JPS6180771A - Enclosed type metallic oxide/hydrogen storage battery - Google Patents
Enclosed type metallic oxide/hydrogen storage batteryInfo
- Publication number
- JPS6180771A JPS6180771A JP59202712A JP20271284A JPS6180771A JP S6180771 A JPS6180771 A JP S6180771A JP 59202712 A JP59202712 A JP 59202712A JP 20271284 A JP20271284 A JP 20271284A JP S6180771 A JPS6180771 A JP S6180771A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- positive
- hydrogen storage
- battery
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/34—Gastight accumulators
- H01M10/345—Gastight metal hydride accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は水素吸蔵合金を負極とする密閉型金属酸化物・
水素蓄電池の改良に関する。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a sealed metal oxide with a hydrogen storage alloy as a negative electrode.
Concerning improvements to hydrogen storage batteries.
正極に金属酸化物電極を、負極に水素吸蔵合金を、夫々
使用する密閉型金属酸化物・水素蓄電池は、高エネルギ
密度電池として最近注目されている。この蓄電池は、ア
ルカリ蓄電池の一種であり、これを組立てる場合にはそ
の基本的な構造、構成等は例えばニッケルカドミニウム
蓄電池と同様にする必要がある。かかる蓄電池の特性中
で重要なものの一つとして、正極・負極の容量バランス
がある。Sealed metal oxide/hydrogen storage batteries that use a metal oxide electrode for the positive electrode and a hydrogen storage alloy for the negative electrode have recently been attracting attention as high energy density batteries. This storage battery is a type of alkaline storage battery, and when assembling it, its basic structure, configuration, etc. must be the same as, for example, a nickel-cadmium storage battery. One of the important characteristics of such a storage battery is the capacity balance between the positive and negative electrodes.
密閉凰アルカリ電池においては、通常、電極容量は正極
よりも負極の方が過剰になる二うに組立てる。そして、
全ての工程が完了して蓄電池を完成した状態においては
、負極容量の過剰となっている部分のうち、一部は充電
状態にあり、残りの部分り未充電の状態になっている必
要がある。この理由は、正・負極の容量状態が上述した
ような状態を実現した場合にのみ、過充電において電池
内圧が上昇せず、放電時に最大客層が得られ、しかも電
池寿命も低下し難くなるためである。Sealed alkaline batteries are usually assembled in such a way that the electrode capacity is greater at the negative electrode than at the positive electrode. and,
When all processes are completed and the storage battery is completed, part of the excess negative electrode capacity must be in a charged state, and the remaining part must be in an uncharged state. . The reason for this is that only when the capacity state of the positive and negative electrodes achieves the state described above, the internal pressure of the battery will not rise during overcharging, the maximum number of customers will be obtained during discharging, and the battery life will not deteriorate easily. It is.
ところで、上述した正・負極の容量状態を持ったアルカ
リ蓄電池を組立てるためには、負極を予め必要量だけ充
電しておくことが必要でおる。そのため、二、ケル・カ
ドミウム蓄電池では、化成工程において予めカドミウム
負極を充電する方式が通常採用されている。化成工程で
必要量だけ充電されたカドミウム負極は、水洗。By the way, in order to assemble an alkaline storage battery having the capacity states of the positive and negative electrodes described above, it is necessary to charge the negative electrode in advance by the required amount. Therefore, in 2.Kel cadmium storage batteries, a method is usually adopted in which the cadmium negative electrode is charged in advance during the chemical formation process. The cadmium negative electrode charged to the required amount during the chemical formation process is washed with water.
乾燥後に正極と共に密閉容器に組込まれる。After drying, it is assembled into a sealed container together with the positive electrode.
しかしながら、カドミウム負極と同じプロセスを密閉型
金属酸化物・水素蓄電池の水素吸蔵合金負極に適用しよ
うとすると、充電され几活物質は水素であるので、化成
工程以降のプロセスにおいて、水素が容易に抜は出して
しまう。However, if we try to apply the same process to the cadmium negative electrode to the hydrogen storage alloy negative electrode of a sealed metal oxide/hydrogen storage battery, since the charged and active material is hydrogen, hydrogen will be easily extracted in the process after the chemical formation process. I'll let it out.
即ち、空気中では水素吸蔵合金負極の表面で水素が燃焼
するし、不活性ガス中では燃焼は生じないものの、すぐ
に放出されてしまう。That is, in air, hydrogen burns on the surface of the hydrogen storage alloy negative electrode, and in inert gas, although no combustion occurs, it is immediately released.
このような水素の抜けを防止するためには、化成工程以
降の全プロセスを少なくとも負極に使用している水素吸
蔵合金の平衡プラトー圧カ以上の水素分圧を有する雰囲
気で行なう必要がある。しかしながら、かかる場合には
次のような問題が生じる。即ち、水素雰囲気に調整され
た工程と、通常の空気雰囲気の工程との間で電池組立て
に使用する材料等を移動する場合、水素が発火する恐れ
があり、危険な作業を伴なうことになる。これを防止し
ようとすれば、そのための美大な設備と、煩雑な操作が
必要となる。In order to prevent such loss of hydrogen, it is necessary to carry out all processes after the chemical conversion step in an atmosphere having a hydrogen partial pressure that is at least higher than the equilibrium plateau pressure of the hydrogen storage alloy used in the negative electrode. However, in such a case, the following problems arise. In other words, when materials used for battery assembly are transferred between a process adjusted to a hydrogen atmosphere and a process using a normal air atmosphere, the hydrogen may ignite, resulting in dangerous work. Become. If we try to prevent this, we will need beautiful equipment and complicated operations.
このように水素吸蔵合金負極を、予め化成工程でその一
部を充電状態にすることは多大な困難を伴なう。As described above, it is extremely difficult to bring a portion of the hydrogen storage alloy negative electrode into a charged state in advance through a chemical conversion process.
本発明は電池組立てのための全プロセスにおいて水素ガ
ス雰囲気にすることなく、目的とする正・負極の容量状
態の水素吸蔵合金負極を有する密閉型金属酸化物・水素
蓄電池を提供しようとするものである。The present invention aims to provide a sealed metal oxide/hydrogen storage battery having a hydrogen storage alloy negative electrode with the desired positive and negative electrode capacity without creating a hydrogen gas atmosphere during the entire battery assembly process. be.
本発明の特徴は、水素吸蔵合金負極を有する 貴書閉
型金属酸化物・水素蓄電池において、電解液中にアルコ
ールを加えることにより負極のみが充電されて適切な充
電状態を実現し、同時に水酸化リチウムを加えてアルコ
ールの分解によって生じる有害なCO3−をL l 2
CO3の形で除去することである。以下、その概要を説
明する。A feature of the present invention is that in a closed-type metal oxide/hydrogen storage battery having a hydrogen storage alloy negative electrode, by adding alcohol to the electrolyte, only the negative electrode is charged to achieve an appropriate charging state, and at the same time hydroxide By adding lithium, harmful CO3- produced by decomposition of alcohol is removed L l 2
It is to remove it in the form of CO3. The outline will be explained below.
CH30H,C2H50H,C3H7OHのアルコール
は、アルカリ水溶液中で容易に陽極酸化を受け、しかも
それは次式〔1〕に示す二、ケル極の充電、つまり酸化
反応よりも低い電位で進行する。Alcohols such as CH30H, C2H50H, and C3H7OH easily undergo anodic oxidation in an alkaline aqueous solution, and moreover, this proceeds at a lower potential than the charging of the Kel electrode, that is, the oxidation reaction, shown in the following formula [1].
N1(OH)z+OH−+N100H+HzO+e
(1〕上記反応を同様に示す名7次式〔2〕となる。N1(OH)z+OH-+N100H+HzO+e
(1) The above reaction is expressed by the seven-dimensional formula [2].
CxHyOz + (7+ 6x −2z )OH−→
xcO32−+ (y+3x−z )H2O+ (y+
4x−2z )s I:2)したがって、過剰に充電し
ておくべき負極容量を確保しようとする場合、その量に
応じて上記アルコールを電解液中に添加し、充電を行な
うと、正極では〔1〕式に代って〔2〕式の反応が進行
し、結局、正極は全く充電されない。CxHyOz + (7+ 6x -2z)OH-→
xcO32-+ (y+3x-z)H2O+ (y+
4x-2z)s I:2) Therefore, when trying to secure the negative electrode capacity that should be overcharged, if the above alcohol is added to the electrolytic solution according to the amount and charging is performed, the positive electrode will have [ The reaction of formula [2] proceeds instead of formula 1, and in the end, the positive electrode is not charged at all.
一方、負極は普通に充電されるので、゛ここにおいて適
切な正・負極の充電状態が実現される。On the other hand, since the negative electrode is charged normally, an appropriate charging state of the positive and negative electrodes is achieved here.
放電反応においては〔2〕式の逆反応は進行しないので
、この後は適切な正・負極の充電状態が原則として保持
される。しかしながら、現実には〔2〕式で生じるCO
32−イオンの存在はニッケル正極および水素吸蔵合金
負極の電極特性を劣化させる。即ち、CO32−イオン
により正極容量は次第に低下し、また負極の放電々位平
坦性に乏しくなり、したがって高率放電時の電池電圧も
低下してくる。したがって、アルコールの電解液中への
添加は適切な充電状態を実現する上では有効であるが、
長期的には悪影響を及ぼすことになる。よって、良好な
特性の電池を実現するには、CO32−イオンの生成量
を少なくし、かつCO32−イオンの電解液中の濃度を
減少させることが必要である。これには、〔2〕式から
れかるようにCH30H,C2H4OH,C3H60H
CDようにカーボン量の少ないアルコールを用いること
が好適である。しかし、かかる低級アルコールを使用し
九としても、CO32−イオンは生成する。In the discharge reaction, the reverse reaction of formula [2] does not proceed, so that the appropriate state of charge of the positive and negative electrodes is maintained in principle after this. However, in reality, the CO generated in equation [2]
The presence of 32- ions deteriorates the electrode properties of the nickel positive electrode and the hydrogen storage alloy negative electrode. That is, the capacity of the positive electrode gradually decreases due to CO32- ions, and the flatness of the discharge level of the negative electrode becomes poor, so that the battery voltage during high rate discharge also decreases. Therefore, although adding alcohol to the electrolyte is effective in achieving an appropriate state of charge,
This will have negative effects in the long run. Therefore, in order to realize a battery with good characteristics, it is necessary to reduce the amount of CO32- ions produced and to reduce the concentration of CO32- ions in the electrolyte. This includes CH30H, C2H4OH, C3H60H as seen from the formula [2].
It is preferable to use an alcohol with a small amount of carbon such as CD. However, even if such a lower alcohol is used, CO32- ions are generated.
そこで、本発明ではKOH、NaOH水溶液からなる電
解液に更K Li0I(を添加する。L12CO3の溶
液度は1.33g/100g@H20(20℃)である
のに対し、Na ’2 Co 5は21.6g/100
g−12(20℃)、に2CO3は105.5 g/
100 g−H2O(20℃)である。したがって電解
液中に所定量のLiOHを加えることによ短成したCO
32−イオンはLt2co3として沈殿し、電解液中の
CO32−イオン濃度は上記溶解度以上にはならない。Therefore, in the present invention, K Li0I is further added to the electrolytic solution consisting of KOH and NaOH aqueous solutions.The solubility of L12CO3 is 1.33g/100g@H20 (20°C), whereas the solubility of Na'2Co5 is 21.6g/100
g-12 (20℃), 2CO3 is 105.5 g/
100 g-H2O (20°C). Therefore, by adding a predetermined amount of LiOH to the electrolyte, CO
The 32- ion precipitates as Lt2co3, and the concentration of the CO32- ion in the electrolytic solution does not exceed the above-mentioned solubility.
LIOH(分子量23.95)の溶解度は12.7 g
/100g−)i20(0℃)で、それより重いL12
C03(分子量73.89 )の溶解度より大きく、十
分に意図を達成できる。The solubility of LIOH (molecular weight 23.95) is 12.7 g
/100g-) i20 (0℃), heavier L12
The solubility is higher than that of C03 (molecular weight 73.89), and the intended purpose can be fully achieved.
今、単3型の密閉型電池を考えた場合、必要な電解溶液
量は8 M −KOHとして約2.0−である。Now, when considering an AA-sized sealed battery, the required amount of electrolytic solution is approximately 2.0- as 8 M-KOH.
電池定格容i 500 mA(充てん理論容量は600
mAh )としたとき、負極の理論容量の必要蓋は11
00mAで、そのうち過剰の充電状態とすべき量を最大
250 mAhと考えると、前記〔2〕式から0.05
g (1,6X 10=モル)のメタノールが必要と
なる。この時、メタノールが全部反応し、全てLt2c
o3となったと仮定すると、0.12g(1,6X10
−5−8/)のL12CO3が24のアルカリ溶液(比
重163として2.6gO溶*>に生じたことになる。Battery rated capacity i 500 mA (theoretical charging capacity is 600 mA)
mAh), the required theoretical capacity of the negative electrode is 11
00mA, and considering that the amount that should be in an excessively charged state is a maximum of 250mAh, from the above formula [2], 0.05
g (1,6×10=mol) of methanol are required. At this time, all methanol has reacted, and all Lt2c
Assuming that it becomes o3, 0.12g (1,6X10
This means that L12CO3 of -5-8/) was produced in the alkaline solution of 24 (2.6gO solution with specific gravity of 163*>).
水とアルカリ溶液では状況が若干異なるが、第一近似と
して両者におけるL12CO3の溶解度が等しい場合、
アルカリ水溶液2.6g中での実際のLt2co3の溶
解量は1.33X(2,6/100)=0.035g(
4,7X10−4モル)となり、少なくともLiOHが
電解液中に十分あれば、0.12−0.035=110
.095gのLt2co3(1,3X 10−Sモル)
は、電解液中に固体として沈殿してしまう。即ち、LI
OH無添加の電解液に比較して、LiOHが十分に添加
されている電解液では、CO32−の量が極めて少なく
なっている(1.6X10=モル:4.7X10−4モ
ル)。The situation is slightly different between water and alkaline solution, but as a first approximation, if the solubility of L12CO3 in both is equal,
The actual amount of Lt2co3 dissolved in 2.6g of alkaline aqueous solution is 1.33X (2,6/100) = 0.035g (
4.7 x 10-4 mol), and if at least LiOH is sufficient in the electrolyte, 0.12-0.035=110
.. 095g Lt2co3 (1,3X 10-S mol)
will precipitate as a solid in the electrolyte. That is, LI
Compared to the electrolytic solution without OH addition, the amount of CO32- is extremely small in the electrolytic solution to which LiOH is sufficiently added (1.6×10=mol: 4.7×10−4 mol).
このため、LiOHを添加した電解液を使用した電池は
、無添加の電池に比べて長寿命を得ることができる。Therefore, a battery using an electrolyte containing LiOH can have a longer lifespan than a battery without the addition of LiOH.
上記アルコールの添加量は、先に述べた単3電池を例に
し、アルコールとしてメタノールを考えた場合o、oi
〜0.09gの範囲にすることが望 !ましい。Using the AA battery mentioned above as an example, and considering methanol as the alcohol, the amount of alcohol added is o, oi.
It is desirable to keep it in the range of ~0.09g! Delicious.
この理由は正極に対して負極の過剰となるべき容量は5
00 mAhであシ、必ずこのうち一部は未充電状態で
残す必要があるので50mAhから450 mAh程度
を充電状態としておくことが適当と考えられる九めであ
る。したがってこれらは、・電池を組立てる際に充てん
する正・負極の理論容量により、また電極寿命等によっ
て異なってくるものである。また、LiOHの添加量は
アルコールの種類(カー?ン量)及び添加量により適宜
選定すればよい。The reason for this is that the excess capacity of the negative electrode relative to the positive electrode is 5
00 mAh, but some of this must remain uncharged, so it is considered appropriate to leave about 50 mAh to 450 mAh in a charged state. Therefore, these differ depending on the theoretical capacity of the positive and negative electrodes filled when assembling the battery, the life of the electrodes, etc. Further, the amount of LiOH to be added may be appropriately selected depending on the type of alcohol (carne amount) and the amount to be added.
以下、本発明の詳細な説明する。 The present invention will be explained in detail below.
実施例1
本実施例では、ニッケル酸化物を正極、LaNi4,7
Ato、3 (平衡ノラド圧は30℃で約0.5atm
)を負極とした単3サイズの密閉型N l/i(2電池
を例にする。この電池は定格容量が500mAhとなる
ように正・負極の容量を次のように設定した。Ni極の
理論容量を600 mAhとし、H2極の理論容量を1
100mAhとした。したがって、H2極の過剰容量5
00 mAhのうち一部を充電状態、残り妹充電状態と
する必要があり、ここでは充電状態として250 mA
h、未充電状態として250mAhに夫々設定した。Example 1 In this example, nickel oxide was used as the positive electrode, and LaNi4,7
Ato, 3 (Equilibrium Norad pressure is about 0.5 atm at 30°C
) with the negative electrode as an example of a AA-sized sealed Nl/i (2 battery).The capacity of the positive and negative electrodes was set as follows so that the rated capacity of this battery was 500mAh. The theoretical capacity is 600 mAh, and the theoretical capacity of H2 pole is 1
It was set to 100mAh. Therefore, the excess capacity of H2 pole 5
It is necessary to set a part of 00 mAh to a charging state and the rest to a charging state, and here, 250 mA is set as a charging state.
h and were set at 250 mAh in an uncharged state.
まず、 LaN14.7ALQ、5を20μm以下の粒
度をもった粉末7gと10μm程度の亜鉛粉末0.4g
とを混合し、これに4リテトラフルオロエチレン(PT
FE)の分散液をその固形分が全体の4チとなるように
添加した後、混合、混練した。つづいて、この混練物を
ロールにより70−αOmX 0.6+mtのシート状
物質とした後、リード片を取り付けたニッケル網状体を
圧着して負極電極体を作製した。ひきつづき、50 m
×40 飄X0.6 mx tの放電状態にあるNi極
(理論容量600mAh)を正極電極体として用意し、
これと前記負極電極体とを七Δレータを介して渦巻状に
巻回して素電池を作製した。First, 7 g of LaN14.7ALQ, 5 powder with a particle size of 20 μm or less and 0.4 g of zinc powder with a particle size of about 10 μm
and 4-tetrafluoroethylene (PT).
A dispersion of FE) was added so that the solid content was 4 g, and then mixed and kneaded. Subsequently, this kneaded material was formed into a sheet-like material of 70-αOmX 0.6+mt using a roll, and then a nickel mesh body with lead pieces attached was pressure-bonded to produce a negative electrode body. Continuing, 50 m
A Ni electrode (theoretical capacity 600 mAh) in a discharge state of ×40 length ×0.6 m × t was prepared as a positive electrode body,
This and the negative electrode body were spirally wound through a 7Δ rotor to produce a unit cell.
次いで、単3型の電池ケース内に前記素電池を収納し、
負極リードを電池ケースに、正極リードを封口板の正極
端子に接続した後、電解液を注入した。この電解液とし
ては、Li0H(1モル)とKOH(7モル)をll中
に含む水溶液をとり、これにCH30H0,05g添加
したものを用いた。つまり、電解液中にはLiOHとし
て2X10−”モルが含まれ、CH30Hの容量は25
0 mAhである。つづいて、電解液の収容後、直ちに
封口して密閉型N l/H2電池を組立てた。Next, the unit cell is stored in an AA battery case,
After connecting the negative electrode lead to the battery case and the positive electrode lead to the positive terminal of the sealing plate, the electrolyte was injected. As this electrolytic solution, an aqueous solution containing Li0H (1 mol) and KOH (7 mol) per liter was taken, and 0.05 g of CH30H was added thereto. In other words, the electrolyte contains 2X10-'' moles of LiOH, and the capacity of CH30H is 25
0 mAh. Subsequently, after containing the electrolyte, the container was immediately sealed to assemble a sealed Nl/H2 battery.
比較例1
電解液としてLIOI(を含まずCH30Hを0.05
g添加したI3 M −KOH水溶液を用いた以外、実
施例と同様な方法により密閉型N i/i(2電池を組
立てた。Comparative Example 1 0.05% of CH30H (without LIOI) as electrolyte
A sealed Ni/i (2 battery) was assembled in the same manner as in the example except that an aqueous I3M-KOH solution containing 100 g of I3M was used.
比較例2
LaN14,7At(1,3負極を化成工程で200
mAhだけ充電した後、この負極を水洗、乾燥、 Nl
正極との巻回、電池ケースへの収納、注液、封口を水素
分圧0.5attnのAr雰囲気(ドータk l at
m )の中で行なって密閉型N l/)I2電池を組立
てた。Comparative Example 2 LaN14,7At (1,3 negative electrode was converted into 200%
After charging by mAh, this negative electrode was washed with water, dried, and treated with Nl.
The winding with the positive electrode, storage in the battery case, injection, and sealing were performed in an Ar atmosphere with a hydrogen partial pressure of 0.5 attn (daughter k l at
A sealed type Nl/)I2 battery was assembled using the following method.
しかして、本実施例及び比較例1,2の電池について、
150mAX 5 hで充電し、200mAで1、Ov
まで放電するサイクル試験を行なった・その結果、電池
6個の平均値として図示する特性図を得た。なお、図中
のA−Cは夫々本実施例、比較例1,2の電池における
特性線である。Therefore, regarding the batteries of this example and comparative examples 1 and 2,
Charge at 150mAX 5h, 1, Ov at 200mA
A cycle test was conducted in which the battery was discharged to the point where it was discharged.As a result, a characteristic diagram shown as the average value of six batteries was obtained. Note that AC in the figure is the characteristic line for the batteries of this example and comparative examples 1 and 2, respectively.
この図より明らかな如く、比較例2(特性線C)は10
0サイクルで、比較例2(特性線B)は150サイクル
で寿命が尽きたのに対し、本実施例(特性線入)では2
00サイクル以上の寿命を示した。比較例2において、
電池の組立てプロセス中で水素雰囲気を用いたにもかか
わらず、寿命が短いのは、各プロセス間を移動させる際
に、化成で負極に吸蔵させた水素がリークするためと考
えられる。こうし九電池では、サイクル特性のばらつき
が大きく、リークの程度が操作の仕方に相当依存するこ
とがわかる。また、比較例1では、CO32−の影響が
サイクル中に次第に現われることにより寿命が短かくな
ることを示している。As is clear from this figure, Comparative Example 2 (characteristic line C) is 10
Comparative example 2 (characteristic line B) reached the end of its life after 150 cycles, while this example (characteristic line entered)
It showed a lifespan of 00 cycles or more. In Comparative Example 2,
The reason why the battery life is short despite using a hydrogen atmosphere during the battery assembly process is thought to be because hydrogen stored in the negative electrode during chemical formation leaks during transfer between processes. It can be seen that the cycle characteristics of these nine batteries vary greatly, and the degree of leakage is considerably dependent on the operating method. Furthermore, Comparative Example 1 shows that the influence of CO32- gradually appears during the cycle, resulting in a shortened lifespan.
以上詳述した如く、本発明によれば電池組立てのための
全プロセスにおいて水素ガス雰囲気にすることなく、適
切な正・負極の容量状態の水素吸蔵合金負極を有する高
寿命の密閉型金属酸化物・水素蓄電池を提供できる。As detailed above, according to the present invention, a long-life sealed metal oxide having a hydrogen storage alloy negative electrode with an appropriate positive and negative electrode capacity can be produced without creating a hydrogen gas atmosphere during the entire battery assembly process.・Can provide hydrogen storage batteries.
図は、本実施例及び比較例1,2の電池におけるサイク
ル数と容量との関係を示す特性図である。
出願人代理人 弁理士 鈴 江 武 彦マイフル(■
)The figure is a characteristic diagram showing the relationship between the number of cycles and capacity in the batteries of this example and comparative examples 1 and 2. Applicant's agent Patent attorney Suzue Takehiko Mayful (■
)
Claims (1)
分とし、水素を活物質とする負極と、正・負極を分離す
るセパレータと、アルカリ水溶液の電解液と、これら正
・負極、セパレータ及び電解液を収納する密閉容器とか
らなる密閉型金属酸化物・水素蓄電池において、前記電
解液がKOHもしくはNaOHを主成分とし、副成分と
してLiOHとメタノール、エタノール、プロパレール
から選ばれるアルコールとを含有することを特徴とする
密閉型金属酸化物・水素蓄電池。A positive electrode whose active material is a metal oxide, a negative electrode whose main component is a hydrogen storage alloy and whose active material is hydrogen, a separator that separates the positive and negative electrodes, an aqueous alkaline electrolyte, these positive and negative electrodes, and the separator. and a sealed container for storing an electrolytic solution, wherein the electrolytic solution contains KOH or NaOH as a main component and LiOH as a subcomponent and an alcohol selected from methanol, ethanol, and propalel. A sealed metal oxide/hydrogen storage battery that is characterized by:
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59202712A JPS6180771A (en) | 1984-09-27 | 1984-09-27 | Enclosed type metallic oxide/hydrogen storage battery |
US06/759,310 US4621034A (en) | 1984-07-31 | 1985-07-26 | Sealed metal oxide-hydrogen storage cell |
DE8585305415T DE3586223T2 (en) | 1984-07-31 | 1985-07-30 | MANUFACTURING METHOD OF A GAS-SEALED METAL OXIDE HYDROGEN STORAGE CELL. |
EP85305415A EP0170519B1 (en) | 1984-07-31 | 1985-07-30 | A method of producing a sealed metal oxide-hydrogen storage cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59202712A JPS6180771A (en) | 1984-09-27 | 1984-09-27 | Enclosed type metallic oxide/hydrogen storage battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6180771A true JPS6180771A (en) | 1986-04-24 |
Family
ID=16461901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59202712A Pending JPS6180771A (en) | 1984-07-31 | 1984-09-27 | Enclosed type metallic oxide/hydrogen storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6180771A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6199277A (en) * | 1984-10-18 | 1986-05-17 | Sanyo Electric Co Ltd | Metal-hydrogen alkaline storage battery |
JP2008547184A (en) * | 2005-06-27 | 2008-12-25 | スタウファー,ジョーン,イー. | Lead alkaline battery |
JP2014192066A (en) * | 2013-03-28 | 2014-10-06 | Nissan Motor Co Ltd | Electrolyte for alkaline battery, and alkaline battery |
-
1984
- 1984-09-27 JP JP59202712A patent/JPS6180771A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6199277A (en) * | 1984-10-18 | 1986-05-17 | Sanyo Electric Co Ltd | Metal-hydrogen alkaline storage battery |
JPH0642374B2 (en) * | 1984-10-18 | 1994-06-01 | 三洋電機株式会社 | Metal-hydrogen alkaline storage battery |
JP2008547184A (en) * | 2005-06-27 | 2008-12-25 | スタウファー,ジョーン,イー. | Lead alkaline battery |
JP2014192066A (en) * | 2013-03-28 | 2014-10-06 | Nissan Motor Co Ltd | Electrolyte for alkaline battery, and alkaline battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2730121B2 (en) | Alkaline secondary battery and manufacturing method thereof | |
JP3097347B2 (en) | Nickel-metal hydride battery | |
JPS62287568A (en) | Manufacture of alkaline storage battery | |
JPH10125315A (en) | Nickel electrode for alkaline storage battery | |
EP0889535A2 (en) | Nickel hydroxide active material for use in alkaline storage cell and manufacturing method of the same | |
JPS6180771A (en) | Enclosed type metallic oxide/hydrogen storage battery | |
US5131920A (en) | Method of manufacturing sealed rechargeable batteries | |
JP2004296394A (en) | Nickel-hydrogen storage battery and battery pack | |
JP2899849B2 (en) | Surface treatment method of hydrogen storage alloy for alkaline secondary battery and alkaline secondary battery equipped with hydrogen storage alloy subjected to the surface treatment as electrode | |
JP2584280B2 (en) | Alkaline storage battery and method of manufacturing the same | |
JP2926732B2 (en) | Alkaline secondary battery | |
JP2884570B2 (en) | Sealed alkaline secondary battery | |
JP2591988B2 (en) | Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate | |
JP2923946B2 (en) | Sealed alkaline secondary battery and method of manufacturing the same | |
JPH04109556A (en) | Closed-type secondary battery | |
JP3558082B2 (en) | Nickel-cadmium secondary battery | |
JPH1167264A (en) | Manufacture of nickel-hydrogen storage battery | |
JP3456217B2 (en) | Nickel-based secondary battery | |
JP3482478B2 (en) | Nickel-metal hydride storage battery | |
JPH03289059A (en) | Metal-hydrogen alkaline battery | |
JPH028419B2 (en) | ||
JP3070081B2 (en) | Sealed alkaline storage battery | |
JP2564176B2 (en) | Cadmium negative electrode plate for sealed alkaline secondary battery and sealed alkaline secondary battery using the negative electrode plate | |
JP2564172B2 (en) | Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate | |
JP2591982B2 (en) | Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate |