l to 4 carbon atoms, which are commercially available. it can, however, also be supplied as paraformaldehyde or as the 37% or 44% commercialgrade aqueous solution. Gaseous formaldehyde from a formaldehyde generator is also suitable for use. Water of reaction, and any water or alkanol introduced with the formaldehyde, is removed by distillation. The residue is useful as is Without further refinement.
The preparation of a particularly preferred binder is described in Example 1.
R. F. Purcell in US. Pat. No. 3,248,397 disclosed a process for bodying oxazolines corresponding to formula where X is =CH by reacting the oxazoline with a member of the foregoing class of unsaturated compounds. lt might therefore be supposed that the compounds thereby obtained would be useful in the practice of this invention. It has been found however that they are much too viscous to be used without a solvent. The use of a solvent would however defeat one of the objects of the invention, which is to provide a solventfree, substantially 100% non-volatile binder.
The oxazoline binders and modifications thereof of the present invention have particular utility in the preparation of binders for sand cores used for casting in foundries and for hot box applications. The binder is blended with the aggregate, e.g. sand, in an amount sufficient to provide about 05-50% or more, usually about 0.5-1 .5% of the binder based on the weight of the sand. When preferred, up to of metal driers, preferably 3-7% can be blended with the binder before mixing with the aggregate. The treated sand is then placed in a mold to harden. If a rapid hardening time is required, the wet sand can be thoroughly mixed with an amount of polyisocyanate sufficient to provide about based on the weight of the binder.
In another embodiment of the present invention, the binder can be modified by incorporating therein about 10% of a low-molecular weight hydrocarbon resin, or if a monooxazoline, additionally about 10% of a polyoxazoline corresponding to formula ll can be added. It has been discovered that by varying the polyoxazoline content, the time required for the sand to harden can be varied.
When especially rapid set time is needed with the oxazoline binders and condensates thereof, the selected binder is blended with the aggregate and then up to 20% or more of a dior polyisocyanate is mixed therewith, as is known in the art.
Polyisocyanates suitable for the practice of this invention include but are not limited to polymethylene polyphenylisocyanate. Other suitable isocyanates are known in the art, e.g. the aliphatic polyisocyanates such as hexamethylene diisocyanate; alicyclic polyisocyanates such as 4,4-dicyclohexylmethane diisocyanate; and aromatic polyisocyanates such as l,4- and 2,6-toluene diisocyanate; diphenyl methyl diisocyanate and the dimethyl derivative thereof. Further examples of suitable polyisocyanates are LS-naphthalene diisocyanate; triphenyl methane triisocyanate; xylylene diisocyanate and the methyl derivative; polymethylene polyphenyl isocyanate; chlorophenylene-Z,4-diisocyanate, and the like.
The binder of the present invention provides numerous advantages in the preparation of sand cores for foundry casting. The advantages include the following points:
I. It is a 100% solids system (though liquid) so there are no delays for solvent evaporation.
2. Because it is solvent-free, it does not create or aggravate a danger of fire in the foundry.
3. There is no contribution to atmospheric pollution from the foundry stacks, nor any contribution to pollution of the workroom atmosphere.
4. The binder composition has low viscosity at am bient temperatures and wets the sand excellently. As a result it is easily mixed with the sand.
5. By varying the amount of polyoxazoline, the hardcning time of the sand core can be easily controlled.
The invention will be better understood with reference to the following examples. It is understood, however that these examples are intended for illustration only and it is not intended that the invention be limited thereby.
EXAMPLE I A preferred oxazoline binder was prepared by mixing 250 lb. tall oil fatty acids containing less than 4% rosin and having an equivalent weight of 284 (0.88 equivalents), l6 lb of propionic acid (0.2 l 6 equivalents) 43 lb of tris-(hydroxymethyl)aminomethane (0.355 moles or 1.065 equivalents). The mixture was heated with stirring to 460F in a reaction vessel equipped with a distillation column and a take-off head. During the heating step, the water of reaction was removed by distillation. The reaction was monitored by occasionally determining, by known methods, the acid value. When it was below 5, the mixture was allowed to cool to 300F and there was then added over a period of 90 min. a mixture consisting of lb styrene, 2.5 lb ditert.-butyl peroxide catalyst, and 1.2 lb of n-dodecylmercaptan chain transfer agent.
The resulting mixture was heated to 400F for min. thereby condensing the styrene and the oxazoline. It was allowed to cool to 375F and there was then gradually added below the liquid level a mixture consisting of 0.06 lb. of lithium hydroxide (LiOH.H O), and 20 lb. of formaldehyde as a 40% by wt. solution in butanol. About 2 hours was required for the addition. During this step, butanol and water were removed by distillation. When all the butanol and water had been removed, the product was cooled and filtered, yield: 402 lb. It had a viscosity of V-Z; color 12; and acid value 1; the density was 8.1 i0.l lb/gal. The product was tested for volatility at C. [t was completely nonvolatile, i.e. l00% solids.
The product obtained above was used as a binder to prepare a sand core for foundry use. An amount of the resin sufficient to provide 1% by weight based on the weight of the sand was mixed thoroughly with sufficient diethylenetriamine (later found to be unnecessary) to provide 1% by weight of the resin and with metallic drier to provide 7% by weight of the resin. The drier used was a mixture of 4% of a 24% Pb salt (lead octoate) and 3% of a 6% cobalt salt (cobalt naphthenate), both of which are conventional in the art.
The foregoing resin-amine-drier mixture was then thoroughly mixed with the predetermined weight of the casting sand and then the wet sand was thoroughly mixed with a quantity of polymethylene polyphenylisocyanate, sufficient to provide 20% based on the weight of the resin. The sand was packed into a mold and in 80 minutes it had hardened sufficiently that the mold could be stripped from the sand. By comparison, when the sand core was prepared with a conventional alkyd resin binder used in the art, the stripping time was about 15 minutes. Despite the longer hardening time, the product was deemed useful.
EXAMPLE 2 EXAMPLE 3 The experiment of Example 2 was repeated in all essential details except that in preparing the binder composition for the sand core, there was additionally added to the resin-drier-amine-Ricon 150 mixture, 10% of a polyoxazoline, based on the weight of the resin, prepared from 1 mole of trimerized linseed fatty acid, known in the art, and 3 moles of 2-amino-2-methyl-lpropanol.
The sand core so prepared was hard enough after 45 minutes that the mold could be stripped from the sand. The binder composition was deemed useful.
EXAMPLE 4 The experiment of Example 1 was repeated in all essential details except that 10,717 lb. of tall oil fatty acids,-805 lb. of propionic acid, 2121 lb of tris(hydroxymethyl)arninomethane and 5 lb. of tridecyl phosphite were used. After the acid value was below about 5, a mixture of styrene 3780 lb., ditert.-butyl peroxide 126 1b., and n-dodecylmercaptan 1.2 lb. was gradually added over a period of 90 minutes. The reaction mixture was heated to 400F for 30 minutes and was then cooled to 37 5F. A mixture of 3.5 lb. of lithium hydroxide, 2520 lb. of butyl Forrncel (40% l-lCl-IO) and 3.5 lb. of t-butyl catechol were added. The solvent and water of reaction were stripped and 3.5 lb. of tert.-butyl catechol were added. The mixture was then cooled and filtered. The product was clear, had a viscosity of Y h and a color of 10. The non-volatile content was 100%.
EXAMPLE 5 A portion, 3.5 lb. of the resin prepared in Example 4 was mixed with 7% of metallic drier (4% of lead salts and 3% of cobalt salts) and was mulled with sand for 2 A minutes. There was added 0.7 lb. of polymethylene polyphenylisocyanate (PAPl made by The Upjohn Co., Kalamazoo, Mich.) and mulled an additional 2 minutes. The temperature of the sand at the start was 62F and the finish, 78F.
Several molds were filled with the coated sand, were allowed to set for l 56 to 2 hours, then dumped. Set time was satisfactory. No crumbling or weak points were observed. The cores were allowed to set for 24 8 hours. The Campbell hardness was 45-50 compared with 35 for cores prepared with the previously-used alkyd resin binder.
Molten iron at 26002800F was poured into the molds. There was less smoke emitted than when the sand core was prepared with an alkyd resin binder, and no obnoxious fumes were emitted during pouring. By comparison, the alkyd resin binder emitted irritating fumes. Also, no flashing of fire occurred. After 20 minutes, the mold was broken away and the castings were deemed to be of high quality. The sand in contact with the metal was clean and none adhered to the metal. Only minimal grinding was necessary to finish the castmg.
EXAMPLE 6 The experiment of Example 1 was repeated in all essential details except that the oxazoline was prepared from 2550 g of tall oil fatty acids (largely C 8.9 equivalents, 215 g propionic acid, 2.91 equivalents, 750 g of 2-amino-2-ethyl-l,3-propanediol, 6.3 moles, or 12.6 equivalents. The product was reacted with a mixture of styrene 200 g and methyl methacrylate 100 G, in the presence of ditert.-butyl peroxide 2 g, and azobis isobutyryl nitrile, 10 g, a chain initiator which promotes low molecular weight, then with formaldehyde, 675 g of a 40% solution in butanol to form the vinyl compound.
The low-molecular weight resin obtained by the above procedure was clear, had a low viscosity of B-%, color of 15, acid value of 1.0, and was 100% nonvolatile.
To 40 g of the resin was added 0.5 g of 6% cobalt salt drier and 1.0 g of 24% lead salt drier. The mixture was then blended with 4000 g of Portage silica sand, No. 430, at F, after which 12 g of polyisocyanate (Mondur MR) was added. After blending l min., the mixture was poured into a mold. It was hard in 1 hour.
EXAMPLE 7 Following the general procedure of Example 1, an oxazoline oligomer blend was prepared by condensing 960 g of 2-amino-2-ethyl-l,S-propanediol (8.06 moles or 16.12 equivalents) with 644 g of dimethyl glutarate (8.05 equivalents). Tall oil fatty acids, 2200 g, (7.75 equivalents) were added and the solution was heated to 460F. Water of reaction was separated by distillation. At an acid value of 14.5, the solution was cooled to 200F at which time dibutyl acid phosphate, 5 g, and 130 g of water were added. The mixture was heated at 200F for minutes and was then cooled. The resulting resin had a viscosity of Z color of 10, acid value 12.5. The infra-red absorption spectrum indicated the presence of considerable amide.
The resin prepared above was mixed for 2 minutes in varied proportions with 200 g of Portage silica Sand No. 430 at 70F. Polyisocyanate (Mondur MR) and 5 drops of lead octoate drier were then added and mixed for 1 minute.
The sand mix was then dumped into a 5 inch diameter cylinder and tamped with a l0 lb. weight. The sand mixture was checked periodically for stiffness and surface hardness. Campbell hardness was checked afler 30 minutes and 1 hour. The results obtained are:
This experiment showed that moderate increase in resin content, compared with polyisocyanate, caused the core mixture to become hard very quickly, but a large difference between resin and polyisocyanate did not produce a very hard core.
EXAMPLE 8 Tall oil fatty acids 600 g (2.15 equivalents) and tris(- hydroxymethyl)aminomethane 240 g (1.98 moles, or 0.66 equivalents) were heated at 375F for about 30 min. Adipic acid 475 g (3.25 moles, or 6.5 equivalents) was then added and heating was continued until it had all dissolved. 2-Amino-2-methyl-l-propanol 190 g (2.14 equivalents) was added and the mixture was slowly heated to 420F until the acid value was below 10. Water of reaction was separated by distillation as it formed. The mixture was then allowed to cool. The product had a viscosity of 2 a color of 12+ and was 100% non-volatile.
I claim:
1. A cold-setting, non-polluting resinous binder composition for foundry sand cores comprising the product obtained by (a) reacting an oxazoline corresponding to the formula wherein R and R are methyl, ethyl, or hydroxymethyl, or an acyloxymethyl group corresponding to the formula and R is hydrogen or an alkyl or alkenyl fatty acid group of from 1 to 18 carbon atoms or mixture thereof with from [-50% by weight of monoethylenically unsaturated monomer having a terminal at a temperature of about 300-400F in the presence of a peroxide catalyst and a chain transfer agent for a time sufficient to effect said condensation, (b) adding with agitation formaldehyde in an amount of about 3 to about by weight based on the weight of the ethylenically unsaturated monomer and an alkaline catalyst,
10 (c) heating to about 400F for a period of time sufficient to effect condensation of said formaldehyde and dehydration while (d) separating water and alkanol, if any, and (e) allowing to cool.
2. The composition of claim 1 wherein said ethylenically unsaturated monomer is styrene.
3. The composition of claim 1 wherein R and R are the acyloxymethyl group corresponding to the formula where R is hydrogen or alkyl or alkenyl group of l to 18 carbon atoms.
4. The composition of claim 1 wherein R and R are hydroxymethyl.
5. The composition of claim 1 wherein R is ethyl and R is hydroxymethyl.
6. The composition of claim 1 wherein R is ethyl and R is the acyloxymethyl group where R is hydrogen or an alkyl or alkenyl group of from 1 to 18 carbon atoms.
7. The composition of claim 1 wherein there is additionally from 1 to about 20% of a bisor a tris-oxazoline.
8. The composition of claim 7 wherein said bisoxazoline is the product obtained by reacting an alkanolamine corresponding to the formula 2 R;CH,OH
with a dicarboxylic acid wherein R and R are methyl, ethyl or hydroxyethyl.
9. The composition of claim 8 wherein said acid is glutaric acid.
10. The composition of claim 8 wherein said acid is sorbic acid.
11. The composition of claim 8 wherein said acid is adipic acid.
12. The composition of claim 8 wherein said acid is dimerized linseed fatty acid.
13. The composition of claim 7 wherein said trisoxazoline is the product obtained by reacting an alkanolamine corresponding to the formula where R and R are methyl, ethyl or hydroxymethyl, with tricarboxylic acid.
14. The composition of claim 13 wherein said tricarboxylic acid is trimerized linseed fatty acid.
=1 =1 I i l

Claims (14)

1. A COLD-SETTING, NON-POLLUTING RESINOUS BINDER COMPOSITION FOR FOUNDRY SAND CORES COMPRISING THE PRODUCT OBTAINED BY (A) REACTING AN OXAZOLINE CORRESPONDING TO THE FORMULA
2. The composition of claim 1 wherein said ethylenically unsaturated monomer is styrene.
3. The composition of claim 1 wherein R1 and R2 are the acyloxymethyl group corresponding to the formula
4. The composition of claim 1 wherein R1 and R2 are hydroxymethyl.
5. The composition of claim 1 wherein R1 is ethyl and R2 is hydroxymethyl.
6. The composition of claim 1 wherein R1 is ethyl and R2 is the acyloxymethyl group
7. The composition of claim 1 wherein there is additionally from 1 to about 20% of a bis- or a tris-oxazoline.
8. The composition of claim 7 wherein said bis-oxazoline is the product obtained by reacting an alkanolamine corresponding to the formula
9. The composition of claim 8 wherein said acid is glutaric acid.
10. The composition of claim 8 wherein said acid is sorbic acid.
11. The composition of claim 8 wherein said acid is adipic acid.
12. The composition of claim 8 wherein said acid is dimerized linseed fatty acid.
13. The composition of claim 7 wherein said tris-oxazoline is the product obtained by reacting an alkanolamine corresponding to the formula
14. The composition of claim 13 wherein said tricarboxylic acid is trimerized linseed fatty acid.
US378366A 1973-07-11 1973-07-11 Binders from the condensations of an oxazoline with an ethylenically unsaturated monomer and formaldehyde Expired - Lifetime US3919135A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US378366A US3919135A (en) 1973-07-11 1973-07-11 Binders from the condensations of an oxazoline with an ethylenically unsaturated monomer and formaldehyde
US05/537,869 US3983071A (en) 1973-07-11 1975-01-02 Process of preparing sand cores by using oxazoline condensates
US05/538,646 US3960816A (en) 1973-07-11 1975-01-06 Process for the preparation of a no-bake sand core from an oxazoline condensate as binder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US378366A US3919135A (en) 1973-07-11 1973-07-11 Binders from the condensations of an oxazoline with an ethylenically unsaturated monomer and formaldehyde

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US05/537,869 Division US3983071A (en) 1973-07-11 1975-01-02 Process of preparing sand cores by using oxazoline condensates
US05/538,646 Division US3960816A (en) 1973-07-11 1975-01-06 Process for the preparation of a no-bake sand core from an oxazoline condensate as binder

Publications (1)

Publication Number Publication Date
US3919135A true US3919135A (en) 1975-11-11

Family

ID=23492858

Family Applications (1)

Application Number Title Priority Date Filing Date
US378366A Expired - Lifetime US3919135A (en) 1973-07-11 1973-07-11 Binders from the condensations of an oxazoline with an ethylenically unsaturated monomer and formaldehyde

Country Status (1)

Country Link
US (1) US3919135A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4503215A (en) * 1981-09-25 1985-03-05 Union Oil Company Of California Furfural or furfural alchol impregnants for carbonacious bodies

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3248397A (en) * 1964-12-04 1966-04-26 Commercial Solvents Corp Process for bodying oxazoline drying oils and product thereof
US3367895A (en) * 1967-02-28 1968-02-06 Commercial Solvents Corp Vinyl-polyester-oxazoline resin reaction product
US3654201A (en) * 1970-01-19 1972-04-04 Celanese Coatings Co Polymeric dispersions stabilized by vinyl oxazoline polymers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3248397A (en) * 1964-12-04 1966-04-26 Commercial Solvents Corp Process for bodying oxazoline drying oils and product thereof
US3367895A (en) * 1967-02-28 1968-02-06 Commercial Solvents Corp Vinyl-polyester-oxazoline resin reaction product
US3654201A (en) * 1970-01-19 1972-04-04 Celanese Coatings Co Polymeric dispersions stabilized by vinyl oxazoline polymers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4503215A (en) * 1981-09-25 1985-03-05 Union Oil Company Of California Furfural or furfural alchol impregnants for carbonacious bodies

Similar Documents

Publication Publication Date Title
US5733952A (en) Foundry binder of phenolic resole resin, polyisocyanate and epoxy resin
US3590902A (en) Production of foundry cores and molds
US3409579A (en) Foundry binder composition comprising benzylic ether resin, polyisocyanate, and tertiary amine
US4526219A (en) Process of forming foundry cores and molds utilizing binder curable by free radical polymerization
US3145438A (en) Gas cure of organic bonds for sand and abrasive granules
JPS5922614B2 (en) Binder composition for molds
US3632844A (en) Non-sticking sand mix for foundry cores
US4436881A (en) Polyurethane binder compositions
US3960816A (en) Process for the preparation of a no-bake sand core from an oxazoline condensate as binder
JP2000516859A (en) Binder systems for amine cured castings and their uses
JPH02500753A (en) Modifier for aqueous base solution of phenolic resol resin
US3983071A (en) Process of preparing sand cores by using oxazoline condensates
US3919135A (en) Binders from the condensations of an oxazoline with an ethylenically unsaturated monomer and formaldehyde
JP2002524260A (en) Amine curing template binders and their uses
DK170553B1 (en) Process for making casting cores and molds and using them for making light metal work
US4175067A (en) Curable binder for large foundry sand shapes
US4076685A (en) Cyanoacrylate foundry binders and process
US3216075A (en) Method for manufacturing foundry cores and molds
US4585809A (en) Resin binders for foundry molding sands
US4766949A (en) Hot box process for preparing foundry shapes
US4073761A (en) Polyethylene emulsion containing resin binder compositions and processes
US4568728A (en) Foundry binder with improved breakdown and improved thermal reclamation properties
US4615372A (en) Foundry binder with improved breakdown and improved thermal reclamation properties
US6429236B1 (en) Acrylic-modified phenolic-urethane foundry binders
EP0002898A1 (en) Method of producing a foundry core or mould involving the reaction of a polyisocyanate and a polyhidroxy composition, polyhidroxy composition for use in the method and foundry composition produced in the method