DK161234B - DEVICES FOR TRANSMISSION OF DIGITAL INFORMATION SIGNALS - Google Patents

DEVICES FOR TRANSMISSION OF DIGITAL INFORMATION SIGNALS Download PDF

Info

Publication number
DK161234B
DK161234B DK019183A DK19183A DK161234B DK 161234 B DK161234 B DK 161234B DK 019183 A DK019183 A DK 019183A DK 19183 A DK19183 A DK 19183A DK 161234 B DK161234 B DK 161234B
Authority
DK
Denmark
Prior art keywords
synchronization
coupling
frame
synchronization word
word
Prior art date
Application number
DK019183A
Other languages
Danish (da)
Other versions
DK19183A (en
DK161234C (en
DK19183D0 (en
Inventor
Dieter Stark
De Hermann Wilhelm Werne Korte
Original Assignee
Telefunken Fernseh & Rundfunk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefunken Fernseh & Rundfunk filed Critical Telefunken Fernseh & Rundfunk
Publication of DK19183D0 publication Critical patent/DK19183D0/en
Publication of DK19183A publication Critical patent/DK19183A/en
Publication of DK161234B publication Critical patent/DK161234B/en
Application granted granted Critical
Publication of DK161234C publication Critical patent/DK161234C/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0602Systems characterised by the synchronising information used
    • H04J3/0605Special codes used as synchronising signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0602Systems characterised by the synchronising information used
    • H04J3/0605Special codes used as synchronising signal
    • H04J3/0608Detectors therefor, e.g. correlators, state machines

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)
  • Communication Control (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Exchange Systems With Centralized Control (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

1. System for the transmission and reception of digital information signals, especially for the digital transmission of sound by way of satellites, in which the data sequences are arranged following one another in time a block and in which in the receiver the block is divided in two timewise parallel part blocks (A, B) representing the data sequences, characterized in that each part block (A, B) exhibits a synchronisation word of an equal or equivalent type of equal length, that for the time recognition and if necessary for the compensation of the phase position of the part blocks (A, B) a correlator (3, 5, 7; 4, 6, 8; 3, 7, 14, 15, 44, 47-52) is used for each part block, that for the synchronisation code words are used which exhibit an unequivocal maximum of their autocorrelation function for the instant T = O, and that the auto correlation function for all instants T Not = O is effectively minimal.

Description

DK 161234 BDK 161234 B

Opfindelsen angår et anlæg til digital informationssignaloverføring, navnlig til digital overføring over satellitter, som omhandlet i indledningen til krav 1.The invention relates to a facility for digital information signal transmission, in particular for digital transmission over satellites, as defined in the preamble of claim 1.

5 Ved en bitseriel dataoverføring bliver de af ko deord bestående datablokke, nemlig rammer og eventuelt delrammer, periodisk gentaget. For at kunne afkode datablokkene rigtigt er det nødvendigt at fastslå rammens tidsmæssige beliggenhed. Ved anvendelse af selvsynkroni-10 serende koder forøges overføringens båndbredde ved forøget redundansanfordring. En såkaldt komma-kode, hvilket er en blokkode, som er indesluttet mellem synkroniseringsmønstre, undgår en nævneværdig forøgelse af båndbredden. Navnlig ved en fire-faset CPSK-modulation (Co-15 herent Phase Shift Keying Modulation) sikres dataregenereringen ved hjælp af en komma-kode på grundlag af rammestrukturen.5 In a bit data transfer, the code blocks, namely frames and possibly subframes, are periodically repeated. In order to properly decode the data blocks, it is necessary to determine the temporal location of the frame. By using self-synchronizing codes, the bandwidth of the transmission is increased by increased redundancy request. A so-called comma code, which is a block code that is embedded between synchronization patterns, avoids a noticeable increase in bandwidth. In particular, with a four-phase CPSK modulation (Co-15 herent Phase Shift Keying Modulation), data generation is ensured using a comma code based on the frame structure.

Hver overføringsblok i det digitale signal indeholder et foranstillet kodeord, synkroniseringsord, som 20 tjener til synkroniseringsdetektering. Derpå følger almindeligvis en følge af datakodeord, som også indeholder kontrolinformationer.Each transmission block in the digital signal contains a preset password, synchronization word, which serves for synchronization detection. Then there is usually a sequence of data passwords which also contain control information.

På den overføringsstrækning, der skal betragtes, kan der optræde tidsfejl og amplitudefejl. Ved takt-25 regenereringen forårsager tidsfejl såkaldte bitslips.On the transmission line to be considered, time errors and amplitude errors may occur. At the rate of regeneration, time errors cause so-called bit slips.

Amplitudefejl, dvs. bitinverteringer, forfalsker data og synkroniseringsord. Ved anvendelse af en firefaset CPSK-modulation er det nødvendigt at kompensere fasedemodulationens flertydighed ved dataregenereringen. Fra 30 litteraturen kendes synkroniseringsord (Barker, Maury), hvor et ringe antal bitfejl i et synkroniseringsord ikke influerer på synkroniseringsorddetekteringens éntydighed.Amplitude errors, i.e. bit inversions, falsifying data and syncing words. Using a four-phase CPSK modulation, it is necessary to compensate the ambiguity of the phase modulation in data generation. From the literature, sync words (Barker, Maury) are known, where a small number of bit errors in a sync word do not affect the uniqueness of the sync word detection.

Fra DE-A 1 30 13 554 kendes et digitalt overføringsanlæg, i hvilket synkroniseringsord i en enkelt 35 datastrøm bliver serielt overført og bearbejdet. Der anvendes to komparatorer, som ikke arbejder samtidigt og undersøger datastrømmen for forskellige synkroniseringsDE-A 1 30 13 554 discloses a digital transmission system in which synchronization words in a single 35 data stream are serially transmitted and processed. Two comparators that do not work at the same time are used to examine the data flow for different synchronizations

DK 161234BDK 161234B

2 ord. Med denne teknik er en eliminering af faseflertydigheden ikke mulig.2 words. With this technique, elimination of phase ambiguity is not possible.

Opfindelsen tager derfor sigte på, til et system til digital informationssignaloverføring at forbedre 5 detekteringen af datastrømmens tidsmæssige beliggenhed og at kompensere indflydelsen hidrørende fra tidsfejl, amplitudefejl og faseflertydighed.The invention therefore aims to improve a digital information signal transmission system for detecting the temporal location of the data stream and to compensate for the influence of time errors, amplitude errors and phase ambiguities.

Opgaven løses med den i krav 1 angivne opfindelse. Videregående udførelsesformer for opfindelsen er be-10 skrevet i underkravene.The task is solved with the invention according to claim 1. Further embodiments of the invention are described in the subclaims.

Ved anvendelse af anlægget ifølge opfindelsen konstateres rammens tidsmæssige beliggenhed med tilstrækkelig sikkerhed. Synkroniseringsordets længde er i forhold til deIrammelængden relativt kort og den 15 dermed forbundne redundans er minimal. Synkroniseringsordene er valgt således, at et udfald af synkroniseringen optræder væsentligt sjældnere end ukorrigerbare fejl i informationen.When using the system according to the invention, the temporal location of the frame is ascertained with sufficient certainty. The length of the synchronization word is relatively short relative to the frame length and the associated redundancy is minimal. The synchronization words are chosen so that a synchronization outcome occurs much less frequently than uncorrected errors in the information.

Til modtagesidens detektering af synkroniserings-ordene skal ordene betragtes i en særlig tidsbeliggenhed i korrelatorer. Synkroniseringsordene ifølge opfindelsen indeholder i den uforskudte tilstand af autokorrelationsfunktionen, dvs. for tidspunktet T=0, et udpræget maksimum. For alle tidspunkter T#0 er autokorrelations-25 funktionen størrelsesmæssigt minimal.For the receiving side's detection of the synchronization words, the words must be considered in a special time location in correlators. The synchronization words according to the invention contain in the undistorted state of the autocorrelation function, i.e. for the time T = 0, a pronounced maximum. For all times T # 0, the autocorrelation function is minimally in size.

En CPSK-modulation har en faseflertydighed. Det kan føre til, at synkroniseringsordet ankommer i inverteret tilstand ved modtageren. Synkroniseringsordene udviser derfor for alle tidspunkter T^O en meget lille 30 forskel mellem autokorrelationsfunktion og inverteret autokorrelationsfunktion, således at synkroniseringsordene kan detekteres sikkert også i inverteret tilstand.A CPSK modulation has a phase ambiguity. This may cause the sync word to arrive in inverted state at the receiver. Therefore, the synchronization words exhibit at all times T ^ O a very small difference between autocorrelation function and inverted autocorrelation function, so that the synchronization words can be detected safely also in the inverted state.

DK 161234BDK 161234B

3 CPSK-demodulationens flertydighed kan kompenseres ved udnyttelse af den i modtageren dannede korrelationsfunktion mellem de lagrede og modtagne synk-ord. Den tidsmæssige beliggenhed af rammebegyndelsen bestemmes af 5 resultatet af den værdi der bestemmes i korrelatoren og en efterkoblet logisk tærskelkobling for så vidt som de fra de to korrelatorer afledte styresignaler tilføres et logisk kredsløb, som afspørges i et defineret tidsvindue.3 The ambiguity of the CPSK demodulation can be compensated by utilizing the correlation function formed in the receiver between the stored and received sync words. The temporal location of the frame start is determined by the result of the value determined in the correlator and a post-coupled logic threshold coupling insofar as the control signals derived from the two correlators are fed to a logic circuit which is interrogated in a defined time window.

Til korrektion af tidsfejl, som kan føre til et 10 bitslip, foreslås det at kontrollere krydskorrelationsfunktionen i et lidt bredere tidsvindue. På grundlag af beliggenheden af krydskorrelationsfunktionens maksimum i dette tidsvindue kan der umiddelbart sluttes om et bitslips optræden og størrelse, og der kan korrigeres for 15 den næste ramme. Hertil skal krydskorrelationsfunktionen for tidspunktet T=0 beløbsmæssigt være større end krydskorrelationsfunktionen for tidspunkter T^Q. Dette er imidlertid kun muligt indtil et maksimalt antal bitfejl i synkroniseringsordet. Det maksimalt tilladelige 20 antal bitfejl er desto større, jo længere synkroniseringsordet vælges. Mellem de to fordringer om ringe redundans og høj restfejlsandsynlighed blev der afledet et gunstigt kompromis.For correction of time errors that can lead to a 10 bit slip, it is suggested to check the cross correlation function in a slightly wider time window. Based on the location of the maximum cross-correlation function in this time window, the occurrence and size of a bit clip can be immediately concluded and corrected for the next frame. For this, the cross-correlation function for time T = 0 must be greater than the cross-correlation function for time T ^ Q. However, this is only possible until a maximum number of bit errors in the sync word. The maximum allowable 20 number of bit errors, the greater the longer the sync word is selected. A favorable compromise was derived between the two claims for low redundancy and high residual error probability.

Med synkroniseringsordene kan der ved en længde 25 af synkroniseringsordet på 16 bit tillades indtil 3 vilkårlige bitfejl i et synkroniseringsord, uden at synkroniseringsorddetekteringens éntydighed går tabt. Hvis vinduesbredden til kontrol af synkronordet andrager mere end 1 bit, skal der tages hensyn til, at synkronordet 30 kan være forfalsket som følge af bitfejl, der er frembragt af den defekte kanal og af nabodata.With the synchronization words, at a length 25 of the 16 bit synchronization word, up to 3 arbitrary bit errors in a synchronization word can be allowed without losing the uniqueness of the synchronization word detection. If the window width for checking the synchronous word is more than 1 bit, it must be taken into account that the synchronous word 30 may be falsified due to bit errors caused by the defective channel and by neighbor data.

Med synkroniseringsordene kan der ved en vinduesbredde på fem taktskridt med en logisk tærskelkobling konstateres bitslips på indtil ± 2 taktskridt, og den 3^ tidsmæssige forskydning kan ophæves. Med henblik på at opfylde det kriterium, at udfaldet af synkroniseringen skal optræde væsentligt sjældnere, end den maksimaltWith the synchronization words, at a window width of five beats with a logical threshold coupling, bit slips of up to ± 2 beats can be detected and the 3 ^ temporal shift can be eliminated. In order to fulfill the criterion that the outcome of the synchronization must occur significantly less than the maximum

DK 161234 BDK 161234 B

4 tilladelige restfejlsandsynlighed for ikke korrigerbart forfalskede informationer foregiver, foreslås det ved en opdeling af hovedrammen i to delrammer (bitplan A og B) til synkronisering i begge delrammer at anvende et 5 lignende eller ækvivalent mønster med samme længde. Med en korrelator for hver af delrammerne A og B kan begge synkronord kontrolleres samtidigt, derudfra bestemmes rammens tidsmæssige beliggenhed, og fasedemodulationens flertydighed ophæves. Som følge af anven-10 delsen af dette system til rammesynkroniseringen optræder der først synkroniseringsfejl, når begge synkroniseringsord er forstyrret af hver fire bitfejl.If a permissible residual error probability of non-correctable false information is given, it is suggested by dividing the main frame into two subframes (bit planes A and B) for synchronization in both subframes to use a similar or equivalent pattern of the same length. With a correlator for each of the subframes A and B, both synchronous words can be controlled simultaneously, from which the temporal location of the frame is determined and the ambiguity of the phase modulation is eliminated. As a result of using this system for frame synchronization, synchronization errors occur only when both synchronization words are disturbed by every four bit errors.

Opfindelsen er i det følgende beskrevet nærmere på grundlag af et udførelseseksempel.The invention is described in more detail below on the basis of an exemplary embodiment.

15 På tegningen viser:15 In the drawing:

Fig. 1 et blokdiagram til udnyttelse af synkroniseringsordene i delrammerne A og B, fig. 2 et blokdiagram til bestemmelse af krydskorrelationsfunktionen, 20 fig. 3 en gaffelkobling, fig. 4 en tabel, fig. 5 en kobling til bestemmelse af synkroniseringsordets beliggenhed, og fig. 6 en forløbsstyring.FIG. 1 is a block diagram utilizing the synchronization words in subframes A and B; FIG. 2 is a block diagram for determining the cross-correlation function; FIG. 3 shows a fork coupling; FIG. 4 and a table, FIG. 5 shows a coupling for determining the location of the synchronization word; and FIG. 6 a process control.

25 Fig. 1 viser et blokdiagram til konstatering af synkroniseringsordene. Det over klemmen 1 ankommende signal bliver tilført en 4-fase-demodulator 2 (CSPK). Datastrømmen er opdelt i to bitplaner A og B. Da demodulationen i CPSK-demodulatoren 2 er flertydig, kan 30 signalerne A, B optræde inverteret eller ikke-inver-teret, dvs. der er for hvert bitplan to muligheder. Dataene i hvert bitplan afgives til skifteregistre henholdsvis 3 og 4. Ved sammenligning af de i skifteregistret 3, 4 indlæste data med det ved hjælp af en 35 kobling 44 (fig. 2) fast tilkoblede synkronord dannes i trinnene henholdsvis 5 og 6 krydskorrelationsfunktionen. Hvert 5FIG. 1 shows a block diagram for finding the synchronization words. The signal arriving at terminal 1 is supplied with a 4-phase demodulator 2 (CSPK). The data stream is divided into two bit planes A and B. Since the demodulation in the CPSK demodulator 2 is ambiguous, the signals A, B may appear inverted or non-inverted, ie. there are two options for each bit plan. The data in each bit plane is output to shift registers 3 and 4, respectively. By comparing the data entered in shift register 3, 4 with the synchronous word permanently coupled by a coupling 44 (Fig. 2), the cross-correlation function is formed in steps 5 and 6, respectively. Every 5

DK 161234 BDK 161234 B

af trinnene 5 og 6 er lagerkomponenter, som er delt i to dele. Ved addition af indholdene på de opkaldte adresser i lagrene i additionstrinnene henholdsvis 7 og 8 kan værdien af krydskorrelationsfunktionen be-5 stemmes. En efterfølgende logisk tærskelkobling henholdsvis 9 og 10 bedømmer på grundlag af den tilførte krydskorrelationsværdi, om synk-ordet eller dets inver-tering eller intet synk-ord er blevet modtaget. I trinnet 11 konstateres synkroniseringsordets tidsmæssige 10 beliggenhed, og den interne rammetakt bliver eventuelt efterreguleret. Det kan ligeledes konstateres, om deldatastrømmene A og B er blevet modtaget i inverteret, ikke-inverteret og/eller ombyttet tilstand. Ved hjælp af gaffelkoblingen 12 bliver deldatastrømmene eventuelt 15 korrigeret.of steps 5 and 6 are storage components which are divided into two parts. By adding the contents of the called addresses to the storage in the addition steps 7 and 8, respectively, the value of the cross-correlation function can be determined 5. A subsequent logical threshold coupling 9 and 10 respectively, on the basis of the added cross-correlation value, assess whether the sync word or its inversion or no sync word has been received. In step 11, the temporal location of the synchronization word is determined and the internal frame rate is optionally re-regulated. It can also be ascertained whether the sub-data streams A and B have been received in inverted, non-inverted and / or exchanged states. Optionally, by means of the fork coupling 12, the partial data streams 15 are corrected.

Fig. 2 viser et diagram til bestemmelse af krydskorrelationsfunktionen. Datastrømmen når fra klemmen 13 serielt ind i skifteregistret 3. Over skifteregistret 3's parallelle udgange ligger der en bit-20 følge på 16 bit. Hver 8 bit af det over skifteregistret 3's parallelle udgange liggende dataord bliver over eksklusiv-ELLER-porte 47-49 henholdsvis 50-52 sammenlignet med det tilsvarende delkodeord af synkroniseringsordet. Udgangene på eksklusiv-ELLER-portene føres 25 til en prom (PROM = programmable read only memory) 14 henholdsvis 15. Det over de 8 udgange på eksklusiv-ELLER-portene 47-49 henholdsvis 50-52 liggende datamønster angiver en adresse i promkoblingskredsene 14 eller 15. Indholdene på de opkaldte lagerpladser i promkob-30 lingskredsene 14 og 15 afgives til et additionsled 7. Alt efter kodeordet, som ligger på skifteregistret 3's udgange, påkaldes i promkoblingskredsene 14 og 15 bestemte adresser, som påkalder et lagerindhold mellem -4 og +4 binært kodet, som svarer til det foreliggende 35 antal overensstemmelser. Additionen i additionsleddet 7 giver værdien af krydskorrelationsfunktionen (-8 til \ 6FIG. 2 shows a diagram for determining the cross-correlation function. From the terminal 13, the data stream reaches serially into the shift register 3. Above the parallel outputs of the shift register 3 there is a bit-20 sequence of 16 bits. Every 8 bits of the data words located above the parallel outputs of the switch register 3 are over exclusive OR gates 47-49 and 50-52 respectively compared to the corresponding sub-code word of the synchronization word. The outputs of the exclusive OR gates 25 are routed to a prom (PROM = programmable read only memory) 14 respectively 15. The above data outputs on the 8 or the exclusive OR gates 47-49 and 50-52 respectively indicate an address in the prom link circuits 14 or 15. The contents of the named storage locations in the promo circuits 14 and 15 are output to an addition stage 7. Depending on the password, which is on the outputs of the switch register 3, specific addresses are called in the promo circuits 14 and 15 which call for a storage content between -4 and +4 binary coded which corresponds to the present number of matches. The addition in the addition step 7 gives the value of the cross-correlation function (-8 to \ 6

DK 161234 BDK 161234 B

+8). De to bit med højeste værdi i de på promkoblings-kredsene 14 og 15's udgange liggende lagerindhold afgives til en eksklusiv-ELLER-port 16. Eksklusiv-ELLER-porten 16's udgang samt pladsen med højeste 5 værdi på additionsleddet 71 s udgang fører til en yderligere eksklusiv-ELLER-port 17, hvis udgang udgør bitten med højeste værdi i den på additionsleddet 7's udgang optrædende krydskorrelationsværdi i 2'er-komple-ment. Additionsleddet 7's udgang udgør sammen med 10 eksklusiv-ELLER-porten 17's udgang den bestemte værdi af krydskorrelationsfunktionen, der fremstilles i 2'er-komplement.+8). The two bits with the highest value in the stock contents of the prom coupling circuits 14 and 15 are output to an exclusive OR gate 16. The output of the exclusive OR gate 16 and the space with the highest 5 value on the output link 71 s output leads to a further exclusive-OR gate 17, the output of which is the bit of the highest value in the cross-correlation value appearing at the output of the addition 7 in 2s complement. The output of the addition link 7 together with the output of the exclusive OR gate 17 constitutes the definite value of the cross-correlation function produced in 2's complement.

Udgangssignalet fra eksklusiv-ELLER-porten 17 er bitten med højeste værdi og udgør dermed krydskorre- 15 lationsfunktionens fortegn.The output of the exclusive OR gate 17 is the bit of the highest value and thus constitutes the sign of the cross-correlation function.

Med værdierne på additionsleddet 7’s udgang og på eksklusiv-ELLER-porten 17's udgang aktiveres en yderligere promkoblingskreds 18.With the values of the addition link 7's output and the exclusive OR gate 17's output, an additional promo circuit 18 is activated.

Hvis de over promkoblingskredsen 18 liggende 20 adressekodeord med hensyn til deres værdi beløbsmæssigt overskrider en forudbestemt tærskel, bliver de tilhørende lagerpladser karakteriseret med logisk "1". Et opkaldt lagerindhold logisk "1", som afgives over klemmen 19, indikerer detekteringen af et synkroni-25 seringsord, hvorhos det på klemmen 22's tilstand indikeres, om der foreligger en inverteret eller ikke-inverteret tilstand.If the 20 address code words above the promo circuit 18 with respect to their value exceed a predetermined threshold, the corresponding storage locations are characterized by logical "1". A named storage contents logic "1" delivered above the terminal 19 indicates the detection of a synchronization word, indicating in the state of the terminal 22 whether an inverted or non-inverted state exists.

Fig. 3 viser en gaffelkobling, som styres ved hjælp af signalerne E og F over klemmerne 22 og 30 23.FIG. 3 shows a fork coupling controlled by signals E and F over terminals 22 and 30 23.

Signalerne E og F kommer fra korrelatorerne for bitplanerne A og B og svarende til bittene med højeste værdi i korrelatorudgangssignalet for A og B.The signals E and F come from the correlators for bit planes A and B and corresponding to the bits with the highest value in the correlator output signal for A and B.

77

DK 161234 BDK 161234 B

Koblingen i fig. 3 er opbygget efter følgende skruktur: C = (E.F+É.F) . (A.É+A.E) + (E.F+F.E) · (B.F+B.F) D = (E.F+É.F) · (B.F+B.F) + (E.F+É.F) · (A.É+A.E)The coupling in FIG. 3 is constructed according to the following structure: C = (E.F + É.F). (A.É + AE) + (E.F + FE) · (B.F + BF) D = (E.F + É.F) · (B.F + BF) + (E.F + É. F) · (A.É + AE)

Udgangssignalerne C og D på den i fig. 3 5 viste gaffelkoblings klemme 24 og 25 fremkommer ved et indgangssignal A og B over klemme 20 og 21 alt efter styreinformationen over klemme 22 og 23.The output signals C and D in the embodiment of FIG. Fork coupling terminals 24 and 25 appear at an input signal A and B above terminals 20 and 21 according to the control information over terminals 22 and 23.

Ved hjælp af denne kobling kan to datastrømme enten ombyttes eller/og inverteres (se fig. 4).Using this coupling, two data streams can either be exchanged or / and inverted (see Fig. 4).

10 Fig. 5 viser en kobling til detektering af be liggenheden af synkroniseringsmønstret i rammen. Klemmerne 19 og 27 får tilført signalerne fra lagerpladserne i en promkoblingskreds 18 som vist i fig. 2. Der findes et skifteregister 28 og 29 til hver sin del-15 ramme. Skifteregistrene 28 og 29 indeholder hver fem bitceller, til hvis midterværdier der er tilsluttet en OG-port 30. Endvidere findes der strobe-indgange 31 henholdsvis 32. De parallelle udgange på skifteregistret 28 og 29 fører til en 1024 x 4 promkob-20 lingskreds 33. Indholdet på de opkaldte lagerpladser i promkoblingskredsen 33 føres til et additionsled 34, som ligeledes fra en forprogrammerbar rammetæller 26, 36 får tilført tællerstillinger. I det viste eksempel tæller tælleren i hvert enkelt tilfælde indtil 25 en adresse 320. Så snart tælleren har nået sin slut-adresse, får dens ladeindgang 37 tilført en impuls, og tælleren bliver igen tilbagestillet til den forpro-grammerbare udgangstilstand.FIG. 5 shows a coupling for detecting the location of the synchronization pattern in the frame. The terminals 19 and 27 are fed to the signals from the storage locations in a prom coupling circuit 18 as shown in FIG. 2. There is a shift register 28 and 29 for each part-15 frame. The switch registers 28 and 29 each contain five bit cells to whose center values are connected to an AND gate 30. Furthermore, there are strobe inputs 31 and 32. The parallel outputs on the switch register 28 and 29 lead to a 1024 x 4 promc link circuit 33 The contents of the named storage locations in the prom switching circuit 33 are fed to an addition link 34 which is also supplied with counter positions from a pre-programmable frame counter 26, 36. In the example shown, the counter in each case counts up to an address 320. Once the counter has reached its end address, its charging input 37 is supplied with a pulse and the counter is reset to the pre-programmable output state.

Til den første søgning efter rammetakten får nystartindgangen 39 tilført et signal, som nyindstil-ler tælleren 36. Samtidigt påkaldes over ELLER-porten 40 strobe-indgangene 31 og 32 på skifteregistrene 28 og 29. Da udgangene på skifteregistrene 28 og 29 fører til promkoblingskredsen 33, påkaldes iFor the first search for the frame rate, the restart input 39 is supplied with a signal which resets the counter 36. At the same time, the strobe inputs 31 and 32 on the shift registers 28 and 29. are invoked over the OR gate 40, since the outputs of the shift registers 28 and 29 lead to the promo circuit 33 , invoked in

DK 161234BDK 161234B

8 hvert enkelt tilfælde en bestemt adresse i promkoblings-kredsen 33. Udgangene på den logiske korrelatortærskel for bitplanerne A og B er over klemmerne 19 og 27 forbundet med de serielle indgange på skifteregistrene 5 19 og 27.8 in each case a specific address in the prom link circuit 33. The outputs on the logical correlator threshold for bit planes A and B are connected via terminals 19 and 27 to the serial inputs on switch registers 5 19 and 27.

Over klemmen 38 ligger den fra forløbsstyringen udvundne beliggenhed af tidsvinduet. Den bliver over STROBE-porten 40 afgivet til strobeindgangene 31 og 32.Above the terminal 38 is the location of the time window, which has been recovered from the process control. It is delivered over the STROBE port 40 to the strobe inputs 31 and 32.

TO Den information, der efter 5 i tidsvinduet op trædende taktskridt indlæses i skifteregistrene 28 og 29, bliver derpå udnyttet ved hjælp af promkoblings-kredsindholdet 33. Indholdet af lagerpladsen på den opkaldte adresse giver additionsleddet 34 information 15 om, hvor langt det foreliggende taktskridt ligger fjernet fra rammetakten. Ved den Ønskede beliggenhed af synkroniseringstakten befinder takten sig i de midterste lagerceller i skifteregistrene 28 og 29. Over den her tilsluttede OG-port 30 afgives der en impuls til 20 klemmen 41. Over en tilsluttet logisk udnyttelseskobling, der er vist i fig. 6, afgives en impuls over klemmen 39 til ladeindgangen 37. Tælleren 36 begynder dermed at tælle påny. Hvis den ønskede beliggenhed ikke er nået, f.eks. som følge af et bitslip, ændres tælleren 25 36's tællesum over en anden opkaldt adresse i promkob-lingskredsen 33. Dermed forskydes taktsynkroniseringen af rammen på den rigtige måde.TO The information which, after 5 in the time window, incremental rate steps are entered in the switch registers 28 and 29, is then utilized by means of the promo circuit content 33. The content of the storage at the called address gives the addition link 34 information 15 about how far the current rate step is. removed from the frame rate. At the desired location of the synchronization rate, the clock is in the middle storage cells of the switch registers 28 and 29. Above the AND gate 30 connected there is an impulse to the terminal 41. Over a connected logic utilization circuit shown in FIG. 6, an impulse is delivered across the terminal 39 to the charging input 37. The counter 36 thus begins to count again. If the desired location is not reached, e.g. as a result of a bit slip, the counter count of the count 36 36 is changed over another called address in the prom link circuit 33. Thus, the rate synchronization of the frame is shifted correctly.

Fig. 6 viser en logisk udnyttelseskobling til styring af forløbet af søge- og holdeproces. Klemmerne 30 22 og 23 får tilført synkronordets beliggenhedsinformationer fra de to delrammer A, B. Så snart synkronordet foreligger i den rigtige tidsmæssige beliggenhed, modtager indgangsklemmen 41 fra OG-porten 30 en impuls. Søgemoden udløses ved et tilstandsskift til 35 logisk 1 over klemmen 38, som fører til ELLER-porten 40. En impuls over klemmen 39 fører over en ELLER-FIG. 6 shows a logical utilization link for controlling the course of the search and hold process. Terminals 30 22 and 23 are supplied with the location information of the synchronous word from the two subframes A, B. As soon as the synchronous word is in the correct temporal location, the input terminal 41 from the AND gate 30 receives a pulse. The search mode is triggered by a state switch to logic 1 across terminal 38 leading to OR port 40. An impulse across terminal 39 passes over a OR

Claims (8)

15 PATENTKRAV15 PATENT REQUIREMENTS 1. Anlæg til overføring og til modtagelse af digitale informationssignaler, navnlig til digital lydoverføring over satellitter, hvor datafølgerne er beliggende tidsmæssigt efter hinanden i en ramme, og hvor 20 rammen i modtageren er opdelt i tidsmæssigt parallelle delrammer (A,B), som repræsenterer datafølgerne, kendetegnet ved, at hver delramme har et synkroniseringsord af samme eller ækvivalent type med samme længde, at der til den tidsmæssige detektering af 25 og evt. til kompensation af delrammernes (A,B) fasebeliggenhed anvendes en korrelator (3,5,7; 4,6,8; 3,7,14,15,44,47-52) pr. delramme (A,B), at der til synkroniseringen anvendes kodeord, som har et entydigt maksimum af deres autokorrelationsfunktion for tids-30 punktet T=0, og at autokorrelationsfunktionen for alle tidspunkter T^O er beløbsmæssigt minimal. DK 161234 B1. Devices for transmitting and receiving digital information signals, in particular for digital audio transmission over satellites, where the data sequences are located temporally in succession in a frame and wherein the frame of the receiver is divided into temporally parallel subframes (A, B) representing The data sequences, characterized in that each subframe has a synchronization word of the same or equivalent type of the same length, that for the temporal detection of 25 and possibly. to compensate for the phase position of the subframes (A, B), one correlator (3.5,7; 4.6.8; 3.7,14,15,44,47-52) is used. subframe (A, B) that for synchronization, passwords that have a unique maximum of their autocorrelation function for the time point T = 0 are used and that the autocorrelation function for all time points T0 is minimal. DK 161234 B 2. Anlæg ifølge krav 1, kendetegnet ved anvendelse af et af de følgende synkroniseringsord/ deres invertering, spejling (læst bagfra) eller inverterede spejling, idet O er logisk O og 1 er logisk 1: 5 1. 0110100001110111 2. 0101101110111000 3. 0100100010001111 4. 0100010010111100System according to claim 1, characterized by using one of the following synchronization words / their inversion, mirroring (read from behind) or inverted mirroring, O being logical O and 1 being logical 1: 5 1. 0110100001110111 2. 0101101110111000 3. 0100100010001111 4. 0100010010111100 3. Anlæg ifølge krav 1, kendetegnet 10 ved, at der findes en kobling (fig. 5) til detektering af synkroniseringsordets tidsmæssige beliggenhed og til korrektion af rammens tidsmæssige beliggenhed.System according to claim 1, characterized in that a coupling (Fig. 5) exists for detecting the temporal location of the synchronization word and for correcting the temporal location of the frame. 4. Anlæg ifølge krav 1, kendetegnet ved, at der findes en kobling til ombytning (fig. 3) af 15 de ankommende datastrømme (A og B), hvilken kobling styres af en synkroniseringsorddetekteringskobling.System according to claim 1, characterized in that there is a switch for switching (Fig. 3) of the arriving data streams (A and B), which coupling is controlled by a synchronization word detection switch. 5. Anlæg ifølge krav 1,kendetegnet ved, at til den første opsøgning henholdsvis genopsøgning af synkroniseringstilstanden kontrolleres synkro- 20 niseringsordets tilstedeværelse to gange.System according to claim 1, characterized in that the presence of the synchronization word is checked twice for the first search or retransmission of the synchronization state, respectively. 6. Anlæg ifølge krav 1, kendetegnet ved, at der findes to driftstilstande, hvorhos synkroniseringsmønstret tilstedeværelse kontrolleres to gange i en første driftstilstand, og at der i tilfælde af, at 25 synkroniseringsmønstret detekteres, kobles til den anden driftstilstand, i hvilken datafølgens fasebeliggenhed kontrolleres på ± 2 bittakter fra normaltilstanden, og at der ved afvigelse fra normaltilstanden -sker en tidsmæssig korrektion umiddelbart i den næste ramme.System according to claim 1, characterized in that there are two operating states in which the synchronization pattern presence is checked twice in a first operating state and, in the event that the synchronization pattern is detected, coupled to the second operating state in which the phase location of the data sequence is checked. of ± 2 bytes from the normal state, and when deviating from the normal state, a temporal correction occurs immediately in the next frame. 7. Anlæg ifølge krav 1, kendetegnet ved, at der til bestemmelse af synkroniseringsordet anvendes to lagerkomponenter (14, 15), hvis udgange over en additionskobling (7) frembringer værdien af krydskorrelationen mellem det aftalte og det modtagne synkro- 35 niseringsord. DK 161234 BSystem according to claim 1, characterized in that two storage components (14, 15) are used for determining the synchronization word, the outputs of which are provided over an addition coupling (7), the value of the cross-correlation between the agreed and received synchronization word. DK 161234 B 8. Kobling ifølge krav 1, kendetegnet ved, at der findes en logisk tærskelkobling, som indeholder en lagerkomponent (18), i hvilken der til hver krydskorrelationsværdi er knyttet en adresse, under 5 hvilken der er lagret repræsentative værdier for tilstandene: synk-ord forefindes, inverteret synk-ord forefindes og intet synk-ord forefindes.Coupling according to claim 1, characterized in that a logical threshold coupling is provided containing a storage component (18) in which an address below each of which cross-value values are stored, representative of the states: sync words exists, inverted sync words are present and no sync words are present.
DK019183A 1982-01-22 1983-01-18 DEVICES FOR TRANSMISSION OF DIGITAL INFORMATION SIGNALS DK161234C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3201934 1982-01-22
DE3201934A DE3201934A1 (en) 1982-01-22 1982-01-22 SYSTEM FOR TRANSMITTING DIGITAL INFORMATION SIGNALS

Publications (4)

Publication Number Publication Date
DK19183D0 DK19183D0 (en) 1983-01-18
DK19183A DK19183A (en) 1983-07-23
DK161234B true DK161234B (en) 1991-06-10
DK161234C DK161234C (en) 1991-11-25

Family

ID=6153660

Family Applications (1)

Application Number Title Priority Date Filing Date
DK019183A DK161234C (en) 1982-01-22 1983-01-18 DEVICES FOR TRANSMISSION OF DIGITAL INFORMATION SIGNALS

Country Status (8)

Country Link
EP (1) EP0084787B1 (en)
JP (1) JPS58131767A (en)
AT (1) ATE19450T1 (en)
CA (1) CA1212723A (en)
DE (2) DE3201934A1 (en)
DK (1) DK161234C (en)
NO (1) NO161350C (en)
SG (1) SG64788G (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038957A (en) * 1983-08-11 1985-02-28 Nec Corp Elimination circuit of phase uncertainty of four-phase psk wave
DE3333714A1 (en) * 1983-09-17 1985-04-04 Standard Elektrik Lorenz Ag, 7000 Stuttgart CIRCUIT ARRANGEMENT FOR FRAME AND PHASE SYNCHRONIZATION OF A RECEIVING SAMPLE CLOCK
FR2568073B1 (en) * 1984-07-20 1990-10-05 Telecommunications Sa DEVICE FOR LOSS AND RESUMPTION OF FRAME LOCK FOR A DIGITAL SIGNAL.
DE3500363A1 (en) * 1985-01-08 1986-07-10 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Arrangement for the synchronisation of a digital data receiver
JPH0681131B2 (en) * 1985-12-28 1994-10-12 ソニー株式会社 Sync detection circuit for digital broadcasting receiver
NZ220548A (en) * 1986-06-18 1990-05-28 Fujitsu Ltd Tdm frame synchronising circuit
US4808937A (en) * 1986-07-15 1989-02-28 Hayes Microcomputer Products, Inc. Phase-locked loop for a modem
EP0343189B1 (en) * 1987-02-02 1993-10-27 Motorola, Inc. Tdma communications system with adaptive equalization
DE3719659A1 (en) * 1987-06-12 1988-12-29 Standard Elektrik Lorenz Ag DEVICE FOR FAST FRAME AND PHASE SYNCHRONIZATION
US4912706A (en) * 1988-11-18 1990-03-27 American Telephone And Telegraph Company Frame synchronization in a network of time multiplexed optical space switches
US5539751A (en) * 1992-03-31 1996-07-23 The Commonwealth Of Australia Of C/-The Secretary Of Defence Demultiplexer synchronizer
IT1256471B (en) * 1992-12-10 1995-12-07 Italtel Spa METHOD FOR ACQUISITION OF SYNCHRONISM BETWEEN STATIONARY STATION AND PORTABLE TELEPHONE IN A DIGITAL CORDLESS TELEPHONE SYSTEM
SE514809C2 (en) * 1994-07-13 2001-04-30 Hd Divine Ab Method and apparatus for synchronizing transmitters and receivers in digital system
FR2749462B1 (en) * 1996-06-04 1998-07-24 Ela Medical Sa AUTONOMOUS DEVICE, IN PARTICULAR ACTIVE IMPLANTABLE MEDICAL DEVICE, AND ITS EXTERNAL PROGRAMMER WITH SYNCHRONOUS TRANSMISSION
DE102011122978B3 (en) 2011-05-17 2022-01-13 Rohde & Schwarz GmbH & Co. Kommanditgesellschaft Method and device for determining demodulation parameters of a communication signal

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4968606A (en) * 1972-11-06 1974-07-03
US3879580A (en) * 1972-11-24 1975-04-22 Hughes Aircraft Co Data terminal for use with TDMA processing repeater
DE2653968A1 (en) * 1976-11-27 1978-06-01 Licentia Gmbh Data correlation system for comparing parallel and serial data - has switched shift register with subtraction and adder stages
JPS5853810B2 (en) * 1977-09-30 1983-12-01 富士通株式会社 Retraction phase identification method
DE2811851C2 (en) * 1978-03-17 1980-03-27 Siemens Ag, 1000 Berlin Und 8000 Muenchen Method for frame synchronization of a time division multiplex system
JPS55135450A (en) * 1979-04-10 1980-10-22 Mitsubishi Electric Corp Synchronous signal formation for digital transmission signal

Also Published As

Publication number Publication date
CA1212723A (en) 1986-10-14
ATE19450T1 (en) 1986-05-15
NO161350B (en) 1989-04-24
DK19183A (en) 1983-07-23
DE3363107D1 (en) 1986-05-28
EP0084787A1 (en) 1983-08-03
DE3201934A1 (en) 1983-08-04
NO161350C (en) 1989-08-02
NO830204L (en) 1983-07-25
SG64788G (en) 1989-04-14
DK161234C (en) 1991-11-25
DK19183D0 (en) 1983-01-18
JPS58131767A (en) 1983-08-05
EP0084787B1 (en) 1986-04-23

Similar Documents

Publication Publication Date Title
US5276691A (en) Method for the control of receiver synchronization in a mobile phone
US4225960A (en) Automatic synchronizing system for digital asynchronous communications
DK161234B (en) DEVICES FOR TRANSMISSION OF DIGITAL INFORMATION SIGNALS
US4541104A (en) Framing circuit for digital system
US2918526A (en) Electric telegraph systems
JP2578334B2 (en) Digital transmission method
US3550082A (en) Automatic synchronization recovery techniques for nonbinary cyclic codes
EP0443754A2 (en) Method and apparatus for detecting a frame alignment word in a data stream
JPH0239140B2 (en)
GB1270891A (en) Data transmission system
US3851101A (en) Adaptive phase synchronizer
JP2597872B2 (en) Block synchronization method
EP0451767B1 (en) Frame synchronization stabilizer
US4472811A (en) Subscribers loop synchronization
JP2648752B2 (en) Device that guarantees accurate decoding of data information
US3649758A (en) Frame synchronization system
JPH0666777B2 (en) Method and device for synchronizing digital information signal
US3699516A (en) Forward-acting error control system
US2846502A (en) Automatic phasing for synchronous radio telegraph systems
JP3290331B2 (en) Block synchronization processing circuit
SU1092738A1 (en) Device for automatic discrimination of discrete communication channel errors
JPH01311740A (en) Synchronous word detection confirming system
SU1083391A1 (en) Receiver of synchronizing recurrent sequence
SU1197103A1 (en) Device for automatic measuring of characteristics of discrete communication channel
JPS61137447A (en) Decoding device for multiphase psk signal

Legal Events

Date Code Title Description
PBP Patent lapsed