DK157911B - PROCEDURE FOR THE PREPARATION OF ALUMINUM OR MAGNESIUM PHOSPHIDS - Google Patents
PROCEDURE FOR THE PREPARATION OF ALUMINUM OR MAGNESIUM PHOSPHIDS Download PDFInfo
- Publication number
- DK157911B DK157911B DK196182A DK196182A DK157911B DK 157911 B DK157911 B DK 157911B DK 196182 A DK196182 A DK 196182A DK 196182 A DK196182 A DK 196182A DK 157911 B DK157911 B DK 157911B
- Authority
- DK
- Denmark
- Prior art keywords
- reactor
- phosphorus
- magnesium
- metal
- zone
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/08—Other phosphides
- C01B25/082—Other phosphides of boron, aluminium, gallium or indium
- C01B25/085—Other phosphides of boron, aluminium, gallium or indium of aluminium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/08—Other phosphides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/08—Other phosphides
- C01B25/081—Other phosphides of alkali metals, alkaline-earth metals or magnesium
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Catalysts (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Powder Metallurgy (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Description
iin
DK 15791 1 BDK 15791 1 B
I dansk patentansøgning nr. 4740/80 angives en fremgangsmåde til fremstilling af aluminium- eller magnesiumphosphider,ved hvilken det fint fordelte metal eller en legering af de to metaller omsættes med gult 5 phosphor ved en temperatur mellem 300 og 600°c i en inert gasatmosfære og i nærværelse af chlor, brom, iod eller en forbindelse af disse grundstoffer med phosphor, svovl, hydrogen, ammonium, zink eller det metal, der skal omsættes,som katalysator.Danish Patent Application No. 4740/80 discloses a process for producing aluminum or magnesium phosphides in which the finely distributed metal or an alloy of the two metals is reacted with yellow phosphorus at a temperature between 300 and 600 ° C in an inert gas atmosphere and in the presence of chlorine, bromine, iodine or a compound of these elements with phosphorus, sulfur, hydrogen, ammonium, zinc or the metal to be reacted as catalyst.
10 Ifølge en særlig foretrukken udførelsesform blandes det fint pulveriserede eller smuldformede metal først grundigt med katalysatoren. Blandingen opvarmes i et egnet lukkeligt reaktionskar i inert gasatmosfære, f.eks. under nitrogen ved normaltryk 15 til reaktionstemperaturen mellem 300 og 600°C. Når den ønskede reaktionstemperatur er opnået tilsættes flydende gult phosphor med en sådan hastighed, at den frigjorte reaktionsvarme problemfrit kan bortledes, og temperaturen holdes i området mellem 300 og 20 600°C.In a particularly preferred embodiment, the finely powdered or crumbly metal is first thoroughly mixed with the catalyst. The mixture is heated in a suitable closed reaction vessel in an inert gas atmosphere, e.g. under nitrogen at normal pressure 15 to the reaction temperature between 300 and 600 ° C. When the desired reaction temperature is obtained, liquid yellow phosphorus is added at such a rate that the released heat of reaction can be easily dissipated, and the temperature is kept in the range between 300 and 20 600 ° C.
Det har nu vist sig, at denne fremgangsmåde ved en ændring kan gøres endnu sikrere og lettere kontrolbar og fremfor alt delvis eller endog fuldstændig kontinuerlig, såfremt også det fint fordelte 25 metal langsomt tilsættes i reaktionskarret.It has now been found that, by a change, this process can be made even safer and more easily controllable and, above all, partially or even completely continuous, even if the finely distributed metal is slowly added to the reaction vessel.
Fremgangsmåden ifølge opfindelsen er således ejendommelig ved, at såvel det flydende gule phosphor som det finfordelte metal langsomt tilsættes i reaktionskarret.The process according to the invention is thus characterized in that both the liquid yellow phosphorus and the finely divided metal are slowly added to the reaction vessel.
30 Gennemføres fremgangsmåden ifølge opfindelsen i en i det væsentlige cylindrisk reaktor, der opvarmes over den nedre bund, dannes tydeligt fire forskellige zoner, der ovenfra og nedefter kan beskrives som følger: 1. Zone: I denne øverste zone eksisterer kun gas, og 35 dette en blanding af den anvendte inerte gas og phosphordamp. Da der i denne zone i det efestmceste tilfælde kun opnås en højeste temperatur på ca. 200°C er phosphorets damptryk 2If the process according to the invention is carried out in a substantially cylindrical reactor which is heated over the lower floor, four distinct zones can be clearly formed which can be described from above and below as follows: 1. Zone: In this upper zone only gas exists, and this a mixture of the inert gas and phosphorus vapor used. Since in this zone in the most extreme case only a maximum temperature of approx. 200 ° C is the vapor pressure of the phosphorus 2
DK 15791 1 BDK 15791 1 B
forholdsmæssigt lille, således at gasblandingen hovedsageligt består af den anvendte inerte gas.relatively small, so that the gas mixture mainly consists of the inert gas used.
2. Zone: Her findes fordampningszonen for det gule 5 phosphor. I denne zone hersker temperaturer, der ligger lidt over det gule phosphors kogepunkt. Også i denne zone eksisterer der kun gas, der nu dog for det meste består af phosphor damp .2. Zone: Here is the evaporation zone for the yellow phosphorus. In this zone, temperatures slightly above the boiling point of the yellow phosphorus prevail. Also in this zone there is only gas, which now mostly consists of phosphorus vapor.
10 3. Zone: Her findes i det øverste lag af beholderfyldet den egentlige reaktionszone, hvori phosphor-damp kommer i berøring med det finfordelte metal og det allerede dannede phosphid. I denne zone, der befinder sig på reaktionstem-15 peraturen mellem 300 og 600°C, sker den stærkt exoterme omsætning mellem phosphordampen og det finfordelte metal. Eftersom phosphordampen reagerer meget hurtigt med metallet, trænger den ikke særlig langt ind i beholderfyIdet, 20 men kun ca. 10 til 15 cm. Inden i beholder fyldet bliver gasfasen derfor i retning ovenfra og nedefter meget hurtig fattig på phos-phordamp.3. Zone: Here, in the upper layer of the container filled, is the actual reaction zone in which phosphorus vapor comes into contact with the finely divided metal and the already formed phosphide. In this zone, which is at the reaction temperature between 300 and 600 ° C, the highly exothermic reaction occurs between the phosphorus vapor and the finely divided metal. Since the phosphorus vapor reacts very quickly with the metal, it does not penetrate very far into the container space, but only about 20 minutes. 10 to 15 cm. Therefore, within the container filling, the gas phase becomes in the direction from above and downwards very rapidly on the phos- phore vapor.
4. Zone: I denne nederste zone består-gasfasen i prak-25 sis udelukkende af den inerte gas, eftersom phosphordampen ikke trænger ind til denne dybde. Det faste stof består i praksis kun af det dannede phosphid og indeholder i alle tilfælde ringe mængder ikke omsat metal. Et 30 lille metaloverskud giver sikkerhed for, at det dannede phosphid er frit for phosphor.4. Zone: In this lower zone, the gas phase in practice consists solely of the inert gas, since the phosphorus vapor does not penetrate to this depth. In practice, the solid consists only of the phosphide formed and in all cases contains low amounts of unreacted metal. A small excess of metal gives assurance that the phosphide formed is free of phosphorus.
Dannelsen af de foran nævnte fire zoner inden i reaktoren muliggør en særlig enkel og fuldstændig sikker udførelsesform for fremgangsmåden ifølge opfin-35 delsen. Herved tilsættes det flydende gule phosphor kontinuerligt i den øvre del af reaktoren, dvs. i gasrummet ovenover beholderfyldet, hvor det uhindret kan fordampe. Det er særligt fordelagtigt, såfremt ind- 3The formation of the aforementioned four zones within the reactor allows for a particularly simple and completely safe embodiment of the process according to the invention. Hereby the liquid yellow phosphorus is continuously added to the upper part of the reactor, ie. in the gas compartment above the container filled where it can evaporate unobstructed. It is particularly advantageous if the 3
DK 157911BDK 157911B
gangsåbningen for det flydende phosphor befinder sig helt oppe i reaktionskarret, dvs. i den øverste første zone. Det finfordelte metal kan også tilsættes i den øvre del af reaktoren. Da gør den hurtige og hæftige 5 omsætning med den allerede i høj koncentration foreliggende phosphordamp dog anvendelse af særlige spærreorganer til indgangsåbningen nødvendig, hvormed indtrængning af phosphordamp i fødeorganet for det finfordelte metal kan forhindres. Det er derfor mere for-10 delagtigt at tilsætte det finfordelte metal kontinuerligt i den nedre del af reaktoren, og dette således, at indgangsåbningen ligger i beholderfyldets område.the aisle opening of the liquid phosphorus is at the very top of the reaction vessel, ie. in the upper first zone. The finely divided metal can also be added in the upper part of the reactor. However, the rapid and violent reaction with the already high concentration of phosphorus vapor makes the use of special blocking means for the entrance opening necessary to prevent the entry of phosphorus vapor into the feedstock for the finely divided metal. Therefore, it is more advantageous to continuously add the finely divided metal into the lower part of the reactor, so that the inlet opening is in the area of the container filling.
Dette kan ske i den øvre 3. zone, den egentlige reaktionszone. Det er da hensigtsmæssigt at anbringe et 15 røreorgan, hvis transportorganer bevæger beholderfyldet på langs i beholderrumfanget og således sørger for en ensartet fordeling af det friskt tilsatte metal i reaktionszo'nen i højde med indgangsåbningen for metallet. Endnu mere fordelagtigt er det dog, såfremt 20 tilsætningen af det finfordelte metal sker i den underste del af reaktoren, altså i den øvre 4. zone. I dette tilfælde er det hensigtsmæssigt at anbringe et røreorgan, hvis transportorganer bevæger beholderfyldet på langs i beholderrumfanget og samtidig sørger for 25 en lodret gennemblanding.This can happen in the upper 3rd zone, the actual reaction zone. It is then convenient to place a stirrer whose conveying means move the container filled longitudinally in the container volume and thus provide a uniform distribution of the freshly added metal in the reaction zone at the height of the metal inlet opening. It is even more advantageous, however, if the addition of the finely divided metal takes place in the lower part of the reactor, i.e. in the upper 4th zone. In this case, it is convenient to place a stirrer whose conveying means move the container filled longitudinally in the container volume and at the same time provide a vertical mixing.
På den beskrevne måde er det muligt kontinuerligt at tilsætte ækvivalente mængder finfordelt metal, der tilblandet indeholder katalysatoren,og flydende gult phosphor til reaktoren og under omsætningen fra 30 den underste del af reaktoren, dvs. fra den øvre 4. zone, udtage det dannede phosphid, der er fri for ikke omsat phosphor. Udtagningen sker gennem en åbning ved bunden af reaktoren. Den kan valgfrit udføres kontinuerligt eller chargevis. Ved kontinuerlig udtagning udtages 35 produktet i en mængde, der nøjagtigt svarer til det kontinuerligt tilsatte metal og phosphor. Det er dog ligeså vel muligt at lade den underste zone i reaktoren, dvs den øvre 4. zone, langsomt bygge sig op ogIn the manner described, it is possible to continuously add equivalent amounts of finely divided metal containing the catalyst and liquid yellow phosphorus to the reactor and during the reaction from the lower part of the reactor, i. from the upper 4th zone, take out the formed phosphide which is free of unreacted phosphorus. The withdrawal takes place through an opening at the bottom of the reactor. It can optionally be performed continuously or batchwise. Upon continuous withdrawal, the product is withdrawn in an amount exactly corresponding to the continuously added metal and phosphorus. However, it is equally possible to slowly build up the lower zone of the reactor, ie the upper 4th zone, and
DK 15791 1 BDK 15791 1 B
4 derefter udtage det dannede phosphid chargevis. Herved må der dog passes på, at der virkelig kun udtages materiale fra denne 4. zone, hvilket materiale ikke indeholder noget ikke omsat phosphor og ikke også noget mate-5 riale fra reaktionszonen, hvilket kan ske ved vægtkontrol .4 then extract the formed phosphide charge. However, care must be taken here that only material from this 4th zone is taken, which material contains no unreacted phosphorus and also no material from the reaction zone, which can be done by weight control.
Tilsættes det finfordelte metal - som beskrevet ovenfor - i den nedre del af reaktoren, dvs. i den øvre 3. eller 4.zone, er det tilstrækkeligt med en 10 sædvanlig transportsnekke som doseringsorgan, eftersom det faste smuldformede beholderfyld samtidig virker som tætningsorgan. Skal fremgangsmåden ifølge opfindelsen nystartes i en tom reaktor, er det derfor hensigtsmæssigt først kun at tilsætte finfordelt metal, indtil 15 indgangsåbningen for metallet er dækket, og først derefter begynde med den langsomme tilsætning af flydende phosphor. Endnu mere fordelagtigt er det dog, såfremt reaktoren først en gang fyldes til op over indgangsåbningen for metallet med det tilsvarende phosphid fra 20 en tidligere produktion, og at der derefter samtidig begyndes med tilsætning af det flydende phosphor og det finfordelte metal.The finely divided metal is added - as described above - in the lower part of the reactor, ie. in the upper 3rd or 4th zone, a usual transport screw as a dosing means is sufficient, since the solid crumpled container filling simultaneously acts as a sealing means. Therefore, if the process according to the invention is to be restarted in an empty reactor, it is advisable first to add finely divided metal only until the entrance of the metal is covered, and only then to begin with the slow addition of liquid phosphorus. It is even more advantageous, however, if the reactor is first filled up to above the entrance opening of the metal with the corresponding phosphide from a previous production, and that at the same time the addition of the liquid phosphorus and the finely divided metal is started.
Fremgangsmåden ifølge opfindelsen belyses nærmere ved hjælp af de efterfølgende eksempler. Alle 25 procentangivelser er såfremt andet ikke er angivet vægtprocent.The process according to the invention is further elucidated by the following examples. All 25 percent figures are, unless otherwise stated, weight percent.
Eksempel 1Example 1
Som reaktor anvendtes en cylindrisk beholder med et tværsnit på ca. 80 cm og en højde på ca. 100 cm, 30 der var forsynet med en røreorgan, et kølesystem, temperaturfølere i forskellige højder, en tilføringsledning for inert gas og en gasafgangsledning. Beholderens bund kunne med en gasbrænder udefra opvarmes til temperaturer indtil 500°C. Der var tilsluttet et forrådskar 35 for flydende gult phosphor med en pumpe, der valgtfrit tillod at pumpe det flydende gule phosphor tilbage til forrådskarret eller ind i reaktoren, samt et forrådskar 5As a reactor, a cylindrical container with a cross section of approx. 80 cm and a height of approx. 100 cm, 30 provided with a stirrer, a cooling system, temperature sensors at various heights, an inert gas supply line and a gas outlet line. The bottom of the container could be heated to temperatures up to 500 ° C with a gas burner from the outside. A liquid yellow phosphorus reservoir 35 was connected with a pump which optionally allowed to pump the liquid yellow phosphorus back into the storage vessel or into the reactor, and a supply vessel 5.
DK 157911BDK 157911B
for det finfordelte metal, der skulle omsættes, med et tilføringsorgan for tilsætning af metallet i reaktoren. På bunden af reaktoren befandt sig en lille med lukkeorgan forsynet åbning til udtagning af produk-5 tet. Af sikkerhedsgrunde var reaktoren forsynet med en sikkerhedsskive for at imødegå en eventuel trykstigning. Reaktoren blev inden og efter omsætningen spulet med nitrogen,under omsætningen overlejredes reaktoren med argon. Afgangsgasseiv.bartlededes over et 10 vandforlag med et glastrådsfilter og et efterkoblet aktivt carbonfilter.for the finely divided metal to be reacted with a feed means for adding the metal into the reactor. At the bottom of the reactor was a small opening with a closure means for withdrawing the product. For safety reasons, the reactor was provided with a safety disc to counter any pressure increase. The reactor was flushed with nitrogen before and after the reaction, during the reaction the reactor was superimposed with argon. Exhaust gas was discharged directly over a water publisher with a glass wire filter and a post-coupled active carbon filter.
Inden omsætningens begyndelse befandt der sig 50 kg magnesiumphosphid fra en tidligere produktion i reaktoren, i forrådskarret for metal en blanding af 15 200 kg magnesium og 0,8 kg iod, i forrådskarret for flydende phosphor omvalsedes dette. Derefter opvarmedes reaktoren fra bunden af til 300°C. Derpå tilsattes 10 kg magnesium i reaktoren, og tilsætningen af flydende phosphor begyndtes med en hastighed på 0,4 til 1 kg 20 pr. minut. Samtidig tilsattes også yderligere magnesium. Ved reaktionsvarmen steg temperaturen i den nedre del af reaktoren til 550°C. Herefter afstemtes tilsætningen af phosphor og magnesium, således at temperaturen holdtes på 550°C,og vægtforholdet mellem phosphor 25 og magnesium udgjorde ca. 0,85:1. Efter at der var dannet ca. 180 kg magnesiumphosphid i reaktoren udtoges inden for 10 minutter under fortløbende yderligere tilsætning af phosphor og magnesium 100 kg produkt gennem udtagningsåbningen. Udtagningsåbningen lukkedes 30 igen. Efter at der på ny var dannet ca. 180 kg magnesiumphosphid, blev dette igen udtaget og endelig gentoges hele processen endnu en gang. Efter opbrugning af de foreliggende 200 kg magnesium standsedes phosphor-tilsætningen. Det i reaktoren endnu værende produkt 35 opvarmedes endnu en gang kort og udtoges. Inklusiv· det i reaktoren foreliggende magnesiumphosphid udtoges i løbet af 5 timer 415 kg produkt med et magnesiumphos-phidindhold på 92%.Before the start of the reaction, 50 kg of magnesium phosphide from a previous production in the reactor, in the metal storage vessel was a mixture of 15 200 kg of magnesium and 0.8 kg of iodine, in the liquid phosphorus storage vessel this was rolled. The reactor was then heated from the bottom to 300 ° C. Then 10 kg of magnesium was added to the reactor and the addition of liquid phosphorus started at a rate of 0.4 to 1 kg 20 per liter. minute. At the same time, additional magnesium was also added. At the reaction heat, the temperature in the lower part of the reactor rose to 550 ° C. Then the addition of phosphorus and magnesium was adjusted so that the temperature was kept at 550 ° C, and the weight ratio of phosphorus 25 to magnesium was approx. 0.85: 1st After approx. 180 kg of magnesium phosphide in the reactor was withdrawn within 10 minutes with continuous further addition of phosphorus and magnesium 100 kg of product through the withdrawal opening. The withdrawal opening was closed again 30. After re-forming approx. 180 kg of magnesium phosphide, this was taken out again and finally the whole process was repeated again. After the 200 kg of magnesium was used up, the phosphorus addition was stopped. The product 35 remaining in the reactor was briefly heated again and withdrawn. Including the magnesium phosphide in the reactor, 415 kg of product with a magnesium phosphide content of 92% was withdrawn within 5 hours.
66
DK 15791 1 BDK 15791 1 B
Eksempel 2 I den i eksempel 1 beskrevne reaktor anbragtes en blanding af 100 kg magnesium og 0,3 kg iod, i forrådskarret til metal befandt sig en blanding af yder-5 ligere 150 kg magnesium og 0,5 kg iod. Herefter opvarmedes reaktionskarret fra bunden til 300°C. Derpå tilsattes phosphor med en sådan hastighed, at temperaturen i den nedre del af reaktoren langsomt steg til 550°C. Ved regulering af phosphortilsætningen op-10 retholdtes denne temperatur indtil ialt 82 kg phosphor var forbrugt. Derefter tilsattes magnesium og phosphor samtidig med et vægtforhold på 1:0,83 med en sådan hastighed, at temperaturen i den nedre del af reaktoren til stadighed forblev mellem 500 og 550°C.EXAMPLE 2 In the reactor described in Example 1, a mixture of 100 kg of magnesium and 0.3 kg of iodine was placed, in the metal storage vessel was a mixture of additional 150 kg of magnesium and 0.5 kg of iodine. The reaction vessel was then heated from the bottom to 300 ° C. Phosphorus was then added at such a rate that the temperature in the lower reactor slowly increased to 550 ° C. When controlling the phosphorus addition, this temperature was maintained until a total of 82 kg of phosphorus was consumed. Subsequently, magnesium and phosphorus were added at a weight ratio of 1: 0.83 at such a rate that the temperature of the lower reactor remained constant between 500 and 550 ° C.
15 Samtidig udtoges kontinuerligt produkt gennem udtagningsåbningen i en sådan mængde, at den svarede nøjagtig til den tilførte mængde magnesium og phosphor, altså ialt 150 kg magnesium og 123 kg phosphor. Derefter opvarmedes det endnu i reaktoren værende produkt 20 endnu en gang kort og udtoges videre kontinuerligt.At the same time, continuous product is withdrawn through the withdrawal opening in such an amount that it corresponds exactly to the amount of magnesium and phosphorus supplied, ie a total of 150 kg of magnesium and 123 kg of phosphorus. Thereafter, the product 20 remaining in the reactor was briefly heated again and further extracted continuously.
Udbyttet udgjorde ialt 450 kg med et gennemsnitligt magnesiumphosphidindhold på 90%.The yield was a total of 450 kg with an average magnesium phosphide content of 90%.
Eksempel 3 I den i eksempel 1 beskrevne reaktor anbragtes 25 en blanding af 50 kg smuldformet aluminium-magnesium-legering med et magnesiumindhold på 5% og 0,2 kg iod, i forrådskarret til metal befandt sig en blanding af yderligere 200 kg af nævnte legering og 0,6 kg iod.Example 3 In the reactor described in Example 1, a mixture of 50 kg of crumpled aluminum-magnesium alloy having a magnesium content of 5% and 0.2 kg of iodine was placed, in the metal storage vessel was a mixture of an additional 200 kg of said alloy. and 0.6 kg of iodine.
Herefter opvarmedes reaktoren i bunden til 450°C.Then the reactor at the bottom was heated to 450 ° C.
30 Derpå begyndtes tilsætningen af phosphor og legering.Then the addition of phosphorus and alloy began.
Herunder tilsattes phosphoret først med relativt større hastighed for at udligne det forhåndenværende overskud af legering, indtil der ialt opnåedes et vægtforhold mellem phosphor og legering på 1,1:1. Opvarm-35 ningen fortsattes,indtil der i den nedre del af reaktoren var opnået en temperatur på 500°C. Derefter sattes igen yderligere phosphor og legering til i 7Below, the phosphorus was first added at a relatively greater rate to offset the residual excess of alloy until a total phosphorus-alloy weight ratio of 1.1: 1 was obtained. Heating was continued until a temperature of 500 ° C was reached in the lower part of the reactor. Then, additional phosphorus and alloy were added again in 7
DK 15791 1 BDK 15791 1 B
vægtforholdet 1,1:1, indtil reaktoren indeholdt ca.weight ratio 1.1: 1 until the reactor contained approx.
200 kg produkt. Herefter udtoges produkt kontinueligt gennem udtagningsåbningen med samme hastighed som phosphor og legering tilførtes med. Tilsætningen af-5 stemtes således, at temperaturen på 550°C ikke blev overskredet. Efter forbrug af al legeringen standsedes tilsætningen af phosphor, opvarmningen sattes i drift, og resten af produktet udtoges igen kontinuerligt. Ialt opnåedes 520 kg smuldformet produkt med et phosphidind-10 hold på 90% af det teoretiske.200 kg of product. Thereafter, product is withdrawn continuously through the withdrawal opening at the same rate as phosphorus and alloy were supplied. The addition was adjusted so that the temperature of 550 ° C was not exceeded. After consuming all the alloy, the addition of phosphorus was stopped, the heating was started, and the rest of the product was withdrawn continuously. In total, 520 kg of crumbly product was obtained with a phosphide content of 90% of theory.
Eksempel 4 I den i eksempel 1 beskrevne reaktor anbragtes 130 kg aluminiumphosphid fra en tidligere produktion, i forrådskarret for metallet befandt sig en blanding af 15 250 kg aluminium og 1 kg iod. Herefter opvarmedes reaktoren i bunden til 480°C og der tilsattes 20 kg aluminium. Derefter tilsattes aluminium og phosphor samtidigt og efter opnåelse af en temperatur på 500°C indstilledes opvarmningen. Det forhåndenværende overskud af metal 20 udjævnedes ved en først noget hurtigere tilsætning af phosphor, derefter fulgte en tilsætning af aluminium og phosphor med et konstant vægtforhold på 1:1,1 med en sådan hastighed, at temperaturen ikke overskred 570°C. Efter at der ialt befandt sig 200 kg produkt i 25 reaktoren udtoges under uændret dosering af aluminium og phosphor 130 kg produkt. Denne fremgangsmåde gentoges, indtil de 250 kg aluminium var opbrugt. Ialt udtoges 501 kg produkt med et aluminiumphosphidindhold på 95%, yderligere omkring 155 kg produkt efterlodes 30 som forlag til den næste produktion i reaktoren.Example 4 In the reactor described in Example 1, 130 kg of aluminum phosphide from a previous production was placed, in the metal storage vessel was a mixture of 15 250 kg of aluminum and 1 kg of iodine. Then, the reactor at the bottom was heated to 480 ° C and 20 kg of aluminum was added. Then aluminum and phosphorus were added simultaneously and after reaching a temperature of 500 ° C the heating was adjusted. The existing excess metal 20 was smoothed by a first somewhat faster addition of phosphorus, followed by an addition of aluminum and phosphorus at a constant weight ratio of 1: 1.1 at such a rate that the temperature did not exceed 570 ° C. After a total of 200 kg of product was present in the reactor, 130 kg of product was withdrawn under unchanged dosage of aluminum and phosphorus. This procedure was repeated until the 250 kg aluminum had been used up. A total of 501 kg of product with an aluminum phosphide content of 95% was withdrawn, an additional about 155 kg of product is left behind as the publisher for the next production in the reactor.
Claims (3)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3117393 | 1981-05-02 | ||
DE19813117393 DE3117393A1 (en) | 1981-05-02 | 1981-05-02 | METHOD FOR PRODUCING THE PHOSPHIDES OF ALUMINUM OR MAGNESIUM |
Publications (3)
Publication Number | Publication Date |
---|---|
DK196182A DK196182A (en) | 1982-11-03 |
DK157911B true DK157911B (en) | 1990-03-05 |
DK157911C DK157911C (en) | 1990-08-27 |
Family
ID=6131294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK196182A DK157911C (en) | 1981-05-02 | 1982-04-30 | PROCEDURE FOR THE PREPARATION OF ALUMINUM OR MAGNESIUM PHOSPHIDS |
Country Status (16)
Country | Link |
---|---|
JP (1) | JPS582210A (en) |
AT (1) | AT394843B (en) |
AU (1) | AU549936B2 (en) |
BR (1) | BR8202525A (en) |
CA (1) | CA1182273A (en) |
DE (1) | DE3117393A1 (en) |
DK (1) | DK157911C (en) |
ES (1) | ES511837A0 (en) |
FI (1) | FI821507L (en) |
FR (1) | FR2504908A2 (en) |
GB (1) | GB2097775A (en) |
IT (1) | IT1156465B (en) |
MX (1) | MX157403A (en) |
NO (1) | NO156084C (en) |
SE (1) | SE452147B (en) |
ZA (1) | ZA822828B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9511495D0 (en) * | 1995-06-07 | 1995-08-02 | Degesch De Chile Ltda | Composition, process and apparatus for producing phosphine - containing gas |
CN1107447C (en) * | 1999-04-27 | 2003-05-07 | 华仁沈阳农药有限公司 | Process for synthesizing magnesium phosphide as fumigating insecticide of storehouse |
FR2886060B1 (en) * | 2005-05-18 | 2007-07-27 | Centre Nat Rech Scient | PROCESS FOR PREPARING ANODE FOR ION-LITHIUM BATTERY |
GB201221425D0 (en) | 2012-11-28 | 2013-01-09 | Faradion Ltd | Metal-containing compound |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL57196C (en) * | 1940-03-13 | |||
DE736700C (en) * | 1940-03-13 | 1943-06-28 | Schering Ag | Manufacture of products containing magnesium phosphide |
US2984577A (en) * | 1957-10-24 | 1961-05-16 | Monsanto Chemicals | Process for the production of boron phosphide |
FR1310236A (en) * | 1961-01-09 | 1963-03-06 | ||
US3309176A (en) * | 1961-03-29 | 1967-03-14 | Rca Corp | Low temperature synthesis of compound semiconductors |
GB1175511A (en) * | 1966-01-10 | 1969-12-23 | Albright & Wilson Mfg Ltd | Manufacture of Metal Phosphides |
CH515852A (en) * | 1966-04-07 | 1971-11-30 | Freyberg Werner Dr | Magnesium phosphide mg3p2 fumigating agent for cereals |
DE1567520B2 (en) * | 1966-04-07 | 1973-01-04 | Freyberg, Werner, Dr., 6149 Kirschhausen | Process for the production of magnesium phosphide |
DE2945647C2 (en) * | 1979-11-12 | 1990-01-04 | Degesch Gmbh, 6000 Frankfurt | Process for the production of aluminum phosphide and / or magnesium phosphide |
-
1981
- 1981-05-02 DE DE19813117393 patent/DE3117393A1/en active Granted
-
1982
- 1982-04-20 CA CA000401279A patent/CA1182273A/en not_active Expired
- 1982-04-22 FR FR8206960A patent/FR2504908A2/en active Granted
- 1982-04-26 ZA ZA822828A patent/ZA822828B/en unknown
- 1982-04-26 GB GB8212058A patent/GB2097775A/en not_active Withdrawn
- 1982-04-29 MX MX192492A patent/MX157403A/en unknown
- 1982-04-29 IT IT67565/82A patent/IT1156465B/en active
- 1982-04-29 FI FI821507A patent/FI821507L/en not_active Application Discontinuation
- 1982-04-30 BR BR8202525A patent/BR8202525A/en unknown
- 1982-04-30 SE SE8202737A patent/SE452147B/en not_active IP Right Cessation
- 1982-04-30 AT AT0169382A patent/AT394843B/en not_active IP Right Cessation
- 1982-04-30 AU AU83160/82A patent/AU549936B2/en not_active Expired
- 1982-04-30 ES ES511837A patent/ES511837A0/en active Granted
- 1982-04-30 NO NO821427A patent/NO156084C/en unknown
- 1982-04-30 DK DK196182A patent/DK157911C/en not_active IP Right Cessation
- 1982-05-01 JP JP57074437A patent/JPS582210A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
NO156084C (en) | 1987-07-22 |
ZA822828B (en) | 1983-02-23 |
IT1156465B (en) | 1987-02-04 |
DE3117393C2 (en) | 1990-06-28 |
FR2504908B2 (en) | 1984-10-19 |
SE452147B (en) | 1987-11-16 |
FI821507A0 (en) | 1982-04-29 |
ES8304518A2 (en) | 1983-03-01 |
JPS582210A (en) | 1983-01-07 |
CA1182273A (en) | 1985-02-12 |
NO821427L (en) | 1982-11-03 |
DK196182A (en) | 1982-11-03 |
ES511837A0 (en) | 1983-03-01 |
GB2097775A (en) | 1982-11-10 |
DK157911C (en) | 1990-08-27 |
NO156084B (en) | 1987-04-13 |
DE3117393A1 (en) | 1982-11-11 |
FI821507L (en) | 1982-11-03 |
BR8202525A (en) | 1983-04-19 |
AU8316082A (en) | 1982-11-11 |
IT8267565A0 (en) | 1982-04-29 |
FR2504908A2 (en) | 1982-11-05 |
AU549936B2 (en) | 1986-02-20 |
SE8202737L (en) | 1982-11-03 |
AT394843B (en) | 1992-06-25 |
MX157403A (en) | 1988-11-22 |
ATA169382A (en) | 1991-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2828199A (en) | Method for producing metals | |
US3085872A (en) | Method for producing the refractory metals hafnium, titanium, vanadium, silicon, zirconium, thorium, columbium, and chromium | |
US2066198A (en) | Process for preparing grignard compounds | |
DK157911B (en) | PROCEDURE FOR THE PREPARATION OF ALUMINUM OR MAGNESIUM PHOSPHIDS | |
JPH0430385B2 (en) | ||
US4412979A (en) | Process for preparing aluminum or magnesium phosphide | |
US2924508A (en) | Method of production of stannous fluoride | |
US4783564A (en) | Method for the preparation of 1,2-dichloroethane | |
US2828201A (en) | Method for producing titanium and zirconium | |
US3305571A (en) | Method for the initiation of a reaction between isopropyl alcohol and aluminum | |
USH1697H (en) | Continuous process for sodium methylate | |
US5147625A (en) | Process for the preparation of phosphorous acid | |
US2443183A (en) | Process for chlorination of ethanol | |
US4093194A (en) | Process and reactor for making magnesium metal | |
US3463605A (en) | Process and apparatus for production of alkali metal monofluorophosphate | |
US3085873A (en) | Method for collecting and separating the refractory metal component from the reaction products in the production of the refractory metals titanium, zirconium, vanadium, hafnium, silicon, thorium, chromium, or columbium | |
US3257171A (en) | Apparatus for the continuous preparation of caprolactam | |
US2920952A (en) | Process for producing a refractory metal subhalide-alkalinous metal halide salt composition | |
US4564681A (en) | Production of mixtures rich in 3-chloro-2-trichloromethyl pyridine | |
US4073875A (en) | Oxidation of magnesium chloride | |
US3848052A (en) | Process for the preparation of stannic chloride | |
GB469518A (en) | Improvements in the manufacture of metal alkyl compounds | |
US1735951A (en) | Process of carrying on catalytic reactions | |
US2870211A (en) | Production of halofluoroacetone hydrate | |
US3769391A (en) | Process for replenishing active elements of mobile bed granular masses in the production of chlorine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PBP | Patent lapsed |