JP3659755B2 - Reduced indigestible chickenpox and food using the same - Google Patents
Reduced indigestible chickenpox and food using the same Download PDFInfo
- Publication number
- JP3659755B2 JP3659755B2 JP30922696A JP30922696A JP3659755B2 JP 3659755 B2 JP3659755 B2 JP 3659755B2 JP 30922696 A JP30922696 A JP 30922696A JP 30922696 A JP30922696 A JP 30922696A JP 3659755 B2 JP3659755 B2 JP 3659755B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- indigestible
- reduced
- candy
- amylase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Grain Derivatives (AREA)
- Jellies, Jams, And Syrups (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は難消化性水飴を還元して得られる還元難消化性水飴及びこれを含有する食品に関する。
【従来の技術】
近年日本においても生活水準の向上に伴い、食生活も変化し欧米の水準に近付いてきた。この結果として平均寿命が延長し、急速な高齢化現象が起きたことから疾病構造が変化して成人病が著しく増加したために、健康志向が飛躍的に増大している。この中で生体調節機能を有する食品素材の例として、食物繊維やオリゴ糖が便秘の改善を中心とした生体調節機能を有するところから、食品の機能を高める素材として注目を集めている。
【0002】
これらの食物繊維やオリゴ糖のような難消化性の物質は、消化管内で種々の挙動を示し、生体に対して生理効果を発現する。まず、上部消化管において、水溶性の食物繊維は食物の移動速度の低下をもたらし、栄養素の吸収遅延が起こる。例えば、糖の吸収遅延は血糖値の上昇を抑制し、それに伴いインシュリン節約などの効果を発現する。また、胆汁酸の排泄を促進することにより、体内のステロールグループが減少し、血清中のコレステロールが低下するなどの効果も現れる。その他、体内の内分泌系を介しての生理効果も報告されている。
また、これらの難消化性物質の特徴は、小腸までの消化吸収を免れ、大腸へ達することである。大腸へ達したオリゴ糖や食物繊維の一部は、腸内細菌により資化されて短鎖脂肪酸、腸ガス、ビタミンなどを産生する。短鎖脂肪酸による腸内環境の酸性化は、整腸作用をもたらし、また吸収された短鎖脂肪酸は代謝されエネルギーになると同時にコレステロール合成を阻害することも報告されている。さらに最近は一部の食物繊維は非う蝕性であることも報告されている。
【0003】
難消化性物質のうちで澱粉を原料として製造される、マルチトール、ポリデキストロース、難消化性デキストリン(食物繊維含有デキストリン)およびその還元物である還元難消化性デキストリンなどが知られており、水溶性であることから広範囲の食品に使用することができる。
しかし、これらの水溶性の難消化性物質のなかで、マルチトールやソルビトールなどの糖アルコール類はショ糖と同程度の甘味を有しており、褐変しにくいことから、ショ糖の代替品として使用する場合には適しているが、食品によっては甘味が強すぎて不適当であったり、低粘性のために濃厚感に欠ける、また吸湿性が強くてキャンディとしての保形性が悪いことから、液状食品以外には適さないことがあり、加えて緩下性があることから用途が限定される。
またポリデキストロースは、低甘味であるが濃厚感に欠け、緩下性がありまた一部う蝕性が観察される。
【0004】
還元難消化性デキストリンに関する従来技術としては、特開平2−145169号に焙焼デキストリンにα−アミラーゼを作用させて難消化性デキストリンを製造し、これに水素添加して還元難消化性デキストリンを製造する方法、およびα−アミラーゼ作用後にトランスグルコシダーゼまたは(及び)β−アミラーゼを作用させて、食物繊維を増加させてから水素添加して、還元難消化性デキストリンを製造する方法が記載されている。
特開平2−154664号には、焙焼デキストリンにα−アミラーゼにつづいて、グルコアミラーゼを作用させ、クロマト分画で食物繊維分を採取して食物繊維高含有デキストリンを製造する方法、クロマト分画前にトランスグルコシダーゼを作用させて食物繊維を増加させる方法、に続いてこれらの食物繊維高含有デキストリンに水素添加して還元する方法が記載されている。
【0005】
これらの難消化性デキストリンは低甘味であり、吸湿性が低く、濃厚感を付与することができるが、一方では甘味が低いために他の甘味料との併用が必要であり、う蝕性もあり、市販品ではやや着色しておりpHが中性の食品の製造中や保存中に褐変が起こり易く、煮詰め時の焦げ付きも起こり易い。
また還元難消化性デキストリンは、難消化性デキストリンの褐変性や煮詰め時の焦げ付きは改善されているが、甘味が低いことは難消化性デキストリンと同様である。
そこで前記の水溶性食物繊維が有する欠点を改善し、単に低エネルギーだけでなくその保有する生理効果、非う蝕性を有し広範囲の食品に使用できる難消化性物質は開発・商品化されていないために、各種の食品業界からその出現が切望されている。
【0006】
【発明が解決しようとする課題】
従って本発明が解決しようとする課題は、低エネルギーであることに加えて各種の生理効果を有し、非う蝕性であり、褐変性が低く、且つ適度の甘味と粘性を有し、他の吸湿性が高くて保形性が悪い糖アルコール類と混合してこれらの欠点を改善することができる還元難消化性水飴を得ることである。
【0007】
【課題を解決するための手段】
本発明は前記の難消化性デキストリンや、還元難消化性水飴の製造に関して従来知られていない新規な技術すなわち、酸添加焙焼デキストリンに液化型α−アミラーゼに続いてプルラナーゼに代表される枝切り酵素とβ−アミラーゼまたは、枝切り酵素と糖化型アミラーゼを作用させて加水分解物を得、これを還元することによって前記の課題を解決して本発明を完成させたのである。
本発明の還元難消化性水飴の原料澱粉としてはコーンスターチ、馬鈴薯澱粉、藷澱粉、タピオカ澱粉などの広範囲の澱粉が使用できる。この澱粉から難消化性水飴を得るためには、触媒として酸を添加することが必須である。酸としては各種のものが挙げられるが、食品用であることからして、無機酸が好ましく、塩酸を使用するのが特に好ましい。塩酸の添加量は、1重量%前後の濃度の水溶液を澱粉に対して数重量%程度(3〜10重量%)が適当である。加熱処理の前に酸水溶液を添加するので、澱粉と酸を均一に混合するために、ミキサー中で攪拌、熟成させ、混合物の水分が1〜10重量%となるように予備乾燥した後、加熱処理を行う。加熱条件は、従来の加酸焙焼デキストリン(白色デキストリン、黄色デキストリン)の加熱条件とは異なり、150〜200℃で10分〜120分、好ましくは15分〜60分の加熱処理をして得るものである。反応時の温度は高い方が目的生成物中の難消化成分の含量が増加するが、180℃付近から着色物質が増加するので、より好ましくは150℃〜180℃である。
【0008】
加熱装置を選択することによって高温短時間の反応を行うことも可能であるので、均一な反応を行うことができる装置を用いれば効率的に加熱処理することができる。また、粉末状態での反応であるから大規模生産の場合は、加熱条件を変更する必要もあるので、加熱処理後の製品の品質を検討した上で、適宜加熱条件を変更することが望ましい。
このようにして得られる製品としては、その食物繊維の含量は低カロリーとするためには高いほど好ましいが、一方では適度の甘味を発現させることも必要であるから、30〜60重量%、より好ましくは40〜60重量%以上のものに限定される。
【0009】
次いで焙焼デキストリンを水に溶解して20〜45重量%の濃度にして、水酸化ナトリウムなどの中和剤を用いて、pHを5.5〜6.5程度に調整してから通常は0.05〜0.2重量%程度の液化型α−アミラーゼを添加してα−アミラーゼの作用温度である80〜95℃で、通常1時間程度加水分解を行う。この液化型α−アミラーゼとしては市販品がいずれも使用できるが、ターマミル(商品名:ノボ・ノルディスク・バイオインダストリー社製の耐熱性α−アミラーゼ)が最も好ましい。
【0010】
続いて枝切り酵素とβ−アミラーゼまたは、枝切り酵素と糖化型アミラーゼを併用して加水分解する。枝切り酵素としてはイソアミラーゼも使用できるが、プルラナーゼが最も好ましい。β−アミラーゼおよび糖化型アミラーゼとしては麦芽由来、カビ由来、細菌由来の酵素がいずれも使用できるが、糖化型アミラーゼとしてはカビ由来のα−アミラーゼが最も好ましい。
プルラナーゼとβ−アミラーゼまたは、プルラナーゼと糖化型アミラーゼを作用させる時のpHは5.0〜6.0が好ましい。両酵素剤の添加量も同様にそれぞれ0.05〜0.2重量%程度である。反応温度は55〜60℃程度であり、分解時間は通常24〜48時間程度である。
【0011】
また焙焼デキストリンを最初に液化型α−アミラーゼで加水分解した後に、加水分解液を115〜135℃で加圧蒸煮処理をしてから再度α−アミラーゼを作用させておくことにより、精製時の濾過速度を高めることもできる。
尚酵素剤の添加量はいずれも前記の範囲に限定されるものではなく、酵素剤の力価に応じて同等の量を添加すればよい。また添加量を増減することによって反応時間を自由に調整することもできる。
酵素剤を作用させた後に、pHを3.5前後に低下させ、次に液温を80℃前後まで上昇させ、以後は通常の活性炭脱色、ろ過、イオン交換樹脂による脱塩、脱色を行う。次に50〜70重量%程度の濃度まで濃縮して難消化性水飴を得る。
【0012】
次に難消化性水飴を還元するが、この還元(水素添加)反応は澱粉糖類に一般的に行われる条件と同様であり、通常はラネーニッケル、ラネーコバルト、ニッケル硅藻土などの常用還元触媒を添加し、水素圧50〜130Kg/cm2 、温度50〜150℃程度の常用条件下で水素添加を行う。この際の加熱は溶液中に水素を飽和状態となるまで充分に溶解させてから行うことが好ましく、これに反し水素の供給が不十分な場合には酸化・加水分解などの好ましくない副反応が生起することがある。この水素添加は温度、圧力などの反応条件によって多少の違いはあるが、通常2時間以内に終結する。次に当該技術分野で通常用いられる精製、例えば触媒分離後に再度活性炭脱色、ろ過、イオン交換樹脂による脱塩、脱色を行う。
【0013】
前記の製造方法によって食物繊維の含量が30〜60重量%、マルチトールの含量が15〜40重量%で、エネルギー値が2キロカロリー以下の還元難消化性水飴が得られる。
本発明によって得られる還元難消化性水飴は殆ど全ての食品に使用することができる。この食品とは、ヒトの食品、動物及び家畜飼料、ペットフードなどを総称するものである。澱粉を原料とした水溶性の還元難消化性水飴であって食物繊維を含有し、低カロリー増量剤としても食品に使用できることから、用途としては従来デキストリンやマルトデキストリン、水飴、還元水飴、還元麦芽糖水飴などが使用できる食品の全てが包含される。
【0014】
それらの食品を例示すれば、コーヒー、紅茶、コーラ、ジュース等の液体及び粉末の飲料類、パン、クッキー、ビスケット、ケーキ、ピザ、パイ等のベーカリー類、ウドン、ラーメン、ソバ等の麺類、スパゲッテイ、マカロニ、フェットチーネ等のパスタ類、キャンデー、チョコレート、チューインガム等の菓子類、ドーナッツ、ポテトチップス等の油菓子類、アイスクリーム、シェーク、シャーベット等の冷菓類、クリーム、チーズ、粉乳、練乳、クリーミイパウダー、コーヒーホワイトナー、乳飲料等の乳製品、プリン、ヨーグルト、ドリンクヨーグルト、ゼリー、ムース、ババロア等のチルドデザート類、各種スープ、シチュー、グラタン、カレー等のレトルトパウチないし缶詰類、各種味噌、醤油、ソース、ケチャップ、マヨネーズ、ドレッシング、ブイヨン、各種ルー等の調味料類、ハム、ソーセージ、ハンバーグ、ミートボール、コーンビーフ等の肉加工品及びそれらの冷凍食品、ピラフ、コロッケ、オムレツ、ドリア等の冷凍加工食品、クラブスチック、カマボコ等の水産加工品、乾燥マッシュポテト、ジャム、マーマレード、ピーナッツバター、ピーナッ等の農産加工品、その他佃煮、餅、米菓、スナック食品、ファーストフード等、さらにワイン、ビール、カクテル、フィズ、リキュール等の酒類などであり、これらのいずれにも効果的に使用できる。
【0015】
以下実験例によって本発明を詳細に説明する。
〔食物繊維の定量法〕
平成8年5月23日厚生省告示の衛新47号に規定された栄養成分等の分析方法の、食物繊維の定量法の内でプロスキー法だけでは分析が困難とされる、低分子水溶性食物繊維を含む食品に適用される、高速液体クロマトグラフ法に準じて定量した。
1)まずプロスキー法(Prosky,L et al,J.Assoc.Off.Anal.Chem.,68,(2),399,1985)により熱安定α−アミラーゼによる消化、プロテアーゼによる消化に続いてアミログルコシダーゼにより消化させ、この酵素反応液にエタノールを加えて沈澱を生成させ、ろ過する。この残留物を乾燥秤量して食物繊維含量A(重量%)を求める。
2)次にろ液を濃縮し、溶媒を除去したのち100ml定容とし低分子水溶性食物繊維を含む酵素処理液とする。これをイオン交換樹脂に通液し、蒸留水で押し出し、溶出液を200mlとする。この溶液を濃縮しBrix5とし孔径0.45μmのメンブランフィルターでろ過して試料溶液を得る。
3)次の条件で高速液体クロマトグラフィーに供し、高速液体クロマトグラムを得る。ブドウ糖及び食物繊維画分又は内標準物質及び食物繊維画分の面積を求める。
【0016】
<高速液体クロマトグラフ操作条件>
カラム温度:80℃−85℃
移動相:水
流 速:0.3ml/min
注入量:20μl
4)2)で得られる試料溶液中のブドウ糖をピラノースオキシダーゼで測定し、その含量を求め、標準物質とする。
5)計算
低分子水溶性食物繊維重量(mg)(B)=
(食物繊維のピーク面積)/(ブドウ糖のピーク面積)×(ブドウ糖重量)
乾燥・脱脂試料中の低分子水溶性食物繊維(重量%)(D)=
〔食物繊維重量B(mg)〕/〔試料採取量(mg)〕×100
生試料中の低分子水溶性食物繊維(重量%)(E)=
D×〔1−(乾燥減量重量%+脱脂減量重量%)/100〕
生試料中の総食物繊維(重量%)=プロスキー法で求められた食物繊維重量%(A)+低分子水溶性食物繊維重量%(E)
【0017】
〔エネルギー値の算出法〕
糖類のカロリー値が4キロカロリー/gであるから、
生試料中のエネルギー値(キロカロリー/g)(F)=
4×〔(100−生試料中の低分子水溶性食物繊維B重量%)/100〕
ソルビトールのエネルギー値は3キロカロリー、マルチトール、マルトトライトールは2キロカロリーと規定されているから本発明の製品のエネルギー値は下式によって算出する。但しソルビトール、マルチトールおよびマルトトライトールの含量を、それぞれS重量%、M重量%およびT重量%と記載する。
エネルギー値(キロカロリー/g)=
F−S×(4−3)−M×(4−2)−T×(4−2)
【0018】
〔甘味度の測定法〕
試料の30重量%溶液に近い甘味のショ糖溶液を、1重量%濃度間隔で4種類調製し、官能試験(飲み較べ)を行い下式により甘味度を算出した。
甘味度=〔相当するショ糖溶液の濃度(重量%)〕/30(重量%)×100
〔粘度の測定法〕
試料の50重量%溶液を調製し、各温度における粘度をB型粘度計で測定した。
〔浸透圧・氷点降下度の測定法〕
各濃度における浸透圧および、氷点降下度をOSMOTRON−10を使用して測定した。
【0019】
〔着色度の測定法〕
試料の10重量%溶液を紫外可視分光光度計UV−160(島津製作所製造)で10cmのセルを用いて、420nmと720nmの吸光度を測定してその差を着色度とした。
〔糖組成の測定法〕
5重量%溶液を10μl採取し、下記の条件の高速液体クロマトグラフで分析する。
高速液体クロマトグラフ条件
カラム 三菱MCI GEL CK04SS
検出器 示差屈折計
カラム温度 80℃
流速 0.3ml/min.
溶離液 水
分析結果の表記のDP1、DP2およびDP3はそれぞれソルビトール、マルチトールおよびマルトトライトールに相当する。
【0020】
〔DEの測定法〕
DEとはDextrose Equivalent(ブドウ糖当量)の略で、澱粉加水分解物の加水分解の程度を表すのに広く用いられる指標であり、ウィルシュテッター・シューデル法を用いて還元糖をブドウ糖として測定し、その還元糖の固形分100に対する比をDEとした。
〔濃度の測定法〕
レフ・ブリックス計(ATAGO社製)によって測定したブリックス度を重量%濃度とした。
以下実験例によって本発明を詳細に説明する。
【0021】
【実験例】
【実験例1】
市販のコーンスターチをリボン式ミキサーに入れ、ミキサーを回転しながら1重量%濃度の塩酸を加圧空気を用いて、コーンスターチに対して400ppmになるようにスプレーし、続いて粉砕機を通して均一化した後、更にリボン・ミキサー中で4時間熟成した。この混合物をフラッシュ・ドライヤーで水分を約4重量%になるように予備乾燥した後、焙焼機に投入し、150℃で20分間焙焼して焙焼デキストリンを得た。
この焙焼デキストリンを水に溶解して35重量%濃度の溶液とし、0.2重量%のターマミル60L(商品名:ノボ・ノルディスク・バイオインダストリー社製造の耐熱性α−アミラーゼ製剤)を添加し、90℃で10分間加水分解した。次に加圧容器内で130℃で20分間加熱処理をした。加水分解液を濃度30゜Bxに希釈し、pHを5.5に調整し、液固形分に対して0.2重量%のビオザイムL(商品名:天野製薬社製造のβ−アミラーゼ製剤)と、0.215重量%のプルラナーゼ/アマノ(商品名:天野製薬社製造の枝切り酵素)を添加し、55℃で15時間加水分解した。この加水分解液を活性炭により脱色ろ過し、イオン交換樹脂により脱塩処理をしてから真空濃縮して濃度65重量%で、食物繊維の含量が液固形分あたり46.2重量%の難消化性水飴を得た。
【0022】
次にこの難消化性水飴溶液1Kgを2lの還元用反応容器にいれ、触媒としてラネーニッケルR239(商品名:日興理化社製造)20gを添加し、水素ガスを100Kg/cm2 の圧力に達するまで充填し、400〜600rpmで攪拌しながら130℃で3時間還元反応を行った。還元物をろ過して触媒を分離後に活性炭で脱色ろ過後にイオン交換樹脂で脱塩して濃度70重量%に濃縮し、約710gの還元難消化性水飴を得た。この還元難消化性水飴(以下本発明品と記載する)の固形分あたりの分析値を表1に示す。
【0023】
【表1】
重合度 各成分の含量(重量%)
DP1 5.6
DP2 47.0
DP3 5.3
DP4 3.4
DP5 4.5
DP6 3.5
DP7以上 30.7
食物繊維含量 44.0
エネルギー値 1.14キロカロリー
【0024】
【物性試験】
本発明品について、ショ糖、ソルビトール、マルチトール、ポリデキストロース、澱粉、難消化性デキストリン(松谷化学工業株式会社製造の商品名ファイバーソル−2)、マルトース、マルトデキストリン(松谷化学工業株式会社製造の商品名TK−16)、粉飴(松谷化学工業株式会社製造のパインデックス#3)と対比してエネルギー値、甘味度、粘度、消化性、消化吸収性、う蝕性、発酵性、浸透圧、氷点降下度、安定性の検討を行った結果は次のとおりである。
1.エネルギー値は約1キロカロリー/gである。
2.甘味度の官能検査による測定結果を表2に示す。
【0025】
【表2】
ショ糖 100
ソルビトール 65
本発明品 40
3.粘度
粘度の測定値を表3に示す。
【0026】
【表3】
【0027】
4.消化性(In vitro試験)
1)唾液アミラーゼによる消化性
試験条件
緩衝液 :45mM(ビス)トリス緩衝液(pH6.0)
被検液濃度:4.55重量%
酵素 :ヒト唾液アミラーゼ Type IX−A
反応温度 :37℃
反応時間 :30分
糖の分析 :生成還元糖をソモギー・ネルソン法で測定
試験結果を表4に示す。
【0028】
【表4】
試料 分解率(重量%)
本発明品 0.00
難消化性デキストリン 0.67
澱粉 25.7
【0029】
2)小腸粘膜酵素による消化性
試験条件
緩衝液 :45mMマレイン酸ナトリウム緩衝液(pH6.6)
被検液濃度:0.45重量%
酵素 :ラット小腸アセトン粉末(SIGMA)
反応温度 :37℃
反応時間 :180分
糖の分析 :生成したグルコースをピラノースオキシダーゼで測定。
試験結果を表5に示す。
【0030】
【表5】
試料 分解率(重量%)
本発明品 10.0
難消化性デキストリン 11.2
マルトース 93.2
【0031】
表4、5の結果は本発明品はヒト唾液アミラーゼで全く分解されず、ラット小腸アセトン粉末で僅かに分解されるのみであることを示す。
5.消化吸収性(In vivo試験)
健常成人6名に50gの本発明品およびTK−16(商品名:松谷化学工業社製造のDE約16のマルトデキストリン)を摂取させ、経時的に採血を行い、血糖値を測定した。その結果、図1に示すように本発明品は血糖を上昇させないことを認めた。このことは上部消化管では消化吸収を受けずに、大腸へそのまま到達することが推定できる。
【0032】
6.う蝕性
う蝕の主要原因菌であるS.mutansを用いて、本発明品の酸産生、不溶性グルカン生成および不溶性グルカン生成阻害能を検討した。
1)酸産生
水酸化ナトリウム水溶液でpH7.0に調整したS.mutans懸濁液に各糖類を添加して37℃で、6時間培養した時のpHを測定した結果を表6に示す。
【0033】
【表6】
試料 6時間培養後のpH
ブランク(糖無添加) 6.30
本発明品 6.25
グルコース 5.26
ショ糖 5.21
マルチトール 6.27
ポリデキストロース 5.23
【0034】
表6から本発明品はマルチトールと同様にS.mutansによる酸産生はほとんどみられなかった。
2)不溶性グルカン生成能
S.mutansの産生するグルコシルトランスフェラーゼを各糖類の溶液に添加し、37℃、3時間培養し、分光光度計で波長550nmにおける吸光度を測定した結果を表7に示す。
【0035】
【表7】
試料 3時間反応後の吸光度
ブランク(糖無添加) 0.075
本発明品 0.083
グルコース 0.084
ショ糖 0.352
マルチトール 0.083
ポリデキストロース 0.083
【0036】
表7から本発明品はグルコシルトランスフェラーゼによる不溶性グルカンの生成は認められなかった。
3)不溶性グルカン生成阻害能
2)と同様にグルコシルトランスフェラーゼを各糖類の溶液に添加し、さらにショ糖も加えて37℃で3時間および24時間反応させ、550nmでの吸光度をショ糖単独の場合を100として算出した数値を表8、表9に示す。
【0037】
【表8】
【0038】
【表9】
【0039】
表8、表9から明らかなように本発明品はショ糖から不溶性グルカンの生成を抑制する働きが認められた。
上記の1)、2)、3)の結果から本発明品はう蝕の主要原因菌であるS.mutansによる酸の産生、および歯垢の原因である不溶性グルカンの生成が認められず、また不溶性グルカンの生成を抑制するため、非う蝕性の糖類であることが確認された。
【0040】
7.発酵性
本発明品の発酵性を各種の細菌で検討した。
1)ハム・ソーセージのネトの主要菌であるMicrococcusおよびLeuconostocの懸濁液を0.5重量%の各糖類を含む培地に節酒し、37℃、3日間培養した後、pH値およびpH6.5に調整するのに要した1/50N水酸化ナトリウムの量を測定した。結果を表10に示す。
【0041】
【表10】
【0042】
2)乳酸菌E.faecalis、L.acidophilusおよびB.longumの懸濁液を0.5重量%の各糖類を含む培地に接種し、37℃、4日間培養した後、pHを測定した。結果を表11に示す。
【0043】
【表11】
【0044】
表10、表11の結果から本発明品は発酵性が低い糖類であることが確認された。
8.浸透圧と氷点降下度
各試料を約10゜Bx濃度の水溶液として浸透圧と氷点降下度を測定した結果を表12に示す。
【0045】
【表12】
試料 濃度(°Bx) 浸透圧(mOsm/cm2)氷点降下度(℃)
本発明品 11.4 300 1.37
ショ糖 11.5 378 0.70
マルチトール 11.5 333 0.62
ライテスII 11.5 191 0.35
【0046】
9.安定性試験
1)褐変
pH4.5および6.5に調整した緩衝液(グリシン1重量%含有)を用いて本発明品および粉飴の10重量%溶液を調製し、沸騰湯浴中で3時間加熱し、この間に経時的に分析試料を採取し、着色度を測定して褐変反応を検討した。結果を図2に示す。
図2の結果は本発明品が殆ど褐変しないことを示す。
2)酸性下における加熱安定性
本発明品の10重量%水溶液にクエン酸0.25重量%およびアスコルビン酸0.05重量%を添加後、100℃で1時間加熱した試料について着色度と糖組成を測定し、安定性の検討を行った。結果を表13に示す。
【0047】
【表13】
【0048】
表13から加熱後に着色度がわずかに増加したのみで、構成糖の分解は認められなかった。
3)酸性下における煮詰め安定性
本発明品の100gにクエン酸1.0重量%を添加し濃度を75重量%に調製した後、600Wの電気コンロ上で160℃まで加熱して煮詰めた後、型に流し込み放冷してキャンデーを試作した。煮詰め前後の着色度および糖組成(重量%)を測定し、酸性下における煮詰め安定性の検討を行った。結果を表14に示す。
【0049】
【表14】
【0050】
表14から煮詰め前後の着色度、糖組成とも差がないことから非常に安定であることを認めた。
次に実施例を示す。
【0051】
【実施例1】
実験例1で製造した焙焼デキストリンを、実験例1と同条件でターマミル60Lで加水分解、加熱処理をして得た加水分解液を濃度30°Bxに希釈し、pHを5.5に調整して液固形分に対して0.2重量%のFungamyl 900L(商品名:ノボ・ノルディスク・バイオインダストリー社製造のカビ由来の糖化型α−アミラーゼ)と、同様に0.215重量%のプルラナーゼ/アマノを添加し、55℃で15時間加水分解した。この加水分解液を活性炭により脱色ろ過し、イオン交換樹脂により脱塩処理をしてから真空濃縮して濃度65重量%の難消化性水飴を得た。
この難消化性水飴の18.55Kgを20lの還元用反応容器にいれ、実験例1と同様のラネーニッケル420.338.1gを添加し、水素ガスを96Kg/cm2 の圧力に達するまで充填し、500rpmで攪拌しながら130℃で3時間還元反応を行った。還元物をろ過して触媒を分離後に活性炭で脱色ろ過後にイオン交換樹脂で脱塩し、濃度70重量%に濃縮して、約14.9Kgの還元難消化性水飴を得た。
【0052】
【実施例2】
実験例1で製造した焙焼デキストリンを、実験例1と同条件でターマミル60Lで加水分解、加熱処理をして得た加水分解液を濃度30°Bxに希釈し、pHを5.5に調整して液固形分に対して0.2重量%のビオザイムL(商品名:天野製薬社製造のβ−アミラーゼ)と、同様に0.215重量%のプルラナーゼ/アマノを添加し、55℃で15時間加水分解した。この加水分解液を活性炭により脱色ろ過し、イオン交換樹脂により脱塩処理をしてから真空濃縮して濃度65重量%の難消化性水飴を得た。
この難消化性水飴の19.80Kgを20lの還元用反応容器にいれ、実験例1と同様のラネーニッケル420.2gを添加し、水素ガスを95Kg/cm2 の圧力に達するまで充填し、500rpmで攪拌しながら130℃で3時間還元反応を行った。還元物をろ過して触媒を分離後に活性炭で脱色ろ過後にイオン交換樹脂で脱塩し、濃度70重量%に濃縮して約15.7Kgの還元難消化性水飴を得た。
実施例1、2の還元難消化性水飴の固形分あたりの分析値を表15に示す。
【0053】
【表15】
【0054】
【実施例3】
実験例1で製造した還元難消化性水飴を固形分で500gを1lのステンレス容器にとり、600Wの電熱器上で緩やかに攪拌しながら品温が160℃になるまで加熱した後、約80℃まで放冷してステンレス製キャビティーに流し込んで成型、固化させた。約15分後にキャビティーを逆さにしてその縁を捻って型枠から外し、本発明のキャンディを得た。得られたキャンディは型外れが良好であり、水分は0.3重量%、外観は透明で表面の凹凸がなく、噛んだときに適度の歯脆さが感じられた。
【0055】
【比較例1】
グラニュー糖300g、フジシラップ38(商品名:加藤化学(株)社製の水飴)を固形分で200gを使用した以外は、実施例3と同様にしてキャンディを試作した。得られたキャンディは型外れが良好であり、水分は0.4重量%、外観はやや黄色がかった透明で表面の凹凸がなく、噛んだときに適度の歯脆さが感じられた。
【0056】
【比較例2】
マルビット(商品名:林原生物化学研究所製の還元麦芽糖水飴)を固形分で500gを使用した以外は、実施例3と同様にキャンディを試作した。得られたキャンディは型外れが不良であり、水分は0.3重量%、外観は透明であったが、噛んだときに歯にキャンディが食い込み、歯に付着して不快に感じられた。
【0057】
【比較試験1】(吸湿試験)
実施例3および比較例1、2で調製したキャンディを用いて、以下の方法でキャンディの保形性試験を行った。相対湿度81%、30±1℃の恒湿デシケーターに各キャンディをそれぞれ1個づつ秤量缶にいれて保存し、経時的に重量を測定して次式によって水分の「重量変化率(重量%)」を算出した。結果を表16に示す。
重量変化率(重量%)=保存後の重量÷保存前の重量×100−100
【0058】
【表16】
試料 24時間後 48時間後 72時間後
実施例3 3.8 8.4 11.3
比較例1 4.9 9.4 12.7
比較例2 6.6 14.8 17.4
【0059】
【比較試験2】(保形性試験)
実施例3および比較例1、2で調製した各キャンディを、グラフ用紙を敷いたペトリ皿に入れ30±1℃、相対湿度81%の恒湿デシケーター内で48±1時間保存し、吸湿によってキャンディが流れ出た面積を測定して次式により「流れ(%)」を計算した。結果を表17に示す。
流れ(%)=保存後のキャンディの面積÷保存前のキャンディの面積×100
【0060】
【表17】
試料 流れ(%)
実施例3 400
比較例1 400
比較例2 855
【0061】
表17の結果は実施例3のキャンディの「流れ」は比較例1と同等であり、いずれも比較例2の半分以下であった。
【比較試験3】(熱安定性試験)
実施例3および比較例1、2で調製した各キャンディを、製造直後にアルミニウム製の包装材で密封包装し、40℃、45℃および50℃の各温度において保存し、キャンディの熱安定性を経時的に観察した。評価方法は状態に変化がないものを◎、キャンディ同士が軽く付着しているが、手で簡単に離すことができるものを○、キャンディ同士が強く付着していて離し難いものを△、キャンディ同士が融解していて形が崩れているものを×の記号で表現した。結果を表18に示す。ただし、各欄の左側の記号は1日目で右側の記号は2日目を示す。
【0062】
【表18】
試料 40℃ 45℃ 50℃
実施例3 ◎/◎ ◎/◎ ○/○
比較例1 ◎/◎ ◎/◎ ○/○
比較例2 ×/× ×/× ×/×
【0063】
表18の結果も同様に実施例1のキャンディは比較例1と同等であり、いずれも比較例1よりもよい結果を得た。
【比較試験4】(歯脆さ試験)
実施例3および比較例1、2で調製した各キャンディを、調製してから1時間後に各キャンディ毎にそれぞれ3箇所を噛んでみて、比較例1のキャンディを基準として同等の歯脆さのものを歯脆さが優れているとして○、硬いがキャンディが割れるものを歯脆さありとして△、硬くて割れないものを歯脆さなしとして×の記号で表現した。結果を表19に示す。
【0064】
【表19】
試料 歯脆さ
実施例3 ○
比較例1 ○
比較例2 ×
【0065】
実施例3は比較例1と同等で、比較例2より優れていた。
【実施例4】
実施例1の還元難消化性水飴を固形分で75gと、比較例2で用いた還元麦芽糖水飴を固形分で425gとを、実施例3と同様にして品温が170℃まで加熱した後、約80℃まで放冷してステンレス製キャビティーに流し込んで成型、固化させた。得られたキャンディは型外れが良好であり、水分は0.2重量%、外観は透明で表面の凹凸がなく、保形性が良好なキャンディを得た。
【0066】
【実施例5】
実施例1の還元難消化性水飴を固形分で150gと、比較例2で用いた還元麦芽糖水飴を固形分で350gとを、実施例3と同様にして品温が170℃まで加熱した後、約80℃まで放冷してステンレス製キャビティーに流し込んで成型、固化させた。得られたキャンディは型外れが良好であり、水分は0.3重量%、外観は透明で表面の凹凸がなく、保形性が良好なキャンディを得た。
【0067】
【実施例6】
実施例1の還元難消化性水飴を固形分で150gとラクチトール(日研化学社製)を固形分で350gとを、実施例3と同様にして品温が170℃まで加熱した後、約80℃まで放冷してステンレス製キャビティーに流し込んで成型、固化させた。得られたキャンディは型外れが良好であり、水分は0.2重量%、外観は透明で表面の凹凸がなく、保形性が良好なキャンディを得た。
【0068】
【実施例7】
実施例1の還元難消化性水飴を固形分で350gと、エリスリトール(日研化学社製)を固形分で150gとを、実施例3と同様にして品温が170℃まで加熱した後、約80℃まで放冷してステンレス製キャビティーに流し込んで成型、固化させた。得られたキャンディは型外れが良好であり、水分は0.2重量%、外観は透明で表面の凹凸がなく、保形性が良好なキャンディを得た。
【0069】
【実施例8】
実施例1の還元難消化性水飴を固形分で350gと、ソルビット(商品名:日研化学社製のソルビトール)を固形分で150gとを、実施例3と同様にして品温が170℃まで加熱した後、約80℃まで放冷してステンレス製キャビティーに流し込んで成型、固化させた。得られたキャンディは型外れが良好であり、水分は0.2重量%、外観は透明で表面の凹凸がなく、保形性が良好なキャンディを得た。
【0070】
【発明の効果】
低エネルギーであることに加えて各種の生理効果を有し、非う蝕性であり、褐変性が低く、且つ適度の甘味と粘性を有する還元難消化性水飴を得ること、およびこれらの効果を有する食品が得られた。
【図面の簡単な説明】
【図1】図1は、健常成人6人に本発明品とマルトデキストリンを摂取させた場合の血糖値の変化を示したものである。
【図2】図2は、pH4.5 又は6.5 に調整した本発明品と粉飴の水溶液を沸騰油浴中で加熱した際の褐変反応を経時的に示したものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reduced resistant starch syrup obtained by reducing resistant starch and a food containing the same.
[Prior art]
In recent years, with the improvement of living standards in Japan, dietary habits have changed and have approached Western standards. As a result, the life expectancy has been prolonged, and the rapid aging phenomenon has occurred, so the disease structure has changed and adult illness has increased remarkably, leading to a dramatic increase in health orientation. Among these, as examples of food materials having a bioregulatory function, dietary fibers and oligosaccharides are attracting attention as materials that enhance the function of food because they have a bioregulatory function centered on improving constipation.
[0002]
These indigestible substances such as dietary fiber and oligosaccharide exhibit various behaviors in the digestive tract and exhibit physiological effects on the living body. First, in the upper gastrointestinal tract, water-soluble dietary fiber results in a decrease in the rate of food movement, resulting in delayed absorption of nutrients. For example, delayed absorption of sugar suppresses an increase in blood glucose level, and accordingly, effects such as insulin saving are exhibited. In addition, by promoting the excretion of bile acids, effects such as a decrease in sterol groups in the body and a decrease in cholesterol in serum also appear. In addition, physiological effects through the endocrine system in the body have also been reported.
In addition, these indigestible substances are characterized by avoiding digestion and absorption up to the small intestine and reaching the large intestine. Some oligosaccharides and dietary fiber that reach the large intestine are assimilated by intestinal bacteria to produce short-chain fatty acids, intestinal gas, vitamins, and the like. It has been reported that acidification of the intestinal environment by short-chain fatty acids leads to intestinal regulation, and absorbed short-chain fatty acids are metabolized into energy and simultaneously inhibit cholesterol synthesis. More recently, some dietary fibers have been reported to be non-cariogenic.
[0003]
Among the indigestible substances, maltitol, polydextrose, indigestible dextrin (dextrin containing dietary fiber), and its reduced indigestible dextrin, which are produced from starch, are known. It can be used for a wide range of foods.
However, among these water-soluble indigestible substances, sugar alcohols such as maltitol and sorbitol have the same sweetness as sucrose and are not easily browned. Although it is suitable for use, depending on the food, sweetness is too strong and inappropriate, or because it has low viscosity, it lacks richness, and it has strong hygroscopicity and poor shape retention as a candy. In addition, it may not be suitable for other than liquid foods, and in addition, its use is limited because of its laxity.
Polydextrose is low in sweetness but lacks richness, has laxity, and some caries are observed.
[0004]
As prior art relating to reduced indigestible dextrin, JP-A 2-145169 produces α-amylase on roasted dextrin to produce indigestible dextrin, and hydrogenated to produce reduced indigestible dextrin And a method for producing reduced indigestible dextrin by allowing transglucosidase or (and) β-amylase to act after α-amylase action to increase dietary fiber and then hydrogenating.
Japanese Patent Application Laid-Open No. 2-154664 discloses a method for producing dextrin having a high dietary fiber content by allowing α-amylase to act on roasted dextrin, followed by action of glucoamylase, collecting dietary fiber content by chromatographic fractionation, and chromatographic fractionation. A method of increasing the dietary fiber by the action of transglucosidase is described, followed by a method of hydrogenating and reducing these dietary fiber-rich dextrins.
[0005]
These indigestible dextrins have low sweetness, low hygroscopicity, and can give a rich feeling, but on the other hand, they are low in sweetness, so they need to be used in combination with other sweeteners, and caries Yes, commercially available products are slightly colored, and browning is likely to occur during the production and storage of foods having a neutral pH, and scorching during boiling is also likely to occur.
In addition, the reduced indigestible dextrin has improved browning of the indigestible dextrin and scorching during boiling, but the low sweetness is the same as the indigestible dextrin.
Therefore, the disadvantages of the water-soluble dietary fiber have been improved, and indigestible substances that are not only low energy but also have physiological effects and non-cariogenic properties that can be used for a wide range of foods have been developed and commercialized. For that reason, its appearance is eagerly desired by various food industries.
[0006]
[Problems to be solved by the invention]
Accordingly, the problem to be solved by the present invention is to have various physiological effects in addition to low energy, non-cariogenic, low browning, moderate sweetness and viscosity, It is to obtain a reduced indigestible starch syrup that can be mixed with sugar alcohols having high hygroscopicity and poor shape retention to improve these disadvantages.
[0007]
[Means for Solving the Problems]
The present invention is a novel technique that has not been conventionally known for the production of the above-mentioned indigestible dextrin and reduced indigestible starch syrup, that is, acid-added roasted dextrin, liquefied α-amylase followed by branching represented by pullulanase An enzyme and β-amylase or a debranching enzyme and saccharified amylase were allowed to act to obtain a hydrolyzate, which was reduced to solve the above-mentioned problems and complete the present invention.
A wide range of starches such as corn starch, potato starch, potato starch and tapioca starch can be used as the raw material starch of the reduced resistant digestible starch syrup of the present invention. In order to obtain resistant starch from this starch, it is essential to add an acid as a catalyst. Various acids can be used as the acid, but since it is for food, an inorganic acid is preferable, and hydrochloric acid is particularly preferable. An appropriate amount of hydrochloric acid is about several percent by weight (3 to 10 percent by weight) of an aqueous solution having a concentration of about 1 percent by weight with respect to starch. Since an acid aqueous solution is added before the heat treatment, in order to mix starch and acid uniformly, the mixture is stirred and aged in a mixer, pre-dried so that the water content of the mixture becomes 1 to 10% by weight, and then heated. Process. The heating conditions are different from the heating conditions of conventional acid roasted dextrin (white dextrin, yellow dextrin) and are obtained by heating at 150 to 200 ° C. for 10 to 120 minutes, preferably 15 to 60 minutes. Is. A higher temperature during the reaction increases the content of indigestible components in the target product, but since the coloring substances increase from around 180 ° C, it is more preferably 150 ° C to 180 ° C.
[0008]
Since it is possible to perform a reaction at a high temperature for a short time by selecting a heating device, the heat treatment can be efficiently performed by using an apparatus capable of performing a uniform reaction. In addition, since the reaction is in a powder state, in the case of large-scale production, it is necessary to change the heating conditions. Therefore, it is desirable to appropriately change the heating conditions after examining the quality of the product after the heat treatment.
As a product obtained in this way, the content of dietary fiber is preferably as high as possible for low calorie content, but on the other hand, it is also necessary to express moderate sweetness. Preferably it is limited to 40 to 60 weight% or more.
[0009]
Next, the roasted dextrin is dissolved in water to a concentration of 20 to 45% by weight, and the pH is adjusted to about 5.5 to 6.5 using a neutralizing agent such as sodium hydroxide. About 0.5 to 0.2% by weight of liquefied α-amylase is added, and hydrolysis is usually performed at 80 to 95 ° C., which is the action temperature of α-amylase, for about 1 hour. Any commercially available product can be used as this liquefied α-amylase, but Termamyl (trade name: thermostable α-amylase manufactured by Novo Nordisk Bioindustry) is most preferred.
[0010]
Subsequently, hydrolysis is performed using a debranching enzyme and β-amylase or a debranching enzyme and saccharifying amylase in combination. Although isoamylase can be used as the debranching enzyme, pullulanase is most preferable. As the β-amylase and saccharified amylase, any of malt-derived, mold-derived and bacterial-derived enzymes can be used. As the saccharified amylase, mold-derived α-amylase is most preferable.
The pH when pullulanase and β-amylase or pullulanase and saccharified amylase are allowed to act is preferably 5.0 to 6.0. Similarly, the addition amounts of both enzyme agents are about 0.05 to 0.2% by weight, respectively. The reaction temperature is about 55 to 60 ° C., and the decomposition time is usually about 24 to 48 hours.
[0011]
In addition, after the roasted dextrin is first hydrolyzed with liquefied α-amylase, the hydrolyzed solution is subjected to pressure steaming at 115 to 135 ° C., and then α-amylase is allowed to act again. It is also possible to increase the filtration rate.
The addition amount of the enzyme agent is not limited to the above range, and an equivalent amount may be added according to the titer of the enzyme agent. Moreover, reaction time can also be adjusted freely by increasing / decreasing the addition amount.
After the enzyme agent is allowed to act, the pH is lowered to around 3.5, then the liquid temperature is raised to around 80 ° C., and thereafter normal activated carbon decolorization, filtration, desalting with an ion exchange resin, and decolorization are performed. Next, it is concentrated to a concentration of about 50 to 70% by weight to obtain a resistant starch syrup.
[0012]
Next, indigestible starch syrup is reduced. This reduction (hydrogenation) reaction is the same as that generally performed for starch saccharides. Usually, a conventional reduction catalyst such as Raney nickel, Raney cobalt, nickel diatomaceous earth is used. Add hydrogen pressure 50-130Kg / cm2The hydrogenation is carried out under ordinary conditions of a temperature of about 50 to 150 ° C. Heating at this time is preferably performed after sufficiently dissolving hydrogen in the solution until it becomes saturated. On the other hand, when hydrogen supply is insufficient, undesirable side reactions such as oxidation and hydrolysis are caused. May occur. This hydrogenation is usually completed within 2 hours, although there are some differences depending on reaction conditions such as temperature and pressure. Next, purification usually used in the technical field, for example, activated carbon decolorization, filtration, desalting with an ion exchange resin, and decolorization are performed again after catalyst separation.
[0013]
According to the above production method, a reduced resistant starch syrup having a dietary fiber content of 30 to 60% by weight, a maltitol content of 15 to 40% by weight and an energy value of 2 kilocalories or less is obtained.
The reduced resistant starch syrup obtained by the present invention can be used for almost all foods. This food is a general term for human food, animal and livestock feed, pet food, and the like. It is a water-soluble reducible resistant starch made from starch and contains dietary fiber, and can be used as a low calorie extender in foods. Conventional uses of dextrin, maltodextrin, starch syrup, reduced starch syrup, and reduced maltose All foods that can be used such as chickenpox are included.
[0014]
Examples of such foods include coffee and tea, cola, juice and other liquid and powder beverages, bread, cookies, biscuits, cakes, pizza, pie and other bakery items, udon, ramen, buckwheat noodles, spaghetti , Pasta such as macaroni and fettuccine, confectionery such as candy, chocolate and chewing gum, oil confectionery such as donut and potato chips, frozen confectionery such as ice cream, shake and sorbet, cream, cheese, powdered milk, condensed milk, creamy powder , Dairy products such as coffee whitener, milk drinks, chilled desserts such as pudding, yogurt, drink yogurt, jelly, mousse, bavaroa, various soups, stew, gratin, curry and other retort pouches or canned foods, various miso, soy sauce , Sauce, ketchup, mayonnaise Seasonings such as dressing, bouillon, various roux, processed meat products such as ham, sausage, hamburger, meatball, corn beef and frozen foods thereof, frozen processed foods such as pilaf, croquette, omelet, doria, club stick, Processed marine products such as sea cucumber, dried mashed potatoes, jam, marmalade, peanut butter, peanuts, etc., other boiled rice cakes, rice cakes, rice crackers, snack foods, fast foods, wine, beer, cocktails, fizz, liqueurs, etc. And can be used effectively for any of these.
[0015]
Hereinafter, the present invention will be described in detail by experimental examples.
[Quantitative method for dietary fiber]
Low molecular water solubility, which is difficult to analyze by the Prosky method alone in the dietary fiber quantification method of the analysis method of nutritional components, etc. stipulated in the Ministry of Health and Welfare Notification No. 47 of May 23, 1996 It quantified according to the high performance liquid chromatograph method applied to the foodstuff containing a dietary fiber.
1) First, digestion with heat-stable α-amylase and digestion with protease following Prosky, L et al, J. Assoc. Off. Anal. Chem., 68, (2), 399, 1985) Digestion with glucosidase, ethanol is added to the enzyme reaction solution to form a precipitate, which is filtered. This residue is dry-weighed to determine the dietary fiber content A (% by weight).
2) Next, the filtrate is concentrated, and after removing the solvent, the volume is made up to 100 ml to make an enzyme treatment solution containing low-molecular water-soluble dietary fiber. This is passed through an ion exchange resin and extruded with distilled water to make the eluate 200 ml. This solution is concentrated to Brix5 and filtered through a membrane filter having a pore size of 0.45 μm to obtain a sample solution.
3) Subject to high performance liquid chromatography under the following conditions to obtain a high performance liquid chromatogram. The area of glucose and dietary fiber fraction or internal standard substance and dietary fiber fraction is determined.
[0016]
<High-performance liquid chromatograph operating conditions>
Column temperature: 80 ° C-85 ° C
Mobile phase: water
Flow rate: 0.3 ml / min
Injection volume: 20 μl
4) Glucose in the sample solution obtained in 2) is measured with pyranose oxidase, its content is determined, and used as a standard substance.
5) Calculation
Low molecular weight water-soluble dietary fiber weight (mg) (B) =
(Peak area of dietary fiber) / (peak area of glucose) x (glucose weight)
Low-molecular water-soluble dietary fiber (% by weight) in dry / defatted samples (D) =
[Dietary fiber weight B (mg)] / [Sample collection amount (mg)] × 100
Low molecular weight water-soluble dietary fiber (% by weight) in raw sample (E) =
D × [1- (weight loss on drying +% weight loss on degreasing) / 100]
Total dietary fiber (% by weight) in raw sample = weight% of dietary fiber determined by the Prosky method (A) +% by weight of low molecular weight water-soluble dietary fiber (E)
[0017]
[Calculation method of energy value]
Because the caloric value of sugar is 4 kilocalories / g,
Energy value in raw sample (kcal / g) (F) =
4 × [(100—low molecular weight water-soluble dietary fiber B weight% in raw sample) / 100]
Since the energy value of sorbitol is defined as 3 kcal, maltitol and maltotritol are defined as 2 kcal, the energy value of the product of the present invention is calculated by the following equation. However, the contents of sorbitol, maltitol and maltotritol are described as S wt%, M wt% and T wt%, respectively.
Energy value (kcal / g) =
FS * (4-3) -M * (4-2) -T * (4-2)
[0018]
[Method of measuring sweetness]
Four kinds of sweet sucrose solutions close to a 30% by weight solution of the sample were prepared at 1% by weight concentration intervals, a sensory test (comparison) was performed, and the sweetness degree was calculated by the following equation.
Sweetness = [concentration of corresponding sucrose solution (% by weight)] / 30 (% by weight) × 100
[Measurement method of viscosity]
A 50% by weight solution of the sample was prepared, and the viscosity at each temperature was measured with a B-type viscometer.
[Measurement method of osmotic pressure and freezing point depression]
The osmotic pressure and freezing point depression degree at each concentration were measured using OSMOTRON-10.
[0019]
[Measurement method of coloring degree]
The absorbance of 420 nm and 720 nm was measured for a 10 wt% solution of the sample with a UV-visible spectrophotometer UV-160 (manufactured by Shimadzu Corporation) using a 10 cm cell, and the difference was defined as the degree of coloring.
[Method for measuring sugar composition]
10 μl of a 5 wt% solution is collected and analyzed by high performance liquid chromatography under the following conditions.
High performance liquid chromatographic conditions
Column Mitsubishi MCI GEL CK04SS
Detector Differential refractometer
Column temperature 80 ° C
Flow rate 0.3 ml / min.
Eluent water
DP1, DP2, and DP3 in the analysis result notation correspond to sorbitol, maltitol, and maltotritol, respectively.
[0020]
[DE measurement method]
DE is an abbreviation for Dextose Equivalent, and is an index widely used to indicate the degree of hydrolysis of starch hydrolyzate. Reducing sugar is measured as glucose using the Wilstetter-Schudel method. The ratio of the reducing sugar to the solid content of 100 was defined as DE.
[Measurement method of concentration]
The Brix degree measured by a Ref Brix meter (manufactured by ATAGO) was defined as the concentration by weight.
Hereinafter, the present invention will be described in detail by experimental examples.
[0021]
[Experimental example]
[Experiment 1]
After putting commercially available corn starch into a ribbon mixer, spraying 1 wt% hydrochloric acid to 400 ppm with respect to corn starch using pressurized air while rotating the mixer, and then homogenizing through a grinder Further, it was aged for 4 hours in a ribbon mixer. This mixture was pre-dried with a flash drier so that the water content was about 4% by weight, then charged into a roasting machine and roasted at 150 ° C. for 20 minutes to obtain a roasted dextrin.
This roasted dextrin is dissolved in water to give a 35% strength solution, and 0.2% by weight of Termamyl 60L (trade name: heat-resistant α-amylase preparation manufactured by Novo Nordisk Bioindustry) is added. And hydrolyzed at 90 ° C. for 10 minutes. Next, heat treatment was performed at 130 ° C. for 20 minutes in a pressurized container. The hydrolyzed solution was diluted to a concentration of 30 ° Bx, the pH was adjusted to 5.5, and 0.2% by weight of Biozyme L (trade name: β-amylase preparation manufactured by Amano Pharmaceutical Co., Ltd.) with respect to the liquid solid content, 0.215 wt% pullulanase / Amano (trade name: debranching enzyme manufactured by Amano Pharmaceutical Co., Ltd.) was added and hydrolyzed at 55 ° C. for 15 hours. This hydrolyzed solution is decolorized and filtered with activated carbon, desalted with an ion exchange resin, and then concentrated in vacuo to a concentration of 65% by weight and a dietary fiber content of 46.2% by weight per liquid solid content. I got chickenpox.
[0022]
Next, 1 kg of this indigestible starch syrup solution is placed in a 2 l reaction vessel, 20 g of Raney nickel R239 (trade name: manufactured by Nikko Rika Co., Ltd.) is added as a catalyst, and hydrogen gas is added at 100 kg / cm.2The solution was charged until reaching a pressure of 1 ° C., and a reduction reaction was performed at 130 ° C. for 3 hours while stirring at 400 to 600 rpm. The reduced product was filtered to separate the catalyst, then decolorized and filtered with activated carbon, then desalted with an ion exchange resin and concentrated to a concentration of 70% by weight to obtain about 710 g of a reduced resistant starch syrup. Table 1 shows analytical values per solid content of this reduced resistant starch syrup (hereinafter referred to as the present invention product).
[0023]
[Table 1]
Degree of polymerization Content of each component (% by weight)
DP1 5.6
DP2 47.0
DP3 5.3
DP4 3.4
DP5 4.5
DP6 3.5
DP7 or higher 30.7
Dietary fiber content 44.0
Energy value 1.14 kcal
[0024]
[Physical property test]
About this invention product, sucrose, sorbitol, maltitol, polydextrose, starch, indigestible dextrin (trade name Fiber Sol-2 manufactured by Matsutani Chemical Industry Co., Ltd.), maltose, maltodextrin (manufactured by Matsutani Chemical Industry Co., Ltd.) Product name TK-16), energy value, sweetness, viscosity, digestibility, digestive absorption, caries, fermentability, osmotic pressure compared to powdered rice cake (
1. The energy value is about 1 kcal / g.
2. Table 2 shows the measurement results of the sweetness degree sensory test.
[0025]
[Table 2]
Sorbitol 65
Invention product 40
3. viscosity
The measured viscosity values are shown in Table 3.
[0026]
[Table 3]
[0027]
4). Digestibility (in vitro test)
1) Digestibility by salivary amylase
Test conditions
Buffer: 45 mM (bis) tris buffer (pH 6.0)
Test solution concentration: 4.55% by weight
Enzyme: Human salivary amylase Type IX-A
Reaction temperature: 37 ° C
Reaction time: 30 minutes
Sugar analysis: Reducing sugar produced is measured by the Somogy-Nelson method
The test results are shown in Table 4.
[0028]
[Table 4]
Sample Decomposition rate (% by weight)
Invention product 0.00
Indigestible dextrin 0.67
Starch 25.7
[0029]
2) Digestibility by small intestinal mucosal enzyme
Test conditions
Buffer: 45 mM sodium maleate buffer (pH 6.6)
Test solution concentration: 0.45% by weight
Enzyme: Rat small intestine acetone powder (SIGMA)
Reaction temperature: 37 ° C
Reaction time: 180 minutes
Sugar analysis: The glucose produced is measured with pyranose oxidase.
The test results are shown in Table 5.
[0030]
[Table 5]
Sample Decomposition rate (% by weight)
Invention product 10.0
Indigestible dextrin 11.2
Maltose 93.2
[0031]
The results in Tables 4 and 5 indicate that the product of the present invention is not degraded at all by human salivary amylase, but only slightly degraded by rat small intestine acetone powder.
5. Digestibility (In vivo test)
Six healthy adults were ingested with 50 g of the product of the present invention and TK-16 (trade name: DE about 16 maltodextrin manufactured by Matsutani Chemical Co., Ltd.), blood was collected over time, and blood glucose level was measured. As a result, as shown in FIG. 1, it was confirmed that the product of the present invention does not increase blood sugar. This can be presumed to reach the large intestine as it is without digestion and absorption in the upper digestive tract.
[0032]
6). Caries
S. is a major causative agent of caries. Mutans were used to examine the acid production, insoluble glucan production and insoluble glucan production inhibition ability of the product of the present invention.
1) Acid production
Adjusted to pH 7.0 with aqueous sodium hydroxide solution. Table 6 shows the results of measuring the pH when each saccharide was added to the mutans suspension and cultured at 37 ° C. for 6 hours.
[0033]
[Table 6]
Sample pH after 6 hours of culture
Blank (no sugar added) 6.30
Product of the present invention 6.25
Glucose 5.26
Sucrose 5.21
Maltitol 6.27
Polydextrose 5.23
[0034]
From Table 6, the product of the present invention is S.P. Almost no acid production by mutans was observed.
2) Insoluble glucan production ability
S. Table 7 shows the results of adding glucosyltransferase produced by mutans to each saccharide solution, culturing at 37 ° C. for 3 hours, and measuring the absorbance at a wavelength of 550 nm with a spectrophotometer.
[0035]
[Table 7]
Sample Absorbance after 3 hours reaction
Blank (no sugar added) 0.075
Invention product 0.083
Glucose 0.084
Sucrose 0.352
Maltitol 0.083
Polydextrose 0.083
[0036]
From Table 7, the product of the present invention was not found to produce insoluble glucan by glucosyltransferase.
3) Insoluble glucan production inhibitory ability
Similarly to 2), add glucosyltransferase to each saccharide solution, add sucrose, react at 37 ° C. for 3 hours and 24 hours, and calculate the absorbance at 550 nm with sucrose alone as 100. Tables 8 and 9 show.
[0037]
[Table 8]
[0038]
[Table 9]
[0039]
As apparent from Tables 8 and 9, the product of the present invention was found to suppress the production of insoluble glucan from sucrose.
From the results of the above 1), 2) and 3), the product of the present invention is a major causative bacterium of caries. The production of acid by mutans and the production of insoluble glucan causing plaque were not observed, and it was confirmed to be a non-cariogenic saccharide in order to suppress the production of insoluble glucan.
[0040]
7). Fermentability
The fermentability of the product of the present invention was examined with various bacteria.
1) A suspension of Micrococcus and Leuconostoc, the main bacteria of ham and sausage nets, is stored in a medium containing 0.5% by weight of each saccharide, cultured at 37 ° C. for 3 days, pH value and pH 6.5. The amount of 1 / 50N sodium hydroxide required to adjust to 1 was measured. The results are shown in Table 10.
[0041]
[Table 10]
[0042]
2) Lactic acid bacteria faecalis, L.M. acidophilus and B. et al. The longum suspension was inoculated into a medium containing 0.5% by weight of each saccharide, cultured at 37 ° C. for 4 days, and then the pH was measured. The results are shown in Table 11.
[0043]
[Table 11]
[0044]
From the results of Table 10 and Table 11, it was confirmed that the product of the present invention is a saccharide with low fermentability.
8). Osmotic pressure and freezing point depression
Table 12 shows the results of measuring the osmotic pressure and the freezing point depression degree of each sample as an aqueous solution having a concentration of about 10 ° Bx.
[0045]
[Table 12]
Sample concentration (° Bx) Osmotic pressure (mOsm / cm2) Freezing point depression (℃)
Product of the present invention 11.4 300 1.37
Sucrose 11.5 378 0.70
Maltitol 11.5 333 0.62
Lightes II 11.5 191 0.35
[0046]
9. Stability test
1) Browning
A buffer solution (containing 1% by weight of glycine) adjusted to pH 4.5 and 6.5 was used to prepare a 10% by weight solution of the product of the present invention and powdered rice and heated in a boiling water bath for 3 hours. Analytical samples were collected and the browning reaction was examined by measuring the degree of coloration. The results are shown in FIG.
The result of FIG. 2 shows that the product of the present invention hardly browns.
2) Heat stability under acidic conditions
After adding 0.25 wt% citric acid and 0.05 wt% ascorbic acid to a 10 wt% aqueous solution of the product of the present invention, the coloring degree and sugar composition of the sample heated at 100 ° C for 1 hour were measured, and the stability was examined. Went. The results are shown in Table 13.
[0047]
[Table 13]
[0048]
From Table 13, the degree of coloring increased only slightly after heating, and no decomposition of the constituent sugars was observed.
3) Stability in boiling under acidic conditions
After adding 1.0% by weight of citric acid to 100g of the product of the present invention to prepare a concentration of 75% by weight, it is boiled by heating to 160 ° C on a 600W electric stove, poured into a mold, allowed to cool and then candy. Prototyped. The degree of coloring and sugar composition (% by weight) before and after simmering were measured, and the simmering stability under acidic conditions was examined. The results are shown in Table 14.
[0049]
[Table 14]
[0050]
From Table 14, it was recognized that there was no difference in coloring degree and sugar composition before and after simmering, so that it was very stable.
Examples will now be described.
[0051]
[Example 1]
The roasted dextrin produced in Experimental Example 1 was hydrolyzed with Termamyl 60L under the same conditions as in Experimental Example 1, and the hydrolyzed solution obtained by heating was diluted to a concentration of 30 ° Bx and the pH was adjusted to 5.5. And 0.2% by weight of Fungamyl 900L (trade name: Mold-derived saccharified α-amylase manufactured by Novo Nordisk Bioindustry) and 0.215% by weight of pullulanase in the same manner. / Amano was added and hydrolyzed at 55 ° C. for 15 hours. This hydrolyzed solution was decolorized and filtered with activated carbon, desalted with an ion exchange resin, and then concentrated in vacuo to obtain an indigestible chickenpox having a concentration of 65% by weight.
18.55 Kg of this indigestible starch syrup is put in a 20 l reduction reaction vessel, and Raney nickel 40.338.1 g similar to Experimental Example 1 is added, and hydrogen gas is 96 Kg / cm.2The solution was charged until reaching a pressure of 1 hour, and a reduction reaction was performed at 130 ° C. for 3 hours while stirring at 500 rpm. The reduced product was filtered to separate the catalyst, and then decolorized and filtered with activated carbon, then desalted with an ion exchange resin, and concentrated to a concentration of 70% by weight to obtain about 14.9 kg of reduced resistant starch.
[0052]
[Example 2]
The roasted dextrin produced in Experimental Example 1 was hydrolyzed with Termamyl 60L under the same conditions as in Experimental Example 1, and the hydrolyzed solution obtained by heating was diluted to a concentration of 30 ° Bx and the pH was adjusted to 5.5. Then, 0.2% by weight of Biozyme L (trade name: β-amylase manufactured by Amano Pharmaceutical Co., Ltd.) and 0.215% by weight of pullulanase / Amano were added to the liquid solid content, and 15 ° C. at 15 ° C. Hydrolyzed for hours. This hydrolyzed solution was decolorized and filtered with activated carbon, desalted with an ion exchange resin, and then concentrated in vacuo to obtain an indigestible chickenpox having a concentration of 65% by weight.
19.80 Kg of this indigestible starch syrup is put in a 20 l reduction reaction vessel, 420.2 g of Raney nickel similar to that of Experimental Example 1 is added, and hydrogen gas is 95 Kg / cm.2The solution was charged until reaching a pressure of 1 hour, and a reduction reaction was performed at 130 ° C. for 3 hours while stirring at 500 rpm. The reduced product was filtered to separate the catalyst, and then decolorized and filtered with activated carbon, then desalted with an ion exchange resin, and concentrated to a concentration of 70% by weight to obtain about 15.7 kg of reduced resistant starch.
Table 15 shows the analytical values per solid content of the reduced resistant starch of Examples 1 and 2.
[0053]
[Table 15]
[0054]
[Example 3]
500 g of the reduced indigestible starch syrup produced in Experimental Example 1 is placed in a 1 liter stainless steel container, heated to a temperature of 160 ° C. with gentle stirring on a 600 W electric heater, and then up to about 80 ° C. It was allowed to cool and poured into a stainless steel cavity to be molded and solidified. About 15 minutes later, the cavity was inverted and the edge was twisted to remove it from the mold, and the candy of the present invention was obtained. The obtained candy had good mold release, moisture was 0.3% by weight, the appearance was transparent, there were no surface irregularities, and moderate brittleness was felt when chewed.
[0055]
[Comparative Example 1]
A candy was produced in the same manner as in Example 3 except that 200 g of granulated sugar and Fuji Shirap 38 (trade name: Minamata manufactured by Kato Chemical Co., Ltd.) were used in a solid content. The obtained candy had good mold release, water content was 0.4% by weight, the appearance was slightly yellowish, transparent and had no surface irregularities, and moderate tooth brittleness was felt when chewed.
[0056]
[Comparative Example 2]
A candy was produced in the same manner as in Example 3 except that 500 g of malbit (trade name: reduced maltose syrup made by Hayashibara Biochemical Laboratories) was used as the solid content. The obtained candy had a bad mold, the moisture content was 0.3% by weight, and the appearance was transparent. However, when chewing, the candy bite into the teeth and attached to the teeth and felt uncomfortable.
[0057]
[Comparative test 1] (Hygroscopic test)
Using the candy prepared in Example 3 and Comparative Examples 1 and 2, a candy shape retention test was performed by the following method. Place each candy in a weighing can in a constant humidity desiccator with a relative humidity of 81% and 30 ± 1 ° C, store it in a weighing can and measure the weight over time. Was calculated. The results are shown in Table 16.
Weight change rate (% by weight) = weight after storage ÷ weight before storage × 100-100
[0058]
[Table 16]
Sample 24 hours later 48 hours later 72 hours later
Example 3 3.8 8.4 11.3
Comparative Example 1 4.9 9.4 12.7
Comparative Example 2 6.6 14.8 17.4
[0059]
[Comparison Test 2] (Shape retention test)
Each candy prepared in Example 3 and Comparative Examples 1 and 2 was placed in a Petri dish with graph paper and stored in a constant humidity desiccator at 30 ± 1 ° C. and a relative humidity of 81% for 48 ± 1 hours. The area where the water flowed out was measured, and “flow (%)” was calculated by the following formula. The results are shown in Table 17.
Flow (%) = candy area after storage ÷ area of candy before storage × 100
[0060]
[Table 17]
Sample flow (%)
Example 3 400
Comparative Example 1 400
Comparative Example 2 855
[0061]
The results shown in Table 17 indicate that the “flow” of the candy of Example 3 is the same as that of Comparative Example 1, and each is less than half that of Comparative Example 2.
[Comparative test 3] (Thermal stability test)
Each candy prepared in Example 3 and Comparative Examples 1 and 2 was hermetically packaged immediately after manufacture with an aluminum packaging material and stored at 40 ° C., 45 ° C., and 50 ° C., and the thermal stability of the candy was improved. Observed over time. The evaluation method is ◎ with no change in state, candy adheres lightly, ○ that can be easily separated by hand, candy that adheres strongly and difficult to separate △, candy between The melted and broken shape is represented by the symbol x. The results are shown in Table 18. However, the symbol on the left side of each column indicates the first day, and the symbol on the right side indicates the second day.
[0062]
[Table 18]
Sample 40 ° C 45 ° C 50 ° C
Example 3 ◎ / ◎ ◎ / ◎ ○ / ○
Comparative Example 1 ◎ / ◎ ◎ / ◎ ○ / ○
Comparative Example 2 × / × × / × × / ×
[0063]
Similarly, the results of Table 18 show that the candy of Example 1 is equivalent to Comparative Example 1, and both obtained better results than Comparative Example 1.
[Comparative test 4] (Tooth brittleness test)
Each candy prepared in Example 3 and Comparative Examples 1 and 2 was chewed at three locations for each candy one hour after preparation, and had the same tooth brittleness based on the candy of Comparative Example 1 Is represented by the symbol x for excellent tooth brittleness, Δ for hard but cracked candy with Δ for tooth brittle, and x for hard and unbreakable with no tooth brittle. The results are shown in Table 19.
[0064]
[Table 19]
Sample Teeth brittleness
Example 3 ○
Comparative Example 1 ○
Comparative Example 2 ×
[0065]
Example 3 was equivalent to Comparative Example 1 and was superior to Comparative Example 2.
[Example 4]
After reducing the indigestible starch syrup of Example 1 with a solid content of 75 g and the reduced maltose starch syrup used in Comparative Example 2 with a solid content of 425 g, the product temperature was heated to 170 ° C. in the same manner as in Example 3, It was allowed to cool to about 80 ° C., poured into a stainless steel cavity, and molded and solidified. The obtained candy had a good mold release, a moisture content of 0.2% by weight, a transparent appearance, no surface irregularities, and a good candy-retaining candy.
[0066]
[Example 5]
After reducing the indigestible starch syrup of Example 1 with a solid content of 150 g and the reduced maltose starch syrup used in Comparative Example 2 with a solid content of 350 g, the product temperature was heated to 170 ° C. in the same manner as in Example 3, It was allowed to cool to about 80 ° C., poured into a stainless steel cavity, and molded and solidified. The obtained candy had a good mold release, a moisture content of 0.3% by weight, a transparent appearance, no surface irregularities, and a good candy-retaining candy.
[0067]
[Example 6]
After heating the reduced resistant digestible starch syrup of Example 1 with a solid content of 150 g and lactitol (Niken Chemical Co., Ltd.) with a solid content of 350 g to a product temperature of 170 ° C. in the same manner as in Example 3, about 80 The mixture was allowed to cool to 0 ° C., poured into a stainless steel cavity, and molded and solidified. The obtained candy had a good mold release, a moisture content of 0.2% by weight, a transparent appearance, no surface irregularities, and a good candy-retaining candy.
[0068]
[Example 7]
350 g of the reduced resistant digestible starch syrup of Example 1 and 150 g of erythritol (manufactured by Nikken Chemical Co., Ltd.) with a solid content were heated to 170 ° C. in the same manner as in Example 3; The mixture was allowed to cool to 80 ° C., poured into a stainless steel cavity, and molded and solidified. The obtained candy had a good mold release, a moisture content of 0.2% by weight, a transparent appearance, no surface irregularities, and a good candy-retaining candy.
[0069]
[Example 8]
350 g of reduced indigestible starch syrup of Example 1 and 150 g of sorbit (trade name: sorbitol manufactured by Nikken Chemical Co., Ltd.) of solid content in the same manner as in Example 3 up to 170 ° C. After heating, the mixture was allowed to cool to about 80 ° C., poured into a stainless steel cavity, and molded and solidified. The obtained candy had a good mold release, a moisture content of 0.2% by weight, a transparent appearance, no surface irregularities, and a good candy-retaining candy.
[0070]
【The invention's effect】
In addition to being low energy, it has various physiological effects, is non-cariogenic, has low browning, and has a moderate sweetness and viscosity. A food product was obtained.
[Brief description of the drawings]
FIG. 1 shows changes in blood glucose level when 6 healthy adults are fed the product of the present invention and maltodextrin.
FIG. 2 shows the browning reaction over time when the product of the present invention adjusted to pH 4.5 or 6.5 and an aqueous solution of powdered rice cake are heated in a boiling oil bath.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30922696A JP3659755B2 (en) | 1996-11-20 | 1996-11-20 | Reduced indigestible chickenpox and food using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30922696A JP3659755B2 (en) | 1996-11-20 | 1996-11-20 | Reduced indigestible chickenpox and food using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10150934A JPH10150934A (en) | 1998-06-09 |
JP3659755B2 true JP3659755B2 (en) | 2005-06-15 |
Family
ID=17990457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30922696A Expired - Lifetime JP3659755B2 (en) | 1996-11-20 | 1996-11-20 | Reduced indigestible chickenpox and food using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3659755B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6866876B2 (en) * | 2002-02-14 | 2005-03-15 | Wm. Wrighley Jr. Company | Coated chewing gum products containing hydrogenated indigestible starch syrup as a binding agent |
JP2005287454A (en) | 2004-04-02 | 2005-10-20 | Matsutani Chem Ind Ltd | Food and beverage for imparting health function and method for imparting health function to food and beverage |
JP2007291136A (en) * | 2007-07-31 | 2007-11-08 | Matsutani Chem Ind Ltd | Body fat regulator containing reduced hard-digestive dextrin |
JP4908390B2 (en) * | 2007-12-17 | 2012-04-04 | 麒麟麦酒株式会社 | Low calorie beer flavored alcoholic beverage and method for producing the same |
WO2009136432A1 (en) * | 2008-05-06 | 2009-11-12 | 長崎県公立大学法人 | Method for determining carbohydrate and kit for determining carbohydrate |
CN103653138A (en) * | 2013-12-09 | 2014-03-26 | 烟台职业学院 | Technology for production of purple potato beverage by use of wave band enzyme method |
JP6886702B2 (en) * | 2017-07-21 | 2021-06-16 | 松谷化学工業株式会社 | Method for Producing Water-Soluble Dietary Fiber-Containing Sugar Composition |
JP6836820B1 (en) * | 2019-06-26 | 2021-03-03 | 株式会社リタファーマ | Water-soluble hyaluronic acid gel and its manufacturing method |
CN112280815A (en) * | 2020-11-06 | 2021-01-29 | 常宁超喜欢食品有限公司 | Processing technology of maltose |
-
1996
- 1996-11-20 JP JP30922696A patent/JP3659755B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH10150934A (en) | 1998-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11572380B2 (en) | Saccharide polycondensate, method for producing the same, and application therefor | |
JP6656184B2 (en) | Fiber-containing carbohydrate composition | |
JP6847727B2 (en) | Food products containing slow-digesting or resistant-digesting carbohydrate compositions | |
US5358729A (en) | Indigestible dextrin | |
EP2156751B1 (en) | Novel sweetener having sugar-like taste and production method and use of the same | |
US5472732A (en) | Indigestible dextrin | |
JP2016510604A (en) | Fiber-containing carbohydrate composition | |
JP6962674B2 (en) | Branched α-glucan mixture syrup and its uses | |
JP3659755B2 (en) | Reduced indigestible chickenpox and food using the same | |
KR0169405B1 (en) | Buckwheat starch syrup, method for preparing the same and its production | |
JP3020583B2 (en) | Method for removing bitterness of β-glucooligosaccharide | |
JPH0538272A (en) | Reducing starch sugar composition, production thereof and food and drink containing the same composition | |
JPH09299094A (en) | Reducing starch sugar composition, its production and food and drink containing the same composition | |
JPS5856628B2 (en) | Manufacturing method for food and drinks, etc. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050303 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050307 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050315 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090325 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090325 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100325 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100325 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110325 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110325 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120325 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120325 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130325 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140325 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |