DK155531B - ELECTRODE FOR USE BY ELECTROLYSE, ISRAEL FOR ELECTROLYSE OF MELTED METAL - Google Patents
ELECTRODE FOR USE BY ELECTROLYSE, ISRAEL FOR ELECTROLYSE OF MELTED METAL Download PDFInfo
- Publication number
- DK155531B DK155531B DK129077AA DK129077A DK155531B DK 155531 B DK155531 B DK 155531B DK 129077A A DK129077A A DK 129077AA DK 129077 A DK129077 A DK 129077A DK 155531 B DK155531 B DK 155531B
- Authority
- DK
- Denmark
- Prior art keywords
- metal
- electrode
- electrodes
- oxides
- sintered
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C7/00—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
- C25C7/02—Electrodes; Connections thereof
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/06—Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
- C25C3/08—Cell construction, e.g. bottoms, walls, cathodes
- C25C3/12—Anodes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/02—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
- C25B11/036—Bipolar electrodes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/052—Electrodes comprising one or more electrocatalytic coatings on a substrate
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/055—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
- C25B11/069—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of at least one single element and at least one compound; consisting of two or more compounds
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/075—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C7/00—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
- C25C7/02—Electrodes; Connections thereof
- C25C7/025—Electrodes; Connections thereof used in cells for the electrolysis of melts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Engineering & Computer Science (AREA)
- Electrolytic Production Of Metals (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Conductive Materials (AREA)
- Ceramic Products (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Powder Metallurgy (AREA)
Description
iin
DK 155531 BDK 155531 B
Dimensionsstabile elektroder til anodiske og katodiske reaktioner i elektrolyseceller har i den senere tid fundet almen anvendelse i den elektrokemiske industri til erstatning for de opbrugelige elektroder af kulstof, grafit og blylegeringer. De 5 er særligt nyttige i strømmende kviksølvkatodeceller og i dia-fragmaceller til fremstilling af chlor og alkalier, i metal-elektroudvindingsceller, hvor rent metal udvindes af vandig chlorid eller sulfatopløsning, samt til katodisk beskyttelse af skibsskrog og andre metalkonstruktioner.Dimension-stable electrodes for anodic and cathodic reactions in electrolytic cells have recently found widespread use in the electrochemical industry to replace the usable electrodes of carbon, graphite and lead alloys. The 5 are particularly useful in flowing mercury cathode cells and in diaphragm cells for the production of chlorine and alkalis, in metal electro-recovery cells where pure metal is extracted from aqueous chloride or sulfate solution, and for cathodic protection of ship hulls and other metal structures.
1010
Dimensionsstabile elektroder omfatter i almindelighed en basis af metal, såsom Ti, Ta, Zr, Hf, Nb og W, hvor man under anodisk polarisation udvikler et korrosionsresistent, men ikke-elektrisk ledende oxidlag eller spærrelag belagt over i det 15 mindste en del af deres ydre overflade med et elektrisk ledende og elektrokatalytisk lag af oxider af platingruppemetal eller pi at ingruppemetal1 er (se de amerikanske patenter nr. 3.711.385, 3.632.498 og 3.846.273). E1ektro 1 edende og elektro-katalytiske belægninger fremstillet af eller indeholdende pla-20 tingruppemetaller eller platingruppemetaloxider er imidlertid kostbare og udsættes til sidst for opbrug eller desaktivering ved visse elektrolytiske processer, og genaktivering eller genbelægning er derfor nødvendigt for at genaktivere brugte elektroder.Dimensionally stable electrodes generally comprise a base of metal, such as Ti, Ta, Zr, Hf, Nb and W, where during anodic polarization a corrosion resistant but non-electrically conductive oxide layer or barrier layer is coated over at least a portion of their outer surface with an electrically conductive and electrocatalytic layer of platinum group oxides or pi that ingroup metal1 (see U.S. Patents Nos. 3,711,385, 3,632,498 and 3,846,273). However, electrodepositing and electrocatalytic coatings made of or containing platinum group metals or platinum group metal oxides are expensive and are eventually subjected to use or deactivation by certain electrolytic processes, and re-activation or re-coating is therefore required to reactivate spent electrodes.
2525
Elektroder af denne type er endvidere ikke brugbare til flere elektrolytiske processer. I smeltede saltelektrolyter bliver basismetallet f.eks. hurtigt opløst, da det tynde beskyttende oxidlag enten slet ikke dannes eller hurtigt ødelægges af den 30 smeltede elektrolyt med deraf følgende opløsning af basismetallet og tab af den katalytiske belægning af ædelmetal. I flere vandige elektrolyter såsom fluoridopløsninger eller i havvand er nedbrydningsspændingen af det beskyttende oxidlag på det udsatte basismetal endvidere for lav, og basismetallet 35 korroderes ofte under anodisk polarisation.Furthermore, electrodes of this type are not usable for several electrolytic processes. In molten salt electrolytes, the base metal, e.g. quickly dissolved, as the thin protective oxide layer is either not formed at all or is rapidly destroyed by the molten electrolyte with resulting dissolution of the base metal and loss of the catalytic coating of precious metal. Furthermore, in several aqueous electrolytes such as fluoride solutions or in seawater, the degradation voltage of the protective oxide layer on the exposed base metal is too low and the base metal 35 is often corroded during anodic polarization.
I den seneste tid er andre typer elektroder blevet foreslået til erstatning for de hurtigt opbrugte kulstofanoder og kul- 2Recently, other types of electrodes have been proposed to replace the rapidly used carbon anodes and carbon 2
DK 155531 BDK 155531 B
stofkatoder, der hidtil har været anvendt under alvorligt korroderende forhold, såsom elektrolyse af smeltede metalsalte, typisk til elektrolyse af smeltede fluoridbade, såsom de der anvendes til fremstilling af aluminium af smeltet kryolit. Ved 5 denne specielle elektrolytiske proces, som har stor økonomisk betydning, opbruges kulstofanoder med en hastighed af 450-500 kg kulstof per ton produceret aluminium, og en kostbar og konstant indstilling af apparatet er nødvendig for at opretholde et lille ensartet mellemrum mellem de korroderende anodeover-10 flader og den flydende aluminiumkatode. Det anslås, at mere end 6.000.000 tons ku 1 stofanoder opbruges på 1 år af aluminiumfabrikanter. Kulstofanoderne brændes bort efter reaktionen: A1203 + 3/2 C -» 2A1 + 3/2 C02 15 men den faktiske forbrugshastighed er meget større på grund af skørning og bortbrydning af kulstofpartikler og intermitterende gnistdannelse, som finder sted over anodiske gasfilm, som ofte dannes over områder af anodeoverfladen, fordi kulstof 20 befugtes dårligt af de smeltede saltelektrolyter, eller på grund af kortslutning forårsaget af broer af ledende partikler, der kommer fra de korroderende kulstofanoder og fra dis-pergerede partikler af det af lejrende metal. 1 2 3 4 5 6 7 8 9 10 11fabric cathodes which have heretofore been used under severely corrosive conditions, such as electrolysis of molten metal salts, typically for electrolysis of molten fluoride baths, such as those used in the manufacture of aluminum of molten cryolite. In this particular electrolytic process, which is of great economic importance, carbon anodes are consumed at a rate of 450-500 kg of carbon per tonne of aluminum produced, and a costly and constant adjustment of the apparatus is necessary to maintain a small uniform gap between the corroding anode surfaces. -10 surfaces and the liquid aluminum cathode. It is estimated that more than 6,000,000 tons of cow 1 fabric anodes are consumed in 1 year by aluminum manufacturers. The carbon anodes are burned off after the reaction: A1203 + 3/2 C - »2A1 + 3/2 C02 15 but the actual rate of consumption is much greater due to the breaking and breaking of carbon particles and intermittent spark formation which takes place over anodic gas films which are often formed over areas of the anode surface because carbon 20 is poorly wetted by the molten salt electrolytes, or due to short circuits caused by bridges of conductive particles coming from the corrosive carbon anodes and from dispersed particles of that of the alloy metal. 1 2 3 4 5 6 7 8 9 10 11
Britisk patent nr. 1.295.117 beskriver anoder til smeltede 2 kryolitbade bestående af et sintret keramisk oxidmateriale be 3 stående i hovedsagen af Sn02 med mindre mængder af andre me 4 taller, nemlig oxider af Fe, Sb, Cr, Nb, Zn, W, Zr, Ta i en 5 koncentration op til 20%. Elektrisk ledende sintret Sn02 med 6 mindre tilsætninger af andre metaloxider, såsom oxider af Sb, 7British Patent No. 1,295,117 discloses anodes for molten 2 cryolite baths consisting of a sintered ceramic oxide material consisting mainly of SnO 2 with smaller amounts of other metals, namely oxides of Fe, Sb, Cr, Nb, Zn, W, Zr, Ta in a concentration up to 20%. Electrically conductive sintered SnO2 with 6 minor additions of other metal oxides, such as oxides of Sb, 7
Bi, Cu, U, Zn, Ta, As o.s.v., har været anvendt i lang tid som 8 holdbart elektrodemateriale i vekselstrømsglassmelteovne (se 9 amerikansk patent nr. 2.490.825, 2.490.826, 3.287.284 og 10 3.502.597), men udviser betydeligt slid og korrosion, når det 11 anvendes som anodemateriale ved elektrolyse af smeltede salte.Bi, Cu, U, Zn, Ta, As, etc. have been used for a long time as 8 durable electrode material in AC glass melting furnaces (see 9 U.S. Patent Nos. 2,490,825, 2,490,826, 3,287,284, and 10 3,502,597), but exhibit considerable wear and corrosion when used as anode material in electrolysis of molten salts.
Man har fundet slidhastigheder på op til 0,5 g/time/cm2 på prøver af sammensætninger beskrevet i de ovennævnte patenter, når de anvendes i smeltet kryolitelektrolyt ved 3000 A/m2. Den 3Wear rates of up to 0.5 g / h / cm 2 have been found on samples of compositions described in the above patents when used in molten cryolite electrolyte at 3000 A / m 2. The 3th
DK 155531 BDK 155531 B
høje si idhastighed af sintrede Sn02 elektroder antages at skyldes flere faktorer: a) kemisk angreb af halogenerne, fordi Sn*V danner komplekser med højt koordinationstal sammen med halogenioner, b) reduktion af Sn02 af aluminium dispergeret i 5 elektrolyten og c) mekanisk erosion på grund af anodisk gasudvikling og saltudfældning inde i materialets porer.high Si velocity of sintered Sn02 electrodes is believed to be due to several factors: a) chemical attack of the halogens because Sn * V forms high coordination number complexes with halogen ions, b) reduction of Sn02 of aluminum dispersed in the electrolyte and c) mechanical erosion of due to anodic gas evolution and salt precipitation inside the material pores.
Japansk patentansøgning nr. 112.589 (offentliggørelse nr. 62.114 fra 1975) beskriver elektroder, der har en ledende un-10 derstøtning af titan, nikkel eller kobber eller en legering deraf, kultstof, grafit eller andet ledende materiale belagt med et lag bestående i det væsentlige af spinel og/eller metaloxider af perovskittypen og alternativt elektroder fremkommet ved sintring af blandinger af disse oxider. Spineloxider og 15 perovskitoxider hører til en familie af metaloxider, som typisk udviser god elektronisk ledningsevne, og som tidligere er blevet foreslået som egnede elektroledende og elektrokataly-tiske anodiske belægningsmaterialer til dimensionsstabile metalanoder (se amerikansk patent nr. 3.711.382 og 3.711.297 og 20 belgisk patent nr. 780.303).Japanese Patent Application No. 112,589 (Publication No. 62,114 of 1975) discloses electrodes having a conductive support of titanium, nickel or copper or an alloy thereof, carbon, graphite or other conductive material coated with a layer consisting essentially of of spinel and / or metal oxides of the perovskite type and alternatively electrodes obtained by sintering mixtures of these oxides. Spin oxides and 15 perovskite oxides belong to a family of metal oxides which typically exhibit good electronic conductivity and have previously been proposed as suitable electroconductive and electrocatalytic anodic coating materials for dimensionally stable metal anodes (see U.S. Patent Nos. 3,711,382 and 3,711,297 and 20 Belgian Patent No. 780,303).
Belægninger af partikelformede spineler og/eller perovskiter har imidlertid vist sig at være mekanisk svage, da bindingen mellem den partikelformede keramiske belægning og metallet el-25 ler kulstofunderlaget i sig selv er svagt, fordi krystalstrukturen af spinelerne og perovskiterne ikke er isomorf med oxiderne af metalunderstøtningen, og forskellige bindemidler såsom oxider, carbider, nitrider og borider har været afprøvet med ingen eller kun ringe forbedring. I smeltede saltelektro-30 lyter angribes substratmaterialet hurtigt på grund af de uundgåelige porer gennem spineloxidbelægningen, og belægningen skaller hurtigt af fra det korroderende substrat. Spineler og perovskiter er endvidere ikke kemisk eller elektrokemisk stabile i smeltede halogenidsaltelektrolyter og udviser en bety-35 delig slidhastighed på grund af halogenidionangreb og på grund af den reducerende virkning af dispergeret metal.However, coatings of particulate spinels and / or perovskites have been found to be mechanically weak since the bond between the particulate ceramic coating and the metal or carbon substrate itself is weak because the crystal structure of the spinels and perovskites is not isomorphic with the oxides of the metal support. , and various binders such as oxides, carbides, nitrides, and borides have been tested with no or little improvement. In molten salt electrolytes, the substrate material is rapidly attacked due to the inevitable pores through the spinel oxide coating and the coating peels off rapidly from the corrosive substrate. Furthermore, spinels and perovskites are not chemically or electrochemically stable in molten halide salt electrolytes and exhibit a significant wear rate due to halide ion attack and due to the reducing effect of dispersed metal.
Ved den elektrolytiske fremstilling af metaller af smeltede halogenidsalte har de nævnte kendte anoder vist sig at have en 4In the electrolytic preparation of metals of molten halide salts, the aforementioned known anodes have been found to have a 4
DK 155531 BDK 155531 B
anden ulempe. Den betydelige opløsning af det keramiske oxid-materiale bringer metalkationer i opløsning, som aflejrer sig på katoden sammen med metallet, der fremstilles, og urenhedsindholdet i det udvundne metal er så højt, at metallet ikke 5 længere kan anvendes til formål, som kræver renhed af elek-trolytisk kvalitet. I disse tilfælde går de økonomiske fordele ved den elektrolytiske proces, og som i vidt omfang skyldes den høje renhed, som kan opnås sammenlignet med smeltningsprocesser, tabt helt eller delvis.other disadvantage. The significant dissolution of the ceramic oxide material dissolves metal cations which deposit on the cathode with the metal being produced, and the impurity content of the recovered metal is so high that the metal can no longer be used for purposes requiring purity of metal. electrolytic quality. In these cases, the economic benefits of the electrolytic process, which are largely due to the high purity that can be achieved compared to melting processes, are lost in whole or in part.
1010
Et elektrodemateriale, der kan anvendes med godt resultat under alvorligt korroderende betingelser, såsom ved elektrolyse af smeltede halogenidsal te og især smeltede fluoridsalte, skal først og fremmest være kemisk og elektrokemisk stabilt ved 15 driftsbetingelserne. Det skal også være katalytisk i forhold til den anodiske udvikling af oxygen og/eller halogenider, således at anodeoverspændingen er lavest for høj samlet virkningsgrad af elektrolyseprocessen. Elektroden skal også have varmestabilitet ved driftstemperaturer på ca. 200 til 1100°C, 20 god elektrisk ledningsevne og skal være tilstrækkeligt mod standsdygtige mod tilfældig berøring med den smeltede metalkatode. Hvis man ser bort fra belagte metalelektroder, fordi der næppe findes noget metalunderlag, som kunne modstå de yderst korroderende betingelser, som forefindes ved elektrolyse af 25 smeltet fluoridsalt, har man systematisk afprøvet virkningen af et meget stort antal sintrede, keramiske elektroder af forskellige sammensætninger.An electrode material which can be used with good results under severely corrosive conditions, such as by electrolysis of molten halide salt tea and especially molten fluoride salts, must first and foremost be chemically and electrochemically stable under the operating conditions. It must also be catalytic in relation to the anodic evolution of oxygen and / or halides so that the anode overvoltage is lowest for the high overall efficiency of the electrolysis process. The electrode must also have heat stability at operating temperatures of approx. 200 to 1100 ° C, 20 good electrical conductivity and must be sufficiently resistant to accidental contact with the molten metal cathode. Excluding coated metal electrodes because there is hardly any metal substrate that could withstand the extremely corrosive conditions found by electrolysis of molten fluoride salt, the effect of a very large number of sintered ceramic electrodes of different compositions has been systematically tested.
Ifølge den foreliggende opfindelse er der tilvejebragt en 30 elektrode til brug ved elektrolyse, specielt til elektrolyse af smeltet salt, og denne elektrode er ejendommelig ved, at den omfatter en selvbærende grundmasse af sintrede pulvere af et oxid af mindst ét metal valgt blandt titan, tantal, zirconium, vanadin, niob, aluminium, silicium, tin, mangan, jern, 35 kobolt, nikkel, sølv, arsen, vismuth, lanthan, ytterbium, thorium og yttrium og mindst ét elektrodeledende metal eller me taloxid, hvilken elektrode er forsynet over i det mindste en del af sin overflade med mindst én elektrokatalysator i form af et metal, metaloxid eller blandinger heraf.According to the present invention, there is provided an electrode for use in electrolysis, especially for electrolysis of molten salt, and this electrode is characterized in that it comprises a self-supporting matrix of sintered powders of at least one metal oxide selected from titanium, tantalum , zirconium, vanadium, niobium, aluminum, silicon, tin, manganese, iron, cobalt, nickel, silver, arsenic, bismuth, lanthanum, outer bium, thorium and yttrium and at least one electroconductive metal or metal oxide provided in at least part of its surface with at least one electrocatalyst in the form of a metal, metal oxide or mixtures thereof.
55
DK 155531 BDK 155531 B
Det foretrækkes, at det nævnte elektroledende metal eller metaloxid udgør mindre end 50 vægt% af de sintrede elektroder.It is preferred that said electroconductive metal or metal oxide constitute less than 50% by weight of the sintered electrodes.
Den "sintrede" elektrode er således et selvbærende, i det væ-5 sentlige stift legeme bestående i det væsentlige af en oxyme-talforbi ndel se og mindst ét elektroledende middel fremstillet på enhver af de kendte måder, der anvendes i den keramiske industri, såsom ved opvarmning under tryk af en pulveriseret blanding af materialerne for at forme blandingen til den øns-10 kede størrelse og form, eller ved støbning af materialet i forme, ved ekstrusion eller ved anvendelse af bindemidler o.s.v. og derefter sintring af det formede legeme ved høj temperatur til en selvbærende elektrode. Oxyhalogenidforbindel-serne er fortrinsvis oxychlorider eller oxyf1uorider.Thus, the "sintered" electrode is a self-supporting, substantially rigid body consisting essentially of an oxymetal compound and at least one electroconductive agent produced in any of the known ways used in the ceramic industry, such as by heating under pressure a powdered mixture of the materials to mold the mixture to the desired size and shape, or by molding the material into molds, by extrusion or by using binders, etc. and then sintering the shaped body at high temperature to a self-supporting electrode. The oxyhalide compounds are preferably oxychlorides or oxy fluorides.
1515
Den elektriske ledningsevne af de sintrede keramiske elektroder forbedres ved tilsætning til sammensætningen af 0,1-20 vægtfo af mindst ét elektroledende middel valgt af gruppen bestående af (A) doping-oxider, typisk af metaller som har en valens, der er lavere eller 20 højere end valensen af metallerne af oxiderne, som udgør grundmassen, såsom jordalkalimetallerne Ca, Mg, Sr og Ba og metaller såsom Zn, Cd, In2, Tl2, As2, Sb2, Bi2 og Sn, (B) oxider der udviser elektroledningsevne på grund af indre Redoxsystem, såsom spineloxider, perovskitoxider o.s.v., (C) oxider der udviser elektroledningsevne 25 på grund af metal-til-metal-bindinger, såsom Cr02, Mh02, TiO, Ti20^ o.s.v., borider silicider, carbider og sulfider af metaller, såsom Ti, Zr, Hf, V, Fb, Ta, Cr, Mo og ¥ eller metallerne Y, Ti, Zr, Hf, V, Fb, Ta, Cr, Mo, W, Pd og Ag eller legeringer deraf eller blandinger af (A) og/eller (B) og/eller (C).The electrical conductivity of the sintered ceramic electrodes is enhanced by the addition to the composition of 0.1-20 wt. Of at least one electroconductive agent selected by the group consisting of (A) doping oxides, typically of metals having a valence lower or lower. higher than the valence of the metals of the oxides constituting the matrix, such as the alkaline earth metals Ca, Mg, Sr and Ba and metals such as Zn, Cd, In2, Tl2, As2, Sb2, Bi2 and Sn, (B) oxides exhibiting electrolytic conductivity due to internal Redox system such as spinel oxides, perovskite oxides, etc., (C) oxides exhibiting electroconductivity due to metal-to-metal bonds such as CrO 2, M 2 O 2, TiO, Ti 2 O 2, etc., borides silicides, carbides and sulfides of metals such as Ti , Zr, Hf, V, Fb, Ta, Cr, Mo and ¥ or the metals Y, Ti, Zr, Hf, V, Fb, Ta, Cr, Mo, W, Pd and Ag or alloys thereof or mixtures of (A) and / or (B) and / or (C).
3030
De foretrukne elektrokatalysatorer er valgt af gruppen af metaller bestående af ruthenium, rhodium, palladium, iridium, platin, jern, kobolt, nikkel, kobber og sølv og blandinger deraf og oxider af metaller af gruppen bestående af mangan, jern, kobolt, nikkel, ruthe-35 nium, rhodium, palladium, iridium, platin, sølv, arsen, antimon, bly og vismuth og blandinger deraf.The preferred electrocatalysts are selected from the group of metals consisting of ruthenium, rhodium, palladium, iridium, platinum, iron, cobalt, nickel, copper and silver and mixtures thereof and oxides of metals of the group consisting of manganese, iron, cobalt, nickel, ruthe -35 nium, rhodium, palladium, iridium, platinum, silver, arsenic, antimony, lead and bismuth and mixtures thereof.
66
DK 155531 BDK 155531 B
Ved at blande pulveret af grundmassematerialet med en mindre mængde, typisk fra 0,5 til ca. 50$, pulvere af et egnet elektrokatalytisk materiale og ved at sintre blandingen til et selvbærende legeme udviser det, når det anvendes som elektrode, tilfredsstillende elektroledende 5 og elektrokatalytiske egenskaber, som bevarer dets kemiske stabilitet, selv om den iblandede katalysator i sig selv ikke kunne modstå elektrolysebetingelserne .By mixing the powder of the matrix material with a smaller amount, typically from 0.5 to approx. $ 50, powders of a suitable electrocatalytic material and, by sintering the mixture to a self-supporting body, when used as an electrode, exhibit satisfactory electroconductive and electrocatalytic properties which retain its chemical stability, although the admixed catalyst itself could not resist the electrolysis conditions.
Elektrokatalysatoren kan være et metal eller en uorganisk oxyforbin-10 delse. De foretrukne iblandede katalysatorpulvere er pulveriserede metaller Ru, Kb, Pd, Ir, Pt, Ee, Co, Ri, Cu og Ag, især platingruppe-metallerne, pulveriserede oxyforbindelser af Min, le, Co, Ri, Ru, Rb, Pd, Ir, Pt, Ag, As, Sb og Bi og især oxyforbindelser af platingruppe-metallerne.The electrocatalyst may be a metal or an inorganic oxy compound. The preferred mixed catalyst powders are pulverized metals Ru, Kb, Pd, Ir, Pt, Ee, Co, Ri, Cu and Ag, especially the plate group metals, pulverized oxy compounds of Min, le, Co, Ri, Ru, Rb, Pd, Ir , Pt, Ag, As, Sb and Bi and especially oxy compounds of the platinum group metals.
15 Særligt foretrukne er 3MnC>2, Co^, Rh^, Ir02, Rh02, Ag20, Ag^, Ag203, As20Sb202, Bi202, CoMn20^, NiCc>20^ og blandinger af disse pulveriserede metaller og oxyforbindelser.Particularly preferred are 3MnC> 2, Co 2, Rh 2, IrO 2, RhO 2, Ag 2 O, Ag 2, Ag 2 O 3, As 2 S 2 O 2, Bi 2 O 2, CoMn 2 O 2, NiC 2> 20 3 and mixtures of these powdered metals and oxy compounds.
Det har vist sig at være særlig fordelagtigt til oxymetalforbindelsen 20 at sætte et andet materiale såsom stannooxid, zirconoxid eller lignende, og at ved også at tilsætte en lille mængde af mindst ét metal hørende til gruppen omfattende yttrium, chrom, molybdæn, zircon, tantal, wolfram, kobolt, nikkel, palladium og sølv bliver både de mekaniske egenskaber og den elektriske ledningsevne af de sintrede 25 elektroder forbedret uden kendelig formindskelse af deres kemiske og elektrokemiske korrosionsresistens.It has been found particularly advantageous for the oxymetal compound 20 to add another material such as stannous oxide, zirconium oxide or the like, and by also adding a small amount of at least one metal belonging to the group comprising yttrium, chromium, molybdenum, zircon, tantalum, tungsten, cobalt, nickel, palladium and silver, both the mechanical properties and the electrical conductivity of the sintered electrodes are improved without appreciable reduction of their chemical and electrochemical corrosion resistance.
Disse additiver tilsættes i pulverform og blandes med det pulveriserede metaloxid i procentmængder, der kan ligge fra 40 til 1$, bereg-30 net af vægten af metalindholdet. Eventuelt kan andre organiske og/ eller uorganiske forbindelser sættes til den pulveriserede blanding for at forbedre sammenbindingen af partiklerne både under formgivningen og sintringen. 1These additives are added in powder form and mixed with the powdered metal oxide in percentages which may range from 40 to 1 $, calculated by weight of the metal content. Optionally, other organic and / or inorganic compounds may be added to the powdered mixture to improve the bonding of the particles both during shaping and sintering. 1
Anoderne har et højt smeltepunkt noget over temperaturen af de smeltede såltelektrolyter, der anvendes, og de undergår ingen faseændring under elektrolysens arbejdsbetingelser. Varmeforlængelseskoeffici-enten er endvidere ikke meget forskellig fra den, der gælder for ha- 7The anodes have a high melting point slightly above the temperature of the molten sole electrolytes used, and they undergo no phase change under the working conditions of the electrolysis. Furthermore, the heat elongation coefficients are not very different from the one that applies to the heat exchanger.
DK 155531 BDK 155531 B
logenidsaltene, som anvendes i de smeltede sal fbade, hvilket bidrager til at bevare det rigtige elektrodemellemrum mellem anoden og katoden og undgår udvidelser og sammentrækninger, som kunne bryde saltskorpen oven på den smeltede saltelektrolyt ved den normale pro-5 ces til elektroudvinding af aluminium.the logenide salts used in the molten salts, which help to preserve the proper electrode gap between the anode and cathode and avoid expansions and contractions that could break the salt crust on top of the molten salt electrolyte in the normal aluminum electrolysis process.
ledningsevnen af de sintrede elektroder ifølge opfindelsen er sammenlignelig med ledningsevnen af grafit. Grundmassen har acceptabel bearbejdelighed ved formgivning og sintring og danner ved brugen et 10 tyndt lag ozyhalogenider på sin overflade under anodiske betingelser. Metaloxyforbindelsernes frie dannelsesenergi er mere negativ end den frie dannelsesenergi af oxidet i den tilsvarende smeltede saltelektrolyt i halogenidfase, således at disse sintrede anoder har en høj grad af kemisk stabilitet.the conductivity of the sintered electrodes according to the invention is comparable to the conductivity of graphite. The matrix has acceptable workability in shaping and sintering and, upon use, forms a thin layer of oxyhalides on its surface under anodic conditions. The free formation energy of the metal oxy compounds is more negative than the free formation energy of the oxide in the corresponding molten salt electrolyte in the halide phase, so that these sintered anodes have a high degree of chemical stability.
1515
Elektroderne af sintret metaloxyforbindelse ifølge opfindelsen kan også anvendes som bipolære elektroder. Ifølge denne sidste udførelsesform kan de sintrede elektroder bekvemt fremstilles i form af en plade, idet den ene af de to store overflader af elektroden forsynes 20 med et lag indeholdende den anodiske elektrokatalysator såsom oxiderne Co^O^, Mh02, Kh20^, Ir02, Ru02, Ag20 o.s.v., og den anden store overflade forsynes med et lag indeholdende egnede katodiske materialer såsom carbider, borider, nitrider, sulfider, carbonitri-der o.s.v. af metaller, især af metallerne yttrium, titan og 25 zirconium.The sintered metal oxy compound electrodes of the invention may also be used as bipolar electrodes. According to this last embodiment, the sintered electrodes can be conveniently made in the form of a plate, one of the two large surfaces of the electrode being provided with a layer containing the anodic electrocatalyst such as the oxides Co 2 O 2, M 2 O 2, Kh 2 O 2, IrO 2, RuO 2 , Ag20, etc., and the other large surface is provided with a layer containing suitable cathodic materials such as carbides, borides, nitrides, sulfides, carbonitrides, etc. of metals, especially of the metals yttrium, titanium and zirconium.
Det selvbærende sintrede legeme bestående af en større mængde oxy- metalforbindelse kan fremstilles ved formaling af materialerne sammen eller hver for sig, fortrinsvis til en kornstørrelse mellem 50 og 30 500 ym, til dannelse af en pulverblanding, som indeholder et kornstørrelseinterval, der giver en bedre grad af komprimering.The self-supporting sintered body consisting of a greater amount of oxide-metal compound can be prepared by grinding the materials together or separately, preferably to a grain size between 50 and 30,500 µm, to form a powder mixture containing a grain size range providing a better degree of compression.
Ifølge en af de foretrukne fremgangsmåder bliver blandingen af pulvere blandet med vand eller med et organisk bindemiddel til dannelse af en plastisk masse, som har egnede strømningsegenskaber til den 3 5 specielt anvendte formningsmetode. Materialet kan formes på kendt måde enten ved stampning eller presning af blandingen i en form eller ved slikkerstøbning i en gipsform,eller materialet kan ekstruderes gennem et mundstykke til forskellige former.According to one of the preferred methods, the mixture of powders is mixed with water or with an organic binder to form a plastic mass which has suitable flow properties for the specially used molding method. The material may be formed in known manner either by stamping or pressing the mixture into a mold or by licking molding in a plaster mold, or the material may be extruded through a nozzle to various shapes.
88
DK 155531 BDK 155531 B
De formede elektroder underkastes så en tørring og opvarmes til en temperatur, ved hvilken den ønskede hinding kan finde sted, i reglen mellem 800 og 1800°0 i en periode mellem 1 og 30 timer, normalt efterfulgt af langsom afkøling til stuetemperatur. Varmebehandlingen 5 udføres fortrinsvis i en indifferent atmosfære eller en atmosfære, som er svagt reducerende, f.eks. i + Hg (80$), når den pulveriserede blanding er sammensat i det væsentlige af oxymetalforbindelse med en mindre mængde andre metaloxider eller metaller.The shaped electrodes are then subjected to drying and heated to a temperature at which the desired coating can take place, usually between 800 and 1800 ° 0 for a period between 1 and 30 hours, usually followed by slow cooling to room temperature. The heat treatment 5 is preferably carried out in an inert atmosphere or a slightly reducing atmosphere, e.g. in + Hg ($ 80) when the powdered mixture is composed essentially of oxymetal compound with a minor amount of other metal oxides or metals.
10 Får den pulveriserede blanding også indeholder metalliske pulvere, foretrækkes det at udføre varmebehandlingen i en oxiderende atmosfære, i det mindste i en del af opvarmningskredsløbet, for at fremme oxidationen af metalliske partikler i de ydre lag af elektroderne. De metalliske partikler, der bliver tilbage inde i legemet af det sintrede 1 5 materiale, forbedrer de elektriske ledningsegenskaber af elektroden.If the powdered mixture also contains metallic powders, it is preferred to carry out the heat treatment in an oxidizing atmosphere, at least in part of the heating circuit, to promote the oxidation of metallic particles in the outer layers of the electrodes. The metallic particles remaining inside the body of the sintered material improve the electrical conductivity of the electrode.
Formningsprocessen kan efterfølges af sintringsprocessen ved høj temperatur som nævnt ovenfor, eller formningsprocessen og sintringsprocessen kan være samtidige, d.v.s. at tryk og temperatur kan påfø- 20 res samtidigt på pulverblandingen, f.eks. ved hjælp af elektrisk opvarmede forme. Indføringsledninger kan smeltes ind i de keramiske elektroder under formningen og sintringen eller forbindes med elektroderne efter sintring eller formning, indre metoder til formgivning, sammentrykning og sintring af den pulveriserede blanding kan natur-25 ligvis også anvendes.The molding process can be followed by the high temperature sintering process as mentioned above, or the molding process and sintering process can be simultaneous, i.e. pressure and temperature can be applied simultaneously to the powder mixture, e.g. using electrically heated molds. Insertion leads can be melted into the ceramic electrodes during molding and sintering, or connected to the electrodes after sintering or molding, internal methods of shaping, compressing and sintering the powdered mixture can of course also be used.
Elektrokatalysatoren, der i reglen påføres på elektrodeoverfladen som følge af omkostningerne, skal have høj stabilitet, lav anodisk overspænding for den ønskede anodiske reaktion, og en høj anodisk 3 0 overspænding for ikke-ønskede reaktioner. Hvor det drejer sig om chlorudvikling, kan anvendes oxider af kobolt, nikkel, iridium, rhodium, ruthenium eller blandede oxider deraf såsom RuOg-IiOg o.s.v., og hvor det drejer sig om fluoridholdige elektrolyter, hvori oxygenudvikling er den ønskede anodiske reaktion, foretrækkes oxider afThe electrocatalyst, which is usually applied to the electrode surface as a result of the cost, must have high stability, low anodic voltage for the desired anodic reaction, and a high anodic voltage for undesired reactions. In the case of chlorine development, oxides of cobalt, nickel, iridium, rhodium, ruthenium or mixed oxides thereof, such as RuOg-IiOg, etc., may be used, and in the case of fluoride-containing electrolytes in which oxygen evolution is the desired anodic reaction, oxides of
v Dv D
sølv og mangan.· -Indre oxider til brug som elektrokatalysatorer kan være oxider af platin, palladium og bly.silver and manganese · -Other oxides for use as electrocatalysts can be oxides of platinum, palladium and lead.
99
DK 155531 BDK 155531 B
G-ifte til undertaking af uønskede anodiske reaktioner kan anvendes, f.eks. til at undertrykke oxygenudvikling af chloridelektrolyter. G-ifte, der udviser høj oxygenoverspænding, skal anvendes, og egnede materialer er oxiderne af arsen, antimon og vismuth. Disse oxider, 5 der anvendes i små mængder, kan påføres sammen med elektrokatalysa-toroxiderne i procentmængder på 1-10 af elektrokatalysatoren, beregnet på de respektive metallers vægt.G-ifte for undertaking undesirable anodic reactions can be used, e.g. to suppress oxygen evolution of chloride electrolytes. G-ifte exhibiting high oxygen overvoltage should be used and suitable materials are the oxides of arsenic, antimony and bismuth. These oxides, which are used in small amounts, can be applied together with the electrocatalyst oxides in percentages of 1-10 of the electrocatalyst, based on the weight of the respective metals.
Påføringen af elektrokatalysatoren og eventuelt forgiftningsmidlet 10 kan bevirkes på enhver af de kendte belægningsmetoder. Fortrinsvis bliver elektrokatalysatoren og eventuelt forgiftningsmidlet påført på de sintrede elektroder som en opløsning af dekomponerbare salte af metallerne. Det sintrede legeme imprægneres med opløsningen indeholdende de ønskede metalsalte og tørres. Derefter opvarmes elektroden 15 i luft eller en anden oxygenholdig atmosfære for at omdanne saltene til de ønskede oxider.The application of the electrocatalyst and optionally the poisoning agent 10 can be effected by any of the known coating methods. Preferably, the electrocatalyst and optionally the poisoning agent are applied to the sintered electrodes as a solution of decomposable salts of the metals. The sintered body is impregnated with the solution containing the desired metal salts and dried. Thereafter, electrode 15 is heated in air or another oxygen-containing atmosphere to convert the salts to the desired oxides.
Porøsiteten af det sintrede legeme og fremgangsmåden, der anvendes til at imprægnere overfladelagene af det sintrede legeme med metal-20 saltene, skal give gennemtrængning af opløsningen ned til en dybde på mindst 1-5 mm, fortrinsvis 5 mm, indad fra elektrodens overflade, således at elektrokatalysatorerne efter varmebehandlingen er til stede i porerne i det sintrede legeme ned til en vis dybde indad fra elektrodens overflade.The porosity of the sintered body and the method used to impregnate the surface layers of the sintered body with the metal salts shall provide penetration of the solution down to a depth of at least 1-5 mm, preferably 5 mm, inward from the surface of the electrode, thus after the heat treatment, the electrocatalysts are present in the pores of the sintered body down to a certain depth inward from the surface of the electrode.
2525
Yed passende pulverblandingsteknik kan alternativt forud dannede elektrokatalysatoroxider og eventuelt forud dannede forgiftningsoxider formales til pulver og sættes til pulverblandingen under formgivningen af elektroderne på en sådan måde, at de ydre lag af de forbinede elektroder beriges med pulvere af elektrokatalysatoroxider og eventuelt forgiftningsoxiderne under dannelsesprocessen, hvorved overfladen af elektroderne efter sintringen allerede er forsynet med elektrokatalysatoren. De sintrede elektroder ifølge opfindelsen kan anvendes som bipolære elektroder. I denne udførelsesform ifølge op-35 findelsen kan elektroder forsynes på den ene overflade med den anodiske elektrokatalysator og eventuelt med forgiftningsmidlet for den uønskede anodiske reaktion på en af de måder, der er beskrevet ovenfor, medens den anden overflade kan forsynes med en belægning af eg- 10By suitable powder blending technique, alternatively pre-formed electrocatalyst oxides and optionally pre-formed poisoning oxides may be ground to powder and added to the powder mixture during shaping of the electrodes in such a way that the outer layers of the connected electrodes are enriched with powders of electrocatalyst oxides and, optionally, the poisoning oxides, of the electrodes after sintering is already provided with the electrocatalyst. The sintered electrodes of the invention can be used as bipolar electrodes. In this embodiment of the invention, electrodes may be provided on one surface with the anodic electrocatalyst and optionally with the poisoning agent for the undesirable anodic reaction in one of the ways described above, while the other surface may be provided with a coating of eg - 10
DK 155531 BDK 155531 B
net katodisk materiale. E.eks. kan overfladen af den Mpolære elektrode, der fimgerer som katode under elektrolyseprocessen, forsynes med et lag metalcarMder, borider, nitrider, sulfider og/eller carbo= nitrider af yttrium, tantal, titan, zircon o.s.v.net cathodic material. E.eks. For example, the surface of the Mpolar electrode acting as a cathode during the electrolysis process may be provided with a layer of metal carbides, borides, nitrides, sulfides and / or carbohydrates of yttrium, tantalum, titanium, zircon, and so on.
55
En foretrukket fremgangsmåde til påføring af et lag er ved plasmastråle teknikken, hvorved pulvere af de udvalgte materialer sprøjtes og klæber til overfladen af det sintrede legeme med en flamme under reguleret atmosfære. Alternativt kan det udvalgte pulveriserede ma-10 teriale tilsættes under dannelsesprocessen til pulverblandingen og derefter sintres sammen, hvorved den katodiske overflade af den bi-polære elektrode forsynes med et lag af det valgte katodiske materiale.A preferred method of applying a layer is by the plasma jet technique whereby powders of the selected materials are sprayed and adhered to the surface of the sintered body with a flame under controlled atmosphere. Alternatively, the selected powdered material may be added during the formation process to the powder mixture and then sintered together, providing the cathodic surface of the bipolar electrode with a layer of the cathodic material of choice.
15 Elektroderne kan anvendes effektivt til elektrolyse af mange elektrolyter. De er særligt fordelagtige anvendt som anoder i elektroly-tiske celler, der anvendes til at elektrolysere smeltede saltelektro-lyter, såsom smeltede kryolitbade, smeltede halogenider af aluminium, magnium, natrium, kalium, calcium, lithium og andre metaller. Alumi- 2 Π niumhalogenider kan således elektrolyseres efter Hall processen eller processer, der er beskrevet i de amerikanske patenter nr. 3*464.900, 3.518*712 eller 3*755.099 under anvendelse af de heri beskrevne elektroder som anoder. Elektrolysetemperaturen er høj nok til at smelte og holde saltene af metallet, der skal udvindes, i smeltet tilstand, 2 5 og metallet aflejres i smeltet tilstand og opsamles i reglen som en smeltet katode, idet smeltet metal udtrækkes fra den smeltede katode.The electrodes can be used effectively for the electrolysis of many electrolytes. They are particularly advantageous used as anodes in electrolytic cells used to electrolyze molten salt electrolytes such as molten cryolite baths, molten halides of aluminum, magnesium, sodium, potassium, calcium, lithium and other metals. Thus, aluminum halide can be electrolysed according to the Hall process or processes described in U.S. Patents Nos. 3 * 464,900, 3,518 * 712 or 3 * 755,099 using the electrodes described herein as anodes. The electrolysis temperature is high enough to melt and hold the salts of the metal to be recovered in the molten state, and the metal is deposited in the molten state and is generally collected as a molten cathode, the molten metal being extracted from the molten cathode.
Elektroderne kan også anvendes effektivt som anoder og/eller katoder ved jævnstrømelektrolyse af andre smeltede saltelektrolyter, der ty-30 pisk indeholder halogenider, oxider, carbonater eller hydrater, til fremstilling af aluminium, beryllium, calcium, cerium, lithium, natrium, magnium, kalium, barium, strontium, cesium og andre metaller.The electrodes can also be effectively used as anodes and / or cathodes by direct electrolysis of other molten salt electrolytes, which typically contain halides, oxides, carbonates or hydrates, to produce aluminum, beryllium, calcium, cerium, lithium, sodium, magnesium, potassium , barium, strontium, cesium and other metals.
Får elektroderne ifølge opfindelsen anvendes som bipolære elektroder 35 til smeltet saltelektrolyse, skal sammensætningen af katodedelen af elektroderne være således, at den ikke reduceres af den katodiske reaktion eller angribes af det metal, som aflejres ved katoderne, især når elektrodesammensætningen er en oxyforbindelse. Af denne 11If the electrodes of the invention are used as bipolar electrodes 35 for molten salt electrolysis, the composition of the cathode portion of the electrodes must be such that it is not reduced by the cathodic reaction or attacked by the metal deposited at the cathodes, especially when the electrode composition is an oxy compound. Of this 11
DK 155531 BDK 155531 B
grund er det ønskeligt, at sammensætningen af katodesiden af den bi-polære elektrode er indifferent overfor den katodiske reaktion og den reducerende virkning af det smeltede metal.For this reason, it is desirable that the composition of the cathode side of the bi-polar electrode be inert to the cathodic reaction and the reducing effect of the molten metal.
5 Elektroderne kan også anvendes som anoder og/eller som katoder ved elektrokemiske processer såsom: elektrolyse af vandige chloridopløs-ninger til fremstilling af chlor, alkalier, hydrogen, hypochlorit, chlorater og perchlorater, elektroudvinding af metaller fra vandige sulfat- eller chloridopløsninger til fremstilling af kobber, zink, 10 nikkel, kobolt og andre metaller, elektrolyse af smeltede metalsalt-elektrolyter, der typisk indeholder halogenider, oxider, carbonater eller hydrater, til fremstilling af aluminium, beryllium, calcium, cerium, lithium, natrium, magnium, kalium, barium, strontium, cesium og andre metaller, og elektrolyse af bromider, sulfider, svovlsyre, 15 saltsyre og flussyre. I almindelighed er elektroderne nyttige til alle elektrolytiske processer.The electrodes may also be used as anodes and / or as cathodes in electrochemical processes such as: electrolysis of aqueous chloride solutions to produce chlorine, alkalis, hydrogen, hypochlorite, chlorates and perchlorates, electro-extraction of metals from aqueous sulfate or chloride solutions to produce copper, zinc, 10 nickel, cobalt and other metals, electrolysis of molten metal salt electrolytes, typically containing halides, oxides, carbonates or hydrates, for the production of aluminum, beryllium, calcium, cerium, lithium, sodium, magnium, potassium, barium , strontium, cesium and other metals, and electrolysis of bromides, sulfides, sulfuric acid, hydrochloric acid and hydrofluoric acid. In general, the electrodes are useful for all electrolytic processes.
I de følgende eksempler er beskrevet flere foretrukne udførelsesformer for at illustrere opfindelsen. Procenterne af komponenterne af 2q elektroderne er beregnet i vægt% og beregnet som frit metal på basis af det samlede metalindhold i sammensætningen.In the following examples, several preferred embodiments are described to illustrate the invention. The percentages of the components of the 2q electrodes are calculated in% by weight and calculated as free metal on the basis of the total metal content of the composition.
Blandt de foretrukne anoder er de, hvori størstedelen af det selvbærende legeme er tindioxid alene eller med op til 20 vægt% koboltoxid forsynet med en belægning af koboltoxid, som giver elektroder med 2 5 forbedrede mekaniske egenskaber og elektrokatalytiske egenskaber til chlorudvikling. Andre foretrukne additiver er Y20^, Ti02 og la20^.Among the preferred anodes are those in which the majority of the self-supporting body is tin dioxide alone or with up to 20% by weight cobalt oxide provided with a coating of cobalt oxide which provides electrodes with improved mechanical properties and electrocatalytic properties for chlorine development. Other preferred additives are Y₂O₂, TiO₂ and I₂O₂.
Ben elektrokatalytiske belægning kan beskyttes mod slid ved samtidig 30 eller påfølgende påføring af et beskyttelsesmiddel, såsom et metaloxid som li02 og Ta20^ eller Si02 blandede oxider såsom AgRe20^, TiCo204 og Ag^WO^.Bone electrocatalytic coatings can be protected from abrasion by the simultaneous application or application of a protective agent such as a metal oxide such as LiO 2 and Ta 2 O 2 or SiO 2 mixed oxides such as AgRe 2 O, TiCo 2 O 4 and Ag 2 WO 2.
Eksempel 1Example 1
Ber blev fremstillet tre sintrede elektrodeprøver, 80% Sn02 + 20% kobolt (prøve A), 80% Sn02 + 10% Co + 10% Mo (prøve B) og 100% Sn02 (prøve C), og de blev omhyggeligt vasket med vand og tørret i vakuum. Be fremkomne elektroder blev så neddykket under vakuum i den opløs-Berries were prepared in three sintered electrode samples, 80% SnO2 + 20% cobalt (Sample A), 80% SnO2 + 10% Co + 10% Mo (Sample B) and 100% SnO2 (Sample C), and were carefully washed with water and dried in vacuo. The resulting electrodes were then immersed under vacuum in the solution.
12 DK 155531 B12 DK 155531 B
ning, der er vist i tabel I, og blev så tørret efterfulgt af opvarmning til 370°C i 20 minutter i en ovn med tvungen luftcirkulation. Prøverne blev så penslet med samme opløsning og opvarmet i 15 minutter til 350°C i samme ovn, og denne behandling blev gentaget flere 5 gange, indtil elektroden havde en vægtforøgelse på 5 g/m .in Table I, and then dried followed by heating to 370 ° C for 20 minutes in a forced air oven. The samples were then brushed with the same solution and heated for 15 minutes to 350 ° C in the same oven, and this treatment was repeated several times until the electrode had a weight gain of 5 g / m.
Elektrodeprøverne blev så anvendt som anoder i en prøvecelle til elektrolyse af aluminiumchlorid ved 750°0 og en anodisk strømtæthed på 1000 A/m . Cellespændingen var 5 volt, og elektrolyten var en L0 5-1-1 blanding efter vægt af aluminiumchlorid, natriumchlorid og ka-liumchlorid. Anodespændingen blev bestemt straks og efter 500 timers drift, og elektrodens vægttab blev bestemt efter 500 timer. Til sammenligningsformål blev der også anvendt en standard grafitelektrode under samme betingelser, og resultaterne er gengivet i tabel I.The electrode samples were then used as anodes in a sample cell for electrolysis of aluminum chloride at 750 ° 0 and an anodic current density of 1000 A / m. The cell voltage was 5 volts and the electrolyte was a L0 5-1-1 mixture by weight of aluminum chloride, sodium chloride and potassium chloride. The anode voltage was determined immediately and after 500 hours of operation, and the weight loss of the electrode was determined after 500 hours. For comparison purposes, a standard graphite electrode was also used under the same conditions and the results are presented in Table I.
L5--L5--
Tabel ITable I
Anodespænding vf-Rprv^ Vægttab efter -Opløsning- efter 500 500Anode voltage vf-Rprv ^ Weight loss after -Solution- after 500 500
Prøve Opløsningsmiddel galt Straks timer g/nr_ A vand og formamid CoClg 0,45 0,47 0,8 B saltsyre IrCl^ 0,45 0,45 0,5 C saltsyre IrCl* 0,5 0,6 0,2 >5 0 A ubehandlet 0,6 0,6 0,5 B ubehandlet 0,55 0,55 0,5 C ubehandlet 1,0 1,3 intet w s RCG-E: Reference chlorgraf it elektrode.Sample Solvent wrong Immediately hours g / nr_ A water and formamide CoClg 0.45 0.47 0.8 B hydrochloric acid IrCl ^ 0.45 0.45 0.5 C hydrochloric acid IrCl * 0.5 0.6 0.2> 5 0 A untreated 0.6 0.6 0.5 B untreated 0.55 0.55 0.5 C untreated 1.0 1.3 nothing ws RCG-E: Reference chloro graph the electrode.
Resultaterne i tabel I viser, at de belagte elektroder har en endnu lavere overspænding for chlorudvikling uden nogen væsentlig forøgelse !5 i vægttab. Prøven C, som havde en for høj overspænding uden efterbehandlingen, var ikke egnet til elektrolysereaktionen, medens den behandlede prøve C er. Ben gennemsnitlige faraday virkningsgrad under prøven var 96$. En sædvanlig grafitelektrode anvendt på samme måde og sammenlignet med referencegrafitelektroden viste en spænding |,q på ca. 0,8 volt.The results in Table I show that the coated electrodes have an even lower voltage for chlorine evolution without any significant increase in weight loss. Sample C, which had an excessively high voltage without the post-treatment, was not suitable for the electrolysis reaction while the treated sample C is. Ben's average faraday efficiency during the trial was $ 96. A conventional graphite electrode used in the same way and compared to the reference graphite electrode showed a voltage |, q of approx. 0.8 volts.
Eksempel 2Example 2
DK 155531 BDK 155531 B
1313
Prøver af 90 vægt$ tindioxid og 10 vægt$ kobolt blev sintret, og elektroderne blev så forsynet med en belægning af koboltoxid som i 5 eksempel 1, således at der fremkom et lag på 10 g/m af koboltoxid. Elektroderne blev så anvendt til at elektrolysere elektrolyterne i tabel II under de deri nævnte driftsbetingelser. Anodespændingen efter 300 timers drift og nedslidningsgraden efter 300 timer blev bestemt og er vist i tabel II.Samples of 90 wt. Tin dioxide and 10 wt. Cobalt were sintered, and the electrodes were then provided with a coating of cobalt oxide as in Example 1, so that a layer of 10 g / m of cobalt oxide was obtained. The electrodes were then used to electrolyze the electrolytes in Table II under the operating conditions mentioned therein. The anode voltage after 300 hours of operation and the degree of wear after 300 hours were determined and are shown in Table II.
1010
label IIlabel II
Elektrolyt strøm- sammensæt- . ektrolvt tæthed Gennemsnit Anodespænding v„„ttab ning og Elektrolyt tæthed paraday efter 300 vægttab 15 vægtforhold temp. °C k/wr virkningsgrad timer y(ROG-E) g/iirElectrolyte current composition. extra-high density Average Anode Voltage Voltage and Electrolyte Density paraday after 300 weight loss 15 weight ratio temp. ° C k / wr efficiency timer y (ROG-E) g / iir
AlCl^+KCl 750 1000 92$ 0,5 0,5 (5:1)AlCl ^ + KCl 750 1000 92 $ 0.5 0.5 (5: 1)
CaCl2+KCl 450 1000 94$ 0,6 0,5 (5:1) 20CaCl2 + KCl 450 1000 94 $ 0.6 0.5 (5: 1) 20
PbClp+KCl 450 1000 90$ 0,6 0,5 (5:1)PbClp + KCl 450 1000 90 $ 0.6 0.5 (5: 1)
Tabel II viser, at elektroderne ifølge opfindelsen har lavere ned--5 slidningsgrad og et lavt anodepotentiale selv efter 300 timers drift.Table II shows that the electrodes according to the invention have a lower abrasion degree and a low anode potential even after 300 hours of operation.
Eksempel 3Example 3
Skiveformede elektroder med en diameter på 10 mm og en tykkelse på 30 5 mm blev fremstillet af pulvere med en sigtestørrelse på 100 til 250. Pulverne blev pressestøbt ved et tryk på 1000 kg/cm og blev så sintret i en induktionsovn under de betingelser, der er vist i tabel III, der også viser sammensætningerne af pulverne.Disc shaped electrodes 10 mm in diameter and 30 mm thick were made from powders having a sieve size of 100 to 250. The powders were die-cast at a pressure of 1000 kg / cm and then sintered in an induction furnace under the conditions which are shown in Table III, which also shows the compositions of the powders.
15 Sintringen blev udført i en ovn, hvorigennem der blev cirkuleret den viste gas eller opretholdt atmosfæretryk. Således blev i det mindste de ydre overflader og måske nogen af de indre porer udsat for en oxiderende atmosfære ved den viste temperatur, og det eksponerede metal i overfladerne blev oxideret til dannelse af elektrokatalysatoren.The sintering was carried out in an oven through which the gas shown or atmospheric pressure was circulated. Thus, at least the outer surfaces and perhaps some of the inner pores were exposed to an oxidizing atmosphere at the temperature shown, and the exposed metal in the surfaces was oxidized to form the electrocatalyst.
14 DK 155531 B14 DK 155531 B
label IIIlabel III
Prøve Komponenter og -^- nr. vægtprocenter lemp. °C Atmosfære Opvarmningstid 1 Sn02 80% 1250 tvungen luft- 2 timerSample Components and - ^ - No. Weight Percent Rel. ° C Atmosphere Heating time 1 Sn02 80% 1250 forced air- 2 hours
Co 20 % cirkulation 5 2 SnOp 80% 1500 " 2 timerCo 20% Circulation 5 2 SnOp 80% 1500 "2 hours
Co * 10%Co * 10%
Mo 10% 3 SnOp 80% 1250 » 2 timerMo 10% 3 SnOp 80% 1250 »2 hours
Mo * 10%Mo * 10%
Mi 10% 10 4 Sn02 75% 1500 omgivelsernes 2 timerMi 10% 10 4 Sn02 75% 1500 ambient 2 hours
Iao0, 10$ luftIao0, $ 10 air
Oo2 5 15$ 5 Sn02 60% 1500 " 2 timer 15 OOpMO, 30%Oo2 5 15 $ 5 Sn02 60% 1500 "2 hours 15 OOpMO, 30%
Co 4 10% 6 SnOp 60% 1000 11 2 timerCo 4 10% 6 SnOp 60% 1000 11 2 hours
SiO^ 10%SiO ^ 10%
Iao0, 20 2 5 COpUiO, 10%IO0, 20 2 COPU10, 10%
Cu 4 10%Cu 4 10%
Mo 10% 7 Sn02 95% 1500 tvungen luft- 2 timerMo 10% 7 Sn02 95% 1500 forced air- 2 hours
Co 2,5% cirkulation 25 Mo 2,5 % 8 Sn02 100% 1500 luft 10 timerCo 2.5% circulation 25 Mo 2.5% 8 Sn02 100% 1500 air 10 hours
Elektroledningsevnen af prøverne 1 til 7 målt ved 500°C var mellem 30 0,01 og 1,00, og vægtfylden af de sintrede elektroder varierede mel- lem 5 og 8,5 g/cm . Elektrodeprøverne blev anvendt som anoder i en forsøgscelle til elektrolyse af aluminiumcblorid ved 750°C og en ano-destrømtæthed på 1000 A/m . Cellespændingen var 5 volt, og elektrolyt en var en 5-1-1 blanding af aluminiumcblorid, natriumcblorid og 33 kaliumcblorid. Anodespændingen blev bestemt straks og efter 500 timers drift, og elektrodens vægttab blev bestemt efter 500 timer. Til sammenligningsformål blev også anvendt en reference grafitelektrode under samme betingelser, og resultaterne er vist i tabel 17.The electroconductivity of samples 1 to 7 measured at 500 ° C was between 0.01 and 1.00, and the density of the sintered electrodes varied between 5 and 8.5 g / cm. The electrode samples were used as anodes in a test cell for electrolysis of aluminum chloride at 750 ° C and an ano-current density of 1000 A / m. The cell voltage was 5 volts and electrolyte one was a 5-1-1 mixture of aluminum chloride, sodium chloride and 33 potassium chloride. The anode voltage was determined immediately and after 500 hours of operation, and the weight loss of the electrode was determined after 500 hours. For comparison purposes, a reference graphite electrode was also used under the same conditions and the results are shown in Table 17.
15 DK 155531 BDK 155531 B
label IT Anodepotentiallabel IT Anode Potential
Pr0ve V. Y.(RSE)* Vægttab efter 500 nr. Straks Efter 500 timer timer g/m^ 1 0,6 0,6 0,5 2 0,55 0,55 0,5 5 5 0,60 0,6 0,8 4 0,55 0,6 0,5 5 0,6 0,6 intet 6 0,65 0,65 0,5 10 7 0,55 0,6 intet 8 1,0 1,3 intet grafit 0,85 0,85 105 1 R ae RGE: Reference grafitelektrodeTest VY (RSE) * Weight loss after 500 no. Immediately After 500 hours hours g / m ^ 1 0.6 0.6 0.5 2 0.55 0.55 0.5 5 5 0.60 0.6 0, 8 4 0.55 0.6 0.5 5 0.6 0.6 nothing 6 0.65 0.65 0.5 10 7 0.55 0.6 nothing 8 1.0 1.3 no graphite 0.85 0.85 105 1 R ae RGE: Reference graphite electrode
Resultaterne i tabel IY viser, at elektroderne 1 til 7 indeholdende en større mængde af et oxid og en mindre mængde af et metal har en lav overspænding for chlorudvikling og en meget lav nedslidningsgrad.The results in Table IY show that electrodes 1 to 7 containing a larger amount of an oxide and a smaller amount of a metal have a low voltage for chlorine evolution and a very low degree of wear.
2020
Elektroden 8, som ikke indeholder noget tilsat elektroledende metal, har en væsentligt højere overspænding for chlorudvikling, og reference grafitelektroden havde en overspænding over værdierne for elektroderne 1 til 7 og en høj nedslidningsgrad. Reference grafitanoden krævede væsentlig indstilling under elektrolysen og tidlig udskiftning. Den 2 5 gennemsnitlige virkningsgrad under prøven var 97$. Alle prøverne 1 til 7 inklusive var mindre skøre end prøve nr. 8The electrode 8, which contains no added electroconductive metal, has a significantly higher voltage for chlorine development, and the reference graphite electrode had a voltage over the values of the electrodes 1 to 7 and a high degree of wear. The reference graphite anode required substantial adjustment during electrolysis and early replacement. The average mean efficiency during the test was $ 97. All samples 1 to 7 inclusive were less brittle than sample # 8
Eksempel 4 30 Ca. 250 g af en blanding af grundmassematerialet og additive materialer, der er vist i tabel I, blev formalet i en blander i 20 minutter, og pulverblandingerne blev hældt i cylindriske kunststofforme og forud sammentrykket manuelt med en ståleylinderpresse. Hver form blev anbragt i et isostatisk trykkammer, og trykket blev hævet til ca. 1500 35 kg/cm på 5 minutter og derefter reduceret til 0 på få sekunder. Prøverne blev så udtaget af kunststofformene og poleret. De pressede rw»/5iTT/a*K> <-«·+ δ 4—Λννττ*α*νι»ττΐΛ4* λτr*n r\ rv rs-r^Tro 4- ο+ιιλ.Example 4 Approx. 250 g of a mixture of the matrix material and additive materials shown in Table I was ground in a mixer for 20 minutes and the powder mixtures were poured into cylindrical plastic molds and pre-compressed manually with a steel cylinder press. Each mold was placed in an isostatic pressure chamber and the pressure was raised to approx. 1500 35 kg / cm in 5 minutes and then reduced to 0 in seconds. The samples were then removed from the plastic molds and polished. They pressed rw »/ 5iTT / a * K> <-« · + δ 4 — Λννττ * α * νι »ττΐΛ4 * λτr * n r \ rv rs-r ^ Faith 4- ο + ιιλ.
16 DK 155531 B16 DK 155531 B
temperatur til 1200°C under en nitrogenatmosfære gennem en periode på 24 timer, lioldt ved maksimumtemperaturen i 2-5 timer og derefter afkølet til 500°C i løbet af de følgende 24 timer. De sintrede prøver blev så taget ud af ovnen, og efter afkøling til stuetemperatur blev de vejet, og deres tilsyneladende vægtfylde og elektriske led-5 ningsevne ved 25°C og ved 1000°C blev målt. Resultaterne er anført i tabel Y.temperature to 1200 ° C under a nitrogen atmosphere for a period of 24 hours, allowed to cool at the maximum temperature for 2-5 hours and then cooled to 500 ° C over the following 24 hours. The sintered samples were then taken out of the oven and after cooling to room temperature they were weighed and their apparent density and electrical conductivity at 25 ° C and at 1000 ° C were measured. The results are listed in Table Y.
Tabel YTable Y
10 Tilsyne-10 Supervision
Sintrings- Elektrisk ledningsevneSintering- Electrical Conductivity
Prøve Sammensætning max. temp. fylde ved 1000 C ved 25 C og vægt$ (timer) g/cnr Ω-1 cm~ Ω-1 cm~ 1 Zr02 60$ 5 5,1 0,1 15 10$ top 1056Sample Composition max. temp. filling at 1000 C at 25 C and weight $ (h) g / cnr Ω-1 cm ~ Ω-1 cm ~ 1 Zr02 60 $ 5 5.1 0.1 15 10 $ top 1056
Ir02 20$ 2 Τα205 50$ 5 5,3 0,4Ir02 20 $ 2 Τα205 50 $ 5 5.3 0.4
LaJO^ 5$ 20 SiOo 5$ Y0p 20$ 0o^04 20$ 3 Zr02 50$ 5 5,1 0,3LaJO ^ 5 $ 20 SiOo 5 $ Y0p 20 $ 0o ^ 04 20 $ 3 Zr02 50 $ 5 5.1 0.3
Ti205 20$ 25 ZrOClp 20$Ti205 20 $ 25 ZrOClp $ 20
Rb205 10$ 4 Fb205 30 $ 5 5,6 0,5Rb205 10 $ 4 Fb205 30 $ 5 5.6 0.5
TiOr, 20$ YOE 20$ 30 Ag20 20$TiOr, $ 20 YOE 20 $ 30 Ag20 20 $
Sb203 10$ 5 T203 20$ 5 5,8 0,7 la203 20$Sb203 10 $ 5 T203 20 $ 5 5.8 0.7 la203 $ 20
Th.0o 20$ 35 ^Th.0o 20 $ 35 ^
Ti20* 20$Ti20 * $ 20
RligOj 20$RligOj $ 20
DK 155531 BDK 155531 B
Tabel Y (fortsat)Table Y (continued)
Tilsyne-Visible-
Sintrings- lade^de Elektrisk ledningsevneSintering Charged Electrical Conductivity
tid ved fyfde ved 10oo°C ved 25°Ctime at fifth at 10 ° C at 25 ° C
Prøve Sammensætning max. temp. 3 _i -] nr. og vægt/ (timer) g/cnr fi-1 cm cm 6 ZrOp 40/ 5 5,3 1,2 Y20^ 5/Sample Composition max. temp. 3 µi -] No. and weight / (h) g / cnr fi-1 cm cm 6 ZrOp 40/5 5.3 1.2 Y20 ^ 5 /
SiOr, 5/SiOr, 5 /
ZrpOClp 15/ZrpOClp 15 /
BipO^ 10 / 10 AgpO^ 15/°BipO ^ 10/10 AgpO ^ 15 / °
RuOp 5/RuOp 5 /
CuO 5/ 7 ZrOp 50/ 5 5,9 1,0 Y203 30/ 15 SnOp 10/CuO 5/7 ZrOp 50/5 5.9 1.0 Y203 30/15 SnOp 10 /
IrOp 8/IrOp 8 /
CuO 2/ 8 Zr02 30/ 5 5,8 0,8CuO 2/8 ZrO 2 30/5 5.8 0.8
Ybo0* 10/ 20 2 3Ybo0 * 10/20 2 3
Th.02 10/Th.02 10 /
TipOj 25/TipOj 25 /
Sn02 15/Sn02 15 /
Co304 10/ 25 9 Ti02 20/ 5 5,4 2,1Co304 10/25 9 TiO2 20/5 5.4 2.1
AlpO^ 20/AlpO ^ 20 /
TipO^ 20/TipO ^ 20 /
Sn02 20/ βΜη02 20/ 30 10 ZrOp 30/ 2 5,1 4 0,5 Y203 5/ YOE 25/ Y 20/Sn02 20 / βΜη02 20/30 10 ZrOp 30/2 5.1 4 0.5 Y203 5 / YOE 25 / Y 20 /
Ru02 20/ 35 11 Ti02 20/ 2 5,7 5 0,9RuO2 20/35 11 TiO2 20/2 5.7 5 0.9
TapO,- 30/ VOp 10/TapO, - 30 / VOp 10 /
EepO. 10/Eepo. 10 /
Co^o; 10/ 18Co ^ o; 10/18
DK 155531 BDK 155531 B
Tabel 7 (fortsat)Table 7 (continued)
Tilsyne-Visible-
Sintrings- Elektrisk ledningsevne j· n _ n vS3g U-· ' .i i· - —w ' 1Sintering Electrical Conductivity j · n _ n vS3g U- · '.i i · - —w' 1
Prøve Sammensætning max. temp. iylde ved 1000 C ved 25 C 5 nr. og vægt# (timer) g/cnr Ω-1 om"1 Ω-1 cm-1 12 TiO'2 40 # 5 6,3 12 1,6Sample Composition max. temp. fill at 1000 C at 25 C 5 no. and weight # (h) g / cnr Ω-1 about "1 Ω-1 cm-1 12 TiO'2 40 # 5 6.3 12 1.6
TiOC 25#TiOC 25 #
SnOp 15#SnOp 15 #
EuOp 5#EuOp 5 #
Mo 1096 10 Ti 5# 13 Ti02 40$ 5 6,1 10 2,5Mo 1096 10 Ti 5 # 13 Ti02 40 $ 5 6.1 10 2.5
Ta?0c 10#Take? 0c 10 #
Iip02 10#Iip02 10 #
Co~0? 20# ις Mo9 4 10# ASpO^ 10# 14 ZrOp 40# 2 6,5 15 2,5 Y20^ 5# vo2 25# 20 AgO 20#Co ~ 0? 20 # ις Mo9 4 10 # ASpO ^ 10 # 14 ZrOp 40 # 2 6.5 15 2.5 Y20 ^ 5 # vo2 25 # 20 AgO 20 #
Pd 1#Pd 1 #
Mo 9#Mo 9 #
Dataene i tabel Y viser, at den elektriske ledningsevne af de sintre-25 de keramiske elektroder ved høje temperaturer på 1000°C er 5-10 gange Døjere end den elektriske ledningsevne ved 25°C. Tilsætning af oxider, der har ledningsevne ækvivalent med metaller, til de i hovedsagen ikke ledende keramiske oxider af grundmassen forøger elektroder- p nes ledningsevne med en størrelse på 10 . Tilsætning af et metal, 30 der er stabilt overfor smeltede salte, såsom yttrium eller molybdæn o.s.v., til de keramiske elektroder ifølge opfindelsen forøger den elektriske ledningsevne af elektroderne 2-5 gange.The data in Table Y shows that the electrical conductivity of the sintered ceramic electrodes at high temperatures of 1000 ° C is 5-10 times higher than the electrical conductivity at 25 ° C. The addition of oxides having conductivity equivalent to metals to the substantially non-conductive ceramic oxides of the matrix increases the conductivity of the electrodes by a magnitude of 10. Addition of a metal which is stable to molten salts, such as yttrium or molybdenum, etc., to the ceramic electrodes of the invention increases the electrical conductivity of the electrodes 2-5 times.
Eksempel 5 35Example 5 35
Driftsbetingelserne for en elektrolysecelle til fremstilling af metallisk aluminium af smeltet kryolit blev efterlignet i en laboratorieprøvecelle. I en opvarmet digel af grafit blev der anbragt et lag flydende aluminium på bunden, og en smelte bestående af kryolit 4ΠThe operating conditions of an electrolytic cell for the production of metallic aluminum of molten cryolite were mimicked in a laboratory test cell. In a heated graphite crucible, a layer of liquid aluminum was placed on the bottom and a melt consisting of cryolite 4Π
19 DK 155531 B19 DK 155531 B
(80-85$), aluminiumoxid (5-10$) og Al i1- (fra 1 til 5$) blev hældt 2 ·ζ oven på. Prøveelektroderne med en arbejdsoverflade på 3 cm fremstillet ved fremgangsmåden, der er beskrevet i eksempel 4, og hvortil der var loddet en Pt tråd for at tilvejebringe et middel til elektrisk ledning, blev neddyppet i saltsmelten og holdt i en afstand 5 af ca. 1 cm fra det flydende aluminiumlag. Digelen blev holdt ved en temperatur fra 950 til 1050°C, og strømtætheden var 0,5 A/cm2, og cellen blev drevet i 2000 timer. De fremkomne forsøgsdata er vist i tabel 71. Prøvenummer angiver, at den afprøvede elektrode svarer til den prøve, der er beskrevet i tabel 7 med samme nummer.($ 80-85), alumina ($ 5-10) and Al i1- (from $ 1 to $ 5) were poured 2 · ζ on top. The test electrodes having a working surface of 3 cm made by the method described in Example 4, and to which a Pt wire was soldered to provide an electrical conduit, were immersed in the salt melt and kept at a distance of about 5 cm. 1 cm from the liquid aluminum layer. The crucible was kept at a temperature of 950 to 1050 ° C and the current density was 0.5 A / cm 2 and the cell operated for 2000 hours. The test data obtained are shown in Table 71. Sample number indicates that the tested electrode corresponds to the sample described in Table 7 with the same number.
1010
Tabel 71Table 71
Prøve Produceret aluminium "Vægttab af ^anoder 15 nr. _(g/time) (g/cm ) 1 0,49 0,02 2 0,50 0,12 3 0,49 0,04 20 4 0,49 0,02 5 0,48 0,01 6 0,49 0,04 7 0,49 0,06 25 8 0,46 0,18 9 0,46 0,2Sample Produced Aluminum "Weight Loss of ^ Anodes 15 No. _ (g / hr) (g / cm) 1 0.49 0.02 2 0.50 0.12 3 0.49 0.04 20 4 0.49 0, 02 5 0.48 0.01 6 0.49 0.04 7 0.49 0.06 25 8 0.46 0.18 9 0.46 0.2
Prøveelektroderne virkede godt som anoder i kryolitsmelten, og det 30 iagttagne slid synes at være helt acceptabelt til elektrolytisk fremstilling af aluminium af smeltet kryolit. Alle de afprøvede elektroder udviste en lav grad af slid under 2000 timers drift. I alminde-hed er graden af slid af elektroder indeholdende varmestabilisatorer såsom oxyforbindelser af metaller fra gruppe III i det periodiske sy-35 stem ca. 10 gange mindre end elektroderne uden varmestabilisatorer.The sample electrodes worked well as anodes in the cryolite melt, and the observed wear appears to be perfectly acceptable for the electrolytic production of aluminum of molten cryolite. All the tested electrodes exhibited a low degree of wear during 2000 hours of operation. Generally, the degree of wear of electrodes containing heat stabilizers such as oxy compounds of Group III metals in the periodic system is about 10 times smaller than the electrodes without heat stabilizers.
20 DK 155531 B20 DK 155531 B
Eksempel 6Example 6
Elektroderne nr. 4 og 5, der er beskrevet i tabel V, blev anvendt som anoder til elektrolyse af en elektrolyt af smeltet aluminiumchlo-rid i den prøvecelle, der er beskrevet i eksempel 5. Elektrolysebetingelserne var følgende: 5 Elektrolyt : AlCl^ fra 31 til 35' vægt% ITaCl fra 31 til 35 vægt%Electrodes Nos. 4 and 5 described in Table V were used as anodes for electrolysis of an electrolyte of molten aluminum chloride in the sample cell described in Example 5. The electrolysis conditions were as follows: 5 Electrolyte: AlCl to 35 'wt% ITaCl from 31 to 35 wt%
BaCO^ fra 31 til 35: vægt%BaCO3 from 31 to 35:% by weight
1Q Temperatur af elektrolyt : fra 690 til 720°C1Q Temperature of electrolyte: from 690 to 720 ° C
OISLAND
Anodisk strømtæthed : 2000 A/mAnodic current density: 2000 A / m
Katode : Smeltet aluminium 15Cathode: Melted aluminum 15
Elektrodemellemrum : 1 cm.Electrode gap: 1 cm.
De afprøvede elektroder virkede godt, og vægttabene efter 2000 timers drift var uanseelige.The tested electrodes worked well and the weight loss after 2000 hours of operation was insignificant.
2020
Eksempel 7Example 7
Elektrodeprøverne nr. 10 og 11 fra eksempel 1 blev anvendt som anoder til elektrolyse af en vandig bromidopløsning for at fremstille brom, 25 idet der blev benyttet en prøvecelle med diafragma med et asbestdia-fragma til at adskille katodeafdelingen med en stålkatode fra anode-afdelingen med forsøgselektroden som anode. Elektrolysen blev udført med en vandig opløsning af 200-220 g/l af natriumbromid,og elektrolyttemperaturen var 80-85°0 med en strømtæthed på 2000 A/m^. Strøm-3Q virkningsgraden var 95f°, og efter 1000 timers drift var vægttabet af forsøgselektroden uanseeligt.The electrode samples Nos. 10 and 11 of Example 1 were used as anodes for electrolysis of an aqueous bromide solution to produce bromine, using a diaphragm sample cell with an asbestos diaphragm to separate the cathode compartment with a steel cathode from the anode compartment. the test electrode as anode. The electrolysis was performed with an aqueous solution of 200-220 g / l sodium bromide, and the electrolyte temperature was 80-85 ° 0 with a current density of 2000 A / m 2. The current-3Q efficiency was 95f ° and after 1000 hours of operation the weight loss of the test electrode was insignificant.
Eksempel 8Example 8
Elektrodeprøverne nr. 10, 11 og 13 fra eksempel 1 blev anvendt alter-35 nativt som anode og som katode ved elektrolyse af syntetisk havvand i en prøvecelle, hvori elektrolyten blev pumpet gennem elektrodemellemrummet på 3 mm med en hastighed af 3 cm/sekund. Strømtætheden blevElectrode Samples Nos. 10, 11 and 13 of Example 1 were alternatively used as anode and cathode for electrolysis of synthetic seawater in a sample cell in which the electrolyte was pumped through the 3 mm electrode gap at a rate of 3 cm / second. The current density became
DK 155531 BDK 155531 B
holdt på 1500 A/m^, og den brugte elektrolyt indeholdt 0,8 til 2,4 natriumhypochlorat med en faraday virkningsgrad på mere end 88$. Yægttahet af elektroderne efter 200 timers drift var uanseeligt.held at 1500 A / m 2, and the spent electrolyte contained 0.8 to 2.4 sodium hypochlorate with a faraday efficiency of more than $ 88. The accuracy of the electrodes after 200 hours of operation was insignificant.
5 Eksempel 9Example 9
Elektrodeprøverne nr. 12 og 14 fra eksempel 1 blev anvendt som anoder ved elektrolyse af en vandig sur cuprisulfatopløsning i en celle med en titankatode. Elektrolyten indeholdt 150 til 200 g/l svovlsyn 10 og 40 g/l cuprisulfat som metallisk kobber, og anodestrømtætheden O r\ var 300 A/cm . Elektrolyttemperaturen var 60-80 C, og gennemsnitlig 6 mm kobber blev aflejret på den flade katode med en faraday virkningsgrad, der lå fra 92 til 98$. Kvaliteten af metalaflejringen var god og fri for dendriter, og anodeoverspændingen var meget lav, 15 idet den lå fra 1,81 til 1,95 Υ(ΗΉΕ).The electrode samples Nos. 12 and 14 of Example 1 were used as anodes for electrolysis of an aqueous acidic cupric sulfate solution in a cell with a titanium cathode. The electrolyte contained 150 to 200 g / l sulfuric acid 10 and 40 g / l cupric sulfate as metallic copper, and the anode current density O r \ was 300 A / cm. The electrolyte temperature was 60-80 C and an average of 6 mm copper was deposited on the flat cathode with a Faraday efficiency ranging from 92 to $ 98. The quality of the metal deposit was good and free of dendrites, and the anode overvoltage was very low, ranging from 1.81 to 1.95 Υ (ΗΉΕ).
Andre elektrokatalysatorer, der kan anvendes ved elektrolyse af smeltede halogenidsalte til halogenidionuddrivning, er Ru02 og oxider såsom As20^, Sn20^ og Bi20^ kan tilsættes i procenter op til 10 vægt; 20 frit metal, beregnet på det samlede metalindhold, for at forøge oxy-genoverspændingen uden at påvirke halogenionuddrivningsspændingen.Other electrocatalysts which can be used in the electrolysis of molten halide salts for halide ion evaporation are RuO 2 and oxides such as As 2 20 free metal, calculated on the total metal content, to increase the oxy gene overvoltage without affecting the halogen ion ejection voltage.
Til anoder, der skal anvendes i smeltede fluoridelektrolyter, hvor der udvikles oxygen, kan katalysatoren være de, der er anvendt i 25 eksempel 5> eller Rh20^, Pb02 og Ir02,TiC>2.For anodes to be used in molten fluoride electrolytes where oxygen is generated, the catalyst may be those used in Example 5> or Rh2 O2, PbO2 and IrO2, TiC> 2.
Komponenterne af anoderne, der er anført i eksemplerne, er beregnet i vægt$ frit metal på basis af det samlede metalindhold i anodesammensætningen.The components of the anodes listed in the Examples are calculated in weight free metal based on the total metal content of the anode composition.
3030
Elektrolyten kan indeholde andre salte end de, der er anvendt i eksemplerne, såsom alkalimetalchlorid eller fluorid samt saltet af det metal, som undergår elektrolyse. Metalhalogeniderne er effektive til at nedsætte smeltepunktet af saltet, som undergår elektro-35 lyse, og muliggør således anvendelse af lavere temperaturer, samtidig med at de holder saltbadet i smeltet tilstand.The electrolyte may contain salts other than those used in the examples, such as alkali metal chloride or fluoride, and the salt of the metal undergoing electrolysis. The metal halides are effective in lowering the melting point of the salt which undergoes electrolysis, thus enabling the use of lower temperatures while keeping the salt bath in the molten state.
De ovenstående eksempler indbefatter elektrolyse af smeltede metalsalte, først og fremmest elektrolyse af smeltet aluminiumchlorid og 40 fluoridsalte. På lignende måde kan de smeltede chlorider af andreThe above examples include electrolysis of molten metal salts, primarily electrolysis of molten aluminum chloride and 40 fluoride salts. Similarly, the molten chlorides of others may
Claims (6)
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US67227976A | 1976-03-31 | 1976-03-31 | |
US67227976 | 1976-03-31 | ||
US67346076A | 1976-04-05 | 1976-04-05 | |
US67346076 | 1976-04-05 | ||
US68127976A | 1976-04-28 | 1976-04-28 | |
US68127976 | 1976-04-28 | ||
US68694376A | 1976-05-17 | 1976-05-17 | |
US68694376 | 1976-05-17 |
Publications (3)
Publication Number | Publication Date |
---|---|
DK129077A DK129077A (en) | 1977-10-01 |
DK155531B true DK155531B (en) | 1989-04-17 |
DK155531C DK155531C (en) | 1989-10-09 |
Family
ID=27505346
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK129077A DK155531C (en) | 1976-03-31 | 1977-03-23 | ELECTRODE FOR USE BY ELECTROLYSE, ISRAEL FOR ELECTROLYSE OF MELTED METAL |
DK128877A DK155529C (en) | 1976-03-31 | 1977-03-23 | ELECTRODE FOR MELTED SALT ELECTROLYSIS |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK128877A DK155529C (en) | 1976-03-31 | 1977-03-23 | ELECTRODE FOR MELTED SALT ELECTROLYSIS |
Country Status (10)
Country | Link |
---|---|
JP (2) | JPS6025511B2 (en) |
DD (1) | DD137365A5 (en) |
DE (2) | DE2714487C3 (en) |
DK (2) | DK155531C (en) |
FI (2) | FI64815C (en) |
FR (2) | FR2366380A1 (en) |
IN (1) | IN144973B (en) |
MX (2) | MX144777A (en) |
NO (2) | NO146543C (en) |
SE (4) | SE430346B (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DD137365A5 (en) * | 1976-03-31 | 1979-08-29 | Diamond Shamrock Techn | ELECTRODE |
US4075070A (en) * | 1976-06-09 | 1978-02-21 | Ppg Industries, Inc. | Electrode material |
US4214970A (en) * | 1979-01-15 | 1980-07-29 | Diamond Shamrock Technologies, S.A. | Novel electrocatalytic electrodes |
US4329219A (en) * | 1979-10-29 | 1982-05-11 | Druzhinin Ernest A | Electrode for electrochemical processes |
DE2944814A1 (en) * | 1979-11-06 | 1981-05-14 | Vladimir Borisovič Busse-Mačukas | Electrode for electrochemical process - with metal support pasted with mixt. of same metal oxide, silica and platinum gp. metal oxide |
ZA807586B (en) * | 1979-12-06 | 1981-11-25 | Diamond Shamrock Corp | Ceramic oxide electrodes for molten salt electrolysis |
CA1181616A (en) * | 1980-11-10 | 1985-01-29 | Aluminum Company Of America | Inert electrode compositions |
CA1208601A (en) * | 1982-02-18 | 1986-07-29 | Diamond Chemicals Company | Electrode with lead base and method of making same |
GB8301001D0 (en) * | 1983-01-14 | 1983-02-16 | Eltech Syst Ltd | Molten salt electrowinning method |
FR2541691B1 (en) * | 1983-02-25 | 1989-09-15 | Europ Composants Electron | ELECTRODE FOR ELECTROLYTIC BATH |
EP0174413A1 (en) * | 1984-09-17 | 1986-03-19 | Eltech Systems Corporation | Composite catalytic material particularly for electrolysis electrodes and method of manufacture |
JPH046964Y2 (en) * | 1985-04-25 | 1992-02-25 | ||
DE3613997A1 (en) * | 1986-04-25 | 1987-10-29 | Sigri Gmbh | ANODE FOR ELECTROLYTIC PROCESSES |
JPS63199842A (en) * | 1987-02-14 | 1988-08-18 | Toho Kinzoku Kk | Electrode material |
JPH0194117U (en) * | 1987-12-15 | 1989-06-21 | ||
CA2061391C (en) * | 1991-02-26 | 2002-10-29 | Oronzio De Nora | Ceramic anode for oxygen evolution, method of production and use of the same |
JP2006077319A (en) * | 2004-09-13 | 2006-03-23 | Koji Hashimoto | Oxygen generation type electrode and its production method |
GB0714021D0 (en) * | 2007-07-18 | 2007-08-29 | Green Metals Ltd | Improvements in anode materials |
WO2011135783A1 (en) | 2010-04-26 | 2011-11-03 | パナソニック株式会社 | Method of reducing carbon dioxide |
JP2017057426A (en) * | 2015-09-14 | 2017-03-23 | Tdk株式会社 | Method for producing electrode for electrolysis |
DE102020005130B3 (en) * | 2020-08-21 | 2022-02-10 | Technische Universität Bergakademie Freiberg, Körperschaft des öffentlichen Rechts | Process for the production of low-carbon and carbon-free electrode-honeycomb material composites for use in metallurgy |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO147490B (en) * | 1976-03-31 | 1983-01-10 | Diamond Shamrock Techn | ELECTRODE FOR USE BY ELECTROLYSE, SPECIAL FOR ELECTROLYSE OF MELTED SALT |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR670245A (en) * | 1928-03-01 | 1929-11-26 | Ig Farbenindustrie Ag | Process for the production of compact masses using powdered metal oxides |
NL266639A (en) * | 1960-07-05 | |||
FR1284748A (en) * | 1961-02-21 | 1962-02-16 | Poudres Metalliques Alliages Speciaux Ugine Carbone | High temperature corrosion resistant materials |
BE759874A (en) * | 1969-12-05 | 1971-05-17 | Alusuisse | ANODE FOR ELECTROLYSIS IGNEATED WITH METAL OXIDES |
JPS5135396B2 (en) * | 1972-10-02 | 1976-10-01 | ||
JPS5135190B2 (en) * | 1972-04-29 | 1976-09-30 | ||
JPS5135395B2 (en) * | 1972-09-25 | 1976-10-01 | ||
JPS5135394B2 (en) * | 1972-09-01 | 1976-10-01 | ||
IT978528B (en) * | 1973-01-26 | 1974-09-20 | Oronzio De Nora Impianti | METALLIC ELECTRODES AND PROCEDURE FOR THEIR ACTIVATION |
JPS49123481A (en) * | 1973-03-31 | 1974-11-26 | ||
JPS5215274B2 (en) * | 1973-04-04 | 1977-04-27 | ||
JPS5215273B2 (en) * | 1973-04-04 | 1977-04-27 | ||
CH575014A5 (en) * | 1973-05-25 | 1976-04-30 | Alusuisse | |
JPS5230151B2 (en) * | 1973-06-30 | 1977-08-05 | ||
CH587929A5 (en) * | 1973-08-13 | 1977-05-13 | Alusuisse | |
JPS5536074B2 (en) * | 1973-10-05 | 1980-09-18 | ||
NO141419C (en) * | 1974-02-02 | 1980-03-05 | Sigri Elektrographit Gmbh | ELECTRODE FOR ELECTROCHEMICAL PROCESSES |
FR2312573A1 (en) * | 1975-05-30 | 1976-12-24 | Rhone Poulenc Ind | NEW ELECTRODE FOR ELECTROLYSIS CELL |
JPS5234082A (en) * | 1975-09-12 | 1977-03-15 | Koei Chemical Co | Dyeing method of keratinic structured substance |
-
1977
- 1977-03-21 DD DD77197949A patent/DD137365A5/en unknown
- 1977-03-23 DK DK129077A patent/DK155531C/en not_active IP Right Cessation
- 1977-03-23 DK DK128877A patent/DK155529C/en not_active IP Right Cessation
- 1977-03-24 FI FI770937A patent/FI64815C/en not_active IP Right Cessation
- 1977-03-24 FI FI770938A patent/FI61725C/en not_active IP Right Cessation
- 1977-03-25 IN IN448/CAL/77A patent/IN144973B/en unknown
- 1977-03-29 JP JP52034082A patent/JPS6025511B2/en not_active Expired
- 1977-03-29 JP JP52034083A patent/JPS6025512B2/en not_active Expired
- 1977-03-30 FR FR7709598A patent/FR2366380A1/en active Granted
- 1977-03-30 NO NO771130A patent/NO146543C/en unknown
- 1977-03-30 NO NO771131A patent/NO147490C/en unknown
- 1977-03-30 FR FR7709599A patent/FR2346468A1/en active Granted
- 1977-03-31 MX MX168597A patent/MX144777A/en unknown
- 1977-03-31 DE DE2714487A patent/DE2714487C3/en not_active Expired
- 1977-03-31 SE SE7703731A patent/SE430346B/en unknown
- 1977-03-31 DE DE19772714488 patent/DE2714488A1/en active Granted
- 1977-03-31 SE SE7703732A patent/SE435736B/en not_active IP Right Cessation
- 1977-03-31 MX MX168598A patent/MX146992A/en unknown
-
1980
- 1980-07-10 SE SE8005076A patent/SE437679B/en not_active IP Right Cessation
- 1980-07-10 SE SE8005075A patent/SE438165B/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO147490B (en) * | 1976-03-31 | 1983-01-10 | Diamond Shamrock Techn | ELECTRODE FOR USE BY ELECTROLYSE, SPECIAL FOR ELECTROLYSE OF MELTED SALT |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4146438A (en) | Sintered electrodes with electrocatalytic coating | |
US4187155A (en) | Molten salt electrolysis | |
DK155531B (en) | ELECTRODE FOR USE BY ELECTROLYSE, ISRAEL FOR ELECTROLYSE OF MELTED METAL | |
RU2330124C2 (en) | Electrolysis method for water chloric-alkaline solutions, electrode for electrolysis of chloric-alkaline solution and method of making an electrolytic electrode | |
US3948751A (en) | Valve metal electrode with valve metal oxide semi-conductive face | |
US4070504A (en) | Method of producing a valve metal electrode with valve metal oxide semi-conductor face and methods of manufacture and use | |
US4003817A (en) | Valve metal electrode with valve metal oxide semi-conductive coating having a chlorine discharge in said coating | |
TWI409364B (en) | Cathode for hydrogen generation | |
JP4673628B2 (en) | Cathode for hydrogen generation | |
US20040031692A1 (en) | Coatings for the inhibition of undesirable oxidation in an electrochemical cell | |
CN102762776B (en) | Activated cathode for hydrogen evolution | |
US3926751A (en) | Method of electrowinning metals | |
US3801490A (en) | Pyrochlore electrodes | |
US4111765A (en) | Silicon carbide-valve metal borides-carbon electrodes | |
US3865703A (en) | Electrowinning with an anode having a multicomponent coating | |
US4318795A (en) | Valve metal electrode with valve metal oxide semi-conductor face and methods of carrying out electrolysis reactions | |
US4192724A (en) | Method for electrolyzing molten metal chlorides | |
EP2179077B1 (en) | Electrode materials | |
CA1113427A (en) | Silicon carbide-valve metal borides-carbon electrodes | |
US4072585A (en) | Valve metal electrode with valve metal oxide semi-conductive coating having a chlorine discharge catalyst in said coating | |
US4049532A (en) | Electrodes for electrochemical processes | |
US6361681B1 (en) | Slurry for coating non-carbon metal-based anodes for metal production cells | |
US20220042189A1 (en) | Anodes comprising transition metal and platinum group metal as alloys, and related methods and systems | |
CA1124210A (en) | Sintered electrodes with electrocatalytic coating | |
EP1049817B1 (en) | Slurry for coating non-carbon metal-based anodes for aluminium production cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PBP | Patent lapsed |