DK155859B - RECHARGEABLE ELECTROCHEMICAL CELL CLOSED TO THE EXTERNAL ATMOSPHERE, AND PROCEDURES FOR THE MANUFACTURE OF SUCH A CELL - Google Patents

RECHARGEABLE ELECTROCHEMICAL CELL CLOSED TO THE EXTERNAL ATMOSPHERE, AND PROCEDURES FOR THE MANUFACTURE OF SUCH A CELL Download PDF

Info

Publication number
DK155859B
DK155859B DK091578AA DK91578A DK155859B DK 155859 B DK155859 B DK 155859B DK 091578A A DK091578A A DK 091578AA DK 91578 A DK91578 A DK 91578A DK 155859 B DK155859 B DK 155859B
Authority
DK
Denmark
Prior art keywords
cell
active material
negative electrode
electrochemically active
positive electrode
Prior art date
Application number
DK091578AA
Other languages
Danish (da)
Other versions
DK155859C (en
DK91578A (en
Inventor
Huibert Jacobus Hendr Deutekom
Original Assignee
Philips Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from NL7702259A external-priority patent/NL7702259A/en
Application filed by Philips Nv filed Critical Philips Nv
Publication of DK91578A publication Critical patent/DK91578A/en
Publication of DK155859B publication Critical patent/DK155859B/en
Application granted granted Critical
Publication of DK155859C publication Critical patent/DK155859C/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

1 DK 155859B1 DK 155859B

Opfindelsen angår en genopladelig elektrokemisk celle, der er lukket over for den ydre atmosfære og omfattende et lukket kammer, der indeholder en positiv elektrode, hvis elektrokemisk aktive materiale reversibelt kan optage og afgive en proton og en elektron, og 5 en negativ elektrode, hvis elektrokemisk aktive materiale består af en metalforbindelse med lanthan og nikkel, der med hydrogenet danner et hydrid, samt en vandig elektrolytopløsning med pH større end 7. Endvidere kan cellen omfatte en separator, der elektrisk adskiller elektroderne fra hinanden, men dog tillader ion- og gastransport. I 10 det følgende vil en sådan celle kaldes "lukket celle". Imidlertid kan cellen om ønsket være udstyret med en ventil, der er således dimensioneret, at den aktiveres ved et givet gastryk i cellen.The invention relates to a rechargeable electrochemical cell which is closed to the outer atmosphere and comprises a closed chamber containing a positive electrode whose electrochemically active material can reversibly receive and deliver a proton and an electron, and a negative electrode whose electrochemically active material consists of a metal compound of lanthanum and nickel, which forms with the hydrogen a hydride, as well as an aqueous electrolyte solution of pH greater than 7. Furthermore, the cell may comprise a separator which electrically separates the electrodes from each other, but permits ion and gas transport. In the following, such a cell will be called "closed cell". However, if desired, the cell may be provided with a valve so dimensioned that it is activated at a given gas pressure within the cell.

2 DK 155859 B2 DK 155859 B

En genopladelig lukket celle af denne art kendes f.eks. fra USA-patentskrift nr. 3.874.928. I denne kendte celle kan det elektrokemisk aktive materiale til den positive elektrode bestå af nikkelhydroxid, sølvoxid eller manganoxid, idet man af praktiske grun-5 de sædvanligvis foretrækker nikkelhydroxid. Det elektrokemisk aktive materiale til den negative elektrode kan f.eks. bestå af en in-termetallisk forbindelse af lanthan og nikkel med empirisk formel LaNi...For example, a rechargeable closed cell of this kind is known. from U.S. Patent No. 3,874,928. In this known cell, the electrochemically active material for the positive electrode may consist of nickel hydroxide, silver oxide or manganese oxide, with practical reasons usually preferable to nickel hydroxide. The electrochemically active material for the negative electrode can e.g. consist of an in-metallic compound of lanthanum and nickel of empirical formula LaNi ...

DD

Ved hydriddannelse af intermetalliske forbindelser af denne 10 art er det kendt, at både lanthan og nikkel delvis kan erstattes med andre metaller, såsom f.eks. calcium, thorium, titan og sjældne jordmetaller og yttrium for så vidt angår lanthan og kobber, chrom og jern for så vidt angår nikkel, jvf. f.eks. det britiske patentskrift nr. 1.463.248. Når der i det følgende omtales LaNi,- og intermetal-15 liske forbindelser, der afledes derfra ved substitution med andre metaller, skal udtrykket forstås til at omfatte forbindelser, hvis komposition generelt er LaNin, hvor n er mellem 4,8 og 5,4. Dette betegner forbindelser med CaCu^-krystalstruktur, hvis eksistensområde indbefatter LaNi,-. Ved udtrykket eksistensområde skal forstås ét 20 område af koncentrationer i et kontinuerligt system af intermetalliske forbindelser, med hvilke en tilsvarende struktur kan realiseres 100%, med eller uden varmebehandling.In the hydride formation of intermetallic compounds of this kind, it is known that both lanthanum and nickel can be partially replaced by other metals, such as e.g. calcium, thorium, titanium and rare earth metals and yttrium in the case of lanthanum and copper, chromium and iron in the case of nickel, cf. British Patent Specification No. 1,463,248. When referring to LaNi and intermetallic compounds derived therefrom by substitution with other metals, the term is to be understood to include compounds whose composition is generally LaNin, where n is between 4.8 and 5.4 . This denotes compounds with CaCu 2 crystal structure whose area of existence includes LaNi, -. By the term area of existence is meant one area of concentrations in a continuous system of intermetallic compounds with which a similar structure can be realized 100%, with or without heat treatment.

Når man konstruerer systemer, som er lukkede over for den ydre atmosfære og indeholder hydrider af intermetalliske forbindelser,* 25 må der tages hensyn til hydrogen-ligevægtstryk over for hydridet, og til systemets arbejdstemperatur. For LaNi^-hydridet er ligevægtstrykket ved 20°C ca. 2,5 10^Pa. For LaNi.Cu-hydridet er trykket kun 0,7 10~*Pa ved 20°C og for LaNi .Cr-hydridet er trykket ca. 0,31 10 Pa 0 * ved 20 C. Hvis de elektrokemiske egenskaber er acceptable, vil sidst-30 nævnte materialer være at foretrække til dannelse af lukkede, genopladelige celler, fordi huset i så fald ikke behøver at være så solidt. Sædvanligvis består elektrolytopløsningen af en vandig opløsning af et eller flere alkalimetalhydroxider såsom lithiumhydroxid og kaliumhydroxid. Separatoren kan bestå af vævede eller ikke- væve-35 de syntetiske fibre, f.eks. fibre af polyamid eller polypropylen. Virkemåden for en genopladelig elektrokemisk celle af denne art afviger fundamentalt fra de såkaldte nikkel-cadmium-batterier, hvilket fremgår af en sammenligning af de samlede elektrokemiske ligninger.When designing systems that are closed to the external atmosphere and contain hydrides of intermetallic compounds, * 25 equilibrium hydrogen equilibrium pressure must be taken into account and the operating temperature of the system. For the LaNi ^ hydride, the equilibrium pressure at 20 ° C is approx. 2.5 10 Pa. For the LaNi.Cu hydride the pressure is only 0.7 ~ 10 Pa at 20 ° C and for the LaNi. Cr hydride the pressure is approx. 0.31 10 Pa 0 * at 20 C. If the electrochemical properties are acceptable, the latter materials would be preferable to forming closed, rechargeable cells, because then the housing need not be so solid. Usually, the electrolyte solution consists of an aqueous solution of one or more alkali metal hydroxides such as lithium hydroxide and potassium hydroxide. The separator may consist of woven or nonwoven synthetic fibers, e.g. polyamide or polypropylene fibers. The operation of a rechargeable electrochemical cell of this kind differs fundamentally from the so-called nickel-cadmium batteries, as shown by a comparison of the total electrochemical equations.

3 DK 155859B3 DK 155859B

Ved en genopladelig celle af den art opfindelsen beskæftiger sig med har denne ligning følgende form opladningIn a rechargeable cell of the kind the invention is concerned with, this equation has the following form of charge

Ni(OH«) + M . - > NiOOH + MH, ς afladning 5 hvor nikkelhydroxidet danner det positive elektrodemateriale, og hvor den internetalliske forbindelse betegnes ved M.Ni (OH +) + M. -> NiOOH + MH, ς discharge 5 where the nickel hydroxide forms the positive electrode material and where the internetallic compound is denoted by M.

For et sekundært nikkel-cadmium-batteri er ligningen som følger: opladning 2Ni (OH) 0 + Cd (OH) « -> 2N100H + Cd + 2H-0.For a secondary nickel-cadmium battery, the equation is as follows: charge 2Ni (OH) 0 + Cd (OH) «-> 2N100H + Cd + 2H-0.

in Δ J. ^- i afladningin Δ J. ^ - in discharge

Det vil ses, at der i det første tilfælde ved opladning såvel som ved afladning kun sker en protonoverføring mellem elektroderne, medens den samlede mængde elektrolytopløsning forbliver i det væsentlige konstant. I det andet tilfælde dannes der under opladnin-15 gen vand, der igen forsvinder under afladningen. I denne celle må der tages forholdsregler for at oplagre det vand, der dannes, således at vandet ikke generer oxygen-gas-transporten mellem elektroderne. Dette kræver yderligere rum i batterihuset. På grund af denne forskel i den elektrokemiske reaktion og af andre grunde, kan for-20 anstaltningerne til at løse de problemer, der opstår i de kendte nikkel-cadmium-celler ikke finde anvendelse ved celler af den art opfindelsen beskæftiger sig med. Som det skal forklares nærmere nedenfor kan sådanne foranstaltninger endog være overflødige i sidstnævnte celler. Ved lukkede genopladelige elektrokemiske celler af 25 den art opfindelsen beskæftiger sig med,er det ikke alene hydrogenligevægtstrykket for hydridet af de intermetalliske forbindelser, der som ovenfor forklaret har betydning, idet de fænomener, der opstår ved overopladning og overafladning af disse celler også er vigtige. I praksis er en overopladning en risiko, som man må tage med 30 i betragtning, når man konstruerer genopladelige batterier. Overafladning er et fænomen, der kan opstå, hvis en eller flere af et antal serieforbundne celler, f.eks. i et batteri med mere end tre celler, aflades fuldstændigt på et tidligere tidspunkt end de andre celler på grund af kapacitetsforskeller som man ikke kan undgå ved 35 fremstillingen. I så fald vil batteriet fortsat aflevere strøm.It will be seen that in the first case, when charging as well as discharging, only a proton transfer occurs between the electrodes, while the total amount of electrolyte solution remains substantially constant. In the second case, water is formed during charging, which disappears during discharge. In this cell, precautions must be taken to store the water formed so that the water does not interfere with the oxygen-gas transport between the electrodes. This requires additional space in the battery compartment. Because of this difference in the electrochemical reaction and for other reasons, the measures to solve the problems encountered in the known nickel-cadmium cells cannot be applied to cells of the kind the invention is concerned with. As will be explained below, such measures may even be superfluous in the latter cells. In closed rechargeable electrochemical cells of the nature of the invention, it is not only the hydrogen equilibrium pressure of the hydride of the intermetallic compounds that is important as explained above, the phenomena arising from overcharging and overcharging these cells are also important. In practice, overcharging is a risk that must be taken into account when designing rechargeable batteries. Overcharging is a phenomenon that can occur if one or more of a number of series-connected cells, e.g. in a battery with more than three cells, completely discharges at an earlier time than the other cells due to capacity differences that cannot be avoided in manufacturing. In this case, the battery will continue to supply power.

Hvis ikke der tages specielle forholdsregler i cellerne, vil både overopladningen og overafladningen resultere i, at der forekommer højt gastryk, og at eksplosive gasblandinger eventuelt siver ud gennem en ventil. Dette bevirker, at cellen tørrer ud, og at ladnings-Unless special precautions are taken in the cells, both overcharging and overcharging will result in high gas pressure and explosive gas mixtures possibly seeping out through a valve. This causes the cell to dry out and the charge

4 DK 155859B4 DK 155859B

ligevægten mellem elektroderne forstyrres.the equilibrium between the electrodes is disturbed.

Opfindelsen tager sigte på en genopladelig, lukket elektrokemisk celle af den indledningsvis nævnte art, hvori der er taget forholdsregler for i cellen under alle betingelser, at opretholde 5 en reversibel ligevægt, og så meget så muligt forhindre at der forekommer høje gastryk ved overopladning og overafladning. Med henblik herpå er en genopladelig elektrokemisk celle af den indledningsvis nævnte art ifølge opfindelsen ejendommelig ved, at mængden af det elektrokemisk aktive materiale til den negative elektrode 10 udgøres af en intermetallisk forbindelse af den type, der har bruttoformlen LaNin, hvor n er på mellem 4,8 og 5,4, og hvor lanthan og/eller nikkel eventuelt er delvis erstattet med andre metaller, at denne mængde er større end mængden af elektrokemisk aktivt materiale til den positive elektrode, og at i den fuldt afladede til-15 stand for den positive elektrode foreligger den elektrokemisk aktive forbindelse til den negative elektrode, i det mindste hvad' angår overskuddet, delvis som et hydrid, dvs. i opladet tilstand.The invention is directed to a rechargeable, closed electrochemical cell of the type mentioned in the preamble, in which precautions are taken in the cell under all conditions to maintain a reversible equilibrium and, as far as possible, prevent high gas pressure from occurring during overcharging and overcharging. . To this end, a rechargeable electrochemical cell of the kind initially mentioned according to the invention is characterized in that the amount of the electrochemically active material for the negative electrode 10 is constituted by an intermetallic compound of the type having the gross formula LaNin, where n is between 4 , 8 and 5.4, and where lanthanum and / or nickel is optionally partially replaced with other metals, that this amount is greater than the amount of electrochemically active material for the positive electrode and that in the fully discharged state of the positive electrode, the electrochemically active compound is present at the negative electrode, at least in excess, partly as a hydride, i. in charged state.

Opfindelsen angår også en fremgangsmåde ved fremstilling af en geopladelig elektrokemisk celle, der er lukket over for den 20 ydre atmosfære, og omfattende et lukket kammer, der indeholder en positiv elektrode, hvis elektrokemisk aktive materiale reversibelt kan optage og afgive en proton og en elektron, en negativ elektrode, hvis elektrokemisk aktive materiale udgøres af en intermetallisk forbindelse med lanthan og nikkel, der med hydrogenet dannet et 25 hydrid, samt en vandig elektrolytopløsning med pH større end 7, . hvilken fremgangsmåde ifølge opfindelsen er ejendommelig ved, at der anvendes en forbindelse af den type, der har bruttoformlen , LaNin, hvor n er på mellem 4,8 og 5,4, og hvor lanthan og/eller nikkel eventuelt er delvis erstattet med andre metaller, hvilken 30 forbindelse foreligger i en mængde større end mængden af elektrokemisk aktivt materiale til den positive elektrode, at når elektroderne placeres i cellen, befinder det elektrokemisk aktive materiale til den negative elektrode sig i afladet tilstand, og at det elektrokemisk aktive materiale til den negative elektrode, hvad angår 35 overskuddet af elektrokemisk kapacitet, delvis foreligger i hy-drid-form (opladet tilstand), og at cellen forsegles med elektroderne i denne tilstand. I overensstemmelse med en anden metode placeres elektroderne i uopladet tilstand i cellen, hvorpå cellen fyldes med den fornødne mængde hydrogengas til delvis omdannelse 40 af den negative elektrode, hvorpå cellen lukkes hermetisk. DerefterThe invention also relates to a method of producing a closed-loop electrochemical cell which is closed to the outer atmosphere, and comprising a closed chamber containing a positive electrode whose electrochemically active material can reversibly receive and deliver a proton and an electron. a negative electrode whose electrochemically active material is constituted by an intermetallic compound of lanthanum and nickel, which with the hydrogen forms a hydride, and an aqueous electrolyte solution of pH greater than 7,. which process according to the invention is characterized in that a compound of the type having the gross formula LaNin is used, where n is between 4.8 and 5.4 and where lanthanum and / or nickel is optionally partially replaced with other metals said compound being present in an amount greater than the amount of electrochemically active material for the positive electrode that when the electrodes are placed in the cell, the electrochemically active material for the negative electrode is in the discharged state and that the electrochemically active material for the negative electrode, with respect to the excess electrochemical capacity, is partially in hydride form (charged state) and the cell is sealed with the electrodes in this state. According to another method, the electrodes are placed in the uncharged state in the cell, whereupon the cell is filled with the required amount of hydrogen gas for partial conversion 40 of the negative electrode, whereupon the cell is hermetically closed. then

5 DK 155859 B5 DK 155859 B

formes cellen ved gentagne opladninger og afladninger, f.eks. fem gange. Et sådant overskud af elektrokemisk aktivt materiale tilvejebringes fortrinsvis på den negative elektrode i forhold til den positive elektrode, således at den negative elektrodes elektroke-5 miske kapacitet er mindst 15% større end den positive elektrodes elektrokemiske kapacitet. Det skal senere forklares, at det maksimale overskud i princippet er ubegrænset. I henhold til en hensigtsmæssig udførelsesform er den negative elektrodes elektrokemiske kapacitet 1,5 x den positive elektrodes elektrokemaiske kapa-10 citet.the cell is formed by repeated charges and discharges, e.g. five times. Such excess electrochemically active material is preferably provided on the negative electrode relative to the positive electrode such that the electrochemical capacity of the negative electrode is at least 15% greater than the electrochemical capacity of the positive electrode. It will later be explained that in principle the maximum profit is unlimited. According to a convenient embodiment, the electrochemical capacity of the negative electrode is 1.5 x the electrochemical capacity of the positive electrode.

I henhold til en hensigtsmæssig udførelsesform findes mindst 10% og højst 90% af den negative elektrodes kapacitetsoverskud, i den positive elektrodes fuldt afladede tilstand, i hydrid form. Dette betyder, at mindst 10% af den negative elektrodes kapacitetsover-15 skud stadigvæk befinder sig i uopladet tilstand, når den positive elektrode er fuldt opladet. Ved fremstillingen af en celle ifølge opfindelsen kan den negative elektrode,inden cellen samles,eksempelvis bringes i en delvis opladet tilstand. Til dette formål kan den negative elektrode delvis oplades i en hjælpecelle ved tilførsel af 20 elektrisk strøm til denne celle. Hjælpecellen omfatter en inert elektrode af f.eks. platin, carbon, rustfrit stål, titan til dannelse af den positive elektrode. Denne metode er imidlertid besværlig, hvorfor man foretrækker en metode, hvori elektroderne placeres i cellen, hvorpå cellen fyldes med en hydrogenatmosfære.According to a suitable embodiment, at least 10% and at most 90% of the negative electrode's excess capacity, in the fully discharged state of the positive electrode, is in hydride form. This means that at least 10% of the negative electrode capacity excess is still in the uncharged state when the positive electrode is fully charged. For example, in the manufacture of a cell according to the invention, the negative electrode before the cell is assembled can be brought into a partially charged state. To this end, the negative electrode can be partially charged into an auxiliary cell by supplying 20 electrical current to this cell. The auxiliary cell comprises an inert electrode of e.g. platinum, carbon, stainless steel, titanium to form the positive electrode. However, this method is cumbersome, which is why one prefers a method in which the electrodes are placed in the cell, whereupon the cell is filled with a hydrogen atmosphere.

25 Opfindelsen forklares nærmere i det følgende under henvis ning til den skematiske tegning, hvor fig. 1 viser en celle ifølge opfindelsen under afladning, fig. 2 en celle ifølge opfindelsen under opladning, og fig. 3 et snit gennem en celle ifølge opfindelsen.The invention is explained in more detail below with reference to the schematic drawing, in which fig. 1 shows a cell according to the invention during discharge; FIG. 2 shows a cell according to the invention during charging; and FIG. 3 is a section through a cell according to the invention.

30 I cellen, hvis væg skematisk antydes ved en punkteret linie 1 finder man i kontakt med en elektrolytopløsning, f.eks. en 5N van dig opløsning af kaliumhydroxid, dels en positiv elektrode A, hvis elektrokemisk aktive materiale består af nikkelhydroxid, dels en negativ elektrode B, hvis elektrokemisk aktive materiale består af 35 LaNi,-, LaNi^Cu eller LaNi^Cr. Dimensionerne af rektanglerne A og B angiver de relative mængder af elektrokemisk aktiv forbindelse for hver af elektroderne. Det skraverede område viser, hvor meget aktivt materiale, der er i opladet tilstand. Virkemåden ved foranstaltningerne ifølge opfindelsen forklares nærmere nedenfor.In the cell whose wall is schematically indicated by a dashed line 1, contact with an electrolyte solution, e.g. a 5N vanadium solution of potassium hydroxide, partly a positive electrode A whose electrochemically active material consists of nickel hydroxide and a negative electrode B whose electrochemically active material consists of 35 LaNi, -, LaNi ^ Cu or LaNi ^ Cr. The dimensions of rectangles A and B indicate the relative amounts of electrochemically active compound for each of the electrodes. The shaded area shows how much active material is in the charged state. The operation of the measures according to the invention is explained in more detail below.

DK 155859BDK 155859B

66

Under afladningen (jf. fig. 1) går der elektroner gennem en elektrisk leder 2 fra den negative elektrode B til den positive elektrode A. Ved den positive elektrode opstår der en elektrokemisk reaktion som udtrykkes ved ligningen: 5During the discharge (cf. Fig. 1), electrons pass through an electrical conductor 2 from the negative electrode B to the positive electrode A. At the positive electrode, an electrochemical reaction is expressed which is expressed by the equation: 5

NiOOH + H+ + e~ -> Ni(OH)2 (3) medens der ved den negative elektrode dannes følgende reaktion:NiOOH + H + + e ~ -> Ni (OH) 2 (3) while forming the following reaction at the negative electrode:

LaNi5Hx -> LaNi5Hx_1 + H+ + e~ . (4) 10LaNi5Hx -> LaNi5Hx_1 + H + + e ~. (4) 10

Hvis den positive elektrode er fuldt afladet, dvs. hele,det til rådighed værende NiOOH er blevet omdannet til en Ni(OH)2 r kan der i henhold til ligningen (4) stadigvæk dannes hydrogenioner ved den negative elektrode, eftersom en del af det aktive materiale stadigvæk er i hydrid form. Hvis cellen er forbundet i serie med 15 andre celler som endnu ikke er fuldt afladet, vil der stadigvæk være en strøm, og som følge heraf vil der i elektrolytopløsningen være passage af protoner fra den negative elektrode til den positive elektrode. I så fald opstår der reaktioner, som udtrykkes på følgende måde: 20 +If the positive electrode is fully discharged, ie. On the whole, the available NiOOH has been converted to a Ni (OH) 2r, according to Equation (4), hydrogen ions can still be formed at the negative electrode, since part of the active material is still in hydride form. If the cell is connected in series with 15 other cells that are not yet fully discharged, there will still be a current, and as a result, in the electrolyte solution, there will be passage of protons from the negative electrode to the positive electrode. In this case, reactions are expressed which are expressed as follows: 20 +

Ved den positive elektrode: H V+ e -> ^H2* (5)At the positive electrode: H V + e -> ^ H2 * (5)

Ved den negative elektrode:At the negative electrode:

LaNicH -> LaNir-H . + H+ + e" . (6) - 5 X b x-1 25 Det hydrogen, der dannes ved den positive elektrode diffun derer til den negative elektrode og reagerer med det afladede aktive materiale, hvilket f.eks. udtrykkes på følgende måde i LaNi5 + %H2 -» i I,aNi5Hx. <7, 30LaNicH -> LaNir-H. + H + + e ". (6) - 5 X b x-1 The hydrogen formed at the positive electrode diffuses to the negative electrode and reacts with the discharged active material, which is expressed, for example, in the following manner. LaNi5 +% H2 - »i I, aNi5Hx. <7, 30

Det overraskende ligger i, at der samtidigt på den samme elektrode kan oplagres hydrogen, mens der dannes et hydrid og protoner (H+). Under afladningen af cellen (jf. fig. 2) opstår på den positive elektrode en reaktion, som udtrykkes ved: 35 +It is surprising that hydrogen can be stored simultaneously on the same electrode while forming a hydride and protons (H +). During the discharge of the cell (cf. Fig. 2), a reaction is expressed on the positive electrode:

Ni (OH) 2 ->NiOOH + H + e , (8) mens der ved den negative elektrode forekommer reaktionen: - LaNic + H+ + e* -> - LaNir-H (9) x o x o xNi (OH) 2 -> NiOOH + H + e, (8) while at the negative electrode the reaction occurs: - LaNic + H + + e * -> - LaNir-H (9) x o x o x

7 DK 155859 B7 DK 155859 B

På det tidspunkt, hvor det aktive materiale ved den positive elektrode er fuldstændigt omdannet til den opladede tilstand (NiOOH) er der stadigvæk en del af det aktive materiale ved den negative elektrode, der befinder sig i uopladet tilstand. Hvis nu ladestrømme: 5 fortsat passerer opstår der reaktioner, som kan udtrykkes på følgende måde:At the time when the active material at the positive electrode is completely converted to the charged state (NiOOH), there is still some of the active material at the negative electrode which is in the uncharged state. If now charge flows: 5 continue to pass, reactions occur which can be expressed as follows:

Ved den positve elektrode dannes der oxygen: 2H20 -> 02 + 4H+ + 4e" . (10) 10 Ved den negative elektrode fortsætter reaktionen (8). Det oxygen, der dannes diffunderer til den negative elektrode og reagerer med hydridet til dannelse af vand, hvilken reaktion kan udtrykkes ved:At the positive electrode, oxygen is formed: 2H20 -> 02 + 4H + + 4e ". (10) 10 At the negative electrode, the reaction (8) continues. The oxygen formed diffuses to the negative electrode and reacts with the hydride to form water , which reaction can be expressed by:

LaNicH + 0o -LaNic-H . + 2Ho0 (11) Ί ^ j X δ* j X“4 z I praksis synes reaktionen at forekomme med en sådan hastighed, at det til rådighed værende oxygen omdannes. I réaktionslignin-gerne (4), (6), (7), (8) og (9) kan x have en værdi mellem 4 og 6.LaNicH + 0o -LaNic-H. + 2Ho0 (11) Ί ^ j X δ * j X “4 z In practice, the reaction seems to occur at such a rate that the available oxygen is converted. In the reaction equations (4), (6), (7), (8) and (9), x may have a value between 4 and 6.

Af det foregående fremgår det, at de foreslåede foranstalt-20 ninger både under overopladningen og under overafladningen bevirker, at der ikke kan opstå høje gastryk. Det vil også ses, at de foreslåede foranstaltninger virker permanent.From the foregoing, it appears that the proposed measures during both the overcharging and during the overcharging means that high gas pressures cannot occur. It will also be seen that the measures proposed are permanent.

Af andre hydriddannende intermetalliske forbindelser som kan anvendes i cellen ifølge opfindelsen kan man nævne TiNi og TiFe. 25 Ved en nikkel-cadmium-celle af den tidligere nævnte art vil en såkaldt ladningsreserve, dvs. et overskud af aktivt materiale ved den negative elektrode efterhånden være fuldstændigt depleteret. Ved en sådan celle aftager den elektrokemiske kapacitet, hvis den negative elektrodes materiale overaflades. En yderligere fordel ved cel-30 len ifølge opfindelsen ligger i, at det elektrokemisk aktive materiale til den negative elektrode kan bestå af f.eks. LaNi^Cr, der som sådan ikke kan føre til overafladning. I en celle ifølge opfindelsen vil hydrid-elektroden aldrig nå et så lavt potential, at der kan opstå en begyndende korrosion af f.eks. kobber, som kan 35 anvendes til elektroden, ved sintring med f.eks. LaNi_.Of other hydride-forming intermetallic compounds which can be used in the cell of the invention, mention is made of TiNi and TiFe. In the case of a nickel-cadmium cell of the aforementioned kind, a so-called charge reserve, i.e. a surplus of active material at the negative electrode is eventually completely depleted. In such a cell, the electrochemical capacity decreases if the material of the negative electrode is overcharged. A further advantage of the cell of the invention lies in that the electrochemically active material for the negative electrode may consist of e.g. LaNi ^ Cr, which as such cannot lead to overcharging. In a cell according to the invention, the hydride electrode will never reach such a low potential that an initial corrosion of e.g. copper which can be used for the electrode by sintering with e.g. LaNi_.

55

Celler ifølge opfindelsen kan kombineres til dannelse af et sekundært batteri, f.eks. ved at forbinde cellerne i serie med hinanden.Cells according to the invention can be combined to form a secondary battery, e.g. by connecting the cells in series with each other.

En udførelsesform for en celle ifølge opfindelsen forklares 40 nærmere i det følgende under henvisning til fig. 3.An embodiment of a cell according to the invention is explained in more detail below with reference to FIG. Third

88

DK 155859 BDK 155859 B

Den hermetisk ldkkede celle, der er vist i fig. 3 fremstilles ud fra et passende hus 1 af metal, f.eks. rustfrit stål, med et låg 11, der har åbninger gennem hvilke ledningerne 3 og 4 er ført ud. Ledningerne isoleres fra metalhuset (1,11) ved hjælp af ringe 5 5 af syntetisk materiale. Huset har f.eks. en yderdiameter på 22 mm og en højde på 41 mm. I det indre af dette hus findes der en vikkel, der består af en negativ elektrode 6, en separator 7 og en positiv elektrode 8, samt endvidere en elektrisk isolerende film 9 af plastmateriale, f.eks. polyvinylchlorid/og vikkelen er anbragt på 10 en skive 10 af elektrisk isolerende materiale, f.eks. polyvinylchlorid. Den negative elektrode 6 består af en intermetallisk forbindelse af lanthan, nikkel og kobber (LaNi^Cu) og har forbindelse med ledningen 3. Den negative elektrode 6 fremstilles ved sintring af en passende mængde LaNi^Cu iblandet kobber i pulverform i volumen-15 forhold 1/1. Den positive elektrode er en konventionel, sintret nik-kelhydroxidelektrode, der er forbundet med ledningen 4. Som elektrolyt anvendes der en 6N vandig opløsning af kaliumhydrid som imprægnerer separatoren 7 og er i våd kontakt med de to elektroders elektrokemisk aktive materiale. Separatoren 7 består af en meget fin-20 vævet masse af polyamidfibre (nylon). Den negative elektrode 6's elektrokemiske kapacitet er 1,5 gange den elektrokemiske kapacitet for den positive elektrode 8, der selv har en kapacitet på 1,2 Ah.The hermetically sealed cell shown in FIG. 3 is made from a suitable housing 1 of metal, e.g. stainless steel, with a lid 11 having apertures through which conduits 3 and 4 are inserted. The wires are insulated from the metal housing (1,11) using rings 5 5 of synthetic material. The house has e.g. an outer diameter of 22 mm and a height of 41 mm. In the interior of this housing there is a winding consisting of a negative electrode 6, a separator 7 and a positive electrode 8, as well as an electrically insulating film 9 of plastic material, e.g. polyvinyl chloride / and wrap are arranged on a disk 10 of electrically insulating material, e.g. polyvinyl chloride. The negative electrode 6 consists of an intermetallic compound of lanthanum, nickel and copper (LaNi ^ Cu) and is connected to the conduit 3. The negative electrode 6 is prepared by sintering an appropriate amount of LaNi ^ Cu mixed in powdered copper in volume-15 ratio 1.1. The positive electrode is a conventional sintered nickel hydroxide electrode connected to line 4. An electrolyte is used as a 6N aqueous solution of potassium hydride which impregnates the separator 7 and is in wet contact with the electrochemically active material of the two electrodes. The separator 7 consists of a very fine woven mass of polyamide fibers (nylon). The electrochemical capacity of the negative electrode 6 is 1.5 times the electrochemical capacity of the positive electrode 8, which itself has a capacity of 1.2 Ah.

(1 g LaNi^Cu svarer til ca. 0,26 Ah). Inden cellen lukkes hermetisk fyldes den med en mængde hydrogengas svarende til 0,12 Ah, hvilket 25 svarer til ca. 50 standard cm ^gas. Efter 5 successive opladninger og afladninger er hydrogenet absorberet i den negative elektrode, hvorved der er dannet en negativ reservekapacitet. Rummet til den 3 frie gas i cellen er ca. 5 cm . En lukket celle af denne type har en elektromotorisk kraft på 1,3 V. En forlænget overopladning eller 30 overafladning forringer ikke cellens kvalitet og indebærer ingen risiko for eksplosion.(1 g of LaNi ^ Cu corresponds to about 0.26 Ah). Before the cell is hermetically sealed, it is filled with an amount of hydrogen gas equal to 0.12 Ah, which corresponds to approx. 50 standard cm 2 of gas. After 5 successive charges and discharges, the hydrogen is absorbed into the negative electrode, thus forming a negative reserve capacity. The space for the 3 free gas in the cell is approx. 5 cm. A closed cell of this type has an electromotive force of 1.3 V. An extended overcharge or overcharge does not impair the quality of the cell and does not pose a risk of explosion.

En overraskende egenskab ved denne celle er, at der ikke opstår nogen passivering af det negative elektrodemateriale i relation til absorptionen af hydrogenen fra gasfasen, hvilket sædvanligvis 35 er tilfældet, når LaNij- og derfra afledte forbindelser kommer i kontakt med oxygen og vand eller vanddamp. Det antages, at dette har forbindelse med det faktum, at cellen er lukket overfor den ydre atmosfære.A surprising feature of this cell is that no passivation of the negative electrode material in relation to the absorption of the hydrogen from the gas phase occurs, which is usually the case when LaNij and derived derivatives come into contact with oxygen and water or water vapor. This is believed to be related to the fact that the cell is closed to the outer atmosphere.

Claims (8)

1. Genopladelig elektrokemisk celle, der er lukket over for den ydre atmosfære, og omfattende et lukket kammer, der indeholder en positiv elektrode, hvis elektrokemisk aktive materiale reversi- 5 belt kan optage og afgive en proton og en elektron, og en negativ elektrode, hvis elektrokemisk aktive materiale består af en metalforbindelse med lanthan og nikkel, der med hydrogenet danner et hy-drid, samt en vandig elektrolytopløsning med pH større end 7, kendetegnet ved, at mængden af det elektrokemisk aktive 10 materiale til den negative elektrode udgøres af en intermetallisk forbindelse af den type, der har bruttoformlen LaNin, hvor n er på mellem 4,8 og 5,4, og hvor lanthan og/eller nikkel eventuelt er delvis erstattet med andre metaller, at denne mængde er større end mængden af elektrokemisk aktivt materiale til den positive elektro-15 de, og at i den fuldt afladede tilstand for den positive elektrode foreligger den elektrokemisk aktive forbindelse til den negative elektrode, i det mindste hvad angår overskuddet, delvis som et hy-drid, dvs. i opladet tilstand.A rechargeable electrochemical cell which is closed to the outer atmosphere, comprising a closed chamber containing a positive electrode whose electrochemically active material can reversibly receive and emit a proton and an electron, and a negative electrode, whose electrochemically active material consists of a metal compound of lanthanum and nickel forming with the hydrogen a hydride, as well as an aqueous electrolyte solution of pH greater than 7, characterized in that the amount of the electrochemically active material for the negative electrode is constituted by a intermetallic compound of the type having the gross formula LaNin, where n is between 4.8 and 5.4 and where lanthanum and / or nickel is optionally partially replaced by other metals, that amount is greater than the amount of electrochemically active material to the positive electrode, and that in the fully discharged state of the positive electrode, the electrochemically active compound to the negative electrode is present in the ninth in terms of profits, partly as a hybrid, ie. in charged state. 2. Celle ifølge krav 1, kendetegnet ved, at 20 mængderne af elektrokemisk aktivt materiale til elektroderne er således, at den negative elektrodes elektrokemiske kapacitet er mindst 15% større end den positive elektrodes elektrokemiske kapacitet.A cell according to claim 1, characterized in that the 20 amounts of electrochemically active material for the electrodes are such that the electrochemical capacity of the negative electrode is at least 15% greater than the electrochemical capacity of the positive electrode. 3. Celle ifølge krav 2, kendetegnet ved, at 25 mængderne af elektrokemisk aktivt materiale til elektroderne er således, at den negative elektrodes elektrokemiske kapacitet er 1,5 gange den positive elektrodes elektrokemiske kapacitet.Cell according to claim 2, characterized in that the amounts of electrochemically active material for the electrodes are such that the electrochemical capacity of the negative electrode is 1.5 times the electrochemical capacity of the positive electrode. 4. Celle ifølge krav 1, kendetegnet ved, at mindst 10% og højst 90% af den negative elektrodes kapacitets- 30 overskud, i den positive elektrodes fuldt afladede tilstand, findes i hydrid-form (opladet tilstand).A cell according to claim 1, characterized in that at least 10% and at most 90% of the excess electrode capacity excess, in the fully discharged state of the positive electrode, is in hydride form (charged state). 5. Fremgangsmåde ved fremstilling af en genopladelig elektrokemisk celle ifølge krav 1, kendetegnet ved, at der anvendes en forbindelse af den type, der har bruttoformlen LaNi^, 25 hvor n er på mellem 4,8 og 5,4, og hvor lanthan og/eller nikkel eventuelt er delvis erstattet med andre metaller, hvilken forbindelse foreligger i en mængde større end mængden af elektrokemisk aktivt materiale til den positive elektrode, at når elektroderne pla-Process for the preparation of a rechargeable electrochemical cell according to claim 1, characterized in that a compound of the type having the gross formula LaNi 2, wherein n is between 4.8 and 5.4, is used, and wherein lanthanum and / or nickel is optionally partially replaced by other metals which are present in an amount greater than the amount of electrochemically active material to the positive electrode that when the electrodes are plated 10 DK 155859B ceres i cellen/ befinder det elektrokemisk aktive materiale til den positive elektrode sig i afladet tilstand, og at det elektrokemisk aktive materiale til den negative elektrode, hvad angår overskuddet af elektrokemisk kapacitet, delvis foreligger i hydrid-5 form (opladet tilstand), og at cellen forsegles med elektroderne i denne tilstand.In the cell, the electrochemically active material for the positive electrode is discharged and the electrochemically active material for the negative electrode in excess of electrochemical capacity is partially in hydride form (charged state). , and that the cell is sealed with the electrodes in this state. 6. Fremgangsmåde ifølge krav 5, kendetegnet ved, at den negative elektrode oplades elektrisk i en hjælpecelle, inden den genopladelige celle samles.Method according to claim 5, characterized in that the negative electrode is electrically charged in an auxiliary cell before the rechargeable cell is assembled. 7. Fremgangsmåde ifølge krav 5, kendetegnet ved, at den negative elektrode placeres i en hydrogenatmosfære, inden den genopladelige celles samles.Method according to claim 5, characterized in that the negative electrode is placed in a hydrogen atmosphere before the rechargeable cell is assembled. 8. Fremgangsmåde til fremstilling af en celle ifølge krav 1, kendetegnet ved, at elektroderne placeres i uopladet til-15 stand i cellen, at cellen fyldes med den fornødne mængde hydrogengas til delvis omdannelse af den negative elektrodes elektrokemisk aktive materiale til et hydrid, hvorpå cellen forsegles og formes ved gentagne opladninger og afladninger.Process for producing a cell according to claim 1, characterized in that the electrodes are placed in the uncharged state in the cell, filling the cell with the required amount of hydrogen gas to partially convert the electrochemically active material of the negative electrode into a hydride, the cell is sealed and formed by repeated charges and discharges.
DK091578A 1977-03-03 1978-02-28 RECHARGEABLE ELECTROCHEMICAL CELL CLOSED TO THE EXTERNAL ATMOSPHERE, AND PROCEDURES FOR THE MANUFACTURE OF SUCH A CELL DK155859C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
NL7702259 1977-03-03
NL7702259A NL7702259A (en) 1977-03-03 1977-03-03 Rechargeable enclosed electrochemical cell - with negative electrode having much more electrochemically active material than positive electrode
NLAANVRAGE7801243,A NL176893C (en) 1977-03-03 1978-02-03 RECHARGEABLE ELECTROCHEMICAL CELL CONCLUDED FROM THE SURROUNDING ATMOSPHERE AND METHODS FOR MANUFACTURING SUCH CELLS.
NL7801243 1978-02-03

Publications (3)

Publication Number Publication Date
DK91578A DK91578A (en) 1978-09-04
DK155859B true DK155859B (en) 1989-05-22
DK155859C DK155859C (en) 1989-10-09

Family

ID=26645299

Family Applications (1)

Application Number Title Priority Date Filing Date
DK091578A DK155859C (en) 1977-03-03 1978-02-28 RECHARGEABLE ELECTROCHEMICAL CELL CLOSED TO THE EXTERNAL ATMOSPHERE, AND PROCEDURES FOR THE MANUFACTURE OF SUCH A CELL

Country Status (11)

Country Link
JP (1) JPS53111439A (en)
AT (1) ATA143578A (en)
CA (1) CA1097734A (en)
DE (1) DE2808433C3 (en)
DK (1) DK155859C (en)
FR (1) FR2382776A1 (en)
GB (1) GB1579714A (en)
IT (1) IT1111422B (en)
NL (1) NL176893C (en)
SE (2) SE7802243L (en)
YU (1) YU49478A (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4107395A (en) * 1977-09-20 1978-08-15 Communication Satellite Corporation Overchargeable sealed metal oxide/lanthanum nickel hydride battery
ZA832570B (en) * 1982-04-28 1984-01-25 Energy Conversion Devices Inc Improved rechargeable battery and electrode used therein
JPS59181459A (en) * 1983-03-31 1984-10-15 Toshiba Corp Metal oxide hydrogen battery
JPS6119060A (en) * 1984-07-04 1986-01-27 Sanyo Electric Co Ltd Hydrogen occlusion electrode
US4621034A (en) * 1984-07-31 1986-11-04 Kabushiki Kaisha Toshiba Sealed metal oxide-hydrogen storage cell
JPH0642374B2 (en) * 1984-10-18 1994-06-01 三洋電機株式会社 Metal-hydrogen alkaline storage battery
FR2569059B1 (en) * 1984-08-10 1992-08-07 Sanyo Electric Co ALKALINE METAL / HYDROGEN ACCUMULATOR
JPS6149375A (en) * 1984-08-17 1986-03-11 Matsushita Electric Ind Co Ltd Manufacture of hydrogen absorbing electrode
JPS61118963A (en) * 1984-11-13 1986-06-06 Sharp Corp Hydrogen-occlusion electrode
JPS61140075A (en) * 1984-12-12 1986-06-27 Matsushita Electric Ind Co Ltd Manufacture of alkaline battery
JPS61168871A (en) * 1985-01-19 1986-07-30 Sanyo Electric Co Ltd Hydrogen occlusion electrode
JPS6332962U (en) * 1986-08-20 1988-03-03
US4716088A (en) * 1986-12-29 1987-12-29 Energy Conversion Devices, Inc. Activated rechargeable hydrogen storage electrode and method
US4935318A (en) * 1987-03-25 1990-06-19 Matsushita Electric Industrial Co., Ltd. Sealed type nickel-hydride battery and production process thereof
DE4029503A1 (en) * 1990-09-18 1992-03-19 Emmerich Christoph Gmbh Co Kg Safely over-(dis)charged and hermetic nickel hydride cells - uses additive of hydrogen catalysts e.g. raney metal in negative electrode mass and positive metal oxide electrode
JPH0465663U (en) * 1990-10-11 1992-06-08
JP3025770B2 (en) * 1994-10-24 2000-03-27 株式会社東芝 Metal oxide / hydrogen battery
FR2797526B1 (en) * 1999-08-09 2001-10-12 Cit Alcatel WATERPROOF NICKEL-METAL WATERPROOF BATTERY
WO2003003498A1 (en) * 2001-06-29 2003-01-09 Ovonic Battery Company, Inc. Hydrogen storage battery; positive nickel electrode; positive electrode active material and methods for making

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2137908A1 (en) * 1970-08-03 1972-02-10 Gates Rubber Co Maintenance-free electrochemical acid cell
US3850694A (en) * 1972-11-27 1974-11-26 Communications Satellite Corp Low pressure nickel hydrogen cell
US3867199A (en) * 1972-06-05 1975-02-18 Communications Satellite Corp Nickel hydrogen cell
FR2275898A1 (en) * 1974-06-19 1976-01-16 Western Electric Co Alkaline batteries and fuel cells with intermetallic cpd - comprising lanthanide and cobalt or nickel, as hydrogen-absorbing negative electrode
US3980501A (en) * 1974-06-19 1976-09-14 Bell Telephone Laboratories, Incorporated Use of hydrogen-absorbing electrode in alkaline battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL94733C (en) * 1949-11-22
CH495060A (en) * 1967-05-02 1970-08-15 Battelle Memorial Inst Interna Accumulator electrode with storage capacity for hydrogen and process for their production
US3669744A (en) * 1971-02-25 1972-06-13 Tsenter Boris I Hermetically sealed nickel-hydrogen storage cell
IT974430B (en) * 1972-01-08 1974-06-20 Deutsche Automobilgesellsch PROCEDURE FOR THE MANUFACTURE OF HYDROGEN STORAGE ELECTRODES FOR ELECTRIC ACCUMULATORS
US3874928A (en) * 1973-06-29 1975-04-01 Gen Electric Hermetically sealed secondary battery with lanthanum nickel anode
NL7411045A (en) * 1974-08-19 1976-02-23 Philips Nv RECHARGEABLE ELECTROCHEMICAL CELL.
DE2452064C3 (en) * 1974-11-02 1981-06-19 Varta Batterie Ag, 3000 Hannover Gas-tight sealed alkaline accumulator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2137908A1 (en) * 1970-08-03 1972-02-10 Gates Rubber Co Maintenance-free electrochemical acid cell
US3867199A (en) * 1972-06-05 1975-02-18 Communications Satellite Corp Nickel hydrogen cell
US3850694A (en) * 1972-11-27 1974-11-26 Communications Satellite Corp Low pressure nickel hydrogen cell
FR2275898A1 (en) * 1974-06-19 1976-01-16 Western Electric Co Alkaline batteries and fuel cells with intermetallic cpd - comprising lanthanide and cobalt or nickel, as hydrogen-absorbing negative electrode
US3980501A (en) * 1974-06-19 1976-09-14 Bell Telephone Laboratories, Incorporated Use of hydrogen-absorbing electrode in alkaline battery

Also Published As

Publication number Publication date
IT7867419A0 (en) 1978-03-01
JPS53111439A (en) 1978-09-29
IT1111422B (en) 1986-01-13
CA1097734A (en) 1981-03-17
GB1579714A (en) 1980-11-26
NL7801243A (en) 1978-09-05
NL176893B (en) 1985-01-16
DE2808433C3 (en) 1981-06-25
FR2382776A1 (en) 1978-09-29
DK155859C (en) 1989-10-09
DE2808433A1 (en) 1978-09-07
SE440712B (en) 1985-08-12
FR2382776B1 (en) 1983-09-02
ATA143578A (en) 1980-10-15
JPS615264B2 (en) 1986-02-17
DE2808433B2 (en) 1980-07-10
SE7802243L (en) 1978-09-04
YU49478A (en) 1983-01-21
DK91578A (en) 1978-09-04
NL176893C (en) 1985-06-17

Similar Documents

Publication Publication Date Title
DK155859B (en) RECHARGEABLE ELECTROCHEMICAL CELL CLOSED TO THE EXTERNAL ATMOSPHERE, AND PROCEDURES FOR THE MANUFACTURE OF SUCH A CELL
US4487817A (en) Electrochemical cell comprising stable hydride-forming material
US4214043A (en) Rechargeable electrochemical cell
US4004943A (en) Rechargeable electrochemical cell
US3850694A (en) Low pressure nickel hydrogen cell
US4312928A (en) Rechargeable electrochemical cell
EP0170519B1 (en) A method of producing a sealed metal oxide-hydrogen storage cell
US4702978A (en) Electrochemical cell
JPH0677451B2 (en) Manufacturing method of hydrogen storage electrode
CN100487969C (en) Sealed alkaline storage battery, electrode structure thereof, charging method and charger for sealed alkaline storage battery
US5131920A (en) Method of manufacturing sealed rechargeable batteries
JPS61156639A (en) Enclosed type alkaline storage battery
Willems Investigation of a new type of rechargeable battery, the nickel-hydride cell
US4999906A (en) Method of manufacturing a sealed electrochemical cell
JPH05258748A (en) Hydride secondary battery
RU2020656C1 (en) Method of forming of metal hydride cell
CA1149868A (en) Bilevel rechargeable cell
JP3412162B2 (en) Alkaline storage battery
JPS6332856A (en) Closed nickel-hydrogen storage battery
JPS6180771A (en) Enclosed type metallic oxide/hydrogen storage battery
JPH028419B2 (en)
von Sturm Secondary Batteries—Nickel-Cadmium Battery
Holleck Rechargeable Electrochemical Cells as Implantable Power Sources
JP2000251925A (en) Sealed alkaline zinc storage battery
JPS60189179A (en) Sealed alkaline zinc storage battery

Legal Events

Date Code Title Description
PUP Patent expired