DK155529B - ELECTRODE FOR MELTED SALT ELECTROLYSIS - Google Patents

ELECTRODE FOR MELTED SALT ELECTROLYSIS Download PDF

Info

Publication number
DK155529B
DK155529B DK128877AA DK128877A DK155529B DK 155529 B DK155529 B DK 155529B DK 128877A A DK128877A A DK 128877AA DK 128877 A DK128877 A DK 128877A DK 155529 B DK155529 B DK 155529B
Authority
DK
Denmark
Prior art keywords
electrode
metal
sintered
oxides
molten
Prior art date
Application number
DK128877AA
Other languages
Danish (da)
Other versions
DK128877A (en
DK155529C (en
Inventor
Vittorio De Nora
Placido M Spaziante
Antonio Nidola
Original Assignee
Permascand Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permascand Ab filed Critical Permascand Ab
Publication of DK128877A publication Critical patent/DK128877A/en
Publication of DK155529B publication Critical patent/DK155529B/en
Application granted granted Critical
Publication of DK155529C publication Critical patent/DK155529C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/12Anodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/036Bipolar electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/069Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of at least one single element and at least one compound; consisting of two or more compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • C25C7/025Electrodes; Connections thereof used in cells for the electrolysis of melts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Conductive Materials (AREA)
  • Ceramic Products (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Powder Metallurgy (AREA)

Description

DK 155529BDK 155529B

Dimensionsstabile elektroder til anodiske og katodiske reaktioner i elektrolyseceller er i den senere tid kommet til almen anvendelse i den elektrokemiske industri og erstatter de opbrugelige elektroder af kulstof, grafit og blylegeringer. De er særligt nyttige i katode-5 celler med strømmende kviksølv og i diafragmaceller til fremstilling af chlor og alkalier, i celler til elektroudvinding af metal, hvori rent metal udvindes af vandig chlorid eller sulfatopløsning og til katodisk beskyttelse af skibsskrog og andre metalkonstruktioner.Dimension-stable electrodes for anodic and cathodic reactions in electrolysis cells have recently come into general use in the electrochemical industry and replace the usable electrodes of carbon, graphite and lead alloys. They are particularly useful in cathode-5 flowing mercury cells and in diaphragm cells for chlorine and alkali production, in metal electro-recovery cells in which pure metal is extracted from aqueous chloride or sulfate solution, and for cathodic protection of ship hulls and other metal structures.

10 Dimensionsstabile elektroder omfatter i almindelighed en basis af meta såsom Ti, Ta, Zr, Hf, Nb og W, hvor man under anodisk polarisation udvikler et korrosionsresistent, men ikke elektrisk ledende oxidlag eller spærrela belagt over i det mindste en del af deres ydre overflade med et elek-Dimension-stable electrodes generally comprise a base of meta such as Ti, Ta, Zr, Hf, Nb and W, where during anodic polarization a corrosion-resistant but not electrically conductive oxide layer or barrier relay is coated over at least a portion of their outer surface. with an electric

2 DK 155529B2 DK 155529B

eller platingruppemetaller (se de amerikanske patenter nr. 3·711.385, 3.632.498 og 3.846.273). Elektroledende og elektrokatalytiske belægninger fremstillet af eller indeholdende platingruppemetaller eller platingruppemetaloxider er imidlertid kostbare og udsættes til slut for forbrug eller desaktivering i visse elektrolytiske processer, og derfor er genaktivering eller genbelægning nødvendig for at genaktivere brugte elektroder.or plate group metals (see U.S. Patents Nos. 3 · 711,385, 3,632,498, and 3,846,273). However, electroconductive and electrocatalytic coatings made from or containing platinum group metals or platinum group metal oxides are costly and are ultimately subjected to consumption or deactivation in certain electrolytic processes, and therefore reactivation or re-coating is required to reactivate spent electrodes.

Elektroder af denne type er endvidere ikke brugbare ved nogle elek-•0 trolytiske processer. I smeltede' saltelektrolytter bliver basismetallet f.eks. hurtigt opløst, idet det tynde beskyttelsesoxidlag .enten slet ikke dannes eller hurtigt ødelægges af den smeltede elektrolyt med deraf følgende opløsning af grundlaget af basismetal., og tab af den katalytiske belægning af ædelmetal. I flere 5 vandige elektrolytter, såsom fluoridopløsninger eller i havvand, er nedbrydningsspændingen af beskyttelsesoxidlaget på det udsatte basismetal endvidere for lav, og b.asismetallet korroderes ofte under anodisk polarisation.Furthermore, electrodes of this type are not usable in some electrolytic processes. In molten salt electrolytes, the base metal, e.g. quickly dissolved, the thin protective oxide layer being neither formed nor rapidly destroyed by the molten electrolyte with the resulting dissolution of the base metal base, and loss of the catalytic coating of precious metal. Furthermore, in several aqueous electrolytes, such as fluoride solutions or in seawater, the decomposition voltage of the protective oxide layer on the exposed base metal is too low and the base metal is often corroded during anodic polarization.

0 I den senere tid er der foreslået andre typer elektroder til erstatning af de hurtigt opbrugte kulstofanoder og kulstofkatoder, der hidtil har været anvendt under alvorligt korroderende formål, såsom elektrolyse af smeltede metalsalte, typisk til elektrolyse af smeltede fluoridbade, såsom de, der anvendes til fremstilling af aluminium af 5 smeltet kryolit. Ved denne særlige elektrolytiske proces, der har stor økonomisk betydning, forbruges kulstofanoder med en hastighed af ca. 450 til 500 kg kulstof pr. ton aluminium, der fremstilles, og et kostbart konstant indstillingsapparat er nødvendigt for at opretholde et lille og ensartet mellemrum mellem de korroderende anode-0 overflader og den flydende aluminiumkatode. Det anslås at over 6 millioner tons kulstofanoder forbruges på et år af aluminiumfabrikan ter. Kulstofanoderne brændes bort efter reaktionen: A1203 + 3/2 C —^ 2A1 + 3/2 C02 5 men den faktiske forbrugshastighed er meget større som følge af skørhedsdannelse og bortbrydning af kulstofpartikler og som følge af intermitterende gnistdannelse, der finder sted over anodiske gasfilm, som ofte dannes over områder af anodeoverfladen, fordi kulstof fugtes 0 dårligt af de smeltede saltelektrolytter, eller som følge af kortslut- 1Λ *1 ·Ρ vi η V> r« O rt* Λ Ί* ·Ρ T»N VI Λ λ vi n <>\ /3 Λ vi λ v\ «—> vi-f- A 1 ** ""T Λ vi J /> vi 1 r Λ WI wi M u Λ J A Ir Λ uRecently, other types of electrodes have been proposed to replace the rapidly used carbon anodes and carbon cathodes which have heretofore been used for severely corrosive purposes, such as electrolysis of molten metal salts, typically for electrolysis of molten fluoride baths, such as those used in manufacture of aluminum of 5 molten cryolite. In this particular electrolytic process, which is of great economic importance, carbon anodes are consumed at a rate of approx. 450 to 500 kg of carbon per tonnes of aluminum produced, and a costly constant adjusting apparatus are needed to maintain a small and uniform gap between the corrosive anode-0 surfaces and the liquid aluminum cathode. It is estimated that over 6 million tonnes of carbon anodes are consumed in one year by aluminum manufacturers. The carbon anodes are burned off after the reaction: A1203 + 3/2 C - ^ 2A1 + 3/2 C02 5, but the actual rate of consumption is much greater due to brittle formation and carbon particle breakage and due to intermittent sparking which occurs over anodic gas films. which are often formed over areas of the anode surface because carbon is wetted 0 poorly by the molten salt electrolytes, or as a result of short-circuiting 1 Λ 1 1 Ρ V r V r «r * Ί · Ρ» T N N VI Λ λ vi n <> \ / 3 Λ vi λ v \ «-> vi-f- A 1 **" "T Λ vi J /> vi 1 r Λ WI wi M u Λ JA Ir Λ u

3 DK 155529B3 DK 155529B

roderende kulstofanoder og fra dispergerede partikler af det aflejren-de metal.rotating carbon anodes and from dispersed particles of the deposited metal.

Britisk patent nr. 1.295*117 beskriver anoder til smeltede kryolit-bade bestående af et sintret keramisk oxidmateriale bestående i hoved-5 sagen af Sn02 med mindre mængder af andre metaloxider, nemlig oxider af Pe, Sb, Cr, Nb, Zn, W, Zr, Ta i koncentration op til 20%. Elektrisk ledende sintret Sn02 med mindre tilsætninger af andre metal= oxider, såsom oxider af Sb, Bi, Cu, U, Zn, Ta, As osv., har i lang tid været anvendt som holdbart elektrodemateriale i vekselstrømsglas-10 smelteovne (se de amerikanske patenter nr. 2.490.825, 2.490.826, 3.287.284 og 3-502.597)> men det udviser betydeligt slid og korrosion, når det anvendes som anodemateriale til elektrolyse af smeltede salte. Man., har fundet slidhastigheder op 'til 0,5 g pr. time 2 pr. cm fra prøver af de sammensætninger, der er beskrevet i de oven-15 nævnte patenter, når de bruges i en smeltet kryolitelektrolyt vedBritish Patent No. 1,295 * 117 discloses anodes for molten cryolite baths consisting of a sintered ceramic oxide material consisting essentially of SnO 2 with minor amounts of other metal oxides, namely oxides of Pe, Sb, Cr, Nb, Zn, W, Zr, Ta in concentration up to 20%. Electrically conductive sintered SnO2 with minor additions of other metal oxides, such as oxides of Sb, Bi, Cu, U, Zn, Ta, As, etc., has long been used as durable electrode material in AC glass melting furnaces (see US patents Nos. 2,490,825, 2,490,826, 3,287,284, and 3-502,597), but it exhibits considerable wear and corrosion when used as anode material for electrolysis of molten salts. Man., Have found wear rates up to 0.5 g / l. hour 2 pr. cm from samples of the compositions described in the above patents when used in a molten cryolite electrolyte at

OISLAND

3000 A/m . Den høje slidhastighed af sintrede Sn02 elektroder menes at skyldes to alvorlige faktorer: a) kemisk angreb af halogenerne, idet Sn"^ faktisk giver komplekser med højt koordinationstal med halo= genioner; b) reduktion af Sn02 af aluminium dispergeret i elektrolyt-20 ten, og c) mekanisk erosion ved anodisk gasudvikling og saltudfældning inde i materialets porer.3000 A / m. The high wear rate of sintered SnO2 electrodes is thought to be due to two serious factors: a) chemical attack of the halogens, in which Sn "actually produces high coordination numbers with halo ions; b) reduction of SnO₂ of aluminum dispersed in the electrolyte; and c) mechanical erosion by anodic gas evolution and salt precipitation within the pores of the material.

Japansk patentansøgning nr. 112.589 (offentliggørelsesnummer 62.114 fra 1975) beskriver elektroder, der har en ledende understøtning af 25 titan, nikkel eller kobber eller en legering deraf, kulstofgrafit eller andet ledende materiale belagt med et lag bestående i det væsentlige af spinel og/eller metaloxider af perovskittypen og alternativt elektroder fremkommet ved sintring af blandinger af disse oxider.Japanese Patent Application No. 112,589 (Publication No. 62,114 of 1975) discloses electrodes having a conductive support of 25 titanium, nickel or copper or an alloy thereof, carbon graphite or other conductive material coated with a layer consisting essentially of spinel and / or metal oxides. of the perovskite type and alternatively electrodes obtained by sintering mixtures of these oxides.

Spineloxider og perovskitoxider hører til en familie af metaloxider, 30 som typisk udviser god elektronisk ledningsevne og tidligere har været foreslået som egnede elektroledende og elektrokatalytiske anodiske belægningsmaterialer til dimensionsstabile metalanoder ( se de amerikanske patenter nr. 3-711-382 og 3-711-297 og belgisk patent nr. 780.303).Spin oxides and perovskite oxides belong to a family of metal oxides which typically exhibit good electronic conductivity and have previously been proposed as suitable electroconductive and electrocatalytic anodic coating materials for dimensionally stable metal anodes (see U.S. Patents Nos. 3-711-382 and 3-711-297 and Belgian Patent No. 780,303).

3535

Belægninger af partikelformede spineller og/eller perovskitter har imidlertid vist sig at være mekanisk svage, da bindingen mellem den partikelformede keramiske belægning og metalunderlaget eller kulstof- mviilavil ¢31.0+ -i οίη o \i o-n cnroir -P/norl -i Ti-oiro + cil o+riiiVfiivon α ·Ρ eminoll avnoHowever, coatings of particulate spinels and / or perovskites have been found to be mechanically weak as the bond between the particulate ceramic coating and the metal substrate or carbon mviilavil ¢ 31.0 + -i οίη o \ i on cnroir -P / norl -i Ti-oiro + cil o + riiiVfiivon α · Ρ eminoll avno

4 DK 155529B4 DK 155529B

og af perovskitterne ikke er isomorf med oxiderne af metalunderstøtningen og forskellige bindemidler, såsom oxider, carbider, nitrider og borider har været forsøgt med ingen eller kun ringe forbedring.and of the perovskites not isomorphic with the oxides of the metal support and various binders such as oxides, carbides, nitrides and borides have been tried with no or little improvement.

I smeltede saltelektrolytter angribes substratmaterialet hurtigt på 5 grund af de uundgåelige porer gennem spineloxidbelægningen, og belægningen skaller hurtigt af fra det korroderende substrat. Spinel-ler og perovskitter er endvidere ikke kemisk eller elektrokemisk stabile i smeltede halogenidsaltelektrolytter og udviser en betydelig slidhastighed som følge af halogenidionangreb og som følge af den 10 reducerende virkning af dispergeret metal.In molten salt electrolytes, the substrate material is rapidly attacked due to the inevitable pores through the spinel oxide coating and the coating peels off rapidly from the corrosive substrate. Furthermore, spinels and perovskites are not chemically or electrochemically stable in molten halide salt electrolytes and exhibit a significant wear rate due to halide ion attack and due to the reducing effect of dispersed metal.

Ved den elektrolytiske fremstilling af metaller af smeltede halogenid= salte, har de nævnte anoder i den kendte teknik vist sig at have andre ulemper. Den betydelige opløsning af det keramiske oxidmateriale 15 bringer metalkationer i opløsning, som aflejres på katoden sammen med det metal, der fremstilles, og urenhedsindholdet i det udvundne metal er så højt, at metallet ikke længere kan anvendes til formål, som kræver en renhed af elektrolytisk grad. I så tilfælde går de økonomiske fordele ved den elektrolytiske proces, som i vidt omfang skyldes 20 den høje renhed, der kan opnås, sammenlignet med smeltningsprocesserne, tabt helt eller delvis.In the electrolytic production of metals of molten halide salts, said anodes in the prior art have been found to have other disadvantages. The significant dissolution of the ceramic oxide material 15 dissolves metal cations deposited on the cathode with the metal being produced and the impurity content of the recovered metal is so high that the metal can no longer be used for purposes requiring an electrolytic purity degree. In that case, the economic benefits of the electrolytic process, which is largely due to the high purity attainable, compared to the melting processes, are lost in whole or in part.

Et elektrodemateriale, der kan anvendes med godt resultat under alvorligt korroderende betingelser, såsom ved elektrolyse af smeltede 25 halogenidsalte og især af smeltede fluoridsalte, skal først og fremmest være kemisk og elektrokemisk stabilt ved driftsbetingelserne.An electrode material which can be used with good results under severely corrosive conditions, such as by electrolysis of molten halide salts and especially of molten fluoride salts, must first of all be chemically and electrochemically stable under the operating conditions.

Det skal også være katalytisk med hensyn til den anodiske udvikling af oxygen og/eller halogenider, således at anodeoverspændingen er lavest for høj samlet virkningsgrad af elektrolyseprocessen. Elektro-30 den skal også have varmestabilitet ved driftstemperaturerne, dvs. ca. 200 til 1100°C, god elektrisk ledningsevne og være tilstrækkelig resistent over for tilfældig berøring med den smeltede metalkatode. Hvis man ser bort fra belagte metalelektroder, idet næppe noget -fnetalsubstrat kunne modstå de yderst korroderende betingelser, der 35 forekommer ved elektrolyse i smeltet fluoridsalt, har man systematisk afprøvet egenskaberne af et meget stort antal sintrede keramiske elektroder af forskellige sammensætninger.It must also be catalytic with respect to the anodic evolution of oxygen and / or halides so that the anode overvoltage is lowest for the high overall efficiency of the electrolysis process. The electrode must also have heat stability at operating temperatures, i.e. ca. 200 to 1100 ° C, good electrical conductivity and sufficiently resistant to accidental contact with the molten metal cathode. Excluding coated metal electrodes, since hardly any metal substrate could withstand the extremely corrosive conditions encountered by electrolysis in molten fluoride salt, the properties of a very large number of sintered ceramic electrodes of various compositions have been systematically tested.

Det har vist sig, at meget effektive uopløselige elektroder fremstil-40 les ved sintring af yttriumoxid og mindst ét elektroledende middelIt has been found that very efficient insoluble electrodes are produced by sintering of yttria and at least one electroconductive agent.

DK 155529BDK 155529B

5 til et selvbærende legeme og forsyne i det mindste overfladen deraf med mindst én elektrokatalysator.5 to a self-supporting body and providing at least one surface thereof with at least one electrocatalyst.

Dette opnås med en elektrode, som ifølge opfindelsen er ejendommelig ved, at den omfatter et selvbærende legeme af sintrede pulvere af 5 99-60 vægt% yttriumoxid og 1-40 vægt% af mindst et elektroledende middel valgt blandt chrom, molybdæn, tantal, wolfram, kobolt, nikkel, palladium og sølv, hvilken elektrode er forsynet over i det mindste en del af sin overflade med et lag af mindst en elektrokatalysator i form af et metal eller metaloxid.This is achieved with an electrode which according to the invention is characterized in that it comprises a self-supporting body of sintered powders of 5 99-60 wt% yttrium oxide and 1-40 wt% of at least one electroconductive agent selected from chromium, molybdenum, tantalum, tungsten , cobalt, nickel, palladium and silver, which electrode is provided on at least a portion of its surface with a layer of at least one electrocatalyst in the form of a metal or metal oxide.

1010

De sintrede yttriumoxidelektroder ifølge opfindelsen er særligt nyttige til elektroudvindingsprocesser, der benyttes til fremstilling af forskellige metaller, såsom aluminium, magnium, natrium, kalium, cal= cium, lithium og andre metaller af smeltede salte. Yttriumoxid og 15 mindst ét elektroledende middel har, når det anvendes som anode i jævnstrømselektrolyse af smeltede saltelektrolytter, vist sig at være ualmindelig stabilt som en indifferent dimensionsstabil anode med tilstrækkelig elektrisk ledningsevne, og når det er forsynet på overfladen med oxidelektrokatalysatorer, såsom CO^O^, Ni-^O^, MnC^, Rh^O^, 20 IrC^» RuC>2> AgzO osv., har det en høj elektrokatalytisk virkning, især til chlorudvikling.The sintered yttrium electrodes of the invention are particularly useful for electro-recovery processes used to prepare various metals, such as aluminum, magnesium, sodium, potassium, calcium, lithium, and other metals of molten salts. Yttrium oxide and at least one electroconductive agent, when used as anode in direct electrolysis by molten salt electrolytes, have been found to be unusually stable as an inert dimensionally stable anode with sufficient electrical conductivity and provided on the surface by oxide electrocatalysts such as CO ^, Ni- ^ O ^, MnC ^, Rh ^ O ^, 20 IrC ^ »RuC> 2> AgzO, etc., it has a high electrocatalytic effect, especially for chlorine development.

Den "sintrede” yttriumoxid elektrode er således et selvbærende, i det væsentlige stift legeme bestående først og fremmest af 25 yttriumoxid, og mindst ét elektroledende middel fremstillet på en af de kendte metoder, der anvendes i den keramiske industri, såsom ved påføring af temperatur og tryk på en pulveriseret blanding af yttrium= oxid og andre materialer til formgivning af blandingen til den ønskede størrelse og form eller ved støbning af materialet i forme ved udpres-30 ning eller ved anvendelse af bindemidler osv., og derpå sintring af det formede legeme ved høj temperatur til en selvbærende elektrode.Thus, the "sintered" yttria electrode is a self-supporting, substantially rigid body consisting primarily of 25 yttria, and at least one electroconductive agent produced by one of the known methods used in the ceramic industry, such as by applying temperature and printing on a powdered mixture of yttrium oxide and other materials to mold the mixture to the desired size and shape or by molding the material into molds by pressing or using binders, etc., and then sintering the molded body by high temperature for a self-supporting electrode.

Ved at blande pulveret af grundmassematerialet med en mindre mængde, 35By mixing the powder of the matrix material with a smaller amount, 35

6 DK 155529B6 DK 155529B

typisk fra 0,5 til ca. 30%, pulvere af et egnet elektrokatalytisk materiale og ved at sintre blandingen til et selvbærende legeme, ud· viser det, når det anvendes som elektrode, tilfredsstillende elektr ledende og elektrokatalytiske egenskaber, som bevarer dets kemiske 5 stabilitet, selvom den iblandede katalysator ikke som sådan ville være resistent over for elektrolysebetingelserne.typically from 0.5 to approx. 30%, powders of a suitable electrocatalytic material and by sintering the mixture to a self-supporting body, · when used as an electrode, it exhibits satisfactory electrically conductive and electrocatalytic properties which retain its chemical stability, although the mixed catalyst does not as such would be resistant to electrolysis conditions.

Katalysatoren kan være et metal eller metaloxid·.The catalyst may be a metal or metal oxide ·.

De foretrukne iblandede katalysatorpulvere er de pulveriserede meta! 10 ler Ru, Rh, Pd, Ir, Pt, Fe, Co, Ni, Cu og Ag, især platingruppemeta! lerne, pulveriserede oxyforbindelser af Mn, Fe, Co, Ni, Ru, Rh, Pd, Ir, Pt, Ag, As, Sb og Bi, og især oxyforbindelser af platingruppeme· taller.The preferred mixed catalyst powders are the powdered meta! 10 clays Ru, Rh, Pd, Ir, Pt, Fe, Co, Ni, Cu and Ag, especially plate group meta! the clay, powdered oxy compounds of Mn, Fe, Co, Ni, Ru, Rh, Pd, Ir, Pt, Ag, As, Sb and Bi, and especially oxy compounds of platinum groups.

15 Særligt foretrukne er βΜη02, Co^O^, Rh^O^, Ir02, Ru02, Ag20, Ag202, Ag20^, As20^, Sb^^, Bi20^, CoMh20^, NiMn^O^, CoRh20^ og Νίΰο20^ og blandinger af de nævnte pulveriserede metaller og oxyforbindelser.Particularly preferred are βΜη02, Co₂O₂, Rh₂O₂, IrO₂, RuO₂, Ag₂O, Ag₂O₂, Ag₂O ^, As₂O₂, Sb and mixtures of said powdered metals and oxy compounds.

Det har vist sig at være særligt fordelagtigt til yttriumoxidet at 20 sætte et materiale, såsom stannooxid, zirconoxid eller lignende, og at ved tilsætning også af en lille mængde af mindst et metal hørendt til gruppen omfattende yttrium, chrom, molybdæn, zircon, tantal, wol fram, kobolt, nikkel, palladium og sølv, forbedres både de mekaniskt egenskaber og den elektriske ledningsevne af de sintrede yttriumoxit 25 elektroder, uden at deres kemiske og elektrokemiske korrosionsresis* nedsættes væsentligt.It has been found particularly advantageous for the yttrium oxide to add a material such as stannous oxide, zirconium oxide or the like, and that upon addition also of a small amount of at least one metal belonging to the group comprising yttrium, chromium, molybdenum, zircon, tantalum, wool fram, cobalt, nickel, palladium and silver, both the mechanical properties and electrical conductivity of the sintered yttrium oxide 25 electrodes are improved without significantly reducing their chemical and electrochemical corrosion resistance.

Disse additiver tilsættes i pulverform og blandes med det pulverise] de yttriumoxid i procentmængder, som ligger fra 40 til 1%, beregi 30 som vægt% af metalindholdet. Eventuelt kan også andre organiske og/ eller uorganiske forbindelser sættes til pulverblandingen for at foi bedre bindingen af partiklerne, både under formningen og sintringen.These additives are added in powder form and mixed with the powdered yttrium oxide in percentages ranging from 40 to 1%, calculate 30 by weight% of the metal content. Optionally, other organic and / or inorganic compounds may also be added to the powder mixture to improve the bonding of the particles, both during forming and sintering.

Anoder indeholdende en større mængde Y20-^ k-ar ©t højt smeltepunkt, 35 der ligger noget over temperaturen af de smeltede saltelektrolytter, der anvendes, og de undergår ingen faseændring under driftsbetingeli ne ved elektrolysen. Endvidere er varmeforlængelseskoefficienten ikl meget forskellig fra varmeforlængelseskoefficienten af de halogenid-salte, der anvendes i de smeltede metalbade, hvilket hjælper til at 40 bevare det rigtige elektrodemellemrum mellem anoden og katoden ogAnodes containing a greater amount of Y₂O₂-k © high melting point, which are slightly above the temperature of the molten salt electrolytes used, and undergo no phase change under the operating conditions of the electrolysis. Furthermore, the heat elongation coefficient is not very different from the heat elongation coefficient of the halide salts used in the molten metal baths, which helps maintain the proper electrode gap between the anode and cathode and

7 DK 155529 B7 DK 155529 B

oven på den smeltede saltelektrolyt ved den normale proces til elek-troudvinding af aluminium.on top of the molten salt electrolyte in the normal aluminum electro extraction process.

Ledningsevnen af de sintrede yttriumoxidelektroder ifølge opfindelsen kan sammenlignes med ledningsevnen af grafit. Grundmassen har accep-5 tabel bearbejdelighed ved formning og sintring og danner ved brugen et tyndt lag oxyhalogenider på sin overflade under anodiske betingelser. Den frie dannelsesenergi for yttriumoxid er mere negativ end den frie dannelsesenergi for oxidet af den bilsvarende smeltede saltelektrolyt i halogenidfase, således at disse sintrede yttriumoxid= 10 anoder har en høj grad af kemisk stabilitet.The conductivity of the sintered yttrium oxide electrodes of the invention can be compared to the conductivity of graphite. The matrix has acceptable processability in molding and sintering and, upon use, forms a thin layer of oxyhalides on its surface under anodic conditions. The free formation energy for yttria is more negative than the free formation energy for the oxide of the car-like molten salt electrolyte in halide phase, so that these sintered yttria = 10 anodes have a high degree of chemical stability.

De sintrede yttriumoxidelektroder ifølge opfindelsen kan også anvendes som dipolære elektroder. I denne sidstnævnte udførelsesform kan de sintrede yttriumoxidelektroder bekvemt fremstilles i form af en plade, 15 idet en af de to store overflader af elektroden forsynes med et lag indeholdende den anodiske elektrokatalysator, såsom oxiderne CO-^O^, Ni^O^, Mh02, Rh^O^, Ir02, Ru02, Ag20 osv., og den anden større overflade forsynes med et lag indeholdende egnede katodiske materialer, såsom karbider, borider, nitrider, sulfider, carbonitrider osv. af 20 metaller, især af basismetallerne og mest hensigtsmæssigt af yttrium, titan og zirconium.The sintered yttrium oxide electrodes of the invention can also be used as dipolar electrodes. In this latter embodiment, the sintered yttrium oxide electrodes can be conveniently prepared in the form of a plate, one of the two large surfaces of the electrode being provided with a layer containing the anodic electrocatalyst, such as the oxides CO₂, O₂, Ni₂O₂, MhO₂, Rh₂O₂, IrO₂, RuO₂, Ag₂ osv, etc., and the other larger surface are provided with a layer containing suitable cathodic materials such as carbides, borides, nitrides, sulfides, carbonitrides, etc. of 20 metals, especially of the base metals and most conveniently of yttrium, titanium and zirconium.

Det selvbærende sintrede legeme bestående af en større mængde yttrium= oxid kan fremstilles ved formaling af materialerne sammen eller hver 25 for sig, fortrinsvis til en kornstørrelse mellem 50 og 500 ^um til dannelse af en pulverblanding, som indeholder et komstørrelseinter-val for at få en bedre komprimeringsgrad. Ifølge en af de foretrukne fremgangsmåder, bliver blandingen af pulvere blandet med vand eller med et organisk bindemiddel til dannelse af en plastisk masse, 30 som har egnede strømningsegenskaber til den særlige formningsmetode, som benyttes. Materialerne kan formes på kendt måde, enten ved stampning eller presning af blandingen i en form eller ved slikkerstøbning i en gipsform, eller materialet kan udpresses gennem et mundstykke til forskellige former.The self-supporting sintered body consisting of a greater amount of yttrium oxide can be prepared by grinding the materials together or separately, preferably to a grain size between 50 and 500 µm to form a powder mixture containing a grain size range to obtain a better degree of compression. According to one of the preferred methods, the mixture of powders is mixed with water or with an organic binder to form a plastic mass which has suitable flow properties for the particular molding method used. The materials may be formed in known manner, either by stamping or pressing the mixture in a mold or by licking molds in a plaster mold, or the material may be extruded through a nozzle to various shapes.

3535

De smeltede elektroder underkastes så en tørring og opvarmes til en temperatur, ved hvilken den ønskede binding kan finde sted, i reglen mellem 800 og 1800°C i en periode mellem 1 og 30 timer, normalt efterfulgt af langsom afkøling til stuetemperatur. Varmebehandlingen ud-The molten electrodes are then subjected to drying and heated to a temperature at which the desired bonding can take place, usually between 800 and 1800 ° C for a period of between 1 and 30 hours, usually followed by slow cooling to room temperature. The heat treatment

8 DK 1S5529B8 DK 1S5529B

reducerende, f.eks. i ^ (80%), når den pulveriserede blanding er sammensat i det væsentlige af yttriumoxid med en mindre mængde andre metaller eller oxider.reducing, e.g. (80%) when the powdered mixture is composed essentially of yttrium oxide with a minor amount of other metals or oxides.

Når den pulveriserede blanding også indeholder metalliske pulvere, foretrækkes det at udføre varmebehandlingen i en oxiderende atmosfære, i det mindste i en del af varmebehandlingskredsløbet for at fremme oxidation af metalliske partikler i de ydre lag af elektroderne. De metalliske partikler, som forbliver inde i legemet af det sintrede materiale, forbedrer-de elektriske ledningsegenskaber af elektroden.When the powdered mixture also contains metallic powders, it is preferred to carry out the heat treatment in an oxidizing atmosphere, at least in a portion of the heat treatment circuit to promote oxidation of metallic particles in the outer layers of the electrodes. The metallic particles that remain inside the body of the sintered material improve the electrical conductivity of the electrode.

Formningsprocessen kan efterfølges af sintringsprocessen ved en høj temperatur som nævnt ovenfor, eller formningsprocessen eller sintringsprocessen kan være samtidige, dvs., at tryk og temperatur kan påføres samtidigt på den pulveriserede blanding, f.eks. ved hjælp af elektrisk opvarmede forme. Indføringsledninger kan smeltes i de keramiske elektroder under formningen og sintringen eller forbindes med elektroderne efter sintring eller formning. Andre metoder til formning, sammentrykning og sintring af pulverblandingen af yttriumoxid kan naturligvis anvendes.The molding process may be followed by the sintering process at a high temperature as mentioned above, or the molding process or sintering process may be simultaneous, i.e., pressure and temperature may be applied simultaneously to the powdered mixture, e.g. using electrically heated molds. Insertion leads can be melted in the ceramic electrodes during molding and sintering or connected to the electrodes after sintering or molding. Other methods of forming, compressing and sintering the powder mixture of yttria can of course be used.

Elektrokatalysatoren, der i reglen på grund af omkostninger påføres på elektrodeoverfladen, skal have en høj stabilitet, en lav anodisk overspænding for den ønskede anodiske reaktion og en høj anodisk overspænding for ikke ønskede reaktioner. Hvor det drejer sig om chlorudvikling.kan anvendes oxider af kobolt, nikkel, iridium, rho= dim, ruthenium eller blandede oxider deraf, såsom RuC^ - TiC^ osv., og hvor det drejer sig om fluoridholdige elektrolytter, hvori oxygen= udvikling er den ønskede anodiske reaktion foretrækkes oxider af sølv og mangan. Andre oxider til brug som elektrokatalysatorer kan være oxider af platin, palladium og bly.The electrocatalyst, which is usually applied to the electrode surface due to cost, must have a high stability, a low anodic voltage for the desired anodic reaction and a high anodic voltage for undesired reactions. In the case of chlorine development, oxides of cobalt, nickel, iridium, rho = dim, ruthenium or mixed oxides thereof, such as RuC2 - TiC2, etc., may be used, and in the case of fluoride-containing electrolytes in which oxygen = evolution is the desired anodic reaction is preferred to oxides of silver and manganese. Other oxides for use as electrocatalysts may be oxides of platinum, palladium and lead.

Gifte til undertrykning af uønsket anodisk reaktion kan anvendes, f.eks. til at undertrykke oxygenudvikling af chloridelektrolytter. Gifte, der frembyder en høj oxygenoverspænding, skal anvendes, og egnede materialer er oxiderne af arsen, antimon og bismuth. Disse oxider anvendes i små procentmængder og kan påføres sammen med elek-trokatalysatoroxiderne i procentmængder på 1 til 10% af elektrokatalysatoren, beregnet på de respektive metalvægte.Poisons for suppressing undesirable anodic reaction may be used, e.g. to suppress oxygen evolution of chloride electrolytes. Poisons presenting a high oxygen surge must be used and suitable materials are the oxides of arsenic, antimony and bismuth. These oxides are used in small percentages and can be applied together with the electrocatalyst oxides in percentages of 1 to 10% of the electrocatalyst, calculated on the respective metal weights.

DK 155529 BDK 155529 B

9 kan udføres på enhver kendt belægningsmetode. Fortrinsvis påføres elektrokatalysatoren og eventuelt forgiftningsmidlet på de sintrede yttriumoxidelektroder som en opløsning af dekomponerbare salte af metallerne. Det sintrede yttriumoxidlegeme imprægneres med opløsning en indeholdende de ønskede metalsalte og tørres. Derefter opvarmes elektroden i luft eller i en oxygenholdig atmosfære for at omdanne 5 saltene til de ønskede oxider.9 can be carried out by any known coating method. Preferably, the electrocatalyst and optionally the poisoning agent is applied to the sintered yttrium electrodes as a solution of decomposable salts of the metals. The sintered yttria body is impregnated with solution containing the desired metal salts and dried. Then the electrode is heated in air or in an oxygen-containing atmosphere to convert the salts to the desired oxides.

I reglen skal porøsiteten af det sintrede yttriumoxidlegeme og den metode, der anvendes til at imprægnere overfladelagene af det sintre legeme med metalsaltene, sørge for gennemtrængning af opløsningen ne 10 til en dybde på mindst 1 til 5 mm» fortrinsvis 3 mm, indad fra elektrodens overflade, således at elektrokatalysatorene efter varmebehandlingen er til stede i porerne af det sintrede yttriumoxidlegeme ned til en vis dybde indad fra elektrodernes overflade.As a rule, the porosity of the sintered yttria body and the method used to impregnate the surface layers of the sintered body with the metal salts must penetrate the solution ne 10 to a depth of at least 1 to 5 mm, preferably 3 mm, inward from the surface of the electrode. so that, after the heat treatment, the electrocatalysts are present in the pores of the sintered yttria down to a certain depth inward from the surface of the electrodes.

i5 Alternativt kan ved passende pulverblandingsteknik, forud dannede elektrokatalysatoroxider og eventuelt forud dannede forgiftningsoxid formales til pulverform og sættes til pulverblandingen under formningen af elektroderne på en sådan måde, at de ydre lag af de formed elektroder beriges med pulvere af elektrokatalysatoroxiderne og even 2Q tuelt forgiftningsoxiderne under dannelsesprocessen, hvorved overfladen af elektroderne efter sintringen allerede er forsynet med elektrokatalysatoren.Alternatively, by suitable powder blending technique, pre-formed electrocatalyst oxides and any pre-formed poisoning oxide may be ground into powder form and added to the powder mixture during molding of the electrodes in such a way that the outer layers of the formed electrodes are enriched with powders of the electrocatalyst oxides and even 2x the formation process whereby the surface of the electrodes after sintering is already provided with the electrocatalyst.

En foretrukken metode til påføring af et lag er ved plasmastråletek- 25 nikken, hvorved pulvere af de udvalgte materialer sprøjtes og klæber til overfladen af det sintrede yttriumoxidlegeme med en flamme under en reguleret atmosfære. Alternativt kan det valgte pulvermateriale tilsættes under formningsprocessen til yttriumoxidpulverblandingen og derefter sintres sammen, hvorved den katodiske overflade af den 30 bipolære elektrode forsynes med et lag af det udvalgte katodiske materiale.A preferred method of applying a layer is by the plasma jet technique whereby powders of the selected materials are sprayed and adhered to the surface of the sintered yttria body with a flame under a controlled atmosphere. Alternatively, the selected powder material may be added during the molding process to the yttria powder mixture and then sintered together, providing the cathodic surface of the bipolar electrode with a layer of the selected cathodic material.

35 1035 10

DK 155529 BDK 155529 B

Det sintrede yttriumoxid aktiveret med egnet elektrokatalysator kan anvendes som en ikke opbrugelig elektrode ved elektrolyse af smeltede salte og til andre processer, ved hvilke en elektrisk strøm ledes gennem en elektrolyt med det formål at dekomponere elektrolytten til udførelse af oxidation og reduktioner af organiske og uorganiske forbindelser eller til at påtvinge en katodespænding på en metalkonstruk-5 tion, som skal beskyttes mod korrosion, samt til primære og sekundære batterier indeholdende smeltede salte, såsom aluminiumhalogenider-alkalimetalhalogenider. Elektroderne ifølge opfindelsen kan polariseres som anoder eller katoder og kan anvendes som bipolære elektroder, idet den ene flade eller ende af elektroden virker som anode, 10 og den modstående flade eller ende af elektroden virker som katode over for den elektrolyt, som berører hver side af elektroden, således som det er kendt inden for elektrolyse.The sintered yttria activated by suitable electrocatalyst can be used as an unusable electrode in the electrolysis of molten salts and in other processes by which an electric current is passed through an electrolyte for the purpose of decomposing the electrolyte to carry out oxidation and reductions of organic and inorganic compounds. or to apply a cathode voltage to a metal structure to be protected against corrosion, as well as to primary and secondary batteries containing molten salts, such as aluminum halides-alkali metal halides. The electrodes of the invention can be polarized as anodes or cathodes and can be used as bipolar electrodes, one face or end of the electrode acting as anode, and the opposite surface or end of the electrode acting as a cathode to the electrolyte touching each side of the electrode. the electrode, as is known in the art of electrolysis.

I de følgende eksempler er beskrevet flere foretrukne udførelsesfor-15 mer for at illustrere opfindelsen. Procenterne af elektrodekomponenterne er beregnet i vægtprocenter som frit metal på basis af det samlede metalindhold i sammensætningen.In the following examples, several preferred embodiments are described to illustrate the invention. The percentages of the electrode components are calculated in weight percentages as free metal on the basis of the total metal content of the composition.

Eksempel 1.Example 1.

2020

En blok af sintret Y203:Pd metal i forholdet 9:1 efter vægt beregnet som frie metaller blev aktiveret ved imprægnering af den sintrede prøve med en vandig opløsning af Co Cl3 efterfulgt af tørring og opvarmning i luft til 300 til 650°C for at omdanne chloridet 25 til Coq0.. Kredsløbet blev gentaget til dannelse af en endelig be-lægning af elektroderne på 15 g/m COgO^ anodeoverflade. Den aktiverede anode blev anvendt til elektrolyse af smeltet AlClg +A block of sintered Y2 O3: Pd metal in a ratio of 9: 1 by weight calculated as free metals was activated by impregnating the sintered sample with an aqueous solution of Co Cl3 followed by drying and heating in air to 300 to 650 ° C to convert The circuit was repeated to form a final coating of the electrodes of 15 g / m COgO 2 anode surface. The activated anode was used for electrolysis of molten AlClg +

NaCl elektrolyt, og anodepotentialet og graden af slid er anført nedenfor.NaCl electrolyte and the anode potential and degree of wear are listed below.

30 -------2-2- - 2-

Anodepotentiale Slid g/mAnode potential Wear g / m

Prøve Y (S.C.G.E.)__efter ____ Straks Efter 100 timer _100 timer_ -y203-Pd . 0,0 0,0- 0,5 • * 35Sample Y (S.C.G.E.) __ after ____ Immediately After 100 hours _100 hours_ -y203-Pd. 0.0 0.0 - 0.5 • * 35

11 DK 155529 B11 DK 155529 B

Eksempel 2.Example 2.

En blok af sintret YgO-^, °S PcL metal i vægtforholdet 7:2,5:0,5 beregnet som frie metaller blev imprægneret på den ene af sine store 5 overflader med 15 g/m overflade af Co^O^ ved fremgangsmåden i eksen pel 8. Den modstående store overflade blev belagt med et 1 mm tykt lag zircondiborid påført ved flammesprøjtning under nitrogenatmosfære. Blokken blev anbragt mellem to modelektroder af grafit i elektrisk ledende forhold til disse og med en afstand derfra. Elektrode-10 mellemrummene blev fyldt med smeltet AlCl^ + NaCl, og grafitmodelek-troden, som vendte mod den med zircondiboridbelagte overflade af der zintrede bipolære elektrode, blev forbundet med den positive pol af en jævnstrømskilde, og grafitmodelektroden, som vendte mod den med Co^O^ aktiverede overflade af den sintrede bipolære elektrode, blev 15 forbundet med den negative pol af jævnstrømskilden. Den sintrede ele trode virkede som bipolær elektrode, og smeltet aluminiummetal strøu mede ned ad den med zircondiboridbelagte overflade og blev udvundet ved bunden af denne, medens der blev udviklet chlor på den med Co-^0^ aktiverede overflade af elektroden. Elektrolyseprocessen blev udføri 20 tilfredsstillende i en periode på 28 timer, på hvilket tidspunkt foi søgscellen, der var fremstillet hovedsagelig med grafit, svigtede. Efter denne driftstid udviste den bipolære elektrode ingen tegn på forringelse, og der blev ikke sporet noget slid.A block of sintered YgO-, ° S PcL metal in weight ratio 7: 2.5: 0.5 calculated as free metals was impregnated on one of its large 5 surfaces with 15 g / m surface of Co in Example 8. The opposing large surface was coated with a 1 mm thick layer of zirconium diboride applied by flame spraying under nitrogen atmosphere. The block was placed between two graphite counter electrodes in electrically conductive relationship with them and at a distance therefrom. The electrode gaps were filled with molten AlCl 2 ^ O ^ activated surface of the sintered bipolar electrode, was connected to the negative pole of the DC source. The sintered electrode acted as a bipolar electrode, and molten aluminum metal sprayed down the zirconium diboride-coated surface and was recovered at the bottom thereof while chlorine was developed on the co-activated surface of the electrode. The electrolysis process was carried out satisfactorily for a period of 28 hours, at which time the search cell, made mainly with graphite, failed. After this operating time, the bipolar electrode showed no signs of deterioration and no wear was detected.

25 Andre elektrokatalysatorer, der kan anvendes til elektrolyse af smel tede halogenidsalte til uddrivning af halogenidion, er RuC^, og oxid såsom °S Bi-2^3 kan tilsættes i procentmængder op til 10 vægt% af det frie metal, beregnet på det samlede metalindhold for at forøge oxygenoverpotentialet.uden at påvirke potentialet til ud-30 drivning af halogenidion.Other electrocatalysts which can be used for electrolysis of molten halide salts to expel halide ion are RuC 2, and oxide such as ° S Bi-2 3 can be added in percentages up to 10% by weight of the free metal, calculated on the total metal content to increase the oxygen overpotential. In addition to affecting the potential for the release of halide ion.

Til anoder, der skal anvendes i smeltede fluoridelektrolytter, hvor der udvikles oxygen, kan katalysatoren være Ag2 , 0x, (x>l) , Ir02,For anodes to be used in molten fluoride electrolytes where oxygen is generated, the catalyst may be Ag 2, 0x, (x> 1), IrO 2,

Mn02 eller RHgOg.'PbOg og Ir02> Ti02.MnO2 or RHgOg.'PbOg and IrO2> TiO2.

3535

Komponenterne af anoder, der er anført i eksemplerne,er beregnet i vægt%, frit metal beregnet på det samlede metalindhold af anodens sammensætning.The components of anodes listed in the Examples are calculated in wt% free metal calculated on the total metal content of the anode composition.

λ o TPT dlr+n/iT τ;Η-+αη Iran -i n ri olo ηΊ Λ δ s aaT+.o enrl ri o rldri or1 nmmniH· iλ o TPT dlr + n / iT τ; Η- + αη Iran -i n ri olo ηΊ Λ δ s aaT + .o enrl ri o rldri or1 nmmniH · i

DK 155529 BDK 155529 B

12 eksemplerne, såsom alkalimetalchlorider eller fluorid samt saltet af det metal, som undergår elektrolyse. Metalhalogeniderne er effektive til at reducere smeltepunktet af saltet, som undergår elektrolyse og muliggør således anvendelse af lavere temperaturer samtidig 5 med, at de holder saltbadet i smeltet tilstand.12 examples, such as alkali metal chlorides or fluoride and the salt of the metal undergoing electrolysis. The metal halides are effective in reducing the melting point of the salt, which undergoes electrolysis and thus enable the use of lower temperatures while maintaining the salt bath in the molten state.

De ovenstående eksempler indbefatter elektrolyse af smeltet metalsalt, først og fremmest elektrolyse af smeltet aluminiumchlorid eller fluo= ridsalte. På lignende måde kan de smeltede chlorider af andre metal-ler, såsom alkalimetaller eller jordalkalimetaller elektrolyseres under anvendelse af de omhandlede anoder i overensstemmelse med standard-praksis. Andre smeltede salte, såsom smeltede nitrater kan desuden elektrolyseres på samme måde. En smeltet elektrolyt af aluminiumoxid og kryolit eller lignende alkalimetalaluminiumfluorid kan elektroly-seres til fremstilling af smeltet aluminium.The above examples include electrolysis of molten metal salt, primarily electrolysis of molten aluminum chloride or fluoride salt. Similarly, the molten chlorides of other metals, such as alkali metals or alkaline earth metals, can be electrolysed using the aforementioned anodes in accordance with standard practice. Furthermore, other molten salts, such as molten nitrates, can be electrolysed in the same way. A molten electrolyte of alumina and cryolite or similar alkali metal aluminum fluoride can be electrolysed to produce molten aluminum.

Disse elektroder kan anvendes i stedet for grafitanoder i standardceller til elektroudvinding af aluminium med enten aluminiummalm tilført til et kryolitbad eller med aluminiumchlorid tilført til et bad !0 af overvejende aluminiumchlorid.These electrodes can be used instead of graphite anodes in standard aluminum electrowinning cells with either aluminum ore added to a cryolite bath or with aluminum chloride applied to a bath of predominantly aluminum chloride.

Brugen af disse sintrede yttriumoxidanoder til udvinding af de ønskede metaller af smeltede salte af metallerne, der skal udvindes, resulterer i nedsat kraftforbrug pr. vægtenhed fremstillet metal og i re-!5 nere udvundne metaller. Elektroderne er dimensionsstabile under driften og kræver derfor ikke hyppige indgreb for at genoprette den optimale afstand fra katodeoverfladen, således som det er nødvendigt med opbrugelige anoder i den kendte teknik. 1 10 35 ...The use of these sintered yttria anodes to recover the desired metals of molten salts of the metals to be extracted results in reduced power consumption per weight unit made of metal and in recovered metals. The electrodes are dimensionally stable during operation and therefore do not require frequent interventions to restore the optimum distance from the cathode surface, as is necessary with usable anodes in the prior art. 1 10 35 ...

De sintrede yttriumoxidanoder ifølge opfindelsen kan også anvendes i vandige eller ikke vandige opløsninger af elektrolytter til udvinding af en eller flere bestanddele af elektrolytterne.The sintered yttria anodes of the invention may also be used in aqueous or non-aqueous solutions of electrolytes to recover one or more constituents of the electrolytes.

Claims (8)

1. Elektrode til smeltet saltelektrolyse, kendeteg-5 net ved, at den omfatter et selvbærende legeme af sintrede pulvere af 99-60 vægt% yttriumoxid og 1-40 vægt% af mindst et elektroledende middel valgt blandt chrom, molybdæn, tantal, wolfram, kobolt,'nikkel, palladium o,gsølv, hvilken elektrode er forsynet over i det mindste en del af sin overflade med et.;lag af mindst en elektro--|_q katalysator i form af et metal eller metaloxid.A molten salt electrolysis electrode, characterized in that it comprises a self-supporting body of sintered powders of 99-60 wt% yttrium oxide and 1-40 wt% of at least one electroconductive agent selected from chromium, molybdenum, tantalum, tungsten, cobalt, nickel, palladium and silver, which electrode is provided with at least a portion of its surface with a layer of at least one metal or metal oxide catalyst. 2. Elektrode ifølge krav 1, kendetegnet ved, at elektrokatalysatoren er valgt blandt oxider af kobolt, nikkel, mangan, rhodium, iridium, ruthenium og 15 sølv·Electrode according to claim 1, characterized in that the electrocatalyst is selected from oxides of cobalt, nickel, manganese, rhodium, iridium, ruthenium and silver · 3. Elektrode ifølge krav 1 eller 2, kendetegnet ved, at elektrokatalysatoren er dannet in situ på det sintrede elektrodelegeme af en opløsning af salte af metaller, som 2ø omdannes til oxider på det sintrede elektrodelegeme.Electrode according to claim 1 or 2, characterized in that the electrocatalyst is formed in situ on the sintered electrode body of a solution of salts of metals which 2o are converted to oxides on the sintered electrode body. 4. Elektrode ifølge krav 1 eller 2, kendetegnet ved, at elektrokatalysatoren omfatter pulveriserede oxider af metallerne sintret ind i de ydre lag af elektroden. 25Electrode according to claim 1 or 2, characterized in that the electrocatalyst comprises powdered oxides of the metals sintered into the outer layers of the electrode. 25 5. Bipolær elektrode ifølge krav 1-4, kendetegnet ved, at elektroden er forsynet over i det mindste en del af sin anodiske overflade med mindst en anodisk elektrokatalysa-tor valgt blandt oxider af kobolt, nikkel, mangan, rhodium, 3ø iridum, ruthenium, sølv og blandinger deraf og over i det mindste en del af sin katodiske overflade med et lag katodisk materiale valgt blandt metalkarbider, borider, nitrider, sulfider og carbonitrider og blandinger deraf. 35 DK 155529 BBipolar electrode according to claims 1-4, characterized in that the electrode is provided with at least part of its anodic surface with at least one anodic electrocatalyst selected from oxides of cobalt, nickel, manganese, rhodium, 3 iridum, ruthenium , silver and mixtures thereof and at least part of its cathodic surface with a layer of cathodic material selected from metal carbides, borides, nitrides, sulfides and carbonitrides and mixtures thereof. DK 155529 B 6~ Bipolær elektrode ifølge krav 5, kendetegnet ved, at laget af det katodiske materiale er påført ved flammesprøjtning.Bipolar electrode according to claim 5, characterized in that the layer of the cathodic material is applied by flame spraying. 7. Bipolær elektrode ifølge krav 5, kendetegnet ved, at laget af det katodiske materiale omfatter pulvere af det katodiske materiale sintret ind i de ydre katodiske overflader af elektrodelegemet.Bipolar electrode according to claim 5, characterized in that the layer of the cathodic material comprises powders of the cathodic material sintered into the outer cathodic surfaces of the electrode body. 8. Bipolær elektrode ifølge krav 5, kendetegnet ved, at det katodiske materiale er valgt af gruppen omfattende karbider, borider, nitrider, sulfider og carbonitrider af mindst et metal valgt af gruppen omfattende yttrium, titan og zirkon. 15 20 25 1 35Bipolar electrode according to claim 5, characterized in that the cathodic material is selected from the group comprising carbides, borides, nitrides, sulfides and carbonitrides of at least one metal selected from the group comprising yttrium, titanium and zircon. 15 20 25 1 35
DK128877A 1976-03-31 1977-03-23 ELECTRODE FOR MELTED SALT ELECTROLYSIS DK155529C (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US67227976A 1976-03-31 1976-03-31
US67227976 1976-03-31
US67346076A 1976-04-05 1976-04-05
US67346076 1976-04-05
US68127976A 1976-04-28 1976-04-28
US68127976 1976-04-28
US68694376A 1976-05-17 1976-05-17
US68694376 1976-05-17

Publications (3)

Publication Number Publication Date
DK128877A DK128877A (en) 1977-10-01
DK155529B true DK155529B (en) 1989-04-17
DK155529C DK155529C (en) 1989-10-09

Family

ID=27505346

Family Applications (2)

Application Number Title Priority Date Filing Date
DK129077A DK155531C (en) 1976-03-31 1977-03-23 ELECTRODE FOR USE BY ELECTROLYSE, ISRAEL FOR ELECTROLYSE OF MELTED METAL
DK128877A DK155529C (en) 1976-03-31 1977-03-23 ELECTRODE FOR MELTED SALT ELECTROLYSIS

Family Applications Before (1)

Application Number Title Priority Date Filing Date
DK129077A DK155531C (en) 1976-03-31 1977-03-23 ELECTRODE FOR USE BY ELECTROLYSE, ISRAEL FOR ELECTROLYSE OF MELTED METAL

Country Status (10)

Country Link
JP (2) JPS6025511B2 (en)
DD (1) DD137365A5 (en)
DE (2) DE2714487C3 (en)
DK (2) DK155531C (en)
FI (2) FI64815C (en)
FR (2) FR2366380A1 (en)
IN (1) IN144973B (en)
MX (2) MX144777A (en)
NO (2) NO146543C (en)
SE (4) SE430346B (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD137365A5 (en) * 1976-03-31 1979-08-29 Diamond Shamrock Techn ELECTRODE
US4075070A (en) * 1976-06-09 1978-02-21 Ppg Industries, Inc. Electrode material
US4214970A (en) * 1979-01-15 1980-07-29 Diamond Shamrock Technologies, S.A. Novel electrocatalytic electrodes
US4329219A (en) * 1979-10-29 1982-05-11 Druzhinin Ernest A Electrode for electrochemical processes
DE2944814A1 (en) * 1979-11-06 1981-05-14 Vladimir Borisovi&ccaron; Busse-Ma&ccaron;ukas Electrode for electrochemical process - with metal support pasted with mixt. of same metal oxide, silica and platinum gp. metal oxide
ZA807586B (en) * 1979-12-06 1981-11-25 Diamond Shamrock Corp Ceramic oxide electrodes for molten salt electrolysis
CA1181616A (en) * 1980-11-10 1985-01-29 Aluminum Company Of America Inert electrode compositions
CA1208601A (en) * 1982-02-18 1986-07-29 Diamond Chemicals Company Electrode with lead base and method of making same
GB8301001D0 (en) * 1983-01-14 1983-02-16 Eltech Syst Ltd Molten salt electrowinning method
FR2541691B1 (en) * 1983-02-25 1989-09-15 Europ Composants Electron ELECTRODE FOR ELECTROLYTIC BATH
EP0174413A1 (en) * 1984-09-17 1986-03-19 Eltech Systems Corporation Composite catalytic material particularly for electrolysis electrodes and method of manufacture
JPH046964Y2 (en) * 1985-04-25 1992-02-25
DE3613997A1 (en) * 1986-04-25 1987-10-29 Sigri Gmbh ANODE FOR ELECTROLYTIC PROCESSES
JPS63199842A (en) * 1987-02-14 1988-08-18 Toho Kinzoku Kk Electrode material
JPH0194117U (en) * 1987-12-15 1989-06-21
CA2061391C (en) * 1991-02-26 2002-10-29 Oronzio De Nora Ceramic anode for oxygen evolution, method of production and use of the same
JP2006077319A (en) * 2004-09-13 2006-03-23 Koji Hashimoto Oxygen generation type electrode and its production method
GB0714021D0 (en) * 2007-07-18 2007-08-29 Green Metals Ltd Improvements in anode materials
WO2011135783A1 (en) 2010-04-26 2011-11-03 パナソニック株式会社 Method of reducing carbon dioxide
JP2017057426A (en) * 2015-09-14 2017-03-23 Tdk株式会社 Method for producing electrode for electrolysis
DE102020005130B3 (en) * 2020-08-21 2022-02-10 Technische Universität Bergakademie Freiberg, Körperschaft des öffentlichen Rechts Process for the production of low-carbon and carbon-free electrode-honeycomb material composites for use in metallurgy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB996970A (en) * 1960-07-05 1965-06-30 Monsanto Co Emissive elements
FR2246657A1 (en) * 1973-10-05 1975-05-02 Sumitomo Chemical Co

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR670245A (en) * 1928-03-01 1929-11-26 Ig Farbenindustrie Ag Process for the production of compact masses using powdered metal oxides
FR1284748A (en) * 1961-02-21 1962-02-16 Poudres Metalliques Alliages Speciaux Ugine Carbone High temperature corrosion resistant materials
BE759874A (en) * 1969-12-05 1971-05-17 Alusuisse ANODE FOR ELECTROLYSIS IGNEATED WITH METAL OXIDES
JPS5135396B2 (en) * 1972-10-02 1976-10-01
JPS5135190B2 (en) * 1972-04-29 1976-09-30
JPS5135395B2 (en) * 1972-09-25 1976-10-01
JPS5135394B2 (en) * 1972-09-01 1976-10-01
IT978528B (en) * 1973-01-26 1974-09-20 Oronzio De Nora Impianti METALLIC ELECTRODES AND PROCEDURE FOR THEIR ACTIVATION
JPS49123481A (en) * 1973-03-31 1974-11-26
JPS5215274B2 (en) * 1973-04-04 1977-04-27
JPS5215273B2 (en) * 1973-04-04 1977-04-27
CH575014A5 (en) * 1973-05-25 1976-04-30 Alusuisse
JPS5230151B2 (en) * 1973-06-30 1977-08-05
CH587929A5 (en) * 1973-08-13 1977-05-13 Alusuisse
NO141419C (en) * 1974-02-02 1980-03-05 Sigri Elektrographit Gmbh ELECTRODE FOR ELECTROCHEMICAL PROCESSES
FR2312573A1 (en) * 1975-05-30 1976-12-24 Rhone Poulenc Ind NEW ELECTRODE FOR ELECTROLYSIS CELL
JPS5234082A (en) * 1975-09-12 1977-03-15 Koei Chemical Co Dyeing method of keratinic structured substance
DD137365A5 (en) * 1976-03-31 1979-08-29 Diamond Shamrock Techn ELECTRODE

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB996970A (en) * 1960-07-05 1965-06-30 Monsanto Co Emissive elements
FR2246657A1 (en) * 1973-10-05 1975-05-02 Sumitomo Chemical Co

Also Published As

Publication number Publication date
FI64815B (en) 1983-09-30
FR2366380B1 (en) 1981-11-20
DE2714487B2 (en) 1980-07-17
DE2714487C3 (en) 1981-05-27
NO146543C (en) 1982-10-20
DK155531B (en) 1989-04-17
JPS52134879A (en) 1977-11-11
DD137365A5 (en) 1979-08-29
SE435736B (en) 1984-10-15
DK155531C (en) 1989-10-09
FI64815C (en) 1984-01-10
NO771131L (en) 1977-10-03
DK129077A (en) 1977-10-01
FI61725B (en) 1982-05-31
DE2714488C2 (en) 1988-02-18
NO147490C (en) 1983-04-20
JPS6025512B2 (en) 1985-06-18
DE2714487A1 (en) 1977-10-20
NO146543B (en) 1982-07-12
SE8005075L (en) 1980-07-10
SE437679B (en) 1985-03-11
NO771130L (en) 1977-10-03
IN144973B (en) 1978-08-05
SE430346B (en) 1983-11-07
FR2346468A1 (en) 1977-10-28
SE8005076L (en) 1980-07-10
FI770937A (en) 1977-10-01
DK128877A (en) 1977-10-01
NO147490B (en) 1983-01-10
SE7703731L (en) 1977-10-01
MX144777A (en) 1981-11-23
MX146992A (en) 1982-09-22
FR2366380A1 (en) 1978-04-28
DE2714488A1 (en) 1977-10-13
JPS52141490A (en) 1977-11-25
FI61725C (en) 1982-09-10
DK155529C (en) 1989-10-09
FR2346468B1 (en) 1983-01-21
FI770938A (en) 1977-10-01
SE438165B (en) 1985-04-01
JPS6025511B2 (en) 1985-06-18
SE7703732L (en) 1977-10-01

Similar Documents

Publication Publication Date Title
US4146438A (en) Sintered electrodes with electrocatalytic coating
US4187155A (en) Molten salt electrolysis
DK155529B (en) ELECTRODE FOR MELTED SALT ELECTROLYSIS
RU2330124C2 (en) Electrolysis method for water chloric-alkaline solutions, electrode for electrolysis of chloric-alkaline solution and method of making an electrolytic electrode
JP4927006B2 (en) Cathode for hydrogen generation
Duby The history of progress in dimensionally stable anodes
JP4673628B2 (en) Cathode for hydrogen generation
CN102762776B (en) Activated cathode for hydrogen evolution
US3926751A (en) Method of electrowinning metals
US3801490A (en) Pyrochlore electrodes
US4111765A (en) Silicon carbide-valve metal borides-carbon electrodes
CA1113427A (en) Silicon carbide-valve metal borides-carbon electrodes
Wang et al. Inert anode development for high-temperature molten salts
US4970094A (en) Preparation and use of electrodes
CA1124210A (en) Sintered electrodes with electrocatalytic coating
US3862023A (en) Electrode having silicide surface
CA1080154A (en) Yttrium oxide electrodes and their uses
US3963593A (en) Electrodes having silicide surface
Salts 9 Inert Anode Development for
NO831138L (en) NON-CONSUMABLE ELECTRODE, PROCEDURE FOR THE PREPARATION OF SUCH, AND USE

Legal Events

Date Code Title Description
PBP Patent lapsed
PBP Patent lapsed