DK152435B - PROCEDURE FOR THE PREPARATION OF POLYSACCHARIDES OR POLYSACCHARIDE DERIVATIVES BY POLYCONDENSATION OF GLUCOSE, MALTOSE OR A MIXTURE THEREOF WITH A FOOD ACCEPTABLE POLYCARBOXYLIC ACID CATALYST - Google Patents

PROCEDURE FOR THE PREPARATION OF POLYSACCHARIDES OR POLYSACCHARIDE DERIVATIVES BY POLYCONDENSATION OF GLUCOSE, MALTOSE OR A MIXTURE THEREOF WITH A FOOD ACCEPTABLE POLYCARBOXYLIC ACID CATALYST Download PDF

Info

Publication number
DK152435B
DK152435B DK143775A DK143775A DK152435B DK 152435 B DK152435 B DK 152435B DK 143775 A DK143775 A DK 143775A DK 143775 A DK143775 A DK 143775A DK 152435 B DK152435 B DK 152435B
Authority
DK
Denmark
Prior art keywords
mixture
acid
polyglucose
polycondensation
glucose
Prior art date
Application number
DK143775A
Other languages
Danish (da)
Other versions
DK143775A (en
DK152435C (en
Inventor
Peter Joseph Senatore
Original Assignee
Pfizer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfizer filed Critical Pfizer
Publication of DK143775A publication Critical patent/DK143775A/da
Publication of DK152435B publication Critical patent/DK152435B/en
Application granted granted Critical
Publication of DK152435C publication Critical patent/DK152435C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/52Polycarboxylic acids or polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/20Reducing nutritive value; Dietetic products with reduced nutritive value
    • A23L33/21Addition of substantially indigestible substances, e.g. dietary fibres
    • A23L33/25Synthetic polymers, e.g. vinylic or acrylic polymers
    • A23L33/26Polyol polyesters, e.g. sucrose polyesters; Synthetic sugar polymers, e.g. polydextrose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds

Description

1 DK 152435 B1 DK 152435 B

Opfindelsen angår en fremgangsmåde til fremstilling af polysaccha-rider eller polysaccharid-derivater, hvorved man polykondenserer glucose, maltose eller en blanding deraf med op til 10 mol% af en i fødevarer acceptabel polycarboxylsyre-katalysator og eventuelt med 5-20 %, beregnet på den samlede vægt af reaktanter, sorbitol, glycerol, erythritol, xylitol, mannitol eller galactitol ved formindsket tryk og ved en temperatur på 150-300 °C under afdampning af det dannede vand. Denne fremgangsmåde er ejendommelig ved, at man først danner en vandig opløsning af udgangsmaterialerne og derpå dehydratiserer den vandige opløsning ved en temperatur under 100 °C og ved formindsket tryk til en i det væsentlige vandfri sirup, hvorefter denne sirup polykondenseres, idet polykondensationen standses, før der sker væsentlig pyrolyse.The invention relates to a process for the preparation of polysaccharides or polysaccharide derivatives, thereby polycondensing glucose, maltose or a mixture thereof with up to 10 mol% of a food acceptable polycarboxylic acid catalyst and optionally 5-20%, based on the total weight of reactants, sorbitol, glycerol, erythritol, xylitol, mannitol or galactitol at reduced pressure and at a temperature of 150-300 ° C while evaporating the water formed. This process is characterized by first forming an aqueous solution of the starting materials and then dehydrating the aqueous solution at a temperature below 100 ° C and at reduced pressure to a substantially anhydrous syrup, after which this syrup is polycondensed, stopping the polycondensation before significant pyrolysis occurs.

En fremgangsmåde til fremstilling af sådanne saccharid-kondensa-tionspolymere ved en i hovedsagen vandfri smeltepolymerisationsproces og anvendelsen af disse materialer til inkorporering i fødevareprodukter som ikke-nærende erstatninger for carbonhydrat-sødestoffer, ikke-nærende erstatninger for mel og stivelse og som fedtbesparende midler i mange opskrifter på diætfødevarer er beskrevet i US patentskrift nr. 3 766 165.A process for preparing such saccharide condensation polymers by a substantially anhydrous melt polymerization process and the use of these materials for incorporation into food products as non-nutritive substitutes for carbohydrate sweeteners, non-nutritious substitutes for flour and starch, and in many fat-saving agents. recipes for diet foods are described in U.S. Patent No. 3,766,165.

Imidlertid medfører fremgangsmåden ifølge den foreliggende opfindelse flere fordele og overraskende træk, som gør den klart bedre end den kendte fremgangsmåde.However, the method of the present invention provides several advantages and surprising features which make it clearly superior to the known method.

Det er velkendt, at præcis blanding og overføring af faste stoffer, som det kræves ved de kendte fremgangsmåder, er vanskeligere og dyrere i kommerciel praksis end blanding og overføring af væsker eller opløsninger, som har den fordel let at kunne overføres af mekaniske pumper og at kunne udmåles præcist ved hjæp af almindelige volumetriske måleindretninger. Almindeligvis undgås imidlertid tilsætning af vand før påbegyndelsen af en kondensationspolymerisation, fordi det ville forventes at undertrykke den samlede hastighed og forsinke reaktorgennemløbet. Det har overraskende vist sig, at tilsætningen af vand forøger den samlede reaktionshastighed og letter reaktorgennemgangen ved fremgangsmåden ifølge opfindelsen.It is well known that precise mixing and transfer of solids as required by the known methods is more difficult and expensive in commercial practice than mixing and transferring liquids or solutions which have the advantage of being easily transferable by mechanical pumps and that could be accurately measured using ordinary volumetric measuring devices. Generally, however, addition of water is avoided prior to the commencement of a condensation polymerization because it would be expected to suppress the overall velocity and delay the reactor flow. Surprisingly, it has been found that the addition of water increases the overall reaction rate and facilitates the reactor passage in the process of the invention.

2 DK 152435 B2 DK 152435 B

I kommerciel praksis fremstilles polysaccharider, såsom poly-glucose- og polymaltoseprodukter mest effektivt ved en kontinuert fremgangsmåde. Imidlertid kræver den kendte smeltepolymerisationsproces kontinuert blanding af de korrekte mængder af faste reaktanter, som derpå skal opvarmes til en temperatur i området fra omkring 110 til omkring 150 °C for at smelte reaktionsblandingen. Den smeltede blanding holdes ved denne temperatur, indtil den indføres i polykondensationsreaktoren.In commercial practice, polysaccharides such as polyslucose and polymaltose products are most efficiently prepared by a continuous process. However, the known melt polymerization process requires continuous mixing of the correct amounts of solid reactants which must then be heated to a temperature in the range of from about 110 to about 150 ° C to melt the reaction mixture. The molten mixture is kept at this temperature until it is introduced into the polycondensation reactor.

Under denne opbevaringsperiode finder en skadelig farvedannelse sted, og der er tendens til dannelse af oxidative nedbrydningsprodukter, hvis reaktanterne holdes i kontakt med atmosfæren, i-sær hvis opbevaringsperioden overskrider ca. 1 time. Hvis den smeltede blanding holdes under vakuum, har den hurtige frigørelse af kondensationsvand i form af damp tendens til at medføre faste partikler, før smeltningen er fuldstænding, hvilke partikler har tendens til at samles i og tilproppe dampledningen.During this storage period, harmful coloration occurs and there is a tendency for the formation of oxidative degradation products if the reactants are kept in contact with the atmosphere, especially if the storage period exceeds approx. 1 hour. If the molten mixture is kept under vacuum, the rapid release of condensation water in the form of steam tends to cause solid particles before the melting is complete, which particles tend to collect and clog the steam line.

Ifølge den foreliggende opfindelse løses disse problemer, som er karakteristiske for smeltning af faste stoffer i industriel målestok, eftersom opbevaringen før indføringen i fordamperen foretages i opløsning ved stuetemperatur eller kun lidt derover, og der ikke indføres nogen faste partikler i fordamperen.According to the present invention, these problems, which are characteristic of industrial scale solids, are solved since the storage prior to introduction into the evaporator is carried out in solution at room temperature or slightly above, and no solid particles are introduced into the evaporator.

Endvidere har det uventet vist sig, at den i hovedsagen vandfrie smeltede tilstand, som kræves for polykondensationen, faktisk kan nås på betydeligt kortere tid, end der kræves til simpelt hen at smelte de tørre ingredienser, ved at starte med den vandige blanding og fjerne vandet i vakuum ved hjælp af en effektiv fordamper. Dette er især tilfældet, hvis smeltningen skal udføres ved en temperatur nær ved den faste blandings smelteområde. Hvis der anvendes temperaturer betydeligt over den faste blandings smelteområde, kan der ske misfarvning af den resulterende smeltede masse på grund af dårlig varmeoverføring.Furthermore, it has unexpectedly been found that the substantially anhydrous molten state required for polycondensation can actually be achieved in a much shorter time than required to simply melt the dry ingredients by starting with the aqueous mixture and removing the water. in vacuum using an efficient evaporator. This is especially the case if the melting is to be carried out at a temperature close to the melting range of the solid mixture. If temperatures are used significantly over the melt range of the solid mixture, the resulting molten mass may be discolored due to poor heat transfer.

Fremgangsmåden ifølge opfindelsen har også den klare økonomiske fordel, at der som udgangsmaterialer kan anvendes kommercielt tilgængelige opløsninger, såsom glucose- og sorbitolsirupper, som er betydeligt billigere end de tilsvarende i hovedsagen vandfrieThe process according to the invention also has the clear economic advantage that commercially available solutions such as glucose and sorbitol syrups which are considerably cheaper than the corresponding substantially anhydrous can be used as starting materials.

3 DK 152435 B3 DK 152435 B

faste blandinger, som kræves ved fremgangsmåden ifølge US patentskrift nr. 3 766 165.solid mixtures required by the method of U.S. Patent No. 3,766,165.

Ved fremgangsmåden ifølge opfindelsen fremstilles overraskende et produkt af højere kvalitet end ved den kendte smeltepolymerisationsproces, hvilket fremgår af den bedre farve og det lavere indhold af biprodukter, såsom 5-hydroxymethylfurfural. Endvidere kan behovet for efterfølgende blegnings- eller affarvningstrin elimineres ved denne særlige fremgangsmåde som følge af den væsentlige reduktion i indholdet af farvematerialer med deraf følgende besparelser i procestid og omkostninger. Det følger også af fjernelsen af behovet for blegning med reagenser, såsom hydrogenpe-roxid, der er kendt for at producere lave indhold af flygtige syrer som biprodukter [h.S. Isbell et al., Carbohydrate Research 26, 287-295 (1973)], at indførelsen af urenheder, såsom myresyre og eddikesyre, elimineres. Som følge af det ovenfor anførte har produktet af fremgangsmåden ifølge opfindelsen forbedret aromakvalitet .Surprisingly, the process according to the invention produces a product of higher quality than the known melt polymerization process, as evidenced by the better color and lower content of by-products such as 5-hydroxymethylfurfural. Furthermore, the need for subsequent bleaching or decolorization steps can be eliminated by this particular method due to the significant reduction in the color material content, with consequent savings in process time and cost. It also follows from the removal of the need for bleaching with reagents, such as hydrogen peroxide, which is known to produce low volatile acid content as by-products [h.S. Isbell et al., Carbohydrate Research 26, 287-295 (1973)] eliminated the introduction of impurities such as formic acid and acetic acid. As a result of the above, the product of the process according to the invention has improved aroma quality.

Fra en artikel af E. Pascu og P.T. Mora: "Polycondensation of D-glucose and other simple sugars in presence of acids" i J. Am.From an article by E. Pascu and P.T. Mora: "Polycondensation of D-glucose and other simple sugars in the presence of acids" in J. Am.

Chem. Soc., 72, 1045 (1950), kendes en fremgangsmåde til fremstilling af polysaccharider, hvorved en ca. 50 % opløsning af et mono- eller disaccharid eller en blanding af sådanne i ca.Chem. Soc., 72, 1045 (1950), a process for preparing polysaccharides is known, wherein a ca. 50% solution of a mono- or disaccharide or a mixture thereof in about 50%.

5 % saltsyre koncentreres ved hurtig inddampning under stærkt formindsket tryk ved 0-45 °C til et tørt og skørt glasagtigt produkt, hvori en del af hydrogenchloridet forbliver indesluttet.5% hydrochloric acid is concentrated by rapid evaporation under greatly reduced pressure at 0-45 ° C to a dry and brittle glassy product in which a portion of the hydrogen chloride remains contained.

Forskellene mellem denne kendte teknik og fremgangsmåden ifølge opfindelsen kan sammenfattes som følger:The differences between this prior art and the method of the invention can be summarized as follows:

DK 152435 BDK 152435 B

44

Fremgangsmåde ifølge Fremgangsmåde ifølge opfindelsen: JACS-artikel: 1. Giver spiseligt produkt Ingen anvendelse angivet, ved anvendelse af spiseligt der anvendes simple mono- saccharid, i fødevarer accep- eller disaccharider og ca.Process according to Process according to the invention: JACS article: 1. Provides edible product No use indicated, using edible simple monosaccharide, in food accept or disaccharides and approx.

tabel polycarboxylsyre og 5 % saltsyre som katalysator, evt. i fødevarer acceptabel polyol.Table polycarboxylic acid and 5% hydrochloric acid as catalyst, optionally in food acceptable polyol.

2. Vandig opløsning af reak- Ingen koncentrering af reaktanter dehydratiseres ved tanter før polykondensation.2. Aqueous Solution of React- No concentration of reactants is dehydrated by aunts before polycondensation.

formindsket tryk til dannelse af en vandfri sirup før polykondensation.reduced pressure to form an anhydrous syrup before polycondensation.

3. Polykondenseres ved Reaktionstemperatur 0 - 45 °C3. Polycondensate at Reaction temperature 0 - 45 ° C

150 - 300 °C150 - 300 ° C

4. Der anvendes spiselig syre, Hydrogenchlorid-katalysatoren som kombineres med produktet og skal fjernes, f.eks. ved dia-ikke udskilles; udbyttet er i lyse, og produktet derpå ud- hovedsagen kvantitativt. fældes med alkohol til opnå else af kun 15 - 20 % udbytte.4. Edible acid is used, the Hydrogen Chloride catalyst which is combined with the product and must be removed, e.g. by slide-not excreted; the yield is bright and the product is then quantitatively extracted. precipitated with alcohol to obtain only 15 - 20% yield.

5. Produktet inert over for Produktet hydrolyseres af spyt- enzymer. enzym og hemicellulose.5. The product inert to the product is hydrolyzed by salivary enzymes. enzyme and hemicellulose.

6. 1-^6 bindinger overvejen- Methyleringsundersøgelser vide i produktet. ser, at fri 6-hydroxygruppe er overvejende i produktet.6. 1- ^ 6 bonds considered- Methylation studies know in the product. sees that free 6-hydroxy group is predominantly in the product.

Fremgangsmåden ifølge opfindelsen kan effektivt anvendes til at fremstille enten en vandopløselig polymer eller en vanduopløse-lig polymer eller en blanding indeholdende begge typer. De parametre, som bestemmer den opnåede polymertype, er begyndelsessyre-The process of the invention can be effectively used to prepare either a water-soluble polymer or a water-insoluble polymer or a mixture containing both types. The parameters that determine the polymer type obtained are initial acidity.

5 DK 152435B5 DK 152435B

koncentration, reaktionstemperatur og reaktionstid.concentration, reaction temperature and reaction time.

Med et givet saccharid-udgangsmateriale, f.eks. glucose, kan der produceres to typer polysaccharid ved fremgangsmåden ifølge opfindelsen, et vandopløseligt polysaccharid, som kan anvendes til at erstatte sukkerstoffer i diætfødevarer, når sukkerets sødende virkning opnås ved anvendelse af kunstige sødemidler, og en vanduopløselig type, hvori den sure polymerisationaktivator inkorporeres i polymeren i form af tværbindende dele.With a given saccharide starting material, e.g. glucose, two types of polysaccharide can be produced by the process of the invention, a water-soluble polysaccharide which can be used to replace sugars in diet foods when the sweetening effect of the sugar is obtained using artificial sweeteners, and a water-insoluble type incorporating the acidic polymerization activator into the polymer in the form of crosslinking moieties.

Den uopløselige type kan anvendes som erstatning for mel eller stivelse ved fremstillingen af diætfødevarer.The insoluble type can be used as a substitute for flour or starch in the preparation of diet foods.

Det vil forstås, at betegnelserne polyglucose, polymaltose og polysaccharid i denne beskrivelse skal omfatte polymere materialer, hvori hovedparten af monomerenhederne er glucose, maltose eller et andet saccharid, såvel som polymere materialer, hvori glucose-, maltose- eller andre saccharidenheder er esterificeret med enheder afledt af de polycarboxylsyrer, der anvendes som polymerisationsaktivatorer .It will be appreciated that the terms polyglucose, polymaltose and polysaccharide in this specification shall include polymeric materials wherein the majority of the monomer units are glucose, maltose or other saccharide, as well as polymeric materials in which glucose, maltose or other saccharide units are esterified with units. derived from the polycarboxylic acids used as polymerization activators.

De udgangsmaterialer, som anvendes ved fremgangsmåden ifølge opfindelsen, er vandige opløsninger af maltose, glucose eller blandinger deraf. Sådanne opløsninger er i mange tilfælde let tilgængelige i handelen. Alternativt kan opløsningerne fremstilles ved at opløse en eller flere af de faste former af glucose, maltose eller blandinger deraf i en passende mængde vand eller en opløsning indeholdende en eller flere af de andre reaktanter, således at den totale faststofkoncentration i den resulterende udgangsblanding er i området fra omkring 30 til omkring 85 vægtprocent .The starting materials used in the process of the invention are aqueous solutions of maltose, glucose or mixtures thereof. In many cases, such solutions are readily available in the trade. Alternatively, the solutions may be prepared by dissolving one or more of the solid forms of glucose, maltose or mixtures thereof in a suitable amount of water or a solution containing one or more of the other reactants such that the total solids concentration in the resulting starting mixture is in the range from about 30 to about 85 weight percent.

De syrer, der anvendes som katalysatorer, tværbindingsmidler eller polymerisationsaktivatorer, kan være enhver af en række relativt ikke-flygtige, spiselige, organiske polycarboxylsyrer.The acids used as catalysts, crosslinking agents or polymerization activators can be any of a variety of relatively non-volatile, edible, organic polycarboxylic acids.

Især foretrækkes det at anvende citronsyre, fumarsyre, vinsyre, æblesyre, ravsyre eller adipinsyre, selv om også andre, såsom itaconsyre, terephthalsyre, citraconsyre, citramalsyre og <t-ketoglutarsyre, og anhydrider af syrer, såsom ravsyre, adipin-In particular, it is preferred to use citric acid, fumaric acid, tartaric acid, malic acid, succinic or adipic acid, although others such as itaconic acid, terephthalic acid, citraconic acid, citramalic acid and β-ketoglutaric acid, and anhydrides of acids such as succinic acid, adipic acid,

6 DK 152435 B6 DK 152435 B

syre, itaconsyre og citraconsyre, kan anvendes. Opløsningen kan fremstilles ved at opløse en fast form af syren i en passende mængde eller en opløsning indeholdende en eller flere af de andre reaktanter, således at der nås et faststofindhold på fra omkring 30 til omkring 85 vægtprocent i udgangsopløsningen.acid, itaconic acid and citraconic acid, may be used. The solution can be prepared by dissolving a solid form of the acid in an appropriate amount or solution containing one or more of the other reactants, so that a solids content of about 30 to about 85% by weight is reached in the starting solution.

Syren eller anhydridet må være accepterbart i fødevarer, dvs. have en acceptabel smag og være fri for væsentlig skadelig virkning i den normalt brugte mængde. Ikke-spiselige syrer er, selv om de er kemisk egnede for fremgangsmåden, ikke egnede til anvendelse ved fremstillingen af spiselige polysaccharider.The acid or anhydride must be acceptable in foods, ie. have an acceptable taste and be free from significant detrimental effect in the normally used quantity. Non-edible acids, although chemically suitable for the process, are not suitable for use in the preparation of edible polysaccharides.

Derfor må udvælgelsen af den sure katalysator være ledet af behovet for menneskelig, ikke-toxicitet. Uorganiske syrer er ikke egnet til anvendelse som sure katalysatorer, da de er for nedbrydende for både monomer- og polymerenhederne ved de temperaturer, der kræves for fremgangsmåden ifølge opfindelsen. Den valgte syre skal være relativt ikke-flygtig, da mere flygtige syrer kan fordampes under dehydratiseringen af den flydende udgangsblanding eller under fremgangsmådens polykondensationsfase. De anvendte polycarboxylsyrer esterificeres for størstedelen, men ufuldstændigt, med polysaccharidet under polymerisationsprocessen under dannelse af syre-polysaccharid-estere. Dette fremgår af disse polykondensationsprodukters restsurhed efter dialyse og genvindingen af syren ved hydrolyse af de dialyserede produkter. Inkorporeringen af syreenhederne i polysacchariderne påvirker ikke deres egnethed til menneskelig fortæring.Therefore, the selection of the acidic catalyst must be guided by the need for human non-toxicity. Inorganic acids are not suitable for use as acidic catalysts as they are too degradable for both the monomer and polymer units at the temperatures required for the process of the invention. The acid selected must be relatively non-volatile as more volatile acids can be evaporated during the dehydration of the liquid starting mixture or during the polycondensation phase of the process. The polycarboxylic acids used are esterified, for the most part, but incompletely, with the polysaccharide during the polymerization process to form acid polysaccharide esters. This is evidenced by the residual acidity of these polycondensation products after dialysis and the recovery of the acid by hydrolysis of the dialyzed products. The incorporation of the acid moieties into the polysaccharides does not affect their suitability for human consumption.

Syreenhederne antages at tjene som tværbindingsmidler mellem forskellige polysacchariddele i de uopløselige polymere, medens i de opløselige polymere hver syreenhed antages at være esterifi-ceret til kun én polysacchariddel.The acid units are believed to serve as crosslinking agents between different polysaccharide moieties in the insoluble polymers, while in the soluble polymers each acid moiety is believed to be esterified to only one polysaccharide moiety.

De polyoler, som eventuelt inkluderes i udgangsopløsningen, er opløsninger af sorbitol, glycerol, erythritol, xylitol, mannitol eller galactitol. Alternativt kan opløsningen fremstilles ved opløsning af den i hovedsagen vandfrie form af polyolen i en passende mængde vand eller opløsning indeholdende en eller flere af de andre reaktanter, således at det totale faststofind-The polyols optionally included in the starting solution are solutions of sorbitol, glycerol, erythritol, xylitol, mannitol or galactitol. Alternatively, the solution may be prepared by dissolving the substantially anhydrous form of the polyol in an appropriate amount of water or solution containing one or more of the other reactants so that the total

7 DK 152435 B7 DK 152435 B

hold i den resulterende udgangsblanding er fra omkring 30 til omkring 85 vægtprocent.holdings in the resulting starting mixture are from about 30 to about 85% by weight.

Udgangsopløsningen indeholdende saccharid, spiselige organiske polycarboxylsyrer og eventuelt en spiselig polyol har sædvanligvis en total faststofkoncentration i området fra omkring 30 til omkring 85 vægtprocent, og fortrinsvis fra omkring 65 til omkring 70 vægtprocent. Den nøjagtige valgte koncentration afhænger af sådanne faktorer som reaktanternes opløselighed, opløsningens viskositet og den lethed, hvormed opløsningen pumpes ind i fordamperen.The starting solution containing saccharide, edible organic polycarboxylic acids and optionally an edible polyol usually has a total solids concentration in the range of from about 30 to about 85% by weight, and preferably from about 65 to about 70% by weight. The exact concentration selected depends on such factors as the solubility of the reactants, the viscosity of the solution and the ease with which the solution is pumped into the evaporator.

Ved udførelse af fremgangsmåden ifølge opfindelsen kombineres saccharidet, den sure katalysator og om ønsket polyolen i en vandig udgangsopløsning. Denne udmåles ind i en effektiv tyndfilmseller sprøjtetørrings-fordamper, som arbejder ved formindsket tryk, til koncentrering af udgangsblandingen til en i hovedsagen vandfri sirup. Siruppen overføres hurtigt til en polykondensations-reaktor, som også arbejder ved formindsket tryk og ved en temperatur på fra omkring 150 til omkring 300° C. Reaktanternes opholdstid holdes således, at der sker væsentlig polykondensation, før der finder væsentlig pyrolyse sted. Det vand, som dannes under polykondensationsreaktionen, fjernes kontinuert ved fordampning. Opløselige og uopløselige polymerprodukttyper kan derpå adskilles om ønsket.In carrying out the process of the invention, the saccharide, the acidic catalyst and, if desired, the polyol are combined in an aqueous starting solution. This is metered into an effective thin film or spray-drying evaporator operating at reduced pressure to concentrate the starting mixture into a substantially anhydrous syrup. The syrup is quickly transferred to a polycondensation reactor, which also operates at reduced pressure and at a temperature of from about 150 to about 300 ° C. The residence time of the reactants is maintained so that substantial polycondensation occurs before substantial pyrolysis takes place. The water formed during the polycondensation reaction is continuously removed by evaporation. Soluble and insoluble polymer product types can then be separated if desired.

Ved fremstillingen af uopløselige polysaccharider, såsom uopløselige polyglucoser eller polymaltoser, kan koncentrationen af syre også være inden for de nedenfor angivne grænser for fremstilling af de opløselige polysaccharider, og især fra omkring 2,5 op .til 10 molprocent syre. Det foretrækkes imidlertid at anvende syrekoncentrationer i området fra omkring 4 til omkring 8 molprocent ved fremstillingen af uopløselig polyglucose eller poly-maltose. Disse forhold foretrækkes til trods for kravene om høj reaktionstemperatur og relativt lang reaktionstid, fordi det totale udbytte af opløselige og uopløselige polyglucoser eller polymaltoser er mellem 90 og 99 % ved disse forhold mellem sukker og syre. Således er det ved anvendelse af disse højere mængdeforhold muligt i én reaktionsblanding at frembringe et udbytte på mellem ca. 50 og ca. % uopløselig polyglucose eller polymaltose og mellem ca. 40 0£ ca. 50 % onløselie nolvelucose eller nolvmaltose.In the preparation of insoluble polysaccharides, such as insoluble polyglucoses or polymaltoses, the concentration of acid may also be within the limits set forth below for the preparation of the soluble polysaccharides, and especially from about 2.5 up to 10 mole percent acid. However, it is preferred to use acid concentrations in the range of about 4 to about 8 mole percent in the preparation of insoluble polyglucose or poly-maltose. These ratios are preferred despite the requirements of high reaction temperature and relatively long reaction time, because the total yield of soluble and insoluble polyglucose or polymaltose is between 90 and 99% at these sugar-acid ratios. Thus, using these higher proportions, it is possible to produce in a single reaction mixture a yield of between ca. 50 and approx. % insoluble polyglucose or polymaltose and between ca. 40 0 £ approx. 50% insoluble nolvelucose or nolvmaltose.

s DK 152435 Bs DK 152435 B

Den vandopløselige polyglucose eller polymaltose kan adskilles fra den uopløselige polyglucose eller polymaltose indeholdt i reaktionsblandingen ved ekstraktion med vand og efterfølgende centrifugering. En yderligere vigtig fordel ved at udføre reaktionen ved høje molforhold mellem glucose eller maltose og syre er, at de resulterende produkter kræver meget lidt eller ingen neutralisering, medens neutralisering af overskydende syreindhold indfører saltkoncentrationer, som er uacceptable i et produkt til anvendelse i fødevarer.The water-soluble polyglucose or polymaltose can be separated from the insoluble polyglucose or polymaltose contained in the reaction mixture by extraction with water and subsequent centrifugation. A further important advantage of carrying out the reaction at high molar ratios of glucose or maltose to acid is that the resulting products require very little or no neutralization, while neutralization of excess acid content introduces salt concentrations which are unacceptable in a product for use in foods.

Fremstillingen af en stor mængde opløselige polysaccharider, såsom opløselige glucose- eller maltosepolymere, kræver sædvanligvis en koncentration af sur katalysator på fra ca. 0,1 op til 10 molprocent, og det foretrækkes at anvende mellem 0,5 og 5 molprocent. Efterhånden som mængden af syre forøges, forøges graden af syretværbinding, og den deraf følgende mængde vand-uopløselig polyglucose eller polymaltose. Hvor syrekoncentrationerne er unødvendigt høje, kan der opstå problemer med hensyn til neutralisering af overskuddet af syre, som er til stede i den endelige produktblanding. Som det vil indses af fagfolk, er den mængde syre, som kræves til en bestemt polymerisation, polymerisationens varighed, polymerisationstempeaturen og arten af de ønskede produkter alle gensidigt afhængige. Udvælgelsen af den mængde syre, som skal anvendes ved fremgangsmåden ifølge opfindelsen, må tage disse faktorer i betragtning.The preparation of a high amount of soluble polysaccharides, such as soluble glucose or maltose polymers, usually requires a concentration of acidic catalyst of from 0.1 to 10 mole percent and it is preferred to use between 0.5 and 5 mole percent. As the amount of acid increases, the degree of acid cross-linking increases, and the resulting amount of water-insoluble polyglucose or polymaltose. Where the acid concentrations are unnecessarily high, there may be problems in neutralizing the excess acid present in the final product mixture. As will be appreciated by those skilled in the art, the amount of acid required for a particular polymerization, the duration of the polymerization, the polymerization temperature, and the nature of the desired products are all mutually dependent. The selection of the amount of acid to be used in the process of the invention must take these factors into account.

Inkluderingen af en i fødevarer acceptabel polyol, såsom sorbitol, i saccharid-carboxylsyre-reaktionsblandingerne før polykon-densationen medfører bedre produkter. I de fleste tilfælde kan 90 % eller mere af polyolen ikke isoleres fra kondensationsproduktet, hvilket viser, at den er blevet kemisk inkorporeret i polymeren. Disse additiver fungerer som indre blødgøringsmidler til nedsættelse af viskositeten og medfører også forbedret farve og smag. Dette ses for eksempel ved fremstillingen af karamel ud fra sådanne kondensationspolymere, hvor smeltens rheologiske egenskaber forbedres under forarbejdningen, skumningen formindskes, og der opnås et bedre smagende produkt med lysere farve. Foruden sorbitol kan der anvendes andre i fødevarer acceptable polyoler, såsom glycerol, erythritol, xylitol, mannitol og galactitol. Polyolko'ncentrationer på 5 - 20 % af denThe inclusion of a food acceptable polyol, such as sorbitol, in the saccharide-carboxylic acid reaction mixtures prior to polycondensation results in better products. In most cases, 90% or more of the polyol cannot be isolated from the condensation product, demonstrating that it has been chemically incorporated into the polymer. These additives act as internal softeners to reduce the viscosity and also bring about improved color and taste. This is seen, for example, in the preparation of caramel from such condensation polymers, where the rheological properties of the melt are improved during processing, the foaming is reduced and a better tasting product of lighter color is obtained. In addition to sorbitol, other polyols acceptable in foods may be used such as glycerol, erythritol, xylitol, mannitol and galactitol. Polyol concentrations of 5 - 20% of it

9 DK 152435 B9 DK 152435 B

samlede vægtmængde reaktanter medfører de nævnte fordele, og indhold på fra omkring 8 til omkring 12 % af den samlede vægtmængde reaktanter foretrækkes.total weight reactants provide the aforementioned advantages and contents of from about 8 to about 12% of the total weight reactants are preferred.

Inddampningen af den vandige udgangsopløsning til en i hovedsagen vandfri sirup såvel som polykondensationsreaktionen udr før.es ved et tryk under atmosfæretryk. De foretrukne absolutte tryk for begge disse trin overskrider ikke ca. 40 kpa og er for eksempel fra omkring 0,00133 Pa til 13 - 40 kPa, og de kan opnås ved anvendelse af en vakuumpumpe, en dampstråleejektor, en vandstrå-lepumpe eller ved andre konventionelle midler.Evaporation of the aqueous starting solution into a substantially anhydrous syrup as well as the polycondensation reaction is carried out at a pressure under atmospheric pressure. The preferred absolute pressures for both of these steps do not exceed approx. 40 kpa and is, for example, from about 0.00133 Pa to 13 - 40 kPa, and they can be obtained using a vacuum pump, a steam jet ejector, a water jet pump or by other conventional means.

Den temperatur, som anvendes til inddampning af den vandige udgangsopløsning til en i hovedagen vandfri sirup, holdes under 100 °C, og fortrinsvis i området fra omkring 50 til 100 °C. Inddampningstrinnet kan udføres i en separat inddamper af over tørrings-tyndf ilms.typen eller en forstøvningsinddamper. Alternativt kan inddampningen foregå i den første sektion af en gennemstrømningsreaktor indrettet til at behandle højviskøse materialer,· de efterfølgende sektioner af reaktoren, indstillet inden for det angivne temperaturområde, kan anvendes til udførelse af polykondensationen, således at begge operationer gennemføres i én reaktor.The temperature used to evaporate the aqueous starting solution to a substantially anhydrous syrup is kept below 100 ° C, and preferably in the range of about 50 to 100 ° C. The evaporation step may be carried out in a separate evaporator of the above drying thin film type or a nebulizer evaporator. Alternatively, the evaporation may take place in the first section of a flow-through reactor adapted to treat highly viscous materials. The subsequent sections of the reactor, set within the specified temperature range, can be used to perform the polycondensation so that both operations are performed in one reactor.

For polykondensationstrinnet ved fremgangsmåden ifølge opfindelsen er reaktionstiden og -temperaturen gensidigt afhængigt variable.For the polycondensation step of the process of the invention, the reaction time and temperature are mutually dependent.

Den optimale temperatur for polykondensationen afhænger af begyndelsesforholdet mellem saccharid, f.eks. glucose, og organisk polycarboxylsyre, reaktionstiden og det ønskede forhold mellem opløseligt polysaccharid og uopløseligt polysaccharid i den endelige produktblanding. Udsættelsen for varme (reaktionstid og -temperatur) skal være den minimale, som kræves til at opnå det ønskede polykondensationsprodukt, da misfarvning, karamelisering og nedbrydning forøges med forlænget udsættelse for høj temperatur. Heldigvis synker imidlertid den tid, som kræves til at opnå i det væsentlige fuldstændig polymerisation, efterhånden som polymerisationstemperaturen forøges. Derfor kan fremgangsmåden ifølge opfindelsen gennemføres med en polymerisationstemperatur på omkring 160° C og en reaktionstid på omkring 8 timer såvel som med en temperatur på omkring 140° C og en reaktionstid på omkring 24 timer med tilnærmelsesvis den samme endelige nolvmerisations-The optimum temperature for the polycondensation depends on the initial ratio of saccharide, e.g. glucose, and organic polycarboxylic acid, the reaction time and the desired ratio of soluble polysaccharide to insoluble polysaccharide in the final product mixture. Exposure to heat (reaction time and temperature) should be the minimum required to obtain the desired polycondensation product as discoloration, caramelization and degradation increase with prolonged exposure to high temperature. Fortunately, however, the time required to obtain substantially complete polymerization decreases as the polymerization temperature increases. Therefore, the process of the invention can be carried out with a polymerization temperature of about 160 ° C and a reaction time of about 8 hours, as well as with a temperature of about 140 ° C and a reaction time of about 24 hours with approximately the same final polymerization time.

10 DK 152435 BDK 152435 B

grad. Sammenlignelige resultater opnås også ved kontinuert polymerisation ved temperaturer i området fra omkring 190 til 300_ V. i løbet af omkring 10 minutter eller mindre.degree. Comparable results are also obtained by continuous polymerization at temperatures in the range of about 190 to 300 ° V. over about 10 minutes or less.

Kemisk rensning er almindeligvis ikke nødvendig for produkterne af fremgangsmåden ifølge opfindelsen. Hvor der produceres uopløseligt og opløseligt polysaccharid sammen, kan en adskillelse være nødvendig.Chemical purification is generally not necessary for the products of the process of the invention. Where insoluble and soluble polysaccharide is produced together, separation may be necessary.

Neutralisering af polysacchariderne er ønskelig til visse anvendelser, til trods for det meget lave indhold af sur katalysator, som anvendes. Hvor for eksempel polyglucoserne skal anvendes i diætfødevarer indeholdende sødmælk, vil overskud af syre, som kan være til stede i de uneutraliserede polyglucoser, have tendens til at koagulere mælken. I tilfælde af de opløselige polyglucoser eller polymaltoser neutraliseres deres opløsninger direkte. Denne neutralisering kan udføres ved tilsætning af carbonater af kalium, natrium, calcium eller magnesium til opløsningerne af polyglucose eller polymaltose. Hvor natrium- og kaliumsaltene anvendes sammen, kan der anvendes en fysiologisk afbalanceret blanding. Saltindholdet af en typisk polyglucoseopløsning, som er blevet indstillet til en pH-værdi på omkring 5-6, er blot 0,5 - 1,0 %. Andre materialer, som kan anvendes til at indstille pH-værdien af opløsninger af opløselig polyglucose eller polymaltose, inkluderer 1-lycin, d-glucosamin, N-methylglucamin og ammoniumhydroxid. De første to af disse forbindelser er naturlige materialer og skulle ikke kunne være uønskede som en ingrediens i diætfødevarer, og den sidstnævnte forbindelse, som hurtigt udskilles af legemet i form af urinstof, vil heller ikke være uønsket som ingrediens i diætfødevarer. N-methylglucamin anvendes som solubiliseringsmiddel for lægemidler og skulle heller ikke være uønsket som ingrediens i diætfødevarer. Andre metoder til nedsættelse af polysaccharidopløsningers surhed er dialyse og ionbytning.Neutralization of the polysaccharides is desirable for certain applications, despite the very low acid catalyst content used. For example, where the polyglucose is to be used in diet foods containing whole milk, excess acid which may be present in the unneutralized polyglucose tends to coagulate the milk. In the case of the soluble polyglucose or polymaltose, their solutions are directly neutralized. This neutralization can be accomplished by adding carbonates of potassium, sodium, calcium or magnesium to the solutions of polyglucose or polymaltose. Where the sodium and potassium salts are used together, a physiologically balanced mixture can be used. The salt content of a typical polyglucose solution which has been adjusted to a pH of about 5-6 is only 0.5 - 1.0%. Other materials that can be used to adjust the pH of soluble polyglucose or polymaltose solutions include 1-lycin, d-glucosamine, N-methylglucamine and ammonium hydroxide. The first two of these compounds are natural materials and should not be undesirable as an ingredient in diet foods, and the latter compound, which is rapidly excreted by the body in the form of urea, will also not be undesirable as an ingredient in diet foods. N-methylglucamine is used as a solubilizer for drugs and should also not be undesirable as an ingredient in diet foods. Other methods for reducing the acidity of polysaccharide solutions are dialysis and ion exchange.

Hvor uopløselig polyglucose skal anvendes som melerstatning i diætfødevarer, kan den formales eller findeles mekanisk, således at den har en konsistens, der minder om hvedemel. Typisk anvendes et materiale med en finhed på 44 um som hvedemelserstatning.Where insoluble polyglucose is to be used as a substitute in dietary foods, it can be ground or mechanically ground so that it has a texture similar to wheat flour. Typically, a material having a fineness of 44 µm is used as wheat substitute.

11 DK 152435B11 DK 152435B

Opløsningerne af opløselig polyglucose eller polymaltose er næsten uden smag, og den uopløselige polyglucose er et mildt smagende næsten hvidt pulver.The solutions of soluble polyglucose or polymaltose are almost tasteless and the insoluble polyglucose is a mild tasting almost white powder.

De fleste af de polyglucoser, som fremstilles ved fremgangsmåden ifølge opfindelsen, har en gennemsnitsmolekylvægt på fra omkring 1500 til omkring 36 000. De opløselige polyglucoser har vist sig at have en gennemsnitsmolekylvægt på fra omkring 1500 til omkring 18 000, og de uopløselige polyglucoser har vist sig at have en gennemsnitsmolekylvægt på fra omkring 6 000 til omkring 36.000.Most of the polyglucose produced by the process of the invention has an average molecular weight of from about 1500 to about 36,000. The soluble polyglucoses have been found to have an average molecular weight of from about 1500 to about 18,000 and the insoluble polyglucoses have shown say to have an average molecular weight of from about 6,000 to about 36,000.

Det eksperimentelt bestemte tal for gennemsnitsmolekylvægt af de ved fremgangsmåden ifølge opfindelsen fremstillede polyglucoser, findes sædvanligvis at ligge i området fra omkring 1 000 til omkring 24 000, idet de fleste af molekylvægtene falder i områder fra 4 000 til omkring 12 000. Disse tal for gennemsnitsmolekylvægt bestemmes ved den modificerede reducerende, endegruppe-metode ifølge Isbell (j. Res. Nåti. Bur. Standards 24.241 (1940). Denne metode er baseret på reduktionen af alkalisk kobbercitrat-reagens. Talværdierne for gennemsnitsmolekylvægt udregnes på basis af standardisering med gentiobiose, idet man antager, at ækvimolære mængder af polyglucose og gentiobiose har tilnærmelsesvis den samme reducerende evne, og antager, at der er én reducerende endegruppe af molekylet. Tallet for gennemsnitsmolekylvægt bestemt på denne måde viser sig at være et vildledende lavt tal, som fremhæver den lave ende af molekylvægtfordelingen af polykondensations-produkter med brede molekylvægtfordelinger. Når den modificerede reducerende-endegruppe-metode er anvendt til at bestemme tallet for gennemsnitsmolekylvægt af en kommerciel klinisk dextran-kvalitet med et kendt tal for gennemsnitsmolekylvægt på 40 000 + 3 000, gav den reducerende-endegruppe-metode et tal for gennemsnitsmolekylvægt på 25.600. Af denne grund betragtes det som rigtigt at multiplicere de tal for gennemsnitsmolekylvægt, som findes ved den modificerede reducerende-endegruppe-metode, med omkring 1,5. Tallene for gennemsnitsmolekylvægt kaldes derfor det tilsyneladende tal for gennemsnitsmolekylvægt, hvor de er blevet bestemt ved den modificerede reducerende-endegruppe-metode, som skitseret her. Disse tilsyneladende tal for gennem-snitsmolekylvægt er angivet som aH^. Hvor sorbitol eller enThe experimentally determined average molecular weight figure of the polyglucoses produced by the process of the invention is usually found to be in the range of about 1,000 to about 24,000, with most of the molecular weights falling in the range of 4,000 to about 12,000. The method is based on the reduction of alkaline copper citrate reagent. The average molecular weight values are calculated on the basis of standardization with gentiobiosis, as determined by the modified reducing end group method according to Isbell (J. Res. Nautti. Bur. Standards 24.241 (1940). It is assumed that equimolar amounts of polyglucose and gentiobiosis have approximately the same reducing ability and assumes that there is one reducing end group of the molecule. The average molecular weight determined in this way turns out to be a deceptively low number which highlights the low end. of the molecular weight distribution of wide molecular weight lining polycondensation products divisions. When the modified reducing end group method was used to determine the average molecular weight number of a commercial clinical dextran grade with a known average molecular weight number of 40,000 + 3,000, the reducing end group method yielded an average molecular weight number of 25,600. For this reason, it is considered proper to multiply the average molecular weight numbers found by the modified reducing end group method by about 1.5. The average molecular weight numbers are therefore called the apparent average molecular weight number, where they have been determined by the modified end-group reducing method as outlined here. These apparent average molecular weight numbers are given as α H 2. Where sorbitol or one

12 DK 152435 B12 DK 152435 B

anden polyol inkorporeres i polymerisationsblandingen, har dette middel tendens til at inkorporeres ved enden af polymerkæden, i hvilket tilfælde molekylvægtbestemmelser baseret på endegruppe-metoder viser sig unøjagtige. Som følge heraf må en af de mange andre velkendte metoder til molekylvægtbestemmelse anvendes i forbindelse med disse polymere.other polyol being incorporated into the polymerization mixture, this agent tends to be incorporated at the end of the polymer chain, in which case molecular weight determinations based on end-group methods prove inaccurate. As a result, one of the many other well-known methods of molecular weight determination must be used in conjunction with these polymers.

De bindinger, som er overvejende i polyglucoserne, er først og fremmest 1 —^ 6, men andre bindinger forekommer også. I de opløselige polyglucoser er hver af syreenhederne esterificeret til polyglucose. Hvor syreenheden er esterificeret til mindre end én polyglucosedel, bliver resultatet en tværbinding.The bonds predominantly in the polyglucose are primarily 1-6, but other bonds also occur. In the soluble polyglucose, each of the acid moieties is esterified to polyglucose. Where the acid moiety is esterified to less than one polyglucose moiety, the result is a crosslinking.

Syntetiske polyglucoser fremstillet ved fremgangsmåden ifølge opfindelsen påvirkes ikke af amylolytiske enzymer, såsom amylo(l,4-glucosidaser, amylo(l,4, l,6)glucosidaser, amylo(l,4)dextrinaser og amylo(l,4)maltosidaser såvel som a- og β-glucosidaser, sucrase og phosphorylase. Dyrefodringsforsøg og radioaktive sporundersøgelser viser også, at disse polyglucoser er i det væsentlige uden calorier.Synthetic polyglucoses produced by the process of the invention are not affected by amylolytic enzymes such as amylo (1,4-glucosidases, amylo (1,4, 1,6) glucosidases, amylo (1,4) dextrinases and amylo (1,4) maltosidases as well such as α- and β-glucosidases, sucrase and phosphorylase. Animal feeding tests and radioactive tracer studies also show that these polyglucoses are essentially devoid of calories.

De opløselige polyglucoser og polymaltoser er nyttige til at give diætfødevarer, hvorfra de naturlige sukkerstoffer er blevet fjernet og erstattet af kunstige eller andre sødemidler, de fysiske egenskaber som naturlige fødevarer, bortset fra sødhed.The soluble polyglucoses and polymaltoses are useful in providing dietary foods from which the natural sugars have been removed and replaced by artificial or other sweeteners, the physical properties of natural foods other than sweetness.

I for eksempel bagværk påvirker de omhandlede polysaccharider rheologien og konsistensen på en måde, som er analog med sukker, og kan erstatte sukker som fyldmiddel. Typiske anvendelser for de opløselige polyglucoser findes i geleer, syltetøj, henkogt frugt, marmelader og frugtmos med lavt kalorieindhold; i frosne diætfødemidler inkluderende iscreme, milkshake, sorbet og vandis; i bagværk, såsom kager, småkager, wienerbrød og andre fødevarer indeholdende hvede eller andet mel; i glasur, bolsjer og tyggegummi; i drikke, såsom ikke-alkoholiske kulsyrefattige drikke og rodekstrakter; i sirupper; i desserter, saucer og buddinger; i salatdressings og som fyldemidler i sødeblandinger med lavt kalorieindhold indeholdende cyclamat eller saccharin.For example, in baked goods, the polysaccharides in question affect rheology and consistency in a manner analogous to sugar and may replace sugar as a filler. Typical applications for the soluble polyglucose are found in gels, jams, boiled fruit, jams and low calorie fruit mash; in frozen diet foods including ice cream, milkshake, sorbet and water ice; in baked goods, such as cakes, cookies, pastries and other foods containing wheat or other flour; in glaze, toppings and chewing gum; in beverages such as non-alcoholic low-carbon drinks and root extracts; in syrups; in desserts, sauces and puddings; in salad dressings and as fillers in low-calorie sweeteners containing cyclamate or saccharin.

Anvendelsen af de ved fremgangsmåden ifølge opfindelsen fremstillede polyglucoser muliggør fjernelsen af 20-100 % af de nor-The use of the polyglucose produced by the process of the invention allows the removal of 20-100% of the normal

13 DK 152435 B13 DK 152435 B

male fedt-, olie- eller fedttriglycerid-komponenter i føden.paint fat, oil or fat triglyceride components in the food.

Den grad, hvori fedt, olie eller fedttriglycerider fjernes, vil naturligvis variere med fødevarens type; f.eks. er det i en fransk salatdressing muligt fuldstændigt at fjerne den normalt indeholdte oliekomponent. I chokoladeovertræk, iscremeblandinger og piskede desserter kan 20-50 % af fedtet, olien eller triglyceri-derne fjernes under bevarelse af fødevareproduktets nødvendige egenskaber, såsom konsistens, glans, viskositet og smag.The degree to which fat, oil or fat triglycerides are removed will naturally vary with the type of food; eg. in a French salad dressing it is possible to completely remove the normally contained oil component. In chocolate coatings, ice cream blends and whipped desserts, 20-50% of the fat, oil or triglycerides can be removed while preserving the necessary properties of the food product, such as texture, gloss, viscosity and taste.

Som tidligere nævnt er der ud over fjernelsen af sukker i mange opskrifter en betydelig mel- og/eller fedtbesparende virkning, som er mulig uden at nedsætte fødevarens kvalitet. Dette medfører selvfølgelig en yderligere reduktion af fødevarens totale kalorieindhold.As mentioned earlier, in addition to the removal of sugar in many recipes, there is a considerable flour and / or fat-saving effect, which is possible without reducing the quality of the food. Of course, this results in a further reduction of the total calorie content of the food.

De uopløselige polyglucoser er nyttige som melerstatninger i kager, småkager, brød, wienerbrød og andre mejeriprodukter på basis af mel fra hvede, majs, ris eller kartofler såvel som bageriprodukter, der normalt ville indeholde grahamsmel, rug, soja, havremel eller bønnemel. Desuden er de uopløselige polyglucoser nyttige i ikke-hævende fødemidler, såsom spaghetti og nudler, eller som substans i kødhaschiser og kartoffelmos såvel som til andre anvendelser, der kan omfatte mel som ingrediens.The insoluble polyglucoses are useful as flour substitutes in cakes, cookies, breads, pastries and other dairy products based on flour from wheat, corn, rice or potatoes as well as bakery products which would normally contain graham flour, rye, soybean, oatmeal or bean flour. In addition, the insoluble polyglucoses are useful in non-swelling foods such as spaghetti and noodles, or as a substance in meat hashes and mashed potatoes as well as for other uses which may include flour as an ingredient.

Når de ved fremgangsmåden ifølge opfindelsen fremstillede polyglucoser og polymaltoser inkorporeres i diætfødevarer, bevarer de resulterende fødevarer deres naturlige modstykkers smagskvalitet og appetitvækkende egenskaber. Endvidere sænkes kalorieindholdet af disse diætfødevarer betydeligt ved, at de omhandlede produkter er blevet anvendt til at erstatte sukkerstoffer, stivelse og fedtstoffer, som indeholdes i diætfødevarernes naturlige modstykker.When the polyglucoses and polymaltoses prepared by the process of the invention are incorporated into diet foods, the resulting foods retain the taste quality and appetizing properties of their natural counterparts. Furthermore, the caloric content of these diet foods is significantly lowered by the fact that the products in question have been used to replace sugars, starches and fats contained in the natural counterparts of the diet foods.

De ovennævnte fødevareanvendelser af de omhandlede opløselige og uopløselige polysaccharider er belyst i US patentskriff nr. .·· 3 766 165.The aforementioned food uses of the disclosed soluble and insoluble polysaccharides are illustrated in U.S. Patent No. 3,766,165.

Fremgangsmåden ifølge opfindelsen skal belyses nærmere ved de følgende udførelseseksempler.The method according to the invention is illustrated in more detail by the following embodiments.

14 DK 152435 B14 DK 152435 B

EKSEMPEL 1EXAMPLE 1

S2^_Y2SÉiS_HÉS2SS§2El22SiSSS2 ^ _Y2SÉiS_HÉS2SS§2El22SiSS

En 65 vægtprocent vandig udgangsblanding blev fremstillet ved at opløse 202 kg dextrose, 32,4 kg 70 % sorbitolopløsning og 2,3 kg vandfri citronsyre i 112,8 kg afioniseret vand. Den resulte- 2 rende opløsning blev tilført en 0,38 m Pfaudler overtørringsfilm- inddamper holdt ved et vakuum på 68 kPa, dampkappe-manometertryk 690 kPa. Tilførselshastigheden blev indstillet således, at udbyttet af dehydratiseret udgangsblanding var 59,4 kg/h. En repræsentativ prøve af dehydratiseret udgangsblanding fandtes at have 97,5 % total fast stof; Gardner Color (10 vægtprocent vandig opløsning) mindre end 1; % transmission ved 490 nm (10 % vandig opløsning) 100; levoglucosan 0,00 %.A 65% by weight aqueous starting mixture was prepared by dissolving 202 kg of dextrose, 32.4 kg of 70% sorbitol solution and 2.3 kg of anhydrous citric acid in 112.8 kg of deionized water. The resulting solution was applied to a 0.38 m Pfaudler super dry film evaporator maintained at a vacuum of 68 kPa, vapor sheath gauge pressure 690 kPa. The feed rate was adjusted such that the yield of dehydrated starting mixture was 59.4 kg / h. A representative sample of dehydrated starting mixture was found to have 97.5% total solids; Gardner Color (10% by weight aqueous solution) less than 1; % transmission at 490 nm (10% aqueous solution) 100; levoglucosan 0.00%.

Den dehydratiserede udgangsblanding blev kontinuert ledt ind i en vakuumdrevet 7,7 liters kontinuert dobbeltarmsblander (Baker-Perkins Multipurpose Continuous Mixer). Trykket holdtes ved 10,0 - 13,3 kPa; temperaturen målt ved forskellige zoner i enheden varierede fra 115 til 245° C. Tilførselshastigheden blev indstillet til opnåelse af en opholdstid på omkring 5 minutter. Det næsten hvide produkt var fuldstændig opløseligt i vand. De følgende data blev bestemt for polymeren:The dehydrated starting mixture was continuously fed into a vacuum-powered 7.7 liter continuous double-arm mixer (Baker-Perkins Multipurpose Continuous Mixer). The pressure was maintained at 10.0 - 13.3 kPa; the temperature measured at different zones of the unit ranged from 115 to 245 ° C. The feed rate was set to obtain a residence time of about 5 minutes. The almost white product was completely soluble in water. The following data were determined for the polymer:

Reduktionsværdi *(Munson & Walker metoden).............. 8,5Reduction value * (Munson & Walker method) .............. 8.5

Gardner Color (10 vægtprocent opløsning) .............. 1,2 % transmission ved 490 nm............................. 95,7 5-hydroxymethylfurfural, % ............................ 0,055 pH (5 vægtprocent opløsning) .......................... 2,9Gardner Color (10% by weight solution) .............. 1.2% transmission at 490 nm ..................... ........ 95.7 5-Hydroxymethylfurfural,% ............................ 0.055 pH (5% by weight solution ) .......................... 2.9

Syreækvivalent (mg NaOH pr. g) ........................ 4,0 * Se f.eks. David Pearson: "The Chemical Analysis of Foods"Acid equivalent (mg NaOH per g) ........................ 4.0 * See e.g. David Pearson: "The Chemical Analysis of Foods"

Chemical Publishing Company, Inc., New York 1971, side 123-126.Chemical Publishing Company, Inc., New York 1971, pages 123-126.

EKSEMPEL 2EXAMPLE 2

Samenligning_af_inddam£et_yandig_udgangsblanding A. Udgangsblanding fremstillet ved inddampning af vandig opløsning 2Comparison_of_inventory_and_initial_initial mixture A. Initial mixture prepared by evaporation of aqueous solution 2

Betingelser: 0,38 m Pfaudler overtørringsfilminddamper drevetConditions: 0.38 m Pfaudler super dry film evaporator driven

15 DK 152435 BDK 152435 B

ved et vakuum på 68 kPa, dampkappe-manometertryk 690 kPa. Tilførselstem-peratur maksimalt 100° C. Sammensætning af udgangsblanding som i eksempel 1.at a vacuum of 68 kPa, vapor sheath pressure gauge 690 kPa. Supply temperature maximum 100 ° C. Composition of starting mixture as in Example 1.

Produktionshastighed Farve, 10 vægtpct. opløsn.Production speed Color, 10 wt. Res.

af dehydratiseret ———— - udgangsblanding % Total Gardner % Transm. % Levo-of Dehydrated ———— - Ingredient% Total Gardner% Transm. % Levo-

Forsøg_kg/h_faststof Color 490 nm glucosan i 31,8 99+ <1 97,2 0,02 ii 47,2 99,0 <1 100 spor iii 59,4 97,6 <1 100 0,00 iv 73,0 96,8 <1 100 0,00 v 88,0 96,1 <1 100 0,00 vi 104,4 94,8 <1 100 0,00Test_kg / hr solid Color 490 nm glucosane in 31.8 99+ <1 97.2 0.02 ii 47.2 99.0 <1 100 trace iii 59.4 97.6 <1 100 0.00 iv 73.0 96 , 8 <1 100 0.00 v 88.0 96.1 <1 100 0.00 vi 104.4 94.8 <1 100 0.00

Vandig blanding — 65,0 <1 100 0,00 B. Udgangsblanding fremstillet ved smeltemetodenAqueous mixture - 65.0 <1 100 0.00 B. Starting mixture prepared by the melting method

Betingelser: Smeltningen udførtes i en snekketransportør med dampkappe (Rietz Thermascrew Feed Melter) ved atmosfæretryk, dampkappe-manometertryk 172 kPa. Smeltetemperatur 125 - 5 °C.Conditions: The melting was carried out in a worm conveyor with steam jacket (Rietz Thermascrew Feed Melter) at atmospheric pressure, steam jacket pressure gauge 172 kPa. Melting temperature 125 - 5 ° C.

Sammensætning af udgangsblanding: 403 kg glucose-monohydrat, 45,4 kg sorbitol, 4,5 kg citronsyre. Det totale faststofindhold for både udgangsblanding og smelte var 92 vægtprocent. Komponenterne blev blandet tørt og derpå ført kontinuerligt ind i smelteren. Repræsentative prøver af smeltet udgangsblanding blev afkølet og formalet i en Waring-blander. De følgende prøvninger blev opnået på prøver fra seks forsøg.Initial composition: 403 kg glucose monohydrate, 45.4 kg sorbitol, 4.5 kg citric acid. The total solids content for both starting mixture and melt was 92% by weight. The components were mixed dry and then continuously fed into the melter. Representative samples of molten starting mixture were cooled and ground in a Waring mixer. The following tests were obtained on samples from six experiments.

Gardner Color % Levo-Gardner Color% Levo-

Forsøg_10 vægtpct. opløsning_glucosan36 i 1-2 0,34 ii 1-2 spor iii 1-2 0,54 iv 1-2 0,62 v 1-2 0,62 vi 2 0,74Experiment_10% by weight solution_glucosan36 in 1-2 0.34 in 1-2 tracks iii 1-2 0.54 iv 1-2 0.62 v 1-2 0.62 vi 2 0.74

XX

16 DK 152435B16 DK 152435B

Levoglucosan (1,6-anhydro-D-glucose) blev bestemt ved silyle-ring gas-væske-kromatografi på en 1,5 m x 3,75 mm, 10 % OV-1 på 0,177 - 0,250 mm "Supelcoporf-søjle ved 205° C. Under disse betingelser var levoglucosan-tilbageholdelsestiden ca.Levoglucosan (1,6-anhydro-D-glucose) was determined by silyylation gas-liquid chromatography on a 1.5 mx 3.75 mm, 10% OV-1 of 0.177 - 0.250 mm "Supelcoporf column at 205 Under these conditions, the levoglucosan retention time was approx.

4,5 minutter.4.5 minutes.

EKSEMPEL 5 A. Polyglucose fremstillet ud fra de dehydratiserede udgangs-prøver fra eksempel 2 A_EXAMPLE 5 A. Polyglucose prepared from the dehydrated starting samples of Example 2 A

Repræsentative prøver på hver 2,0 g af de dehydratiserede udgangsblandinger i-v fra eksempel 2 A blev anbragt i hvert sit reagensglas. Hvert glas blev forbundet med et vakuumgrenrør med et vakuum på .68 kPa. Glassene blev nedsænket i et 200~°c varmt oliebad i 5,0 minutter. De følgende data blev opnået for produkterne .Representative samples of each 2.0 g of the dehydrated starting mixtures i-v of Example 2 A were placed in each tube of a test tube. Each glass was connected to a vacuum manifold with a vacuum of .68 kPa. The jars were immersed in a 200 ° C hot oil bath for 5.0 minutes. The following data was obtained for the products.

Farve af 10 vægt-net. opløsningColor of 10 weight nets. resolution

Reduktionsværdi, Gardner % transm. % 5-hydroxy-Forsøg Munson & Walker Color 490 nm methvlfurfural* i 14,1 1-2 95,0 0,080 ii 7,4 1-2 96,5 0,051 iii 13,3 1-2 92,5 0,094 iv 8,5 1-2 95,7 0,055 v 8,7 1-2 94,5 0,064Reduction value, Gardner% transm. % 5-Hydroxy Test Munson & Walker Color 490 nm methylfurfural * 14.1 1-2 95.0 0.080 ii 7.4 1-2 96.5 0.051 iii 13.3 1-2 92.5 0.094 iv 8, 5 1-2 95.7 0.055 v 8.7 1-2 94.5 0.064

Gennemsnit 10,4 1-2 94,8 0,069 x 10/Average 10.4 1-2 94.8 0.069 x 10

Bestemt ved sammenligning af prøvens E^'0^ ved 283 'nm med værdien for rent 5-hydroxymethylfurfural:Determined by comparing the sample E ^ '0 ^ at 283' nm with the value of pure 5-hydroxymethylfurfural:

El^cm (Prøve) % HMF = c?-, - 15,55El ^ cm (Sample)% HMF = c? -, - 15.55

17 DK 152435B17 DK 152435B

B. Polyglucose fremstillet ud fra prøverne af smeltet udgangsblanding fra eksempel 2B__B. Polyglucose prepared from the molten starting mixture samples of Example 2B__

Repræsentative prøver på hver 2,0 g af de smeltede udgangsblandinger i-v fra eksempel 2B blev omdannet til vandopløselig polymer som beskrevet ovenfor under A i dette eksempel. De følgende data blev opnået for de. resulterende produkter:Representative samples of each 2.0 g of the molten starting mixtures i-v of Example 2B were converted to water-soluble polymer as described above under A in this example. The following data were obtained for the. resulting products:

Farve af 10 vægt-•pct. opløsningColor of 10 wt. resolution

Reduktionsværdi, Gardner % transm. % 5-hydroxy-Forsøg Munson & Walker Color 490 nm_methylfurfural* i 9,9 2-3 87,9 0,092 ii 8,1 2-3 85,9 0,085 iii 8,2 2-3 88,9 0,100 iv 13,0 2-3 88,0 0,079 v 7.5 2-3 90.0 0.071 snitSm~ 9’3 2-3 88,1 0,085 EKSEMPEL 4Reduction value, Gardner% transm. % 5-Hydroxy Test Munson & Walker Color 490 nm_methylfurfural * i 9.9 2-3 87.9 0.092 ii 8.1 2-3 85.9 0.085 iii 8.2 2-3 88.9 0.100 iv 13.0 2-3 88.0 0.079 v 7.5 2-3 90.0 0.071 section Sm ~ 9'3 2-3 88.1 0.085 EXAMPLE 4

Tartrateret_polyglucose_med_sorbitol_yed_polykondensation_af dehydratiseret_yandig_udgangsblanding 500 g opløsning (70 % total faststof) indeholdende dextrose, sorbitol og vinsyre i forholdet 89:10:1 beregnet på tør vægt indføres langsomt i en rotationsinddamper af glas (Rotovapor, Fisher Catalog No. 9-5^8-150) ved hjælp af et indførselsrør. Systemet holdes ved et tryk på 2-4 kPa. Den roterende kolbe nedsænkes i et kogende vandbad. Den vandige udgangsopløsning lyninddampes på denne måde i løbet af 30-45 minutter til opnåelse af en næsten farveløs remanens. Medens den holdes under en nitrogenatmosfære, anbringes kolben indeholdende den dehydratiserede udgangsblanding i et oliebad ved 170° C og opvarmes til en badtemperatur på 1β5 - 170° C ved et tryk på 3,3-6,7 kPa i 4 timer. Den resulterende vandopløselige polymer viser sig meget fordelagtig ved sammenligning med det i eksempel 1 opnåede produkt. Sammenlignet med en tartrateret opløselig polyglucoseprøve, fremstillet på nøjagtig samme måde, men ud fra en smeltet udgangsblanding med det samme faststofforho] d. findes det ovennævnte nnorhikt. af.Tartrated_polyglucose_with_sorbitol_yed_polycondensation_of dehydrated_and_and_initial mixture 500 g of solution (70% total solids) containing dextrose, sorbitol and tartaric acid in a ratio of 89: 10: 1 on a dry weight is slowly introduced into a rotary evaporator of glass (No. 5). using an insertion tube. The system is maintained at a pressure of 2-4 kPa. The rotary flask is immersed in a boiling water bath. In this way, the aqueous starting solution is flash evaporated over 30-45 minutes to give an almost colorless residue. While held under a nitrogen atmosphere, the flask containing the dehydrated starting mixture is placed in an oil bath at 170 ° C and heated to a bath temperature of 1β5 - 170 ° C at a pressure of 3.3-6.7 kPa for 4 hours. The resulting water-soluble polymer proves very advantageous when compared to the product obtained in Example 1. Compared to a tartrated soluble polyglucose sample, prepared in exactly the same way, but from a molten starting mixture with the same solid ratio, the above mentioned niches are found. of.

1 ft1 ft

DK 152435 BDK 152435 B

have bedre farve, et lavere 5-hydroxymethylfurfural-indhold (bestemt ud fra ved 283 nm), og det bedømmes til at have en mere mild smag.have a better color, a lower 5-hydroxymethylfurfural content (determined at 283 nm), and it is judged to have a milder taste.

EKSEMPEL 5EXAMPLE 5

Tartrateret_golyglucose_med_20_%_s°rbitol ved golykondensation af_vandig_udgangsblandingTartrated_golyglucose_with_20 _% _ ° rbitol by glycation condensation of_aqueous_ starting mixture

Processen fra eksempel 4, hvori sorbitolindholdet forøges til 20 vægtprocent med tilsvarende reduktion i dextroseindholdet, giver en polyglucose, som meget ligner den, der blev opnået i eksempel 4.The process of Example 4, in which the sorbitol content is increased to 20% by weight with a corresponding reduction in the dextrose content, yields a polyglucose very similar to that obtained in Example 4.

EKSEMPEL 6 k2ndensati2n_i_den_samme_reakt2r 908 kg af en vandig opløsning indeholdende 568 kg glucose, 63,5 kg sorbitol og 6,4 kg citronsyre anbringes i en egnet opbevaringstank. Opløsningen pumpes fra tanken til indgangen af en vertikal tyndfilmsæaktor indrettet til at udføre både afdampning af opløsningsmiddel fra viskøse materialer og polykondensation. Reaktoren arbejder ved et tryk på 2,7-4 kPa. Den øvre del af reaktoren holdes ved 85-100° C; den nedre del holdes ved maksimal temperatur på 245° C. Vanddamp fjernes ved hjælp af en kondensator, hvis udtag er anbragt ovenfor indgangen for den flydende udgangsblanding. Det smeltede viskøse produkt udtømmes ved bunden ved hjælp af en pumpe indrettet til at bevæge højviskøse polymere .EXAMPLE 6 Density of the same reaction 908 kg of an aqueous solution containing 568 kg of glucose, 63.5 kg of sorbitol and 6.4 kg of citric acid are placed in a suitable storage tank. The solution is pumped from the tank to the entrance by a vertical thin film reactor adapted to perform both solvent evaporation from viscous materials and polycondensation. The reactor operates at a pressure of 2.7-4 kPa. The upper part of the reactor is maintained at 85-100 ° C; the lower part is kept at maximum temperature of 245 ° C. Water vapor is removed by means of a condenser whose outlet is located above the inlet of the liquid outlet mixture. The molten viscous product is discharged at the bottom by means of a pump adapted to move highly viscous polymers.

Den fremstillede citraterede polyglucose er i hovedsagen identisk med produktet fra eksempel 1 og udviser bedre egenskaber end analoge prøver af citrateret polyglucose fremstillet ved fremgangsmåden med smeltet udgangsblanding ifølge US patentskrift nr.The citrated polyglucose produced is substantially identical to the product of Example 1 and exhibits better properties than analogous citrated polyglucose samples prepared by the molten starting mixture method of U.S. Pat.

3 766 165.3 766 165.

19 DK 152435 B19 DK 152435 B

EKSEMPEL 7EXAMPLE 7

PolYmerisation_af_maltose_med_citrons2re_ud_fra_yandig_udgangs- blandingPolymerization_of_maltose_with_citrons2re_out_from_and_and_and_output mixture

En opløsning fremstilles ud fra 285 g maltose-monohydrat og 15 g citronsyre ved opløsning af disse i 100 g afioniseret vand. Denne opløsning inddampes i en rotationsinddamper på samme måde som anført i eksempel 4. Den dehydratiserede blanding opvarmes derpå til 160° C ved et tryk på 1,3-2 kPa , i 7 timer. Den resulterende polymer er væsentligt lysere i farve, har et betydeligt lavere indhold af 5-hydroxymethylfurfural og har bedre smagskvalitet end analoge produkter fremstillet ved den kendte smeltepolymerisationsproces. Ellers udviser produkterne fremstillet ved disse fremgangsmåder ingen væsentlige forskelle.A solution is prepared from 285 g of maltose monohydrate and 15 g of citric acid by dissolving them in 100 g of deionized water. This solution is evaporated in a rotary evaporator in the same way as in Example 4. The dehydrated mixture is then heated to 160 ° C at a pressure of 1.3-2 kPa, for 7 hours. The resulting polymer is substantially lighter in color, has a significantly lower content of 5-hydroxymethylfurfural, and has better taste quality than analogous products made by the known melt polymerization process. Otherwise, the products produced by these processes show no significant differences.

EKSEMPEL 8EXAMPLE 8

Der fremstilledes 500 g af en opløsning (65 % total faststof) indeholdende 315 g dextrose og 10 g citronsyre i 175 g vand. Opløsningen lyninddampes som beskrevet i eksempel 4. Den resulterende dehydratiserede blanding anbringes i et 170° C varmt oliebad og holdes ved 165 - 170° C og et tryk på 2,7 kPa i 4 timer, hvorpå den afkøles til stuetemperatur. Den resulterende citra-terede polyglucose er fuldstændigt opløselig i vand. Sammenlignet med et analogt produkt, fremstillet ved smeltepolymerisation, viser den betydeligt bedre farve- og smagsegenskaber og har et reduceret indhold af 5-hydroxymethylfurfural.500 g of a solution (65% total solids) containing 315 g of dextrose and 10 g of citric acid in 175 g of water was prepared. The solution is flash evaporated as described in Example 4. The resulting dehydrated mixture is placed in a 170 ° C hot oil bath and maintained at 165-170 ° C and a pressure of 2.7 kPa for 4 hours, then cooled to room temperature. The resulting citrated polyglucose is completely soluble in water. Compared to an analog product made by melt polymerization, it exhibits significantly better color and flavor properties and has a reduced content of 5-hydroxymethylfurfural.

EKSEMPEL 9EXAMPLE 9

Fumarateret_OEløselig_E2llgl'!i2222_Y2^_£E25S2ES2må^en vandig udgangsblandingFumarated_Osoluble_E2llgl '! I2222_Y2 ^ _ £ E25S2ES2must be an aqueous starting mixture

Processen fra eksempel 8 gentages under anvendelse af en vandig opløsning indeholdende 10 g fumarsyre af fødevarekvalitet i stedet for citronsvre. Den dannede nolvelucose minder stærkt om nroduk-The process of Example 8 is repeated using an aqueous solution containing 10 g of food-grade fumaric acid instead of citric acid. The resulting nolvelucose is strongly similar to the product.

20 DK1S2435BDK1S2435B

tet fra eksempel 8 og udviser de samme forbedringer med hensyn til farve, smag og 5-hydroxymethylfurfural-indhold i sammenligning med en analog fumarateret polyglucose fremstillet ved smeltepolymerisation.Example 8 and show the same improvements in color, taste and 5-hydroxymethylfurfural content as compared to an analog fumarated polyglucose prepared by melt polymerization.

EKSEMPEL 10 Æblesyrekatalyseret_opløselig_polyglucose_ved__fremgangsmåden_med vandig_udgangsblandingEXAMPLE 10 Malic Acid Catalyzed_Soluble_Polyglucose_ By the Method_ With Aqueous Exit

Processen fra eksempel 8 gentages under anvendelse af en vandig opløsning indeholdende 10 g æblesyre i stedet for citronsyren.The process of Example 8 is repeated using an aqueous solution containing 10 g of malic acid instead of the citric acid.

Den dannede polyglucose minder stærkt om produktet fra eksempel 8 og udviser den samme forbedring med hensyn til farve, smag og 5-hydroxymethylfurfuralindhold sammenlignet med en analog æblesyre-katalyseret polyglucose fremstillet ved smeltepolymerisation.The resulting polyglucose strongly resembles the product of Example 8 and shows the same improvement in color, taste and 5-hydroxymethylfurfural content as compared to an analog malic acid-catalyzed polyglucose prepared by melt polymerization.

EKSEMPEL 11EXAMPLE 11

Succinatgret opløselig polyglucose yed_fremgangsmåden_med._yandigSuccinate-soluble polyglucose by the method_within

Der fremstilles en opløsning ud fra 190 g glucose-monohydrat og 10 g ravsyre ved opløsning i 135 ml vand. Opløsningen inddampes som beskrevet i eksempel 4 og opvarmes derpå til 150° C ved et tryk på 670 Pa i 18 timer. Den dannede vandopløselige polyglucose sammenlignes derpå med et tilsvarende produkt fremstillet ved smeltepolymerisation. Produktet ud fra den vandige udgangsblanding viser de samme fordele som beskrevet for produktet i eksempel 8.A solution is prepared from 190 g glucose monohydrate and 10 g succinic acid by dissolving in 135 ml water. The solution is evaporated as described in Example 4 and then heated to 150 ° C at a pressure of 670 Pa for 18 hours. The resulting water-soluble polyglucose is then compared with a similar product made by melt polymerization. The product from the aqueous starting mixture shows the same advantages as described for the product of Example 8.

EKSEMPEL 12 udgangsblandingEXAMPLE 12 starting mixture

Processen fra eksempel 11 gentages under anvendelse af en vandig opløsning indeholdende 10 g adipinsyre af fødevarekvalitet i stedetThe process of Example 11 is repeated using an aqueous solution containing 10 g of food grade adipic acid instead.

21 DK 152435 B21 DK 152435 B

for ravsyren med i hovedsagen samme resultater.for the succinic acid with essentially the same results.

EKSEMPEL 13EXAMPLE 13

Fumarateret polyglucose med sorbitol_ved_en_kontinuert_fremgangs-måde_med_yandig_udgangsblandingFumarated polyglucose with sorbitol_by_continuous_process_with_and_and_initial mixture

Der fremstilles en 65 % vandig opløsning af en udgangsblanding indeholdende 50 kg dextrose-monohydrat, 5 kg sorbitol-monohydrat og 1,77 kg fumarsyre. Opløsningen indføres kontinuert i en 0,1 m^ overtørringsfilminddamper holdt ved 90-100° C. Det viskøse 2 gennemløb indføres på sin side i en 0,1 m overtørringsfilms-va-kuumreaktor opvarmet til 220 - 295° C. Hele systemet holdes ved et tryk på 40 kPa. Tilførselshastigheden til inddamperen indstilles således, at opholdstiden i hele systemet er 4-10 minutter. Sammenligningsprøvninger med det samme produkt fremstillet ved smeltepolymerisation viser igen de førnævnte forbedringer med hensyn til farve, smag og 5-hydroxymethylfurfural-indhold, medens andre egenskaber findes at være i hovedsagen identiske.A 65% aqueous solution of a starting mixture containing 50 kg of dextrose monohydrate, 5 kg of sorbitol monohydrate and 1.77 kg of fumaric acid is prepared. The solution is introduced continuously into a 0.1 m 2 super dry film evaporator held at 90-100 ° C. The viscous 2 pass is in turn introduced into a 0.1 m super dry film vacuum reactor heated to 220-295 ° C. The whole system is maintained at a pressure of 40 kPa. The supply speed of the evaporator is set such that the residence time throughout the system is 4-10 minutes. Comparative tests with the same product prepared by melt polymerization again show the aforementioned improvements in color, taste and 5-hydroxymethylfurfural content, while other properties are found to be substantially identical.

EKSEMPEL 14EXAMPLE 14

Fumarateret_polyglucose_med sorbitol_ved_kontinuert_fremgangsmåde fra vandig udgangsblandingFumarated_polyglucose_ with sorbitol_by_continuous_ method of aqueous starting mixture

Processen fra eksempel 13, hvori sorbitolindholdet i udgangsblandingen reduceres til 5 vægtprocent af det totale faststofindhold, giver en polyglucose, som stærkt minder om den, der blev fremstillet i eksempel 13, og som har de samme fordele i forhold til et tilsvarende smeltepolymerisationsprodukt.The process of Example 13, in which the sorbitol content of the starting mixture is reduced to 5% by weight of the total solids content, gives a polyglucose which is very similar to that produced in Example 13 and which has the same advantages over a similar melt polymerization product.

EKSEMPEL 15EXAMPLE 15

Fumarateret_polyglucose_med_erythritol_ved_kontinuert_fremgangs- S§^®_H^:_ii!S_Y§^iS_^S§2-SsblandingFumarated_polyglucose_with_erythritol_with_continuous_process- S§ ^ ®_H ^: _ ii! S_Y§ ^ iS_ ^ S§2-Ssb mixture

Processen fra eksempel 13, hvori sorbitol erstattes med en lige så stor vægtmængde erythritol, giver en polyglucose med sammeThe process of Example 13, in which sorbitol is replaced by an equal amount of weight of erythritol, yields a polyglucose of the same

22 DK 152435 B22 DK 152435 B

EKSEMPEL 16 glycerol ved kontinuert fremgangs-måde_ud_fra vandig udgangsblandingEXAMPLE 16 Glycerol by Continuous Procedure_ From Aqueous Initial Mixture

Processen fra eksempel 13, hvori sorbitol erstattes med en lige så stor vægtmængde glycerol, giver en polyglucose med samme egenskaber og fordele som produktet fra eksempel 13.The process of Example 13, in which sorbitol is replaced by an equal amount of weight of glycerol, provides a polyglucose with the same properties and benefits as the product of Example 13.

EKSEMPEL 17EXAMPLE 17

Tartrateret_2olyglucosejned_xylitol_yed_fremgangsmåden_med_yan--Tartrateret_2olyglucosejned_xylitol_yed_fremgangsmåden_med_yan--

Processen fra eksempel 4, hvori sorbitol erstattes med en lige så stor vægtmængde xylitol, giver en polyglucose med samme egenskaber og fordele som produktet fra eksempel 4.The process of Example 4, in which sorbitol is replaced by an equal amount of weight xylitol, provides a polyglucose with the same properties and benefits as the product of Example 4.

EKSEMPEL 18EXAMPLE 18

Tartrateret polyglucose_med_mannitol_yed_fremgangsmåden_med van-ÉiiJ^ggSggblandingTartrated polyglucose_with_mannitol_with_the method_with van-ÉiiJ ^ ggSgg mixture

Processen fra eksempel 4, hvori sorbitol erstattes med en lige så stor vægtmængde mannitol, giver en polyglucose med samme egenskaber og fordele som produktet fra eksempel 4.The process of Example 4, in which sorbitol is replaced by an equal amount of weight mannitol, provides a polyglucose with the same properties and benefits as the product of Example 4.

EKSEMPEL 19 Y22^ig_uhgangsblandingEXAMPLE 19 Y22

Processen fra eksempel 4, hvori sorbitol erstattes med galacti-tol, og udgangsopløsningen indeholder dextrose, galactitol og vinsyre i forholdet 94:5:1 efter tørvægt, giver en polyglucose med samme egenskaber og fordele som produktet fra eksempel 4.The process of Example 4, in which sorbitol is replaced by galactitol and the starting solution contains dextrose, galactitol and tartaric acid 94: 5: 1 by weight, gives a polyglucose with the same properties and benefits as the product of Example 4.

23 DK 152435 B23 DK 152435 B

EKSEMPEL 20EXAMPLE 20

Blanding_af_citrateret_ogløselig_og_uo£løselig_20lYglucose_ved ^remgangsmåden_med_vandig_udgangsblandingMixture_of_citrated_and insoluble_and_uo soluble_20lYglucose_by ^ the method of strapping_with_aqueous_ output

Der fremstilledes en opløsning bestående af 320 g D-glucose og 25 g citronsyre i 230 ml vand.A solution of 320 g of D-glucose and 25 g of citric acid in 230 ml of water was prepared.

En to-liters, tre-halset kolbe, forsynet med omrører, termometer, tildrypningstragt og kondensator til destillation,blev nedsænket i et oliebad ved 170° C, og systemet udpumpet til et tryk på 2,7-3,3 kPa. Omrøringen sattes i gang, og den vandige opløsning indførtes i kolben i løbet af 30-45 minutter, hvorunder hovedparten af vandet fordampedes. Omrøringen fortsattes, indtil blandingen blev meget klistret. Reaktanterne holdtes derpå ved 170° C i 18 timer. Den rå polymer blev formalet og opdelt i en vandopløselig (35 %) og en vanduopløselig (65 %) fraktion.A two-liter, three-neck flask fitted with a stirrer, thermometer, drip funnel and condenser for distillation was immersed in an oil bath at 170 ° C and the system pumped out to a pressure of 2.7-3.3 kPa. Stirring was started and the aqueous solution was introduced into the flask over 30-45 minutes during which most of the water evaporated. Stirring was continued until the mixture became very sticky. The reactants were then maintained at 170 ° C for 18 hours. The crude polymer was ground and divided into a water-soluble (35%) and a water-insoluble (65%) fraction.

Produkterne ligner meget de tilsvarende produkter fremstillet ved smeltepolymerisation, men produkterne i dette eksempel havde en væsentligt lysere farve.The products are very similar to the similar products made by melt polymerization, but the products in this example had a significantly lighter color.

EKSEMPEL 21EXAMPLE 21

Fremstilling_af_70_%_neutraliseret_opløsning_af_citrateret_poly- 22É2_E2iZSi^2222_ii!252iiii2i_Y2É-_252ii2E2iZ®2i!i22ii22 200 g af produktet fra eksempel 1 opløses i en lige så stor mængde afioniseret vand og indstilles til pH 5,5 med kaliumcarbonat. Den resulterende opløsning koncentreres derpå i vakuum til opnåelse af en 70 vægtprocent opløsning. Farven af den resulterende opløsning er "lys strågul" og bedømmes til at være organolep-tisk helt acceptabel.Preparation of 70% neutralized solution of citrated poly (22É2_E2iZSi ^ 2222_252iiii2i_Y2É-_252ii2E2iZ®2i22ii22 200 g of the product of Example 1 is dissolved in an equal amount of deionized water and adjusted to pH 5.5. The resulting solution is then concentrated in vacuo to give a 70% by weight solution. The color of the resulting solution is "light straw yellow" and judged to be organoleptically perfectly acceptable.

Sammenlignet med en 70 % opløsning fremstillet ud fra et analogt smeltepolymerisationsprodukt, som var blevet bleget med alkalisk (CaO) peroxid og neutraliseret til pH 5,5, er farven af den blegede opløsning kun en smule lysere. Opløsningen af produktetCompared to a 70% solution prepared from an analog melt polymerization product which had been bleached with alkaline (CaO) peroxide and neutralized to pH 5.5, the color of the bleached solution is only slightly brighter. The solution of the product

Claims (1)

24 DK 152435 B fremstillet ud fra vandig udgangsblanding bedømmes at være mindre bitter og mindre "kridtet” i smag og har væsentligt lavere calcium-, aske- og flygtigt fedtsyreindhold end det blegede produkt. Fremgangsmåde til fremstilling af polysaccharider eller poly-saccharid-derivater, hvorved man polykondenserer glucose, maltose eller en blanding deraf med op til 10 mol% af en i fødevarer acceptabel polycarboxylsyre-katalysator og eventuelt med 5 - 20 %, beregnet på den samlede vægt af reaktanter, sorbitol, glycerol, erythritol, xylitol, mannitol eller galactitol ved formindsket tryk og ved en temperatur på 150 - 300 °C under afdampning af det dannede vand, kendetegnet ved, at man først danner en vandig opløsning af udgangsmaterialerne og derpå dehydratiserer den vandige opløsning ved en temperatur under 100 °C og ved formindsket tryk til en i det væsentlige vandfri sirup, hvorefter denne sirup polykondenseres, idet polykondensa-tionen standses, før der sker væsentlig pyrolyse.24 DK 152435 B prepared from aqueous starting mixture is judged to be less bitter and less "chalky" in taste and has substantially lower calcium, ash and volatile fatty acid content than the bleached product. Process for preparing polysaccharides or polysaccharide derivatives, polycondensing glucose, maltose or a mixture thereof with up to 10 mol% of a food acceptable polycarboxylic acid catalyst and optionally 5-20% by weight of the total weight of reactants, sorbitol, glycerol, erythritol, xylitol, mannitol or galactitol at reduced pressure and at a temperature of 150 - 300 ° C during evaporation of the formed water, characterized in that an aqueous solution of the starting materials is first formed and then the aqueous solution is dehydrated at a temperature below 100 ° C and at reduced pressure. to a substantially anhydrous syrup, after which this syrup is polycondensed, stopping the polycondensation before substantial pyrolysis occurs.
DK143775A 1974-04-05 1975-04-04 PROCEDURE FOR THE PREPARATION OF POLYSACCHARIDES OR POLYSACCHARIDE DERIVATIVES BY POLYCONDENCE OF GLUCOSE, MALTOSE OR A MIXTURE THEREOF WITH A FOODS ACCEPTABLE POLYCARBOXYLY ACID CATALYST DK152435C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US45807974A 1974-04-05 1974-04-05
US45807974 1974-04-05

Publications (3)

Publication Number Publication Date
DK143775A DK143775A (en) 1975-10-06
DK152435B true DK152435B (en) 1988-02-29
DK152435C DK152435C (en) 1988-08-01

Family

ID=23819270

Family Applications (1)

Application Number Title Priority Date Filing Date
DK143775A DK152435C (en) 1974-04-05 1975-04-04 PROCEDURE FOR THE PREPARATION OF POLYSACCHARIDES OR POLYSACCHARIDE DERIVATIVES BY POLYCONDENCE OF GLUCOSE, MALTOSE OR A MIXTURE THEREOF WITH A FOODS ACCEPTABLE POLYCARBOXYLY ACID CATALYST

Country Status (29)

Country Link
JP (1) JPS5347280B2 (en)
AR (1) AR227369A1 (en)
AT (1) AT349491B (en)
BE (1) BE827490A (en)
BG (1) BG26401A3 (en)
CA (1) CA1031332A (en)
CH (1) CH602796A5 (en)
CS (1) CS203088B2 (en)
DD (1) DD117234A5 (en)
DE (1) DE2513931C3 (en)
DK (1) DK152435C (en)
ES (1) ES436269A1 (en)
FI (1) FI58335C (en)
FR (1) FR2266742B1 (en)
GB (1) GB1422294A (en)
HU (1) HU169606B (en)
IE (1) IE40959B1 (en)
IT (1) IT1035163B (en)
LU (1) LU72229A1 (en)
NL (1) NL7504018A (en)
NO (1) NO141472C (en)
PH (1) PH11619A (en)
PL (1) PL95718B1 (en)
RO (1) RO76424A (en)
SE (1) SE421319B (en)
SU (1) SU637089A3 (en)
TR (1) TR19136A (en)
YU (1) YU40114B (en)
ZA (1) ZA752131B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815054U (en) * 1981-07-20 1983-01-29 松下電器産業株式会社 Printing device paper feed device
DE3818884C2 (en) * 1987-06-04 1997-06-05 Mitsui Sugar Co Palatinose condensation product, process for its preparation and its use for the proliferation of bifidobacteria
AU6571898A (en) * 1997-03-19 1998-10-12 Cultor Food Science, Inc. Polymerization of mono- and disaccharides using low levels of polycarboxylic acids
AR014867A1 (en) * 1997-03-19 2001-04-11 Cultor Food Science Inc PROCESS TO PREPARE AN EDIBLE POLYACARIDE USING A EDIBLE POLYCARBOXYLIC ACID AS A CATALYST
US8993039B2 (en) 2006-01-25 2015-03-31 Tate & Lyle Ingredients Americas Llc Fiber-containing carbohydrate composition
CN101506240B (en) 2006-06-15 2012-07-18 赛罗尔比利时公司 Process for preparing randomly-bonded polysaccharides
FR3032709B1 (en) 2015-02-16 2017-02-24 Roquette Freres MALTO-OLIGO-SACCHARIDES RICH IN FIBERS AND HAVING LOW GLUCOSE BIOSAVAILABILITY, PROCESS FOR THEIR MANUFACTURE AND THEIR USES IN HUMAN AND ANIMAL NUTRITION
JP6725233B2 (en) * 2015-10-30 2020-07-15 日本食品化工株式会社 Gummy candy and method for producing the same
JP7088483B2 (en) * 2017-09-04 2022-06-21 国立大学法人静岡大学 Manufacturing method of water-soluble dietary fiber composition, manufacturing method of food and drink, and novel microorganisms
US11540549B2 (en) 2019-11-28 2023-01-03 Tate & Lyle Solutions Usa Llc High-fiber, low-sugar soluble dietary fibers, products including them and methods for using them
CN111087486B (en) * 2019-12-25 2022-05-27 江苏先卓食品科技股份有限公司 Novel continuous preparation method of resistant dextrin dietary fiber
CN110922500B (en) * 2019-12-25 2022-05-27 江苏先卓食品科技股份有限公司 Preparation method of polydextrose with low energy consumption
CN114686021A (en) * 2022-05-19 2022-07-01 千禾味业食品股份有限公司 Caramel color production process by using common method and caramel color

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2719179A (en) * 1951-01-25 1955-09-27 Mora Peter Tibor Branched-chain carbohydrate polymers and their preparation
US2856291A (en) * 1957-03-18 1958-10-14 Thomas H Schultz Preparation of solid flavoring compositions
US3766165A (en) * 1966-08-17 1973-10-16 Pfizer Polysaccharides and their preparation

Also Published As

Publication number Publication date
DE2513931B2 (en) 1980-02-28
GB1422294A (en) 1976-01-21
YU40114B (en) 1985-08-31
LU72229A1 (en) 1976-03-02
NO750898L (en) 1975-10-07
DE2513931A1 (en) 1975-10-09
ATA256675A (en) 1978-09-15
HU169606B (en) 1976-12-28
ES436269A1 (en) 1977-01-01
CH602796A5 (en) 1978-08-15
RO76424A (en) 1981-03-30
FR2266742B1 (en) 1977-11-18
TR19136A (en) 1978-05-31
FI58335C (en) 1981-01-12
DD117234A5 (en) 1976-01-05
DK143775A (en) 1975-10-06
JPS5347280B2 (en) 1978-12-20
IT1035163B (en) 1979-10-20
NL7504018A (en) 1975-10-07
SE7502928L (en) 1975-10-06
CS203088B2 (en) 1981-02-27
NO141472C (en) 1980-03-19
BE827490A (en) 1975-10-03
PH11619A (en) 1978-04-12
PL95718B1 (en) 1977-11-30
AR227369A1 (en) 1982-10-29
YU86375A (en) 1982-02-28
JPS50142699A (en) 1975-11-17
IE40959B1 (en) 1979-09-26
DK152435C (en) 1988-08-01
SE421319B (en) 1981-12-14
NO141472B (en) 1979-12-10
AU7937875A (en) 1976-09-23
FI58335B (en) 1980-09-30
IE40959L (en) 1975-10-05
SU637089A3 (en) 1978-12-05
FR2266742A1 (en) 1975-10-31
FI750976A (en) 1975-10-06
ZA752131B (en) 1976-03-31
BG26401A3 (en) 1979-03-15
CA1031332A (en) 1978-05-16
AT349491B (en) 1979-04-10
DE2513931C3 (en) 1986-07-10

Similar Documents

Publication Publication Date Title
US11572380B2 (en) Saccharide polycondensate, method for producing the same, and application therefor
US3766165A (en) Polysaccharides and their preparation
US3876794A (en) Dietetic foods
CN105935081B (en) Carbohydrate composition containing fiber
CN106108024B (en) Food products comprising a slowly digestible or digestion resistant saccharide composition
US5358729A (en) Indigestible dextrin
JP3490106B2 (en) Preparation of arbitrarily hydrogenated indigestible polysaccharides
US20030044513A1 (en) Polymerization of mono and disaccharides with monocarboxylic acids and lactones
DK164387B (en) ADDITIVE TO FOOD AND PROCEDURES FOR PREPARING THEREOF AND USING IT
DK152435B (en) PROCEDURE FOR THE PREPARATION OF POLYSACCHARIDES OR POLYSACCHARIDE DERIVATIVES BY POLYCONDENSATION OF GLUCOSE, MALTOSE OR A MIXTURE THEREOF WITH A FOOD ACCEPTABLE POLYCARBOXYLIC ACID CATALYST
AU2002309541A1 (en) Polymerization of mono and disaccharides with monocarboxylic acids and lactones
EP0407453B1 (en) A method for preparing a mixture of saccharides
KR20220108798A (en) High-fiber, low-sugar-soluble dietary fiber, products comprising same, and methods of making and using same
NZ549563A (en) Carbohydrate polymers prepared by the polymerization of mono and disaccharides with monocarboxylic acids and lactones
US9237765B2 (en) Non-digestible hydroxypropyl starch hydrolysate, method for production thereof and food and beverage
JP3659755B2 (en) Reduced indigestible chickenpox and food using the same
JPH04183372A (en) Low-calorific food and drink
JPS5836945B2 (en) Manufacturing method of diet food composition
KR930001317B1 (en) Polydextrose and process therefor
DE1668539C3 (en) Process for the production of polysaccharides and polysaccharide derivatives suitable for food and the use of the products produced
CN103044498A (en) Production system of sucralose
DE1668539B2 (en) PROCESS FOR THE MANUFACTURING OF POLYSACCHARIDES AND POLYSACCHARIDE DERIVATES SUITABLE FOR FOOD AND THE USE OF THE PRODUCTS MANUFACTURED

Legal Events

Date Code Title Description
PUP Patent expired
PBP Patent lapsed